
FUNDAMENTA

MATHEMATICAE

216 (2012)

Infinite paths and cliques in random graphs
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Abstract. We study the thresholds for the emergence of various properties in random
subgraphs of (N, <). In particular, we give sharp sufficient conditions for the existence
of (finite or infinite) cliques and paths in a random subgraph. No specific assumption
on the probability is made. The main tools are a topological version of Ramsey theory,
exchangeability theory and elementary ergodic theory.

1. Introduction. In this paper we introduce a new method in order
to deal with some combinatorial problems in random graphs, originally pro-
posed in [EH:64]. Some of these questions have been successfully addressed in
[FT:85], using different techniques. We obtain new and self-contained proofs
of some of the results in [FT:85]; moreover with this method we expect to
be able to treat similar problems in more general random graphs.

Let G = (N,N(2)) be the directed graph over N with set of edges N(2) :=
{(i, j) ∈ N2 : i < j}. Let us randomly choose some of the edges of G, that
is, we associate to the edge (i, j) ∈ N(2) a measurable set Xi,j ⊆ Ω, where
(Ω,A, µ) is a base probability space. Assuming µ(Xi,j) ≥ λ for each (i, j),
we then ask whether the resulting random subgraph X of (N,N(2)) contains
an infinite path:

Problem 1. Let (Ω,A, µ) be a probability space. Let λ > 0, and for
all (i, j) ∈ N(2), let Xi,j be a measurable subset of Ω with µ(Xi,j) ≥ λ.
Is there an infinite increasing sequence {ni}i∈N such that

⋂
i∈N Xni,ni+1 is

non-empty?

More formally, a random subgraph X of a directed graph G = (VG, EG)
(with set of edges EG ⊂ VG × VG) is a measurable function X : Ω → 2EG
where Ω = (Ω,A, µ) is a probability space, and 2EG is the power set of EG,
identified with the set of all functions from EG to {0, 1} (with the product
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topology and the σ-algebra of its Borel sets). For each x ∈ Ω, we identify
X(x) with the subgraph of G with vertices VG and edges X(x). Given e ∈ EG,
the set Xe := {x ∈ Ω : e ∈ X(x)} represents the event that the random graph
X contains the edge e ∈ EG. The family (Xe)e∈EG determines X by putting
X(x) = {e ∈ EG : x ∈ Xe}. So a random subgraph of G can be equivalently
defined as a function from EG to 2Ω assigning to each e ∈ EG a measurable
subset Xe of Ω.

As in classical percolation theory, we wish to estimate the probability
that X contains an infinite path, in terms of a parameter λ that bounds
from below the probability µ(Xe) that an edge e belongs to X. Note that
it is not a priori obvious that the existence of an infinite path has a well-
defined probability, since it corresponds to the uncountable union of the sets⋂
k∈N Xik,ik+1

over all strictly increasing sequences i : N → N. However, it
turns out that it belongs to the µ-completion of the σ-algebra generated by
the Xi,j . One has to notice that the analogy with classical bond percolation
is only formal, the main difference being that in the usual percolation models
(see for instance [G:99]) the events Xi,j are supposed independent, whereas
in the present case the probability distribution is completely general, i.e.
we do not impose any restriction on the events Xi,j , and on the probability
space Ω.

Problem 1 has been originally proposed by P. Erdős and A. Hajnal in
[EH:64], and an answer was given by D. H. Fremlin and M. Talagrand in
[FT:85], where other related and more general problems are also considered.
In particular [FT:85] shows that the threshold for the existence of infinite
paths is λ = 1/2, under the assumption that the probability space (Ω,A, µ)
is [0, 1] equipped with the Lebesgue measure. We point out that our result
holds for any probability space (Ω,A, µ). One of the main goals of this paper
is to present a general method, different from the one in [FT:85], which in
particular allows us to recover the same result as in [FT:85] (see Theorem
4.5). Our approach relies on the reduction to the following dual problem:

Problem 2. Given a directed graph F , determine the minimal λc such
that, whenever infe∈N(2) µ(Xe) > λc, there is a graph morphism f : X(x)→ F
for some x ∈ Ω.

Problem 1 can be reformulated in this setting by letting F be the graph
(ω1, >) where ω1 is the first uncountable ordinal. This depends on the fact
that a subgraph H of (N,N(2)) does not contain an infinite path if and
only if it admits a rank function with values in ω1. Therefore, if a random
subgraph X of (N,N(2)) has no infinite paths, it yields a µ-measurable map
ϕ : Ω → ωN

1 where ϕ(x)(i) is the rank of the vertex i ∈ N in the graph X(x).
It turns out that φ#(µ) is a compactly supported Borel measure on ωN

1 ,
and that φ(Xi,j) ⊆ Ai,j := {x ∈ ωN

1 : xi > xj}. As a consequence, in the
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determination of the threshold for existence of infinite paths

(1.1)

λc := sup
{

inf
(i,j)∈N(2)

µ(Xi,j) : X a random graph without infinite paths
}

we can set Ω = ωN
1 , Xi,j = Ai,j , and reduce to the variational problem on

the convex setM1
c(ω

N
1 ) of compactly supported probability measures on ωN

1 :

(1.2) λc = sup
m∈M1

c(ω
N
1 )

inf
(i,j)∈N(2)

m(Ai,j).

As a next step, we show that in (1.2) we can equivalently take the supre-
mum in the smaller class of all compactly supported exchangeable mea-
sures on ωN

1 (see Appendix 6 and references therein for a precise defini-
tion). Thanks to this reduction, we can explicitly compute λc = 1/2 (The-
orem 4.5). We note that the supremum in (1.2) is not attained, which im-
plies that for µ(Xi,j) ≥ 1/2 infinite paths occur with positive probabil-
ity.

In Section 5, we consider Problem 2 again and we give a complete solution
when F is a finite graph, showing in particular that

λc = sup
λ∈ΣF

∑
(a,b)∈EF

λaλb

where ΣF is the set of all sequences {λa}a∈VF with values in [0, 1] and
such that

∑
a∈VF λa = 1. By the appropriate choice of F we can determine

the thresholds for the existence of paths of a given finite length (Section 3
and Remark 5.2), or for the property of having chromatic number ≥ n
(Section 6).

We can consider Problems 1 and 2 for a random subgraph X of an arbi-
trary directed graph G, not necessarily equal to (N,N(2)). However, it can be
shown that, if we replace (N,N(2)) with a finitely branching graph G (such
as a finite-dimensional network), the probability that X has an infinite path
may be zero even if infe∈EG µ(Xe) is arbitrarily close to 1 (Proposition 4.8).
Another variant is to consider subgraphs of R(2) rather than N(2) but it
turns out that this makes no difference in terms of the threshold for having
infinite paths in random subgraphs (Remark 4.9).

In Section 6 we again fix G = (N,N(2)) and we ask if a random subgraph
X of G contains an infinite clique, i.e. a copy of G itself. More generally we
consider the following problem.

Problem 3. Let (Ω,A, µ) be a probability space. Let λ > 0 and,
for all (i1, . . . , ik) ∈ N(k), let Xi1,...,ik be a measurable subset of X with
µ(Xi1,...,ik) ≥ λ. Is there an infinite set J ⊂ N such that

⋂
(i1,...,ik)∈J(k) Xi1,...,ik

is non-empty?
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This problem is a random version of the classical Ramsey theorem [R:30]
(we refer to [GP:73, DP:05], and references therein, for various generaliza-
tions of the Ramsey theorem). Clearly the Ramsey theorem implies that
the answer to Problem 3 is positive when Ω is finite. Moreover it can be
shown that the answer remains positive when Ω is countable (Example 6.3).
However when Ω = [0, 1] (with the Lebesgue measure), the probability that
X contains an infinite clique may be zero even if infe∈EG µ(Xe) is arbitrarily
close to 1 (see Example 6.2). We will show that Problem 3 has a positive
answer if the indicator functions of the sets Xi1,...,ik all belong to a compact
subset of L1(Ω,µ) (see Theorem 6.5).

Our original motivation for the above problems came from the follow-
ing situation. Suppose we are given a space E and a certain family Ω of
sequences on E (e.g., minimizing sequences of a functional, or orbits of a
discrete dynamical system, etc.). A typical general problem asks for ex-
istence of a sequence in the family Ω that admits a subsequence with a
prescribed property. One approach to this problem is by means of measure
theory. The archetypal situation here comes from recurrence theorems: one
may ask if there exists a subsequence which belongs frequently to a given
subset C of the “phase” space Ω (we refer to such sequences as “C-recurrent
orbits”). If we consider the set Xi := {x ∈ Ω : xi ∈ C}, then a standard
sufficient condition for the existence of C-recurrent orbits is µ(Xi) ≥ λ > 0
for some probability measure µ on Ω. In fact it is easy to check that the
set of C-recurrent orbits has measure at least λ by an elementary version
of a Borel–Cantelli lemma (see Proposition 6.1). This is indeed the exis-
tence argument in the Poincaré recurrence theorem for measure preserving
transformations. A more subtle question arises when one looks for a subse-
quence satisfying a given relation between two successive (or possibly more)
terms: given a subset R of E × E we look for a subsequence xik such that
(xik , xik+1

) ∈ R for all k ∈ N. As before, we may consider the subset of Ω,
with double indices i < j, Xi,j := {x ∈ Ω : (xi, xj) ∈ R} and we are then
led to Problem 1.

2. Notation. We follow the set-theoretical convention of identifying a
natural number p with the set {0, 1, . . . , p − 1} of its predecessors. More
generally an ordinal number α coincides with the set of its predecessors.
With these conventions the set of natural numbers N coincides with the
least infinite ordinal ω. As usual ω1 denotes the first uncountable ordinal,
namely the set of all countable ordinals.

Given two sets X,Y we denote by XY the set of all functions from Y
to X. If X,Y are linearly ordered we denote by X(Y ) the set of all increasing
functions from Y to X. In particular N(p) (with p ∈ N) is the set of all
increasing p-tuples from N, where a p-tuple i = (i0, . . . , ip−1) is a function
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i : p → N. The case p = 2, with the obvious identifications, takes the form
N(2) = {(i, j) ∈ N2 : i < j}.

Any function f : X → X induces f∗ : XY → XY by f(u) = f ◦u. On the
other hand a function f : Y → Z induces f∗ : XZ → XY by f∗(u) = u ◦ f .
In particular, if S : N → N is the successor function, then S∗ : XN → XN is
the shift map.

We let Sc(N), Inj(N), Incr(N) ⊂ NN be the families of maps σ : N → N
which are compactly supported permutations (i.e. they fix all but finitely
many points), injective functions and strictly increasing functions, respec-
tively. Note that with the above conventions Incr(N) = N(ω).

Given a measurable function ψ : X → Y between two measurable spaces
and given a measure m on X, we denote as usual by ψ#(m) the induced
measure on Y .

Given a compact metric space Λ, the spaceM(ΛN) of signed Borel mea-
sures on ΛN can be identified with C(ΛN)∗, i.e. the dual of the Banach space
of all continuous functions on ΛN. By the Banach–Alaoglu theorem the sub-
set M1(ΛN) ⊂ M(ΛN) of probability measures is a compact (metrizable)
subspace of C(ΛN)∗ endowed with the weak∗ topology.

Given σ : N → N we have σ∗ : ΛN → ΛN and σ∗# : M1(ΛN) → M1(ΛN).
To simplify notation we also write σ ·m for σ∗#m. Note the contravariance
of this action:

(2.1) θ · σ ·m = (σ ◦ θ) ·m.

Similarly, given r ∈ N and ι ∈ N(r), we have ι∗# : M1(ΛN) → M1(Λr) and
we define ι ·m = ι∗#(m).

Given a family F ⊂ NN, we say that m is F-invariant if σ ·m = m for
all σ ∈ F .

3. Finite paths in random subgraphs. As a preparation for the
study of infinite paths (Problem 1) we first consider the case of finite paths.
The following example shows that there are random subgraphs X of (N,N(2))
such that infe∈N(2) Xe is arbitrarily close to 1/2, and yet X has probability
zero of having infinite paths.

Example 3.1. Let p ∈ N and let Ω = pN with the Bernoulli probability
measure µ = B(1/p,...,1/p). For i < j in N let Xi,j = {x ∈ pN : xi > xj}. Then
µ(Xi,j) = 1

2(1 − 1/p) for all (i, j) ∈ N(2) and yet for each x ∈ Ω the graph
X(x) = {(i, j) ∈ N(2) : xi > xj} has no paths of length ≥ p (where the length
of a path is the number of its edges).

We will next show that the bounds in Example 3.1 are optimal. We need:
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Lemma 3.2. Let p ∈ N and let m ∈M1(pN). Let

(3.1) Ai,j := {x ∈ pN : xi > xj}.
Then

(3.2) inf
(i,j)∈N(2)

m(Ai,j) ≤
1
2

(
1− 1

p

)
.

Proof. The proof is a reduction to the case of exchangeable measures (see
Appendix 6). Note that if σ ∈ Incr(N), then (σ ·m)(Ai,j) = m(Aσ(i),σ(j)).
Hence, replacing m with σ ·m in (3.2) can only increase the infimum, as it
is equivalent to the infimum of m(Ai,j) over a subset of N(2). By Theorem
B.8 we can then assume that m is asymptotically exchangeable, so that in
particular the sequence mk = Sk · m converges, in the weak∗ topology, to
an exchangeable measure m′ ∈ M1(pN). Since p is finite, the sets Ai,j are
clopen, and therefore limk→∞mk(Ai,j) = m′(Ai,j) = m′(A0,1). Noting that
mk(Ai,j) = m(Ai+k,j+k), we deduce that

inf
(i,j)∈N(2)

m(Ai,j) ≤ lim
k→∞

mk(A0,1) = m′(A0,1)(3.3)

=
1
2

(1−m′{x : x0 = x1}) ≤
1
2

(
1− 1

p

)
where the last inequality follows from Corollary B.11.

Theorem 3.3. Let (Ω,A, µ) be a probability space and let X : Ω → 2EG
be a random subgraph of G := (N,N(2)). Consider the set

P := {x ∈ Ω : X(x) has a path of length ≥ p}.
Assume infe∈N(2) µ(Xe) > 1

2(1− 1/p). Then µ(P ) > 0.

Proof. Suppose for a contradiction that µ(P ) = 0. We can then assume
P = ∅ (otherwise replace Ω with Ω −P ). For x ∈ Ω let ϕ(x) : N→ p assign
to each i ∈ N the length of the longest path starting from i in X(x). We
thus obtain a function ϕ : Ω → pN which is easily seen to be measurable
(this is a special case of Lemma 4.3). Let m = ϕ#(µ) ∈ M1(pN). Since
ϕ(Xi,j) ⊂ Ai,j , we have m(Ai,j) ≥ µ(Xi,j) > 1

2(1 − 1/p) for all i, j, which
contradicts Lemma 3.2.

A different proof of this result has been given in [FT:85, 3F] (when the
probability space Ω is [0, 1] equipped with the Lebesgue measure).

Having determined the critical threshold λp = 1
2(1−1/p), we can see that

if infe∈N(2) µ(Xe) ≥ λ ≥ λp, then the lower bound for µ(P ) grows linearly
with λ. More precisely we have:

Corollary 3.4. In the setting of Theorem 3.3, let λ ∈ [0, 1] and suppose
that infe∈N(2) µ(Xe) ≥ λ. Then
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µ(P ) ≥ λ− λp
1− λp

where λp =
1
2

(
1− 1

p

)
.

Proof. Suppose infe∈N(2) µ(Xe) ≥ λ. Consider the conditional probability
µ(· | Ω − P ) ∈M1(Ω). We have

(3.4) µ(Xe |Ω − P ) ≥ µ(Xe)− µ(P )
1− µ(P )

≥ λ− µ(P )
1− µ(P )

.

Clearly µ(P | Ω−P ) = 0. Applying Theorem 3.3 to µ(· |Ω−P ) then shows
that

λ− µ(P )
1− µ(P )

≤ λp, or equivalently µ(P ) ≥ λ− λp
1− λp

.

4. Infinite paths. By Theorem 3.3, if infe∈N(2) µ(Xi,j) ≥ 1/2, then the
random subgraph X of (N,N(2)) has arbitrarily long finite paths, namely for
each p there is x ∈ Ω (depending on p) such that X(x) has a path of length
≥ p. We want to show that for some x ∈ Ω, X(x) has an infinite path. To
this end it is not enough to find a single x that works for all p. Indeed, X(x)
could have arbitrarily long finite paths without having an infinite path. The
existence of infinite paths can be neatly expressed in terms of the following
definition.

Definition 4.1. Let G be a countable directed graph and let ω1 be
the first uncountable ordinal. We recall that the rank function φG : VG →
ω1 ∪ {∞} of G is defined as follows. For i ∈ VG,

φG(i) = sup
j: (i,j)∈EG

(φG(j) + 1).

This is a well-defined countable ordinal if G has no infinite paths starting
at i. In the opposite case we set

φG(i) =∞

where∞ is a conventional value greater than all the countable ordinals. For
notational convenience we will take∞ = ω1 so that ω1∪{∞} = ω1∪{ω1} =
ω1 + 1. Note that if i is a leaf, then φG(i) = 0. Also note that G has an
infinite path if and only if φG assumes the value ∞.

Given a random subgraph X : Ω → 2EG of G, we let φX(x) = φX(x),
namely φX(x)(i) is the rank of the vertex i in the graph X(x). So φX is a
map from Ω to (ω1 + 1)VG . It can also be considered as a map from Ω× VG
to ω1 + 1 by writing φX(x, i) instead of φX(x)(i).

Remark 4.2. We have φX(x, i) = φω1(x, i) where φα : Ω → (ω1 +1)VG is
the truncation φα := min(φ, α), that we can equivalently define by induction
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on α ≤ ω1 as follows:

φ0(x, i) = 0,
φα(x, i) = sup{φβ(x, j) + 1 : β < α, (i, j) ∈ X(x)}.

The above representation will be of use in the following lemma in con-
nection with measurability properties of the map φX.

Lemma 4.3. Let G be a countable directed graph, let (Ω,A, µ) be a prob-
ability space and let X : Ω → 2EG be a random subgraph of G.

(1) For all α < ω1 and i ∈ VG, the set {x ∈ Ω : φX(x, i) = α} belongs to
the σ-algebra A.

(2) The set P := {x ∈ Ω : X(x) has an infinite path} is µ-measurable,
that is, it is measurable in the µ-completion of the σ-algebra A.

(3) ϕX : Ω → (ω1 + 1)VG is µ-measurable and its restriction to Ω −P is
essentially bounded, namely it takes values in αVG0 for some α0 < ω1,
off a µ-null set.

Proof. Since taking the supremum over a countable set preserves mea-
surability, from Remark 4.2 it follows that for all i ∈ VG and α < ω1 the sets
{x : φX(x, i) = α} are measurable. We will show that {x : φX(x, i) = ω1} is
µ-measurable. Fix i ∈ VG. The sequence of values µ({x : φX(x, i) ≤ β}) is
increasing with respect to the countable ordinal β and uniformly bounded
by 1 = µ(Ω), therefore it is stationary at some finite value. So there is
α0 < ω1 such that

(4.1) µ({x ∈ Ω : φX(x, i) = β}) = 0 for α0 ≤ β < ω1.

Notice that

P = {x : φX(x) = ω1} = (Ω − {x : φX(x) < α0})− {x : α0 ≤ φX(x) < ω1}.
Since

{x : α0 ≤ φX(x) < ω1} ⊆
⋃
i∈VG

{x ∈ Ω : φX(x, i) = α0}

and, by (4.1),
µ
( ⋃
i∈VG

{x ∈ Ω : φX(x, i) = α0}
)

= 0,

it follows that P is µ-measurable and so is φX.

Notice that the set P is universally measurable with respect to A, that
is, it is measurable in the completion of any measure µ defined on the σ-
algebra A.

Given an ordinal α, we put on α the topology generated by the open
intervals. Note that a non-zero ordinal is compact if and only if it is a suc-
cessor ordinal, and it is metrizable if and only if it is countable. LetMc(ωN

1 )
be the set of compactly supported Borel measures on ωN

1 , i.e. measures with
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support in αN
0 for some α0 < ω1. The following lemma reduces to Lemma

3.2 if α0 is finite.

Lemma 4.4. Let m ∈Mc(ωN
1 ) be a non-zero measure with compact sup-

port. Let

(4.2) Ai,j := {x ∈ ωN
1 : xi > xj}.

Then

(4.3) inf
(i,j)∈N(2)

m(Ai,j) <
m(ωN

1 )
2

.

Proof. With no loss of generality we can assume that m ∈M1(ωN
1 ), i.e.

m(ωN
1 ) = 1. We divide the proof into four steps.

Step 1. Letting ∂ω1 be the derived set of ω1, that is, the subset of all
countable limit ordinals, we can assume that

m({x : xi ∈ ∂ω1}) = 0 ∀i ∈ N.

Indeed, it is enough to observe that the left-hand side of (4.3) can only
increase if we replace m with s#(m), where s : ω1 → ω1\∂ω1 is the successor
map sending α < ω1 to α + 1, and s#(m) = (s∗)#, namely s#(m)(X) :=
m({x ∈ ωN

1 : s ◦ x ∈ X}).

Step 2. Since the support of m is contained in αN
0 for some ordinal

α0 < ω1, thanks to Theorem B.8 we can assume that m is asymptotically
exchangeable, i.e. the sequence mk = Sk · θ · m converges, in the weak∗

topology, to an exchangeable measure m′ ∈ M1(ωN
1 ), with support in αN

0 ,
for all θ ∈ ω(ω). Note however that, unless α0 is finite, we cannot conclude
that limk→∞mk(Ai,j) = m′(Ai,j) since the sets Ai,j = {x ∈ ωN

1 : xi > xj}
are not clopen.

Step 3. We shall prove by induction on α < ω1 that

(4.4) lim inf
(i,j)→+∞

m({x : xj < xi ≤ α}) ≤ m′({x : x1 < x0 ≤ α}).

For α = 0 we have {x : xj < xi ≤ 0} = ∅, and (4.4) holds.
At the inductive step, let us assume that (4.4) holds for all α < β < ω1;

we distinguish whether β is a successor or a limit ordinal.
In the former case let β = α+ 1. For (i, j)→ +∞ (with i < j) we have

m({xj < xi ≤ β}) = m({xj < xi ≤ α}) +m({xj ≤ α, xi = β})
≤ m′({x1 < x0 ≤ α})+m′({x1 ≤ α, x0 = β})+ o(1)
= m′({x1 < x0 ≤ β}) + o(1),

where we used the induction hypothesis, and the fact that {xj ≤ α, xi = β}
is clopen.
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Let us now assume that β is a limit ordinal. For all i ∈ N we have

(4.5)
⋂
α<β

{x : α < xi < β} = ∅.

In particular, for all ε > 0 there exists α < β such that

m′({α < x0 < β}) < ε.

Since m′ is exchangeable, we also have

m′({α < xi < β}) < ε

for all i ∈ N. Moreover by assumption m({xi = β}) = 0 for every i ∈ N.
Hence, again by (4.5), for all i ∈ N there exists α ≤ αi < β such that

m({αi ≤ xi ≤ β}) < ε.

Given i < j, distinguishing the relative positions of xi, xj with respect to α
and αi, we have

{xj < xi ≤ β} ⊆ {xj < xi ≤ α} ∪ {xj ≤ α < xi ≤ β}
∪ {α < xj ≤ αi} ∪ {αi < xi ≤ β},

which gives

m({xj < xi ≤ β}) ≤ m({xj < xi ≤ α}) +m({xj ≤ α < xi ≤ β})(4.6)
+m({α < xj ≤ αi}) +m({αi < xi ≤ β}).

Since {xj ≤ α < xi ≤ β} and {α < xj ≤ αi} are both clopen, we can
approximate their m-measure by their m′-measure. So we have

m{xj ≤ α < xi ≤ β} = m′({x1 ≤ α < x0 ≤ β}) + o(1) for (i, j)→∞

and

m({α < xj ≤ αi}) = m′({α < x1 ≤ αi}) + o(1) for j →∞,

where we used Remark B.7 to allow j →∞ keeping i fixed.
Note that, by the choice of α, we have m′({α < x1 ≤ αi}) < ε, and

by induction hypothesis lim inf(i,j)→+∞m({xj < xi ≤ α}) < m′({x1 <
x0 ≤ β}). Hence, from (4.6) we obtain

lim inf
(i,j)→+∞

m({xj < xi ≤ β})

≤ m′({x1 < x0 ≤ α}) +m′({x1 ≤ α < x0 ≤ β}) + ε+ ε.

Therefore,

lim inf
(i,j)→+∞

m({xj < xi ≤ β}) ≤ m′({x1 < x0 ≤ β}) + 2ε.

Inequality (4.4) is thus proved for all α < ω1.



Infinite paths and cliques in random graphs 173

Step 4. We now conclude the proof of the lemma. From (4.4) it follows
that

inf
(i,j)∈N(2)

m(Ai,j) ≤ m′({x : x1 < x0})(4.7)

=
1
2

(1−m′({x : x1 = x0})) <
1
2
,

where we used the fact that m′ is exchangeable, and Corollary B.10.

Theorem 4.5. Let (Ω,A, µ) be a probability space and let X : Ω → 2EG
be a random subgraph of G := (N,N(2)). Consider the set

P := {x ∈ Ω : X(x) has an infinite path}.
Assume infe∈N(2) µ(Xe) ≥ 1/2. Then µ(P ) > 0.

As observed in the Introduction, this result follows from [FT:85, 4D] when
Ω = [0, 1] with the Lebesgue measure.

Proof of Theorem 4.5. Suppose for a contradiction µ(P ) = 0. We can
then assume P = ∅ (replacing Ω with Ω − P ). Hence the rank function
ϕ := ϕX : Ω → (ω1+1)N takes values in ωN

1 . Let m = ϕ#(µ) ∈M1(ωN
1 ). Note

that ϕ(Xi,j) ⊂ Ai.j := {x ∈ pN : xi > xj}. Hence m(Ai,j) ≥ µ(Xi,j) ≥ 1/2
for all (i, j) ∈ N(2). This contradicts Lemma 4.4.

Remark 4.6. Note that the bound 1/2 is optimal by Example 3.1.

Reasoning as in Corollary 3.4 we obtain:

Corollary 4.7. Let 0 ≤ λ < 1. If infe∈N(2) µ(Xe) ≥ λ, then

µ(P ) >
λ− 1/2
1− 1/2

.

Note that if we replace (N,N(2)) with a finitely branching countable
graph G, then the threshold for the existence of infinite paths becomes 1,
namely we cannot ensure the existence of infinite paths even if each edge of
G belongs to the random subgraph X with probability very close to 1. In
fact, the following more general result holds:

Proposition 4.8. Let G = (VG, EG) be a graph admitting a colouring
function c : EG → N such that each infinite path in G meets all but finitely
many colours (it is easy to see, considering the distance from a fixed vertex
in each connected component, that a finitely branching countable graph G has
this property). Then for every ε > 0 there is a probability space (Ω,A, µ)
and a random subgraph X : Ω → 2EG of G such that for all x ∈ Ω, X(x) has
no infinite paths, and yet µ(Xe) > 1− ε for all e ∈ EG.

Proof. Let µ be a probability measure on Ω := N with µ({n}) < ε for
every n. Given n ∈ Ω let X(n) be the subgraph of G (with vertices VG)
containing all edges e ∈ EG of colour c(e) 6= n. Given e ∈ EG there is at
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most one n such that c(e) ∈ Zn. Hence clearly µ(Xe) ≥ 1− ε, and yet X(n)
has no infinite paths for any n ∈ Ω.

Remark 4.9. It is natural to ask whether the answer to Problem 1
changes if we substitute N with the set of the real numbers. Since N ⊂ R, the
probability threshold for the existence of infinite paths can only decrease,
but the following example shows that it still equals 1/2. Let Ω = [0, 1]R

equipped with the product Lebesgue measure L, let ε > 0, and let

Xi,j := {x ∈ Ω : xi > xj + ε}
for all i < j ∈ R. The assertion follows by observing that L(Xi,j) = (1−ε)2/2
for all i < j ∈ R, and ⋂

i∈{1,...,N}

Xni,ni+1 = ∅

whenever ni is a strictly increasing sequence of real numbers, and N > 1/ε.

5. Threshold functions for graph morphisms

Definition 5.1. Let F and G be directed graphs. A graph morphism
ϕ : G → F is a map ϕ : VG → VF such that (ϕ(a), ϕ(b)) ∈ EF for all
(a, b) ∈ EG. We write G→ F if there is a graph morphism from G to F .

The results of the previous sections were implicitly based on the following
observation:

Remark 5.2. Let G be a directed graph.

(1) G has a path of length ≥ p if and only if G 9 (p, p(2)).
(2) G has an infinite path if and only if G 9 (ω1, ω

(2)
1 ).

This suggests generalizing the above results by considering other prop-
erties of graphs that can be expressed in terms of non-existence of graph
morphisms. Let us give the relevant definitions.

Definition 5.3. Given two directed graphs F,G and given i, j ∈ VG let

(5.1) Ai,j(F,G) := {u ∈ V VG
F : (u(i), u(j)) ∈ EF }

and define the relative capacity of F with respect to G as

(5.2) c(F,G) := sup
m∈M1(V

VG
F )

inf
(i,j)∈EG

m(Ai,j(F,G)) ∈ [0, 1].

Theorems 3.3 and 4.5 have the following counterpart.

Theorem 5.4. Let F and G be directed countable graphs, let (Ω,A, µ) be
a probability space and let X : Ω → 2EG be a random subgraph of G. Let P :=
{x ∈ Ω : X(x) 9 F}. Assume infe∈EG µ(Xe) > c(F,G). Then µ(P ) > 0.
Moreover there are examples in which P is empty and infe∈EG µ(Xe) is as
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close to c(F,G) as required. So c(F,G) is the threshold for non-existence of
graph morphisms f : X(x)→ F .

Proof. Suppose for a contradiction µ(P ) = 0. We can then assume P = ∅
(replacing Ω with Ω − P ). Hence for each x ∈ Ω there is a graph mor-
phism ϕ(x) : X(x) → F , which can be seen as an element of V VG

F . We thus
obtain a map ϕ : Ω → V VG

F . By Lemma 5.7 below, ϕ can be chosen to
be µ-measurable. Since x ∈ Xi,j implies (φ(x)(i), φ(x)(j)) ∈ EF , we have
ϕ(Xi,j) ⊂ Ai,j(F,G) for all (i, j) ∈ EG. Let m := ϕ#(µ) ∈ M1(V VG

F ).
Then m(Ai,j(F,G)) ≥ µ(Xi,j) > c(F,G). This is absurd by the definition of
c(F,G). We have thus proved µ(P ) > 0. To prove the second part it suffices
to take Ω = V V G

F and Xi,j = Ai,j(F,G).

Reasoning as in Corollary 3.4 we obtain:

Corollary 5.5. Suppose c(F,G) < 1. If infe∈N(2) µ(Xe) ≥ λ, then

µ(P ) ≥ λ− c(F,G)
1− c(F,G)

.

Remark 5.6. If the sup in the definition of c(F,G) is not reached, it
suffices to have the weak inequality infe∈EG µ(Xe) ≥ c(F,G) in order to have
µ(P ) > 0 (this is indeed the case of Theorem 4.5).

It remains to show that the map ϕ : Ω → V VG
F in the proof of Theorem

5.4 can be taken to be µ-measurable.

Lemma 5.7. Let F,G be countable directed graphs, let (Ω,A, µ) be a
probability space, and let X : Ω → 2EG be a random subgraph of G.

(1) The set Ω0 := {x ∈ Ω : X(x)→ F} is µ-measurable (i.e. measurable
with respect to the µ-completion of A).

(2) There is a µ-measurable function ϕ : Ω0 → V VG
F that selects, for each

x ∈ Ω0, a graph morphism φ(x) : X(x)→ F .
(3) If F is finite, then Ω0 is measurable and ϕ can be chosen measurable.

Proof. Given a function f : VG → VF , we have f : X(x)→ F (i.e., f is a
graph morphism from X(x) to F ) if and only if x∈

⋂
(i,j)∈VG

⋃
(a,b)∈VF Bi,j,a,b,

where x ∈ Bi,j,a,b says that f(i) = a, f(j) = b and x ∈ Xi,j . This shows
that B := {(x, f) : f : X(x) → F} is a measurable subset of Ω × V VF

G . We
are looking for a (µ-)measurable function ϕ : πX(B)→ V VG

F whose graph is
contained in B.

Special case: Let us first assume that Ω is a Polish space (i.e., a complete
separable metric space) with its algebra A of Borel sets. By the Jankov–von
Neumann uniformization theorem (see [K:95, Thm. 29.9]), if X,Y are Polish
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spaces and Q ⊂ X×Y is a Borel set, then the projection πX(Q) ⊂ X is uni-
versally measurable (i.e. it is m-measurable for every σ-finite Borel measure
m on X), and there is a universally measurable function f : πX(Q) → Y

whose graph is contained in Q. We can apply this to X = Ω, Y = V VG
F and

Q = B to obtain (1) and (2). It remains to show that if F is finite then πX(Q)
and f can be chosen to be Borel measurable. To this end it suffices to use
the following uniformization theorem of Arsenin–Kunugui (see [K:95, Thm.
35.46]): if X,Y,Q are as above and each section Qx = {y ∈ Y : (x, y) ∈ Q}
is a countable union of compact sets, then pX(Q) is Borel and there is a
Borel measurable function f : πX(Q)→ Y whose graph is contained in Q.

General case: We reduce the problem to the special case as follows.
Let X = 2VG , Y = V VG

F and consider the set B′ ⊂ X × Y consisting of
those pairs (H, f) such that H is a subgraph of G (with the same vertices)
and f : H → F is a graph morphism. Consider the pushforward measure
m = X#(µ) defined on the Borel algebra of 2VG . By the special case there
is an (m-)measurable function ψ : πX(B′)→ V VG

F whose graph is contained
in B′. To conclude it suffices to take ϕ := ψ ◦ X.

We now show how to compute the relative capacity c(F, (N,N(2))) (see
Definition 5.3) for any finite graph F . The following invariant of directed
graphs has been studied in [R:82] and [FT:85, Section 3].

Definition 5.8. Given a directed graph F , we define the capacity of F
as

(5.3) c0(F ) := sup
λ∈ΣF

∑
(a,b)∈EF

λaλb ∈ [0, 1],

where ΣF is the simplex of all sequences {λa}a∈VF of real numbers such that
λa ≥ 0 and

∑
a∈VF λa = 1.

Proposition 5.9. If F is a finite directed graph, then

(5.4) c(F, (N,N(2))) = c0(F ).

Proof. Let G = (N,N(2)). The proof is a series of reductions.

Step 1. Note that if σ ∈ Incr(N), then σ ·m(Ai,j(F,G)) = m(Aσ(i),σ(j)).
Hence the infimum in (5.2) can only increase whenm is replaced with σ∗#(m).
By Theorem B.8 there is σ ∈ Incr(N) such that σ ·m is asymptotically ex-
changeable. It then follows that we can equivalently take the supremum in
(5.2) over the measures m ∈ M1(V N

F ) which are asymptotically exchange-
able.

Step 2. By definition, if m is asymptotically exchangeable, there is an
exchangeable measure m′ such that limk→∞mk = m′, where mk = Sk ·m.
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Clearly

inf
(i,j)∈EG

m(Ai,j(F,G)) ≤ lim
k→∞

mk(A0,1(F,G)) = m′(A0,1(F,G)).

So the supremum in (5.2) coincides with supmm(A0,1(F,G)), for m ranging
over the exchangeable measures.

Step 3. By (B.11), every exchangeable measure is a convex integral
combination of Bernoulli measures Bλ, with λ ∈ ΣF . It follows that it is
sufficient to compute the supremum over the Bernoulli measures Bλ. We
have

Bλ({x ∈ V N
F : (x0, x1) ∈ EF }) =

∑
(a,b)∈EF

Bλ({x : x0 = a, x1 = b})

=
∑

(a,b)∈EF

λaλb,

so that (5.2) reduces to (5.3).

Notice that if there is a morphism of graphs from G to F , then c0(G) ≤
c0(F ). Also note that c0(F ) = 1 if there is some a ∈ VF with (a, a) ∈ EF .
Recall that F is said to be: irreflexive if (a, a) 9 EF for all a ∈ VF ; sym-
metric if (a, b) ∈ EF ⇔ (b, a) ∈ EF for all a, b ∈ VF ; anti-symmetric if
(a, b) ∈ EF ⇒ (b, a) 9 EF for all a, b ∈ VF .

The clique number cl(F ) of F is defined as the largest integer n such
that there is a subset S ⊂ VF of size n which forms a clique, i.e. (a, b) ∈ EF
or (b, a) ∈ EF for all a, b ∈ S.

Proposition 5.10 (see also [FT:85, Section 3]). Let F be a finite ir-
reflexive directed graph. If F is anti-symmetric, then

(5.5) c0(F ) =
1
2

(
1− 1

cl(F )

)
.

If F is symmetric, then

(5.6) c0(F ) = 1− 1
cl(F )

.

In particular c0(Kp) = 1− 1/p.

Proof. The anti-symmetric case follows from the symmetric one by tak-
ing the symmetric closure. So we can assume that F is symmetric. Let
λ ∈ ΣF be a maximizing distribution, meaning that c0(F ) =

∑
(a,b)∈EF λaλb,

and let Sλ be the subgraph of F spanned by the support of λ, that is,
VSλ = {a ∈ VF : λa > 0}. Given a ∈ Sλ note that

∂

∂λa

∑
(u,v)∈EF

λuλv = 2
∑

b∈VF : (a,b)∈EF

λb.
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From Lagrange’s multiplier theorem it then follows that
∑

b∈VF : (a,b)∈EF λb
is constant, namely it does not depend on the choice of a ∈ Sλ. Since∑

a∈Sλ(
∑

b: (a,b)∈EF λa) = c0(F ), it follows that for each a ∈ Sλ we have

(5.7)
∑

b∈VF : (a,b)∈EF

λb = c0(F ).

If c, c′ ∈ VSλ , we can consider the distribution λ′ ∈ ΣF such that λ′c = 0,
λ′c′ = λc + λc′ , and λ′b = λb for all b ∈ VF \ {c, c′}. From (5.7) it then follows
that λ′ is also a maximizing distribution whenever (c, c′) 9 EF . (In fact∑

(a,b)∈EF λ
′
aλ
′
b =

∑
(a,b)∈EF λaλb − λc

∑
b: (c,b)∈EF λb + λc

∑
b: (c′,b)∈EF λb =

c0(F )− λcc0(F ) + λcc0(F ).)
As a first consequence, Sλ is a clique whenever λ is a maximizing distri-

bution with minimal support. Indeed, let K be a maximal clique contained
in Sλ, and assume for contradiction that there exists a ∈ VSλ \ VK . Let-
ting a′ ∈ VK be a vertex of F independent of a (such an element exists
since K is a maximal clique), and letting λ′ ∈ ΣF be as above, we have
c0(F ) =

∑
(a,b)∈EF λ

′
aλ
′
b, contradicting the minimality of VSλ .

Once we know that Sλ is a clique, again from (5.7) we deduce that λ is
a uniform distribution, that is, λa = λb for all a, b ∈ VSλ . It follows that

c0(F ) = 1− 1
|Sλ|

≤ 1− 1
cl(F )

,

which in turn implies (5.5), the opposite inequality being realized by a uni-
form distribution on a maximal clique.

Notice that the proof of Proposition 5.10 shows that there exists a maxi-
mizing λ ∈ ΣF whose support is a clique (not necessarily of maximal order).

5.1. Chromatic number. We will apply the results of the previous
section to study the chromatic number of a random subgraph of (N,N(2)).
We point out that an alternative proof of this result follows from [EH:64,
Theorem 1].

We recall that the chromatic number χ(G) of a directed graph G is the
smallest n such that there is a colouring of the vertices of G with n colours
in such a way that a, b ∈ VG have different colours whenever (a, b) ∈ EG
(see [B:79]).

For p ∈ N, let Kp be the complete graph on p vertices, namely Kp has
set of vertices p = {0, 1, . . . , p − 1} and set of edges {(x, y) ∈ p2 : x 6= y}.
Clearly χ(Kp) = p. Note also that

(5.8) G→ Kp ⇔ χ(G) ≤ p.
Now let (Ω,A,m) be a probability space, and let X : Ω → 2EG be a

random subgraph of G = (N,N(2)). Let P = {x ∈ Ω : χ(X(x)) ≥ p}. By (5.8)
and the results of the previous section, if infe∈µ(Xe) > c(Kp, (N,N(2)), then
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µ(P ) > 0. This however does not say much unless we manage to determine
c(Kp, (N,N(2))). We will show that c(Kp, (N,N(2))) = 1− 1/p, so we have:

Theorem 5.11. Let (Ω,A,m) be a probability space, and X : Ω → 2EG
be a random subgraph of (N,N(2)). If infe∈µ(Xe) > 1− 1/p, then

µ({x ∈ Ω : χ(X(x)) ≥ p+ 1}) > 0.

6. Infinite cliques. We recall the following standard Borel–Cantelli
type result, which shows that Problem 3 has a positive answer for k = 1.

Proposition 6.1. Let (Ω,A, µ) be a probability space. Let λ > 0 and
for each i ∈ N let Xi ⊆ Ω be a measurable set such that µ(Xi) ≥ λ. Then
there is an infinite set J ⊂ N such that⋂

i∈J
Xi 6= ∅.

Proof. The set Y :=
⋂
n

⋃
i>nXi is a decreasing intersection of sets of

(finite) measure greater than λ > 0, hence µ(Y ) ≥ λ and, in particular, Y
is non-empty. Now it suffices to note that any element x of Y belongs to
infinitely many Xi’s.

Proposition 6.1 has the following interpretation: if we choose each el-
ement of N with probability at least λ, we obtain an infinite subset with
probability at least λ.

The following example shows that Problem 3 has in general a negative
answer for k > 1.

Example 6.2. Let p ∈ N and consider the Cantor space Ω = pN,
equipped with the Bernoulli measure B(1/p,...,1/p), and let Xi,j := {x ∈ Ω :
xi 6= xj}. Then each Xi,j has measure λ = 1 − 1/p, and for all x ∈ X
the graph X(x) := {(i, j) ∈ N(2) : x ∈ Xi,j} does not contain cliques (i.e.
complete subgraphs) of cardinality p+ 1.

In view of Example 6.2, we need further assumptions in order to get a
positive answer to Problem 3.

Example 6.3. By the Ramsey theorem, Problem 3 has a positive answer
if there is a finite set S ⊂ Ω such that each Xi1,...,ik has a non-empty
intersection with S. In particular, this is the case if Ω is countable.

Proposition 6.4. Let r > 0. Assume that Ω is a compact metric space
and each set Xi1,...,ik contains a ball Bi1,...,ik of radius r > 0. Then Problem 3
has a positive answer.

Proof. Applying Lemma A.1 to the centres of the balls Bi1,...,ik shows
that for all 0 < r′ < r there exists an infinite set J and a ball B of radius r′
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such that
B ⊂

⋂
(j1,...,jk)∈J(k)

Xj1,...,jk .

We now give a sufficient condition for a positive answer to Problem 3.

Theorem 6.5. Let (Ω,A, µ) be a probability space. Let λ > 0 and as-
sume that µ(Xi1,...,ik) ≥ λ for each (i1, . . . , ik) ∈ N(k). Assume further that
the indicator functions of Xi1,...,ik belong to a compact subset K of L1(Ω,µ).
Then for any ε > 0 there exists an infinite set J ⊂ N such that

µ
( ⋂

(i1,...,ik)∈J(k)

Xi1,...,ik

)
≥ λ− ε.

Proof. Consider first the case k = 1. By compactness of K, for all ε > 0
there exist an increasing sequence {in} and a set X∞ ⊂ X, with µ(X∞) ≥ λ,
such that

µ(X∞ 4Xin) ≤ ε

2n
∀n ∈ N.

As a consequence, letting J := {in : n ∈ N} we have

µ
( ⋂
n∈N

Xin

)
≥ µ

(
X∞ ∩

⋂
n∈N

Xin

)
≥ µ(X∞)−

∑
n∈N

µ(X∞ 4Xin) ≥ λ− ε.

For k > 1, we apply Lemma A.1 with

M = K ⊂ L1(Ω,µ), f(i1, . . . , ik) = χXi1...ik
∈ L1(Ω,µ).

In particular, recalling Remark A.4, for all ε > 0 there exist J = σ(N),
X∞ ⊂ Ω, and Xi1,...,im ⊂ X, for all (i1, . . . , im) ∈ J (m) with 1 ≤ m < k,
such that µ(X∞) ≥ λ and for all (i1, . . . , ik) ∈ J (k) we have

µ(X∞ 4Xi1) ≤ ε

2σ−1(i1)
, µ(Xi1...im 4Xi1,...,im+1) ≤ ε

2σ−1(im+1)
.

Reasoning as above, we find that

µ
(
X∞ 4

⋂
(i1,...,ik)∈J(k)

Xi1,...,ik

)
≤
∑
i1∈N

µ(X∞ 4Xi1) +
∑
i1<i2

µ(Xi1 4Xi1,i2)

+ · · ·+
∑

i1<···<ik

µ(Xi1,...,ik−1
4Xi1,...,ik) ≤ C(k)ε,

where C(k) > 0 is a constant depending only on k. Therefore

µ
( ⋂

(i1,...,ik)∈J(k)

Xi1,...,ik

)
≥ µ

(
X∞ ∩

⋂
(i1,...,ik)∈J(k)

Xi1,...,ik

)
≥ µ(X∞)− µ

(
X∞ 4

⋂
(i1,...,ik)∈J(k)

Xi1,...,ik

)
≥ λ− C(k)ε.
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Notice that from Theorem 6.5 it follows that Problem 3 has a positive
answer if there exist an infinite J ⊆ N and sets X̃i1,...,ik ⊆ Xi1,...,ik with
(i1, . . . , ik) ∈ J (k) such that µ(X̃i1,...,ik) ≥ λ for some λ > 0, and the indicator
functions of X̃i1,...,ik belong to a compact subset of L1(Ω,µ).

Remark 6.6. We recall that, when Ω is a compact subset of Rn and
the perimeters of the sets Xi1,...,ik are uniformly bounded, then the family
χXi1,...,ik

has compact closure in L1(Ω,µ) (see for instance [AFP:00, Thm.
3.23]). In particular, if the sets Xi1,...,ik have equibounded Cheeger constant,
i.e. if there exists C > 0 such that

min
E⊂Xi1,...,ik

Per(E)
|E|

≤ C ∀(i1, . . . , ik) ∈ N(k),

then Problem 3 has a positive answer.

Appendix A. A topological Ramsey theorem. The following met-
ric version of the Ramsey theorem reduces to the classical Ramsey theorem
when M is finite.

Lemma A.1. Let M be a compact metric space, let k ∈ N, and let f :
N(k) →M . Then there exists an infinite set J ⊂ N such that the limit

lim
(i1,...,ik)→+∞
(i1,...,ik)∈J(k)

f(i1, . . . , ik)

exists.

Proof. Notice first that the assertion is trivial for k = 1, since M is com-
pact. Assume that the assertion holds for some k ∈ N. Let f : N(k+1) →M .
By inductive assumption, for all j ∈ N there exist an infinite set Jj ⊂ N and
a point xj ∈M such that xj = limi1,...,ik→∞ f(j, i1, . . . , ik), with (i1, . . . , ik)
∈ J (k)

j . Possibly extracting further subsequences we can also assume that

(A.1) d(xj , f(j, i1, . . . , ik)) ≤ 1/2j

for all (i1, . . . , ik) ∈ J
(k)
j . Moreover, by a recursive construction, we can as-

sume that Jj+1 ⊆ Jj . Now define τ ∈ Incr(N) by choosing τ(0) ∈ N and in-
ductively τ(n+1) ∈ Jτ(n). Since Jj+1 ⊂ Jj for all j, this implies τ(m) ∈ Jτ(n)

for all m > n. By compactness of M , there exists λ ∈ Incr(N) and a point
x ∈ M such that xτ(λ(n)) → x for n → ∞. Take J = Im(τ ◦ λ). The re-
sult follows from the triangle inequality d(x, f(j, i1, . . . , ik)) ≤ d(x, xj) +
d(xj , f(j, i1, . . . , ik)), noting that if j < i1 < · · · < ik are in J , then
i1, . . . , ik ∈ Jj , and inequality (A.1) applies.

Note that in Lemma A.1, the condition (i1, . . . , ik)→ +∞ is equivalent
to i1 → ∞ (since i1 < · · · < ik). We would like to strengthen Lemma A.1
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by requiring the existence of all the partial limits

x = lim
ij(1)→∞

lim
ij(2)→∞

. . . lim
ij(r)→∞

xi1,...,ik

where 1 ≤ r ≤ k and (ij(1), . . . , ij(r)) ∈ J (r) is a subsequence of the (finite)
sequence (i1, . . . , ik) ∈ J (k). Note that the existence of all these 2k−1 partial
limits does not follow directly from Lemma A.1.

To prove the desired strengthening it is convenient to introduce some
terminology. Let N = N ∪ {∞} be the one-point compactification of N.
Given a distance δ on N, we consider on N(k) the induced metric

δk((n1, . . . , nk), (m1, . . . ,mk)) := max
i
δ(ni,mi).

Given σ ∈ Incr(N), let σ∗ : N(k) → N(k) be the induced map defined by
σ∗(n1, . . . , nk) := (σ(n1), . . . , σ(nk)). Given f : N(k) → M , by the following
theorem there is an infinite J ⊂ N such that all the partial limits of f�J(k)

exist. Moreover the arbitrariness of δ shows that we can impose an arbitrary
modulus of convergence on all the partial limits of f ◦σ∗, where σ ∈ Incr(N)
is an increasing enumeration of J .

Theorem A.2. Let M be a compact metric space, let k ∈ N, and let
f : N(k) → M . Then for any distance δ on N there exists σ ∈ Incr(N)
such that f ◦ σ∗ : N(k) → M is 1-Lipschitz, and as a consequence, it can be
extended to a 1-Lipschitz function on the closure of N(k) in Nk.

Lemma A.3. Let δ be a metric on N. Then there is another metric δ∗

on N such that

(1) δ∗(x, y) ≤ δ(x, y) for all x, y.
(2) δ∗ is monotone in the following sense: δ∗(x′, y′) ≤ δ∗(x, y) for all

x, x, y, y′ provided x < min(y, x′, y′).
(3) ε∗(x) ≥ ε∗(y) for all x ≤ y, where

(A.2) ε∗(x) := min
y≥x+1

δ∗(x, y).

Proof. We shall define a distance of the form δ∗(x, y) = δ(ψ(x), ψ(y))
for a suitable strictly increasing function ψ : N → N. To this end, let us
consider, for any x ∈ N, the diameter of the interval [x,∞] ∩ N,

(A.3) η(x) := max
x≤y≤z

δ(y, z),

and the point-set distance from x to the interval [x+ 1,∞] ∩ N,

(A.4) ε(x) := min
y≥x+1

δ(x, y).
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Since ε(x) > 0 for all x < ∞ and η(x) = o(1) as x → ∞, there exists a
recursively defined, strictly increasing function ψ : N→ N such that for any
x ∈ N,

(A.5) η(ψ(x)) ≤ ε(x), η(ψ(x+ 1)) ≤ ε(ψ(x)).

As a consequence, the distance

δ∗(x, y) := δ(ψ(x), ψ(y))

satisfies, for all x < y ≤ ∞,

δ∗(x, y) = δ(ψ(x), ψ(y)) ≤ η(ψ(x)) ≤ ε(x) ≤ δ(x, y),

and, assuming also x < x′ ≤ ∞ and x < y′ ≤ ∞,

δ∗(x′, y′) = δ(ψ(x′), ψ(y′)) ≤ η(ψ(x′)) ≤ η(ψ(x+ 1))
≤ ε(ψ(x)) ≤ δ(ψ(x), ψ(y)) = δ∗(x, y).

To prove the last statement we observe that

ε∗(x) ≥ ε(ψ(x)) ≥ η(ψ(x+ 1)) ≥ ε∗(x+ 1).

Proof of Theorem A.2. By Lemma A.3 we can assume that δ is monotone
in the sense of part (2) of that lemma.

We proceed by induction on k. When k = 1, consider the function ε(n) :=
minm≥n+1 δ(n,m) as in (A.2). By compactness of M there exist x ∈M and
a subsequence f ◦ σ of f converging to x with the property

(A.6) dM (f(σn), x) ≤ ε(n)/2.

Recalling Lemma A.3(3), for n 6= m we have

(A.7) dM (f(σn), f(σm)) ≤ (ε(n) + ε(m))/2 ≤ δ(n,m).

So f ◦ σ is 1-Lipschitz.
Now assume inductively that the assertion holds for some k ∈ N. Let

f : N(k+1) →M . We need to prove the existence of σ ∈ Incr(N) such that

(A.8) dM (f(σ∗(n,m)), f(σ∗(n′,m′))) ≤ δk+1((n,m), (n′,m′))

for all (n,m) ∈ N(k+1) and (n′,m′) ∈ N(k+1), where m = (m1, . . . ,mk) and
m′ = (m′1, . . . ,m

′
k).

Given n ∈ N define fn : N(k) →M by

(A.9) fn(m) :=
{
f(n,m) if n < m1,
⊥ if n ≥ m1,

where ⊥ is an arbitrary element of M . Note that the condition n < m1 is
equivalent to (n,m) ∈ N(k+1).

By inductive assumption, for all n ∈ N there exists θn ∈ Incr(N) such
that fn ◦ θn∗ : N(k) →M is 1-Lipschitz. By a recursive construction, we can
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also assume that θn+1 is a subsequence of θn, namely θn+1 = θn ◦ γn for
some γn ∈ Incr(N). Indeed to obtain θn+1 as desired it suffices to apply the
induction hypothesis to fn+1 ◦ θn∗ : N(k) →M rather than directly to fn+1.

Since fn ◦ θn∗ is 1-Lipschitz, the limit

g(n) := lim
min(m)→∞

f(n, θn∗(m))

exists. Passing to a subsequence we can further assume that all the values
of fn ◦ θn are within distance ε(n)/4 of its limit, that is,

(A.10) dM (g(n), f(n, θn(m))) < ε(n)/4.

Let Jn := θn(N) ⊂ N and let τ ∈ Incr(N) be such that

(A.11) τ(n+ 1) ∈ Jτ(n),

It then follows that

(A.12) ∀n,m ∈ τ(N) m > n⇒ m ∈ Jn.

For later purposes we need to define τ(n+ 1) as an element of Jτ(n) bigger
than its (n+1)th element, namely τ(n+1) > θτ(n)(n+1). So, for definiteness,
we define inductively τ(0) := 0 and τ(n+ 1) := θτ(n)(n+ 2). It then follows
that

(A.13) ∀i, j ∈ τ(N) ∀k ∈ N j > i, j ≥ k ⇒ τ(j) > θτ(i)(k).

Reasoning as in the case k = 1, we find λ ∈ Incr(N) and x∞ ∈M such that

(A.14) dM (g(τ(λ(n))), x∞) < ε(n)/4.

Now define σ := τ ◦ λ ∈ Incr(N). Note that σ(N) ⊂ τ(N) so (A.12) and
(A.13) continue to hold with σ instead of τ . We claim that f ◦ σ∗ : N(k+1)

→M is 1-Lipschitz.
As a first step we show that

(A.15) ∃k > m (f ◦ σ∗)(n,m) = (fσ(n) ◦ θσ(n))(n,k)

where k > m means that ki > mi for all respective components. To prove
(A.15) recall that (f ◦ σ∗)(n,m) = f(σ(n), σ(m1), . . . , σ(mk)). Since n <
min(m), by (A.12) the elements σ(m1), . . . , σ(mk) are in the image of θσ(n),
namely for each i we have σ(mi) = θσ(n)(ki) for some ki ∈ N. Moreover
applying (A.13) we must have ki > mi. The proof of (A.15) is thus complete.

It follows from (A.15) and (A.10) that (f ◦ σ∗)(n,m) is within distance
ε(σ(n))/4 of its limit g(σ(n)), which in turn is within distance ε(n)/4 of its
limit x∞ by (A.14). We have thus proved

(A.16) dM (f(σ∗(n,m)), x∞) <
1
4
ε(σ(n)) +

1
4
ε(n).
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Recalling that for x 6= y we have ε(x) + ε(y) ≤ 2δ(x, y), we see that for
n 6= n′ the left-hand side of (A.8) is bounded by [δ(σ(n), σ(n′))+δ(n, n′)]/2,
which in turn is ≤ δ(n, n′) by monotonicity of δ.

If remains to prove (A.8) in the case n = n′. Given m,m′ as in (A.8),
we apply (A.15) to get k > m and k′ > m′ with (f ◦ σ∗)(n,m) = (fσ(n) ◦
θσ(n))(n,k) and (f ◦ σ∗)(n,m′) = (fσ(n) ◦ θσ(n))(n,k′).

Using the monotonicity of δ and the fact that fσ(n) ◦ θσ(n) is 1-Lipschitz,
we conclude that

(A.17) dM (f(σ∗(n,m)), f(σ∗(n,m′))) ≤ δk(k,k′) ≤ δk(m,m′).

Remark A.4. Theorem A.2 implies that there exists an infinite set J =
σ(N) ⊂ N such that, for all 0 ≤ m < k and (i1, . . . , im) ∈ J (m), there are
limit points xi1,...,im ∈M with the property

xi1,...,im = lim
(im+1,...,ik)→∞
(i1,...,ik)∈J(k)

xi1,...,ik ,

where we set xi1,...,ik := f(i1, . . . , ik). Moreover, by choosing the distance
δ(n,m) = ε|2−n − 2−m|, we may also require

dM (xi1,...,im , xi1,...,ik) ≤ ε

2σ−1(im+1)
∀(i1, . . . , ik) ∈ J (k).

Appendix B. Exchangeable measures. Let Λ be a compact metric
space. We recall a classical notion of exchangeable measure due to De Finetti
[DF:74], showing some equivalent conditions.

Proposition B.1. Given m ∈ M1(ΛN), the following conditions are
equivalent:

(a) m is Sc(N)-invariant;
(b) m is Inj(N)-invariant;
(c) m is Incr(N)-invariant.

Definition B.2. If m satisfies one of these equivalent conditions we say
that m is exchangeable.

Notice that an exchangeable measure is always shift-invariant, while
there are shift-invariant measures which are not exchangeable. To prove
Proposition B.1 we need some preliminary results concerning measures sat-
isfying condition (c).

Definition B.3. Given m ∈M(ΛN) and f ∈ Lp(ΛN), with p ∈ [1,+∞],
we let

f̃ = E(f |As) ∈ Lp(ΛN)

be the conditional probability of f with respect to the σ-algebra As of the
shift-invariant Borel subsets of ΛN. In particular, f̃ is shift-invariant, and by
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Birkhoff’s theorem (see for instance [P:81]) we have

f̃ = lim
n→∞

1
n

n−1∑
k=0

f ◦ S∗k,

where the limit holds almost everywhere and in the strong topology of
L1(ΛN).

Lemma B.4. Assume that m ∈ M1(ΛN) is Incr(N)-invariant. Then for
all f ∈ L∞(ΛN,m) we have

(B.1) f̃ = lim
n→∞

f ◦ S∗n,

where the limit is taken in the weak∗ topology of L∞(ΛN), that is, for every
g ∈ L1(ΛN,m) we have

(B.2) lim
n→∞

�

ΛN

g (f ◦ S∗n) dm =
�

ΛN

gf̃ dm.

Proof. It suffices to prove that limn→∞ f ◦ S∗n exists, since it is then
necessarily equal to the (weak∗) limit of the arithmetic means 1

n

∑n−1
k=0 f◦S∗

k,
and therefore to f̃ (since f̃ = limn→∞

1
n

∑n−1
k=0 f ◦ S∗k in an even stronger

topology). Since the sequence f ◦ S∗n is equibounded in L∞(ΛN,m), it is
enough to prove (B.2) for all g in a dense subset D of L1(ΛN). We can take
D to be the set of those functions g ∈ L1(ΛN,m) that depend on finitely
many coordinates (that is, g(x) = h(x1, . . . , xr) for some r ∈ N and some
h ∈ L1(Λr,m)). The convergence of (B.2) for g(x) = h(x1, . . . , xr) follows
at once from the fact that σ · m = m for all σ ∈ Incr(N), which implies
that the quantity in (B.2) is constant for all n > r. Indeed to prove that	
ΛN g (f ◦ S∗n) dm =

	
ΛN g (f ◦ S∗n+l) dm it suffices to consider the function

σ ∈ Incr(N) which fixes 0, . . . , r − 1 and sends i to i+ l for i ≥ r.

We are now ready to prove the equivalence of the conditions in the
definition of exchangeable measure.

Proof of Proposition B.1. Since Sc(N) ⊂ Inj(N) and Incr(N) ⊂ Inj(N),
the implications (b)⇒(a) and (b)⇒(c) are obvious. The implication (a)⇒(b)
is also evident since it is true on the Borel subsets of ΛN of the form {x ∈ ΛN :
xi1 ∈ A1, . . . , xir ∈ Ar}, which generate the whole Borel σ-algebra of ΛN.

Let m ∈M1(ΛN) be Incr(N)-invariant, and let us prove that m is Inj(N)-
invariant. So let σ ∈ Inj(N). We must show that

(B.3)
�

ΛN

g dm =
�

ΛN

g ◦ σ∗ dm

for all g ∈ C(ΛN). It suffices to prove (B.3) for g in a dense subset D
of C(ΛN). So we can assume that g(x) has the form g0(x0) · · · gr(xr) for
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some r ∈ N and g1, . . . , gr ∈ C(Λ). Note that gi(xi) = (gi ◦ Pi)(x) where
Pi : ΛN → Λ is the projection on the ith coordinate. Since Pi = P0◦S∗ where
S∗ is the shift, we can apply Lemma B.4 to obtain�

ΛN

g dm =
�

ΛN

g̃1 ◦ P1 · · · g̃r ◦ P1 dm.

Reasoning in the same way for the function g ◦ σ∗, we finally get�

ΛN

g ◦ σ∗ dm =
�

ΛN

g̃1 ◦ P1 · · · g̃r ◦ P1 dm =
�

ΛN

g dm.

Definition B.5. We say that m ∈M1(ΛN) is asymptotically exchange-
able if the limit

m′ = lim
min θ→∞
θ∈Incr(N)

θ ·m

exists in M1(ΛN) and is an exchangeable measure.

Remark B.6. Note that if m is asymptotically exchangeable, then

m′ := lim
min θ→∞
θ∈Incr(N)

θ ·m = lim
k→∞

Sk ·m.

However it is possible that limk→∞ Sk ·m exists and is exchangeable, and yet
m is not asymptotically exchangeable. As an example one may start with
the Bernoulli probability measure µ on 2N with µ({xi = 0}) = 1/2 and then
consider the conditional probability m(·) = µ(· |A) where A ⊂ 2N is the set
of those sequences x ∈ 2N satisfying x(n+1)2 = 1− xn2 for all n.

Remark B.7. If m is asymptotically exchangeable and if m′ =
limk→∞ Sk ·m, then for all r ∈ N and g1, . . . , gr ∈ C(Λ) we have

(B.4) lim
i1→+∞

(i1,...,ir)∈N(r)

�

ΛN

g1(xi1) · · · gr(xir) dm =
�

ΛN

g1(x1) · · · gr(xr) dm′.

Theorem B.8. Given m ∈M1(ΛN) there is σ ∈ ω(ω) such that σ ·m is
asymptotically exchangeable.

Proof. Fix m ∈ M1(ΛN). Given r ∈ ω consider f : ω(r) → M1(Λr)
sending ι to ι ·m ∈ M1(Λr). By Lemma A.1 there is an infinite set Jr ⊂ ω
such that

(B.5) lim
min(ι)→∞
ι∈J(r)

r

ι ·m

exists in M1(Λr). By a diagonal argument we choose the same set J = Jr
for all r. Let σ ∈ Incr(N) be such that σ(N) = J . We claim that σ · m is
asymptotically exchangeable. To this end considermk := Sk·σ·m ∈M1(ΛN).
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By compactness there is an accumulation point m′ ∈ M1(ΛN) of {mk}k∈N.
We claim that

(B.6) lim
min(θ)→∞
θ∈J(ω)

θ · σ ·m = m′ ,

hence in particular mk → m′ (taking θ = Sk). Note that the claim also im-
plies thatm′ is exchangeable. Indeed, given an increasing function γ : N→ N,
to show γ ·m′ = m′ it suffices to replace θ with θ◦γ in (B.6). Since the subset
of C(ΛN) consising of the functions depending on finitely many coordinates
is dense, it suffices to prove that for all r ∈ N and ι ∈ N(r) the limit

(B.7) lim
min(θ)→∞
θ∈J(ω)

ι · θ · σ ·m

exists in M1(Λr) (the limit being necessarily ι ·m′). This is however just a
special case of (B.5).

We give below some representation results for exchangeable measures.
First note that if Λ is countable, then a measure m ∈M1(ΛN) is determined
by the values it takes on the sets of the form {x : xi1 = a1, . . . , xir = ar}.

Lemma B.9. If Λ is countable, a measure m ∈ M(ΛN) is exchangeable
if and only if it admits a representation of the following form. There is a
probability space (Ω,µ) (which in fact can be taken to be (ΛN,m)) and a
family {ψa}a∈Λ in L∞(Ω,µ) such that for all i1 < · · · < ir in N we have

(B.8) m({x : xi1 = a1, . . . , xir = ar}) =
�

Ω

ψa1 · · ·ψan dµ.

Proof. Since the right-hand side of the equation does not depend on
i1, . . . , ir, a measure m ∈ M1(ΛN) admitting the above representation is
clearly exchangeable. Conversely, if m is exchangeable then it suffices to
take ψa = χ̃a where χa is the characteristic function of the set {x : x0 = a}.
We can in fact obtain the desired result by a repeated application of (B.2)
after observing that the characteristic function χ{x:xi1=a1,...,xir=ar} is the
product χ{xi1=a1} · · ·χ{xir=ar} and that χ{xi=a} = χa ◦ (S∗)i.

Corollary B.10. If Λ is countable and m ∈ M1(ΛN) is exchangeable,
then m({x ∈ ΛN : x0 = x1}) 6= 0.

Proof. By (B.8), m({x ∈ ΛN : x0 = x1}) =
∑

a∈Λ
	
ψ2
a dµ 6= 0.

Corollary B.11. If p ∈ N and m ∈ M1(pN) is exchangeable, then
m({x ∈ ΛN : x0 = x1}) ≥ 1/p.
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Proof. Write m({x ∈ ΛN : x0 = x1}) =
∑

a∈Λ
	
Ω ψ

2
a and apply the

Cauchy–Schwarz inequality to the linear operator
∑ 	

on p×Ω to obtain

(B.9)
(∑
a<p

�

Ω

ψ2
a dµ

)
·
(∑
a<p

�

Ω

1 dµ
)
≥
(∑
a<p

�

Ω

ψa dµ
)2
,

which gives the desired result.

Thanks to a theorem of De Finetti, suitably extended in [HS:55], there
is an integral representation à la Choquet for exchangeable measures on ΛN,
where Λ is a compact metric space. More precisely, in [HS:55] it is shown
that the extremal points of the (compact) convex set of all exchangeable
measures are given by the product measures σN, with σ ∈ M1(Λ). As a
consequence, Choquet’s theorem [C:69] provides an integral representation
for any exchangeable measure m on ΛN, i.e. there is a probability measure
µ ∈M1(Λ) such that

(B.10) m =
�

M1(Λ)

σN dµ(σ).

When Λ is finite, i.e. Λ = p = {0, . . . , p− 1} for some p ∈ N, we can identify
M1(Λ) with the simplex Σp of all λ ∈ [0, 1]p such that

∑p−1
i=0 λi = 1. Given

λ ∈ Σp, we denote by Bλ the product measure on pN, that is, the unique
measure making all the events {x : xi = a} independent with measure
Bλ({x : xi = a}) = λa. In this case, (B.10) becomes

(B.11) m =
�

Σp

Bλ dµ(λ),

where µ is a probability measure on Σp.
We finish this excursus on exchangeable measures with the following

result:

Proposition B.12. Let m ∈ M1(ΛN) be exchangeable. Then for all
f ∈ L1(ΛN) the following conditions are equivalent:

(a) f is Sc(N)-invariant;
(b) f is Inj(N)-invariant;
(c) f is shift-invariant.

Proof. Since Sc(N) ⊂ Inj(N) and s ∈ Inj(N), the implications (b)⇒(a)
and (b)⇒(c) are obvious.

In order to prove that (a)⇒(b), we let F = {σ ∈ Inj(N) : f = f ◦ σ∗},
which is a closed subset of Inj(N) containing Sc(N). Then it is enough to
observe that Sc(N) is a dense subset of Inj(N) ⊂ NN, with respect to the
product topology of NN, so that F = Sc(N) = Inj(N).

Let us prove that (c)⇒(a). Let σ ∈ Sc(N) and let n be such that σ(i) = i
for all i ≥ n. It follows that S∗k ◦ σ∗ = Sk for all k ≥ n. As a consequence,
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for m-almost every x ∈ ΛN we have

f ◦ σ∗(x) = f ◦ S∗n ◦ σ∗(x) = f ◦ S∗n(x) = f(x),

where the first equality holds since the measure m is Sc(N)-invariant.

Notice that from Proposition B.12 it follows that f̃ is Inj(N)-invariant for
all f ∈ L1(ΛN). In particular, for an exchangeable measure, the σ-algebra of
shift-invariant sets coincides with the (a priori smaller) σ-algebra of Inj(N)-
invariant sets.
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Università di Padova
Via Trieste 63

35121 Padova, Italy
E-mail: novaga@math.unipd.it

Received 27 March 2011;
in revised form 18 September 2011

http://dx.doi.org/10.1016/0040-5809(82)90004-1



	Introduction
	Notation
	Finite paths in random subgraphs
	Infinite paths
	Threshold functions for graph morphisms
	Chromatic number

	Infinite cliques

