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Abstract. Making use of the Nielsen fixed point theory, we study a conjugacy in-
variant of braids, which we call the level index function. We present a simple algorithm
for computing it for positive permutation cyclic braids.

1. Introduction. Let f and g be orientation preserving disk homeo-
morphisms with periodic orbits P and Q respectively. For simplicity, we will
consider only orbits contained in the interior of the disk; this can be also
achieved simply by extending a homeomorphism to a larger disk. Two such
pairs (f, P ) and (g,Q) are equivalent if f is conjugate (in the dynamical
systems meaning) to some g̃ via a homeomorphism that maps P to Q and
g̃ is isotopic to g relative to Q (that is, via an isotopy that fixes the points
of Q). Equivalence classes are called braid types ([2]) or patterns ([5], [6]).
Here we will consider oriented braid types, where the conjugacy mentioned
above is orientation preserving.

Thus, we are looking at the mapping classes of the homeomorphism rel-
ative to the periodic orbit. To realize the connection with braids, explaining
the name “braid types”, take the suspension flow of the homeomorphism with
a periodic orbit P , and then the trajectory of any point x ∈ P (cut at the
level 0) can be identified with a braid. Since we pass from a 3-dimensional
picture, where the points of the orbit are in the interior of the disk, to a
basically 2-dimensional one, where they are ordered on an interval, the braid
corresponding to an orbit is defined only up to an algebraic conjugacy. We
will use for those braids also the name (oriented) braid type of P .

Because of our motivation, braids with cyclic permutations are of spe-
cial interest to us. We will call them cyclic braids. We will study positive
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permutation braids, which are braid types for disk homeomorphisms ob-
tained by “thickening” interval maps. If f is a continuous interval map with
a finite union of periodic orbits (fupo in short) P ′ then a homeomorphism
of a “thick interval”, which is homeomorphic to a disk, can be associated
to it. Let us denote by P the corresponding fupo of this homeomorphism.
The interval defines the natural ordering on P ′, so when considering a braid
associated to P , we have a natural choice of a braid. This braid is a pos-
itive permutation braid ([4], [11]), that is, a braid with all crossings pos-
itive and each pair of strands crossing at most once. Its permutation is
the same as the permutation of the points of the orbit P ′ of the interval
map.

Let us recall some basic notions from the Nielsen fixed point theory (for
an exposition see [9]). LetX be a connected compact polyhedron, f : X → X
be a self-map and let Fix(f) = {x ∈ X : f(x) = x}. An equivalence relation
on the set of fixed points of f can be defined. We say that two fixed points
x and y of f : X → X belong to the same fixed point class if there is a path
α joining them such that f(α) is homotopic to α keeping endpoints fixed
during the homotopy. The equivalence classes with respect to this relation
are essential if the sum of indices of fixed points in the class is non-zero. The
Nielsen number N(f) is defined as the number of essential fixed point classes.
The Nielsen number is a homotopy invariant which gives a lower bound for
the cardinality of Fix(f). The fixed point index provides an algebraic count
of fixed points in an open set. In particular, it is known that if x is a saddle,
then its index is −1 if both eigenvalues are positive and 1 if both eigenvalues
are negative.

Invariants of braid conjugacies are useful in the study of braid types. In
a recent paper [10], we dealt with such invariants, which we called turning
numbers. Their simplest interpretation is as linking numbers of components
of the nth power of the braid (where n is the number of strands of the
braid). Although they distinguish between non-conjugate positive permuta-
tion cyclic braids with up to seven strands, we found an example of two
braids with eight strands which have the same turning numbers but are not
conjugate. In this paper we define the level index function, another invari-
ant of braid conjugacy. It allows us to distinguish between the braids in the
above example (they can be distinguished in several other ways, but this
may be the quickest one).

Similarly to [10], we consider our results as a contribution to the study of
periodic orbits of disk homeomorphisms, while they may be less important
from the point of view of braid theory or knot theory.

To get the level index function, we are essentially abelianizing the Nielsen
fixed point theory. While this technique is known (see, e.g., [3], [7], [8], [13]),
we did not find in the literature such an invariant. Even if it can be treated
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as a special case of some more complicated one, here we describe it in ele-
mentary terms and provide easy means for its computation for a dynamically
interesting class of braids.

This paper is organized as follows. In Section 2 we say how to deal with
the fixed point theory for a punctured disk (which is not compact). In Sec-
tion 3 we introduce winding sums and lapses. In Section 4 we define the
level index function and explain the main idea of the paper. In Section 5 we
present a simple way to pass from an interval map with a fupo to a positive
permutation braid with the same permutation. In Section 6 we introduce
an algorithm to compute the level index function for positive permutation
cyclic braids. Finally in Section 7 we show that in the example mentioned
earlier the braids can be distinguished by the level index function.

2. Fixed point theory for a punctured disk. We need to use the
Nielsen fixed point theory for a disk punctured at a finite number of points.
However, normally the theory is presented for compact spaces. A solution
is to use the results of the paper [12]. It works in our setup, provided all
maps considered, including the level maps of homotopies involved, belong
to the class F of maps for which the set of fixed points in the punctured
disks is compact. Since we puncture the disk in the points of a finite union
of periodic orbits P , a map belongs to F if and only if each point of P which
is a fixed point is not a point of accumulation of fixed points. This will be
satisfied for instance if each fixed point which belongs to P is attracting. To
achieve this, we prove the following lemma.

Lemma 2.1. Let B be a ball in R2, centered at the origin O, with ra-
dius R. Let f : B → R2 be a homeomorphism of B onto its image, such that
f(O) = O. Then there exists a continuous map Φ : [0, R0]×B → R2, where

R0 = min(inf{‖f(x)‖ : ‖x‖ = R}, R)/2,

such that Φ0 = f ; for t > 0 the origin is an attracting fixed point of Φt (where
Φt(x) = Φ(t, x)); for all t the map Φt is a homeomorphism of B onto f(B)
and Φt = f on the boundary of B.

Proof. Set ψ(r) = sup{‖f(x)‖ : ‖x‖ ≤ r} + r. This function is well
defined for r ∈ [0, R] and ψ(0) = 0. Moreover, ψ is strictly increasing. For
t ∈ [0, R0] we set

ϕt(s) =


ψ−1(s) if 0 ≤ s ≤ t,
ψ−1(t) + (s− t)(2t− ψ−1(t))/t if t < s ≤ 2t,
s if s > 2t.

Clearly, ϕt(s) depends continuously on (t, s). Moreover, if r > 0 then, by the
definition of ψ, we have ψ(r) > r, so ψ−1(t) < t for t > 0. Therefore, by the
definition of ϕt, we see that ϕt is strictly increasing.
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Let x ∈ B \{O}. By the definition of ψ, we have ‖f(x)‖ ≤ ψ(r)−r for all
r ≥ ‖x‖. In particular, this holds for r = ‖x‖, so ‖f(x)‖ ≤ ψ(‖x‖)− ‖x‖ <
ψ(‖x‖). Let t ≥ ψ(‖x‖). Then ϕt(‖f(x)‖) < ϕt(ψ(‖x‖)) = ‖x‖.

Set

Φt(x) = ϕt(‖f(x)‖) · f(x)
‖f(x)‖

if x 6= O and Φt(O) = O. Since ϕt(s) depends continuously on (t, s),
also Φt(x) depends continuously on (t, x) if x 6= O. However, ‖Φt(x)‖ =
ϕt(‖f(x)‖) < ‖x‖ if ‖x‖ ≤ ψ−1(t), so this continuous dependence includes
also x = O. Moreover, from this inequality it follows that if t > 0 then O is
an attracting fixed point of Φt.

For each t the map Φt is a composition of the map x 7→ ϕt(‖x‖) · x/‖x‖,
which is a homeomorphism onto its image, with f . Therefore Φt is a homeo-
morphism onto its image. If x belongs to the boundary of B, then ‖x‖ = R, so
‖f(x)‖ ≥ 2R0 ≥ 2t. Therefore ϕt(‖f(x)‖) = ‖f(x)‖, so Φt(x) = f(x). From
this and the fact that Φt is a homeomorphism onto its image, it follows that
Φt(B) = f(B).

Thus, locally we can change our homeomorphism by a homotopy in such
a way that every point of P that is a fixed point is attracting. In particular,
we get the following corollary.

Corollary 2.2. Every orientation preserving homeomorphism of D
with a fupo P is homotopic rel. P to a homeomorphism from F .

Remark 2.3. In Lemma 2.1 instead of one homeomorphism F we can
take a one-parameter family of homeomorphisms f (u), depending contin-
uously on u ∈ [0, 1]. Then we get a one-parameter family of maps Φ(u),
depending continuously on u. The only changes that we have to make in the
proof are that when defining R0 and ψ, we take the infimum and supremum
respectively, also over u ∈ [0, 1].

In view of the above remark, we get the next corollary.

Corollary 2.4. Two orientation preserving homeomorphisms of D with
a fupo P that are homotopic rel. P are also homotopic rel. P via maps
from F .

Proof. Locally in neighborhoods of fixed points which are in P we first
apply Φ(0)

t with t growing from 0 to R0 (where each such point plays the role
of O in Lemma 2.1), and f (0) outside the neighborhoods. Then we apply
Φ

(u)
R0

with u growing from 0 to 1 inside, and the original homotopy f (u)

outside. Finally, we apply Φ(1)
t with t decreasing from R0 to 0 inside and f (1)

outside.
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3. Winding sums and lapses. Let D be the closed unit disk in the
plane and f : D → D its orientation preserving homeomorphism. Let P be
a periodic orbit of f contained in the interior of D. For any closed curve γ
in D \ P and a point x ∈ P there is an integer w(γ, x) called the winding
number of γ around x. It measures how many times γ goes around x (the
counterclockwise direction is positive, the clockwise is negative). It can be
defined using the tools of complex analysis (it is called sometimes the index
of x with respect to γ there). It can also be defined in topological terms. If
S1 is the unit circle, then we can consider γ as the map Γ : S1 → D \ P .
Then

s 7→ Γ (s)− x
‖Γ (s)− x‖

is a continuous map of S1 to itself, and w(γ, x) is the degree of this map.
Now we define the winding sum of γ around P by

ws(γ, P ) =
∑
x∈P

w(γ, x).

We need more notation. While a moment ago we were treating a closed
curve γ as a map defined on the circle, usually we will treat it as a continuous
map of a closed interval to D\P . That is, we choose some point on the curve
that serves as its beginning and end. Of course the winding numbers and
winding sum do not depend on this choice. Now, for curves (including closed
curves) γ and δ for which the end of γ is the same as the beginning of δ,
we denote by γδ their concatenation. By γ′ we will denote the inverse of γ,
that is, the same curve as γ but with the reverse orientation. By f(γ) we
will denote the image of γ under f , that is, the curve f ◦ γ. Note that

(a) f(γδ) = f(γ)f(δ),
(b) f(γ′) = (f(γ))′,
(c) (γδ)′ = δ′γ′.

The following simple properties of the winding sum follow immediately
from the analogous properties of winding numbers:

(a) if closed curves γ and δ in D \ P are homotopic then ws(γ) = ws(δ),
(b) ws(γδ) = ws(γ) + ws(δ),
(c) ws(γ′) = −ws(γ).

The next property requires a proof.

Lemma 3.1. Let γ be a loop in D \ P . Then ws(f(γ)) = ws(γ).

Proof. Let P = {p0, . . . , pn−1} with f(pi) = pi+1 for i = 0, . . . , n−1 (the
addition in the indices is modulo n). Let δi be a very small circle around pi,
with the counterclockwise orientation. Then the winding number of δi around
pi is 1, while around all other pj is 0. Therefore ws(δi) = 1. Moreover, since
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f is an orientation preserving homeomorphism, f(δi) is homotopic to δi+1,
so ws(f(δi)) = 1.

Choose a point x ∈ D \ P and for each i a curve ζi from x to a point yi
on δi (which we will consider the beginning and end of δi). Then ξi = ζiδiζ

′
i

is a loop homotopic to δi and the loops ξi are generators of the fundamental
group of D \ P with the base point x. This means that γ is homotopic to
some loop of the form η1 . . . ηk, where ηj ∈ {ξ0, . . . , ξn−1, ξ

′
0, . . . , ξ

′
n−1}. In

particular,

ws(γ) =
k∑
j=1

ws(ηj).

For each i, the loop ξi is homotopic to δi, so f(ξi) is homotopic to f(δi).
Therefore ws(f(ξi)) = 1 = ws(ξi) and ws(f(ξ′i)) = −1 = ws(ξ′i). Thus,
ws(f(ηj)) = ws(ηj) for all j. Hence,

ws(f(γ)) =
k∑
j=1

ws(f(ηj)) =
k∑
j=1

ws(ηj) = ws(γ).

Let now x, y ∈ D \ P be fixed points of f . If γ is a curve beginning at
x and ending at y then γf(γ′) is a loop, so we can consider ws(γf(γ′)). We
will call it the lapse of the pair (x, y) and denote it by `(x, y). We shall show
that it is independent of the choice of the curve γ, so it is well defined. Note
that if x 6= y then γ is not a loop, so we cannot use Lemma 3.1, and thus
`(x, y) may be non-zero.

Lemma 3.2. Let x, y ∈ D \ P be fixed points of f and let γ, δ be curves
beginning at x and ending at y. Then ws(γf(γ′)) = ws(δf(δ′)).

Proof. We have
−ws(δf(δ′)) = ws((δf(δ′))′) = ws(f(δ)δ′).

Therefore it is enough to show that ws(γf(γ′)f(δ)δ′) = 0. However, if we
change the beginning and end of the loop γf(γ′)f(δ)δ′ from x to y, we get the
loop δ′γf(γ′)f(δ), which has the same winding sum. Since δ′γ and f(γ′)f(δ)
are loops, we find by Lemma 3.1 that

ws(δ′γf(γ′)f(δ)) = ws(δ′γ) + ws(f(γ′)f(δ)) = ws(δ′γ) + ws(f((δ′γ)′))
= ws(δ′γ) + ws((δ′γ)′) = 0.

It turns out that lapses are additive.
Lemma 3.3. If x, y, z ∈ D \ P are fixed points of f then `(x, z) = `(x, y)

+ `(y, z).

Proof. Let γ be a curve beginning at x and ending at y, and δ be a curve
beginning at y and ending at z. Then γδ begins at x and ends at z. If we
change the beginning and end of the loop γδf(δ′)f(γ′) from x to y, we get



Fixed points for positive permutation braids 135

the loop f(γ′)γδf(δ′), which has the same winding sum. In the same way we
can replace the loop f(γ′)γ by the loop γf(γ′) with the same winding sum.
Therefore

`(x, z) = ws(γδf((γδ)′)) = ws(γδf(δ′)f(γ′)) = ws(f(γ′)γδf(δ′))
= ws(f(γ′)γ) + ws(δf(δ′)) = ws(γf(γ′)) + ws(δf(δ′))
= `(x, y) + `(y, z).

Corollary 3.4. If x, y ∈ D \ P are fixed points of f then `(x, x) = 0
and `(y, x) = −`(x, y).

4. Global point of view. Let us now look at all fixed points of f
and corresponding lapses. Assume that the set Fix(f) of fixed points of f
is finite. Because of additivity, we can treat the lapses as differences of a
potential function on Fix(f), defined up to an additive constant. We will
denote it by Φ.

Thus, the situation is now as follows. There is a potential function Φ :
Fix(f)→ Z and if x, y are fixed points of f then

`(x, y) = Φ(y)− Φ(x).

For each fixed point x of f we consider its index Ind(f, x). Recall that
in particular if x is a saddle, then its index is −1 if both eigenvalues are
positive, and 1 if both eigenvalues are negative.

For each level of the potential we can take the sum of indices of fixed
points with this potential. In such a way we get the level index function
LIf : Z→ Z given by

LIf (n) =
∑

x∈Φ−1(n)

Ind(f, x).

As always with the index, all this can be done also in the case when the set
Fix(f) is not finite. Remember that it is really defined up to a shift in the
domain.

In the general Nielsen fixed point theory, a homotopy H : X× [0, 1]→ X
joining f : X → X with g : X → X establishes a one-to-one correspondence
between fixed point classes of f and g. We will use the notation ht for slices
of H, that is, H(x, t) = ht(x). We will also consider a fat homotopy H :
X × [0, 1]→ X × [0, 1], given by H(x, t) = (H(x, t), t). The correspondence
mentioned above can be detected by looking at a fixed point x of f and a
fixed point x̂ of g; they are in corresponding fixed point classes if (x, 0) and
(x̂, 1) are in the same fixed point class of H (this is, in fact, the content of
Theorem 2.7 of [9] and Lemma 2 of [12]).

Now we can prove that the lapses are preserved by homotopies.
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Theorem 4.1. Let P be a common fupo of two orientation preserving
homeomorphisms f, g : D→ D, with f |P = g|P . Assume that they are homo-
topic rel. P via a homotopy H. Let x, y ∈ D \P be fixed points of f and x̂, ŷ
be fixed points of g, in fixed point classes corresponding via H to the fixed
point classes of x, y, respectively. Then `(x̂, ŷ) = `(x, y).

Proof. Since (x, 0) and (x̂, 1) are in the same fixed point class of H,
there exists a path γ in (D \ P )× [0, 1] from (x, 0) to (x̂, 1) such that H(γ)
is homotopic to γ with endpoints fixed. Similarly, there exists a path δ in
(D \ P ) × [0, 1] from (y, 0) to (ŷ, 1) such that H(δ) is homotopic to δ with
endpoints fixed. Finally, take a path Γ from (x, 0) to (y, 0) in (D\P )×{0} and
its image H(Γ ). Then `(x, y) is equal to the winding sum of the projection
of ΓH(Γ ′) to D \ P .

Now consider the path β = γ′Γδ and its projection α to (D \ P ) × {1}.
Clearly, α and β are homotopic with endpoints fixed. Thus, H(α) and H(β)
are also homotopic with endpoints fixed. Therefore, the loop αH(α′) is ho-
motopic to the loop βH(β′). We have βH(β′) = γ′ΓδH(δ′)H(Γ ′)H(γ). How-
ever, the loops δH(δ′) andH(γ)γ′ are nullhomotopic, so βH(β′) is homotopic
to the loop ΓH(Γ ′). Thus, the loops αH(α′) and ΓH(Γ ′) are homotopic.
Hence their projections to D \P are homotopic. However, `(x, y) is equal to
the winding sum of the projection of ΓH(Γ ′) to D \ P and `(x̂, ŷ) is equal
to the winding sum of the projection of αH(α′) to D \ P . This proves that
`(x̂, ŷ) = `(x, y).

Now we can explain the main idea of our paper. Suppose we have an
orientation preserving disk homeomorphism f : D → D with a fupo P . By
Corollary 2.2, modifying f by a homotopy rel. P if necessary, we may assume
that f ∈ F . By Corollary 2.4, we may modify all homotopies rel. P so that
their slices are in F . Thus, we can use the Nielsen fixed point theory in its
full strength.

When we refer to fixed point classes, we mean an orientation preserv-
ing disk homeomorphism with a fupo restricted to the disk minus that
fupo. According to the Nielsen fixed point theory, we have finitely many
essential fixed point classes. If two fixed points are in the same fixed
point class then there is a path γ joining them such that its image is
homotopic to γ with endpoints fixed, so the lapse between those points is
0. Thus, we can speak of the lapses between fixed point classes. By the
additivity of lapses, they are given by a potential function, again defined
not for individual fixed points, but for fixed point classes. Remember that
the potential is always defined only up to a shift by an integer. In such
a way, we get a lot of information: for each essential fixed point class
we know its potential and index; we will call this information fpinfo for
short.
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Now replace our homeomorphism by another one, homotopic to it rel. P .
By the results of [12] and by Theorem 4.1, fpinfo does not change. If we
apply to our homeomorphism an orientation preserving conjugacy, then of
course the fpinfo also does not change. Note that if the conjugacy reverses
orientation, then lapses change sign, so the potential also changes sign. Thus,
we will stick in the definition of the braid type, which we will now call
oriented braid type, to orientation preserving conjugacies. This shows that
fpinfo depends only on the oriented braid type of (f, P ). In particular, since
every braid is an oriented braid type of some fupo of an orientation preserving
disk homeomorphism, fpinfo is an object assigned to a braid. Moreover, if
two braids are conjugate, then they are oriented braid types of the same
fupo of the same orientation preserving disk homeomorphism, and therefore
fpinfo is an invariant of conjugacy for braids.

This looks like a nice and powerful theory, but it has a drawback. Namely,
determining the fpinfo of a braid may be complicated. In the definition of
Nielsen equivalence there exists a path with a certain property, and this is
essential. On the other hand, in order to determine the lapse between two
fixed points, one can use an arbitrary path. This makes it a lot simpler and
easier to use in concrete cases. Thus, if we forget about some information
contained in fpinfo and stick only to the level index function, then we will
get a conjugacy invariant for braids, which is less potent, but much easier to
compute. Going from fpinfo to level index amounts to taking sums of indices
for fixed point classes with the same potential, so fpinfo determines level
index (and, in particular, level index is an invariant of braid conjugacy).

5. Connection between interval maps and positive permutation
braids. We will present a simple way to pass from an interval map with a
fupo whose points are permuted in a given way to the positive permutation
braid with the same permutation. We will pass through a certain disk home-
omorphism, whose properties we will use later. In particular, we want this
homeomorphism to have only “the same” fixed points as the interval map.

Let g : I → I be a continuous map of a closed interval I into itself and
let P ′ ⊂ I be a fupo with permutation σ. That is, P ′ = {x1, . . . , xn} with
x1 < · · · < xn and g(xi) = xσ(i) for i = 1, . . . , n. Since we do not care much
what g does outside of P ′ (remember that this is an interval map, not a disk
homeomorphism), we may assume that I, P ′ and g are of some special form.
Namely, I = [0, 1], xi = (i− 1)/(n− 1) for i = 1, . . . , n and g is the “connect
the dots” map; that is, between two adjacent points of P ′ the map g is affine.
The problem with this map is that when two adjacent points of P ′ are fixed
points, then the whole interval joining them consists of fixed points. We want
to have only finitely many fixed points, so on such an interval we adjust g
by moving its graph above the diagonal on the open interval.
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Now we start constructing a disk homeomorphism. We start with the
square I2 and squeeze it strongly towards the diagonal ∆ = {(x, x) : x ∈ I}.
To be more precise, we fix a very small ε > 0 and apply the map (u, v) 7→
(u, εv) in coordinates u = x + y, v = x − y. We call this map F1. Thus, F1

maps homeomorphically I2 to the rhombus with vertices

(0, 0),
(

1− ε
2

,
1 + ε

2

)
, (1, 1),

(
1 + ε

2
,
1− ε

2

)
.

Note that F1 is the identity on the diagonal.
Now we make the next step and define the map F2 that moves the points

horizontally. We set F2(x, y) = (g(y) + x − y, y). It is a homeomorphism of
F1(I2) onto its image. On the diagonal we have F2(y, y) = (g(y), y), so the
image of the diagonal is the graph of g, reflected through the diagonal. The
image of F1(I2) is contained in a small neighborhood of the image of the
diagonal, although it is not necessarily contained in I2.

The next map, F3, moves the points vertically. Ideally, we would like just
to project everything vertically onto the diagonal. Then on the diagonal the
composition F3 ◦ F2 would be (y, y) 7→ (g(y), g(y)), so practically it would
be just g. Unfortunately, we cannot do this, because our map has to be a
homeomorphism. Therefore we will just approximate the vertical projection
onto the diagonal by a homeomorphism onto its image. Writing a formula is
possible, but not practical. The important thing is to describe where F2(∆)
is mapped. The points of F2(∆) ∩∆ (that is, the points of the form (x, x)
with g(x) = x) will not be moved. The points (g(y), y), where y ∈ P ′, will be
moved to (g(y), g(y)). The rest of F2(∆) will be mapped close to the diagonal,
with the order in each vertical fiber preserved. This map can be extended
to a homeomorphism F3 of F2(I2) onto its image, that does not change the
first coordinates of points, and maps F2(I2) to a small neighborhood of the
diagonal.

The construction of F2 and F3 ◦ F2 is illustrated in Figure 1. We mark
the diagonal and the points of P = {(x, x) : x ∈ P ′} for the permutation(

1 2 3 4 5 6 7 8
3 7 2 4 5 8 1 6

)
.

The left part shows the image of the diagonal under F2 and the right part
the image of the diagonal under F3 ◦F2. If ε from the definition of F1 is very
small, the images of I2 under F2 ◦ F1 and under F3 ◦ F2 ◦ F1, respectively,
are practically indistinguishable from the images of the diagonal.

Set f = F3 ◦ F2 ◦ F1. At this moment f is defined only on I2 and maps
it homeomorphically onto a small neighborhood of ∆. Add to the domain
of f small closed balls centered at (0, 0) and (1, 1), so that the new domain
contains f(I2) in its interior. Now we can extend f to a homeomorphism of
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Fig. 1. Images of the diagonal under F2 and F3 ◦ F2

this new domain A onto its image, so that f(A) is contained in the interior
of A. We do not want to add in this way any fixed points. If f(0, 0) 6= (0, 0)
and f(1, 1) 6= (1, 1), then this clearly can be done. Suppose that f(0, 0) =
(0, 0). Then, according to our construction, a small neighborhood of (0, 0)
intersected with I2 is mapped by f strictly inside I2, except the point (0, 0).
Thus, again we can make our extension without adding any fixed points.
The same applies to the point (1, 1).

Now we have the set A, homeomorphic to a closed disk, and its homeo-
morphic image f(A), contained in its interior (in fact, both sets have pretty
regular shapes). Thus there exists a homeomorphism ϕ : A → D2 (by Dr

we denote the closed disk in R2, centered at the origin, of radius r), such
that ϕ(f(A)) = D1. The map G = ϕ ◦ f ◦ϕ−1 is a homeomorphism from D2

onto D1. It is clear that we can extend it to a homeomorphism G : D3 → D3

that has no fixed points in D3 \ D2. Similarly, we can extend ϕ to a hom-
eomorphism of some disk D containing A onto D3. Then ϕ−1 ◦ G ◦ ϕ is an
extension of f to a homeomorphism f : D→ D, and this new f has no fixed
points outside I2.

Now we investigate the fixed points of f in I2.

Lemma 5.1. The map f has no fixed points outside ∆. A point (x, x) ∈ ∆
is a fixed point of f if and only if x is a fixed point of g.

Proof. If x is a fixed point of g, then (x, x) is a fixed point of f by the
construction of f . Again by the construction, if (x, y) ∈ I2, then the point
f(x, y) is close to (g((x+ y)/2), g((x+ y)/2)). Thus, if (x, y) is a fixed point
of f , then it has to be close to some point (t, t), where t is a fixed point of g.
Thus, in order to complete the proof, it is enough to show that there are no
fixed points of f close to the ones that we already identified.

If a fixed point x of g does not belong to P ′, then g is expanding in
its neighborhood (or it reverses orientation at x). Thus, f is expanding in
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a neighborhood of (x, x) in the approximate direction of ∆ (or it reverses
orientation on ∆, which gives the same result) and contracting very strongly
in the perpendicular direction. Therefore there are no other fixed points of
f in a small neighborhood of (x, x). If x ∈ P ′, then on each side of (x, x) in
the direction of ∆ where the adjacent point of P is not fixed, the situation
is the same as above. If the adjacent point of P is also fixed, first note that
in a small neighborhood of (x, x) the map F3 ◦ F2 moves points to the right
and up. Above the diagonal, F1 moves points to the right and down, so f
moves points to the right; below the diagonal, F1 moves point to the left and
up, so f moves points up. Thus, the only possible fixed points of f can be
on the diagonal, but there we know exactly what is going on: only (x, x) is
fixed (in the small neighborhood we are talking about).

Remark 5.2. While in the above proof the sizes of neighborhoods are
not defined precisely, we consider it a sufficiently rigorous proof. Making ev-
erything “machine checkable” would require adding several pages of epsilons,
which nobody would read anyway.

Let us look a little closer into the nature of the fixed points of f that do
not belong to P . We can easily compute their indices (in the sense of fixed
point theory).

Lemma 5.3. Let x be a fixed point of g that does not belong to P ′. Then
Ind(f, (x, x)) is −1 if g preserves orientation at x and 1 if g reverses orien-
tation at x.

Proof. In the first case there is expansion in the direction of the diagonal
and contraction in a transverse direction. In both directions the orientation
is preserved, so Ind(f, (x, x)) = −1. In the second case there is orientation
reversal in both directions (remember that the two-dimensional orientation
is preserved), so Ind(f, (x, x)) = 1.

Finally, we check that the braid type of P is correct.

Lemma 5.4. Let the permutation of P ′ be σ. Then the braid correspond-
ing to (f, P ) is the positive permutation braid with permutation σ.

Proof. When we construct the suspension of f , we look at the three-
dimensional picture from the front, which corresponds to looking at the
two-dimensional pictures like Figure 1 from below. Thus, the order of the
points is the same for P ′ and P , so the permutation of the braid we get
is σ. As we follow the suspension flow, the points of P move as described
by the definitions of F2 and F3. That is, first they move horizontally (and
up, because it is a suspension!), and if we compare two strands, the one
that starts to the left is closer to us. Thus in this part of the movement
(corresponding to F2), all crossings are positive (we are free to choose the



Fixed points for positive permutation braids 141

interpretation of the braid, so let the strand “on top” mean closer to us
and “positive crossing” mean the strand starting on the left going on top).
Moreover, all movements are monotone, so two strands cross at most once.
Taking into account that in the second part of the movement (corresponding
to F3) there is no left-right movement, so no more crossings occur, this proves
that the braid we get is a positive permutation one.

6. Positive permutation cyclic braids. Now we present a simple way
to compute the level index function for positive permutation cyclic (ppc for
short) braids. This can also be done for positive permutation braids that
are not cyclic, but for cyclic ones the algorithm is simpler, and after all, our
main motivation is to study just periodic orbits, not fupos.

Let us look at the orientation preserving disk homeomorphisms with a
periodic orbit whose braid type can be represented as a positive permutation
braid. According to the construction from the preceding section, when we pay
attention mainly to the points of the periodic orbit, we can visualize it as in
the diagram of Figure 2. We draw a diagonal with the points of the periodic
orbit P on it (see (a)). Thin lines mark the movements of those points during
the action of the homeomorphism f . First they move horizontally under the
action of F2, so the diagonal deforms as in (c). Then they move vertically

(a) (b)

(c) (d)

Fig. 2. A positive permutation cyclic braid with fixed points.
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under the action of F3, so the diagonal gets back to itself, but folded at
several places.

Additionally in Figure 2 fixed points are marked. In this example there
are three of them. They are located on the diagonal between each pair of
adjacent points of P such that one of the points moves to the left, while
the other one moves to the right. We connected adjacent fixed points with
a curve (a dashed line in (b)) that goes below the diagonal if the points of
P between them move to the left, and above the diagonal if those points
move to the right. In such a way this curve does not intersect the horizontal
parts of the lines marking movements of the points of P . When drawing the
image of the diagonal after the first part of the movement in (c), we took
into account that the fixed points do not move. During the second part of
the movement, the points of P move vertically, and they will displace the
curves joining fixed points. Their images are shown in (d) by dotted lines.

Thus, each vertical solid line intersecting the dashed line pushes the curve
joining two adjacent fixed points x, y (that is, the dashed line) to the other
side of one point of P . This increases or decreases (depending on the direction
of movement of the points of P between x and y) the lapse of (x, y) by 1.
This means that |`(x, y)| is equal to the number of the vertical solid lines
intersecting the dashed line from x to y. It remains to interpret this number
in more manageable terms and to find the sign of `(x, y).

We will say that there is a turn at z ∈ P if z and f−1(z) move in the
opposite directions; in other words, when we follow the solid line then the
left-right direction changes at z. Observe that the total number of turns is
equal to twice the first turning number of the braid corresponding to P .

Lemma 6.1. For adjacent fixed points x, y the number |`(x, y)| is equal
to the number of turns at points of P between x and y.

Proof. All points of P between x and y move in the same direction; we
may assume without losing generality that it is to the left. Let z be a point
of P between x and y. A turn at z occurs if and only if f−1(z) moves to
the right, that is, when the vertical solid line from z goes down. However,
if this line goes down then it has to intersect the dashed line from x to y.
Otherwise it ends at a vertical level between x and y, so the horizontal solid
line from this end gets to the diagonal between x and y. This means that
f−1(z) lies between x and y, so it has to move to the left, while we know
that it moves to the right, a contradiction. Therefore the vertical solid line
from z intersects the dashed line from x to y if and only if there is a turn at
z. As we already know, the number of those intersections is |`(x, y)|.

Determining the sign of `(x, y) is simple. Assume x < y. If the points of P
between x and y move to the left, then the curve from x to y goes below the
diagonal and parts of its image may be pushed above the diagonal. Therefore
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the loop created this way is followed in the counterclockwise direction, so
`(x, y) ≥ 0. Similarly, if the points of P between x and y move to the right
then `(x, y) ≤ 0. We can reinterpret this in terms of the indices of x and y.

The following lemma follows immediately from Lemma 5.3.

Lemma 6.2. Let x be a fixed point between two adjacent points of P . If
the right point moves to the left and the left one to the right, then Ind(f, x)
= 1. If the right point moves to the right and the left one to the left then
Ind(f, x) = −1.

Lemma 6.3. When looking at the fixed points from left to right, their
indices alternate, beginning and ending with 1.

Proof. When we look at the points of P from left to right, the first one
moves to the right, then there is a change of directions, then maybe more
changes, and the last one moves to the left. By Lemma 6.2, when the direction
changes from right to left, the index of the fixed point situated there is 1, and
when the direction changes from left to right, the index is −1. This proves
the statement.

Now we can state the main result of this section. It follows immediately
from what we already proved.

Theorem 6.4. Let f be an orientation preserving disk homeomorphism
with a periodic orbit P whose braid type can be represented as a ppc braid.
Let x0, . . . , xk be the fixed points of f on the diagonal of the corresponding
diagram, ordered from left to right. Then k is even. For i = 1, . . . , k, let ni
be the number of points of P between xi−1 and xi at which there is a turn.
Then `(xi−1, xi) = ni if i is odd and `(xi−1, xi) = −ni if i is even.

Now, from the information gathered through Theorem 6.4, we can easily
build the level index function. We put 1 at 0, then −1 at −n1, then 1 at
−n1 + n2, then −1 at −n1 + n2 − n3, etc. The value of the level index at j
will be the sum of the numbers put at j.

If between xi−1 and xi there is no point of P at which there is a turn
(call such a point a turning point), then `(xi−1, xi) = ni = 0. Thus, when
building the level index function, we put ±1 at −n1 + · · · ± ni−1 and then
∓1 at −n1 + · · · ∓ ni = −n1 + · · · ± ni−1. That is, effectively we do not put
anything anywhere in those two moves. This means that we can remove the
points xi−1 and xi from our list of fixed points. Of course, we have to be
careful, and if we remove xi−1 and xi then we cannot remove xi and xi+1 in
the next step, because xi is not on our list of fixed points any more.

Now we observe that between two adjacent turning points where the turn
occurs in the same direction there are an even number of fixed points, while
between two adjacent turning points where the turn occurs in the opposite
directions there are an odd number of fixed points. Thus, after all possible
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removals of fixed points, we are left with exactly one fixed point between
adjacent turning points where the turn occurs in the opposite directions and
no fixed points anywhere else.

Because of this, our algorithm for finding the level index function can
be described as follows (remember that it is defined up to the shift by an
integer). For the consecutive (in space) turning points (assume there are s
of them) define numbers a1, . . . , as by ai = +1 if at the ith turning point
the incoming and outgoing arrows are from/to the right and ai = −1 if they
are from/to the left. Note that a1 = +1 and as = −1. Then for i = 2, . . . , s
we put (ai − ai−1)/2 at a1 + · · ·+ ai−1 and, as before, the value of the level
index at j will be the sum of the numbers put at j.

7. An example. In [10] we studied a simple conjugacy invariant of
braids, which we called turning numbers. As we mentioned in the introduc-
tion, their simplest interpretation is as linking numbers of components of the
nth power of the braid (where n is the number of strands of the braid).

Let B be a braid with n strands and permutation τ (that is, the ith
strand joins i in the bottom to τ(i) at the top; we assume that the strands
go up—this is because of the suspension model). For each crossing of two
strands we define its sign in a standard way: it is ±1 depending on whether
the left strand goes over the right one or vice versa (we assume that in the
former case it is +1, and in the latter case −1).

We defined the kth turning number of B as

TNk(B) =
1
2

n∑
i=1

Tk(i),

where Tk(i) for k = 1, . . . , n − 1 is the sum of the signs of the crossings
between the ith and τk(i)th strands.

Although for ppc braids with seven strands or less, two braids with
the same turning numbers are always conjugate, the two braids with eight
strands corresponding to the periodic orbits from Figure 3 have the same
turning numbers: 3, 1, 2, 1, 2, 1, 3, but they are not conjugate.

In [10] we showed that they are not conjugate by computing their pseudo-
Anosov representations, using the methods of [1] or [5] (see also [6]). Corre-
sponding Markov partitions give transition matrices that allowed us to esti-
mate their entropies, which turned out to be different. This procedure is in
general long and difficult. Other possible methods of distinguishing between
them are (as pointed to us by the referee) by direct knot theory comparison,
and by the use of invariants related to the Alexander polynomial.

However, the fastest way of distinguishing between these two braids may
be to show that they have different level index functions. For the first braid
we have a1 = a2 = a3 = +1, a4 = a5 = a6 = −1, and this gives us L(3) = −1



Fixed points for positive permutation braids 145

Fig. 3. Two orbits of period 8 with different braid types which have the same turning
numbers but different level index functions.

and L(j) = 0 for all other j. For the second braid we get a1 = a2 = +1,
a3 = −1, a4 = +1, a5 = a6 = −1, which gives us L(1) = 1, L(2) = −2, and
L(j) = 0 for all other j.
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