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Hyperbolic components of the
complex exponential family

by

Robert L. Devaney (Boston, MA), Núria Fagella (Barcelona)
and Xavier Jarque (Barcelona)

Abstract. We describe the structure of the hyperbolic components of the parameter
plane of the complex exponential family, as started in [1]. More precisely, we label each
component with a parameter plane kneading sequence, and we prove the existence of a
hyperbolic component for any given such sequence. We also compare these sequences with
the more commonly used dynamical kneading sequences.

1. Introduction. Our goal in this paper is to describe the structure of
the hyperbolic components in the parameter plane for the complex expo-
nential family.

Let Eλ(z) = λez with λ ∈ C. The map Eλ has a unique singular value at
0 (the omitted value). As is well known, the fate of the orbit of 0 determines
much of the dynamical behavior of Eλ. For example, if Eλ admits an at-
tracting cycle, then the orbit of 0 must tend to this cycle. As a consequence,
Eλ has at most one attracting cycle.

The parameter space of the exponential family was first studied in [1]
and [6, 7] and later on in [3–5] and [10].

Let Hn denote the set of λ-values for which Eλ admits an attracting
cycle of period n. The connected components of Hn are called hyperbolic
components and it is conjectured that they are dense in the parameter plane.
As shown in [1] and [6], any hyperbolic component is simply connected and
unbounded, with the exception of H1 which is a cardioid-shaped region
containing 0. The region H2 consists of a single component which occupies
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Fig. 1. The parameter plane of Eλ. White regions correspond to hyperbolic components.
Black smooth regions are due to numerics. Dotted lines have been drawn on the imaginary
axis and on the horizontal lines with imaginary parts −3π,−π, π and 3π.

a large portion of the left half plane. Each Hn for n > 2 consists of infinitely
many distinct components, each of which extends to ∞ in the right half
plane.

The arrangement of these hyperbolic components in the λ-plane is quite
complicated. A partial description can be found in [1] where the authors
show the existence of infinitely many hyperbolic components of period n in
between two hyperbolic components of period n−1. Our goal in this paper is
to give a more precise description by using the dynamics of the corresponding
maps. In particular we shall give a label to each of the components which will
describe the dynamical behaviour of the critical orbit for those parameters
in the given component. We shall see that this label also determines the
position of the component in the right half plane. See Figure 1.

With this goal in mind, there is a choice to be made, for there are two
ways to identify the various hyperbolic components in the λ-plane. Each of
these involves the association of a kneading sequence to the component. This
sequence is a string of n − 2 integers. For technical reasons we precede the
string with a 0 and end the string with a ∗. That is, a kneading sequence
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assumes the form 0s1 . . . sn−2∗ with sj ∈ Z. The ∗ denotes a “wild card”
that will be described below.

One of the two kneading sequences is a dynamical kneading sequence (K-
kneading sequence) which is useful mainly in the dynamical plane (see [2]),
since it determines the topological structure of the Julia set of Eλ for any λ
in the hyperbolic component. The other kneading sequence is a parameter
plane kneading sequence (S-kneading sequence) and, as we shall see, is more
useful for describing the structure of the λ-plane. The main result in this
paper is as follows.

Theorem A. Fix n ≥ 3 and let s1, . . . , sn−2 ∈ Z. There exists a hyper-
bolic component Ω0s1...sn−2∗ that extends to ∞ in the right half plane and
such that if λ ∈ Ω0s1...sn−2∗, the map Eλ has an attracting cycle of period
n with parameter plane kneading sequence s = 0s1 . . . sn−2∗. Moreover , the
components Ω0s1...sn−2∗ are ordered lexicographically.

From the proof of this theorem one obtains the following corollary (see
Figure 2).
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Fig. 2. Magnification of Figure 1 showing infinitely many period 4 components in between
two period 3 components
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Corollary B. Let Ω0s1...sn−2∗ be as in Theorem A. Then between this
hyperbolic component and the hyperbolic component Ω0s1...(sn−2+1)∗ there
exist hyperbolic components Ω0s1...(sn−2+1)k∗ for each k ∈ Z.

In this statement the word “between” refers to the ordering given by the
imaginary part, since all hyperbolic components extend to infinity in the
right half plane.

These results give a description of the ordering of the hyperbolic com-
ponents in the far right half plane as a function of their kneading sequence.
Note that these are existence type results. Although uniqueness is most
likely true, this fact does not follow directly from our work in this paper.
D. Schleicher [10] has announced some results in this direction using the
coding of hairs in parameter space.

In Section 2 below we define each of these kneading sequences and discuss
several of their properties. We also derive an algorithm for obtaining one
sequence given the other. In Section 3 we prove Theorem A; that is, we show
the existence of hyperbolic components corresponding to any S-kneading
sequence.

2. Kneading sequences. Let us consider a hyperbolic component Ω
of period n > 2. The main goal of this section is to define two different
kneading sequences associated to the parameter value λ ∈ Ω. We shall also
study the relation between the two sequences and give an algorithm that
transforms one into the other.

We start by giving a topological description of the dynamical plane of
Eλ(z) = λez that holds for any parameter λ in the hyperbolic component Ω.

2.1. The fingers and the glove.. If λ ∈ Ω, the map Eλ(z) = λ exp(z) has
an attracting periodic orbit of period n > 2. This orbit varies analytically
with λ as long as λ lies in the hyperbolic component. Let z0(λ), z1(λ) =
Eλ(z0), . . . , zn−1(λ) = Eλ(zn−2) be the points of the periodic orbit. To sim-
plify notation we will omit the dependence on λ if it does not lead to con-
fusion.

Let A∗ denote the immediate basin of attraction of the periodic orbit
and, for 0 ≤ i ≤ n− 1, define A∗(zi) to be the connected component of A∗

which contains zi. We name the points in the orbit so that the asymptotic
value 0 belongs to A∗(z0).

We now construct geometrically and define what we call fingers. More
details can be found in [2]. For ν ∈ R, let Hν = {z | Re z > ν}.

Definition. An unbounded simply connected F ∈ C is called a finger
of width c if

(a) F is bounded by a single simple curve γ ⊂ C.
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(b) There exists ν such that F ∩ Hν is simply connected, extends to
infinity, and satisfies

F ∩Hν ⊂ {z | Im z ∈ [a− d/2, a+ d/2]} for some a ∈ R,
and c is the infimum value for d.

Observe that the preimage of any finger which does not contain 0 consists
of infinitely many fingers of width smaller than 2π which are 2πi-translates
of each other.

We begin the construction by choosing B = B(λ) to be a topological disc
in A∗(z0) that contains both 0 and z0, and having the property that B is
mapped strictly inside itself under En

λ . This set can be defined precisely using
linearizing coordinates, and one can show that it moves holomorphically with
λ. Although this is not crucial for this work, we have included the details in
the Appendix.

We now take successive preimages of the disc B. More precisely, let Bn−1
be the open set in C which is mapped to B. Note that, since 0 ∈ B, it follows
that Bn−1 has a single connected component which contains a left half plane,
and whose image under Eλ wraps infinitely many times over B \ {0}. Note
that the point zn−1 belongs to the set Bn−1, which lies inside A∗(zn−1).

We now consider the preimage of Bn−1. It is easy to check (by looking
at the image of vertical lines with increasing real part) that this preimage
consists of infinitely many disjoint fingers of width less than 2π which are
2πi-translates of each other. We define Bn−2 ⊂ A∗(zn−2) to be the connected
component for which zn−2 ∈ Bn−2. The map Eλ takes Bn−2 conformally
onto Bn−1.

Similarly, we define the sets Bn−3, . . . , B0, by setting Bi to be the con-
nected component of E−1

λ (Bi+1) that contains the point zi. These inverses
are all well defined and the map Eλ sends Bi conformally onto Bi+1. Each
Bi belongs to the immediate basin A∗(zi). The following characterization of
the sets Bi, i = 0, . . . , n− 2, is proved in [2].

Proposition 2.1. Let n > 2. For i = 0, . . . , n − 2, Bi is a finger of
width ci < 2π.

It follows immediately from the above construction that the width of the
finger Bn−2 that is mapped by Eλ conformally onto Bn−1 is π, while the
widths of the other fingers are 0. So we will refer to Bn−2 as the big finger.

We proceed to the final step, by defining the set

G = {z ∈ C | Eλ(z) ∈ B0},
which we call the glove. We observe from the above construction that G
is a connected set and Bn−1 ⊂ G ⊂ A∗(zn−1). See Figure 3. Moreover,
the complement of G consists of infinitely many fingers, all of which are
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Fig. 3. Sketch of the sets B0 to Bn−1, G and Vj for j ∈ Z. Points in grey belong to the
basin of attraction of the periodic orbit.

2πi-translates of each other. We index these infinitely many connected com-
ponents by Vj , j ∈ Z, so that 2πij ∈ Vj .

In fact, these Vj form a set of fundamental domains for the Julia set of
Eλ in the following sense:

• J(Eλ) ⊂ ⋃j∈Z Vj .
• Eλ maps each Vj conformally onto C \B0, and so Eλ(Vj) ⊃ J(Eλ).

Hence, for each j ∈ Z we have a well defined inverse branch of Eλ:

Lj = Lλ,j : C \B0 → Vj .

Note that B0 lies inside V0 since 0 ∈ B0. The other fingers B1, . . . , Bn−2
may lie inside any of the fundamental domains Vj , depending on the value
of λ. In particular, several Bi may lie in the same Vj .

2.2. K-kneading sequences and S-kneading sequences.. We first intro-
duce the kneading sequence given by the fundamental domains Vj . We define
the K-kneading sequence of λ ∈ Ω to be

K(λ) = 0 k1 k2 k3 . . . kn−2 ∗
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where Bj ⊂ Vkj for all 1 ≤ j ≤ n− 2. We use ∗ for the position of the point
zn−1, since this point does not belong to any of the Vj . We claim that this
kneading sequence is constant throughout the entire hyperbolic component
Ω. To see this we first notice that the function K : Ω → Σ, where Σ denotes
the set of all sequences with integer terms, is locally constant. Hence, since Ω
is connected, K must be constant through the entire hyperbolic component.
An alternative proof of this fact can be deduced from the Appendix.

We define the K-itinerary of any point z ∈ J(Eλ) to be

K(z) = k0 k1 k2 k3 . . .

where Ejλ(z) ∈ Vkj for any j ≥ 0.
One can then use these itineraries together with the kneading sequence

to give a complete description of the structure of the Julia set for Eλ in
terms of symbolic dynamics. See [2].

We now define the S-kneading sequence of a value λ ∈ Ω. This sequence
has been independently introduced in [10], in the same context as ours. If
we look at the dynamical plane very far to the right, we see that any finger
is basically a straight horizontal band; therefore it makes sense to define
the order of fingers in terms of their imaginary part. In this fashion, we can
speak about fingers sitting above or below each other. Likewise, we can talk
about the upper boundary and the lower boundary of a finger, as long as we
look in the far right half plane.

Consider the half plane Hµ = {z ∈ C | Re z > µ} for a fixed µ large
enough. Define the family of fingers Fj , j ∈ Z, to be the infinitely many
connected components of the preimage of Bn−1. We observe that the fingers
Fj are the 2kπi-translates of the big finger for any k ∈ Z. We index these sets
consecutively so that F0 is the one immediately above B0. For any j ∈ Z,
let Tj be the region in Hµ that lies between the upper boundaries of Fj−1
and Fj (so, we have Fj ∩Hµ ⊂ Tj). See Figure 4.

Finally, we define the S-kneading sequence of λ ∈ Ω to be

S(λ) = 0 s1 s2 s3 . . . sn−2 ∗
where Bj ∩ Hµ ⊂ Tsj for all 1 ≤ j ≤ n − 2. Equivalently, Bj tends to
infinity between Fsj and Fsj−1. It is clear that this definition does not depend
on the choice of µ. See Figure 4. Moreover, since S(λ) is again the same
for all λ ∈ Ω, we will use the notation Ω0s1...sn−2∗ to label the hyperbolic
component with such dynamical behavior with respect to the Tj ’s.

We observe that the regions Ti do not define a family of fundamental
domains in the sense described above. Consequently, the S-itinerary (defined
in the obvious way) is not well defined for all points in the Julia set, but
only for those whose orbits have sufficiently large real part. However, Eλ
preserves the orientation in each Ti, a feature that will prove to be useful
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later on. The S-kneading sequences and itineraries are not suitable for use
in the dynamical plane, but we shall see that they are very convenient when
the parameter plane is considered. Therefore, it is of interest to be able to
use both of these kneading sequences.

2.3. Translation algorithm.. In this section we describe an algorithm
that relates the K- and S-kneading sequences. Let us denote the S-kneading
sequence of Eλ by

S = 0s1 . . . sn−2∗.
We will show how to compute the K-kneading sequence

K = 0k1 . . . kn−2∗
associated to λ.

The algorithm consists of two steps. The first step is to attach a sign
(+ or −) to each of the zero entries of S (with the exception of the first
entry of the sequence that will remain as 0). This sign indicates that the
corresponding Bi is above (0+) or below (0−) B0, at least far to the right.

The second step will determine each of the ki based on si and si+1,
except for the last entry kn−2 which will be determined by sn−2 and s1.

Step 1: Deciding on 0+ or 0−. Let si = 0. Then Bi ⊂ T0 and Bi lies
either above or below B0 in the far right half plane. We will attach the
superscript + or − to 0 depending on whether Bi is above (0+) or below
(0−) B0.

To determine the sign, consider the words s1s2 . . . and si+1si+2 . . . Com-
pare these two words until the minimal j ≥ 1 is found such that sj 6= si+j .
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Then set

si =
{

0+ if sj < si+j ,
0− if sj > si+j .

We write ∗ =∞ for ordering purposes in the above criterion.
We now show that this rule gives the correct superscript. Since si = 0,

Bi meets T0 as does B0. If s1 > si+1 (resp. s1 < si+1) then Bi+1 is below
(resp. above) B1. Since the order is preserved inside each of the Tk’s we
deduce that Bi is below (resp. above) B0. Hence si = 0− (resp. 0+). Observe
that having defined ∗ = ∞ takes care of the case si+1 = ∗, i.e., the case of
the big finger.

Now we use induction. Let us assume sj = si+j for j = 1, . . . , k but
sk+1 6= si+k+1. Then Bj and Bi+j are contained in Tsj , j = 1, . . . , k, and
hence, their relative order can be decided by looking at their respective
images Bk+1 and Bi+k+1. There are two cases.

If sk+1 > si+k+1 then Bi+k+1 is below Bk+1, and consequently, Bi+j is
below Bi for all j = 1, . . . , k. Therefore Bi is below B0 and so si = 0−. If
sk+1 < si+k+1 we substitute “above” for “below” in the previous paragraph
and conclude that si = 0+.

In particular, we remark that there are two cases that never occur:
(a) si = 0+ and si+1 ≤ 0− in the case s1 ≥ 0+, and (b) si = 0− and
si+1 ≥ 0+ in the case s1 ≤ 0−. More generally, by arguments similar to the
above, any 0+ (respectively, 0−) must be followed by entries larger than or
equal to (respectively, less than or equal to) s1.

Step 2: Obtaining ki. Let S be a signed S-kneading sequence obtained
by replacing each 0 with the corresponding 0+ and 0− symbols. There are
two completely symmetric cases: s1 ≥ 0+ and s1 ≤ 0−. We adopt the con-
ventions that 1−1 = 0+ and −1+1 = 0−. Now, for any i with 1 ≤ i ≤ n−2,

(a) If s1 ≥ 0+ then ki =
{
si if i = n− 2 or si+1 ≥ 0+,
si − 1 if si+1 ≤ 0−.

(b) If s1 ≤ 0− then ki =
{
si + 1 if i = n− 2 or si+1 ≥ 0+,
si if si+1 ≤ 0−.

We now prove that for a given λ ∈ Ω the above rule translates any
signed S to a unique K. We consider the case s1 ≥ 0+, the other case being
symmetric.

We denote by gi the piece of the glove G that falls into the region Ti.
Since s1 ≥ 0+, B1 is above B0 and hence the piece of the glove g0 must be
below B0.

This implies that V0 is the fundamental domain between the pieces g0 and
g1 and, in general, each Vi lies between gi and gi+1, in particular including Fi.
This last remark implies that the last digit of the sequence will not change.
That is, kn−2 = sn−2.
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Consider si for 1 ≤ i < n− 2. Hence Bi lies in Tsi . By the observations
above, either (see Figure 5)

1. Bi lies in Vsi because the piece gsi lies below Bi (case ki = si), or
2. Bi lies in Vsi−1 because the piece gsi lies above Bi (case ki = si − 1).
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Fig. 5. Example of the two possibilities: the S-kneading sequence 02∗ translating either
into 02∗ or into 01∗

It is straightforward to check that the first case occurs if and only if Bi+1
is above B0, i.e., si+1 ≥ 0+. The second case occurs if and only if Bi+1 is
below B0, i.e., si+1 ≤ 0−.

As an example, consider the S-kneading sequence

S = 0 −2 0 0 −1 2 3 0 0 −1 2 0 0 ∗ .
After the first step we have

S = 0 −2 0+ 0+ −1 2 3 0+ 0+ −1 2 0+ 0+ ∗,
and after the second step the corresponding K-kneading sequence is

K = 0 −1 1 0+ 0− 3 4 1 0+ 0− 3 1 1 ∗ .
We finally observe that the above 2-step algorithm can also be used in

the reverse direction, that is, for a given K with the symbols 0+ and 0− we
obtain, via the inverse algorithm, a unique S. The next section will refer to
this point when taking into account the admissibility of the given sequence.

2.4. Properties.. Why are we working with two distinct kneading se-
quences? The answer to this question is based on the fact that the two
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sequences have different properties and consequently each is suitable in dif-
ferent circumstances.

More precisely, the K-kneading sequences work well when studying the
dynamical plane since they are defined using fundamental domains. These
domains work for all points of the Julia set and give rise to good symbolic dy-
namics and consequently to a complete description of the Julia set (see [2]).
In contrast, when working in the parameter plane, one can find many differ-
ent hyperbolic components sharing the same K-kneading sequence. For in-
stance, for any n ∈ N, all hyperbolic components of period n bifurcating from
the main cardioid have their K-kneading sequence given by K = 0000 . . . 0.
To fix this uniqueness problem we might consider the symbols 0+ and 0− as
before. But then an admissibility problem arises, without an obvious way to
decide if a sequence is admissible or not (except, of course, by going through
the inverse algorithm to check if the resulting sequence is possible).

The S-kneading sequences do not involve fundamental domains and
hence they are not as useful as the K-kneading sequences when working
in the dynamical plane. However, we prove in the next section that all se-
quences are admissible; that is, we can find a hyperbolic component Ω cor-
responding to any given sequence of integers. Moreover, these sequences give
a significant amount of information about the location of the periodic orbit.

We remark that the uniqueness of hyperbolic components having a given
S-kneading sequence would seem to be a natural result but it is not a
straightforward deduction from the construction below.

3. Hyperbolic components. Proof of the main result. Our goal
in this section is to construct a parameter value λ for which Eλ has an
attracting cycle with any given S-kneading sequence. We first consider the
special case where the S-kneading sequence consists of a single digit; the
proof in this case makes use of many of the ideas of the general case, but in
a simpler setting.

3.1. The case 0k∗.. This result follows from the next two propositions.
The first proposition can be found in [1], but we give a proof adapted to the
general case.

Proposition 3.1. Fix k ∈ Z. For a ∈ R, let λa = a+ (2k+ 1)πi. Then,
for sufficiently large values of a, the map Eλa has an attracting cycle of
period 3.

Proof. We assume throughout that a ≥ |2k + 1|π, so that |Arg(λa)| ≤
π/4, where Arg denotes the principal branch of the argument. Then λa =
Eλa(0) lies in the right half plane, but E2

λa
(0) = λa exp(λa) lies in the left

half plane since E2
λa

(0) = −eaλa. Choosing a large enough, we may assume
that a < |λa| ≤ a+ 1. Since
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3π/4 ≤ |ArgE2
λa(0)| ≤ π

it follows that

ReE2
λa(0) = |λa|ea cos(ArgE2

λa(0)) ≤ −|λa|√
2
ea < −aea/

√
2.

Let U2 be the ball of radius 1 about E2
λa

(0). The preimage of U2 con-
taining λa is an open set U1 which is mapped univalently onto U2 by Eλa ,
and the preimage of U1 containing 0 is another open set, say U0, which is
mapped univalently onto U2 by E2

λa
. We claim that there is an attracting

cycle of period 3 whose orbit under Eλa lies in U0, U1, and U2. Let F denote
the appropriate branch of the inverse of E2

λa
that takes U2 univalently into

U0. See Figure 6. Define the absolute constant Ca = e−a/(4(a+1)2). By the
Koebe 1/4 Theorem, we have

dist(0, ∂U0) ≥ 1
4
|F ′(E2

λa(0))| = 1
4
·
∣∣∣∣

1
λa

∣∣∣∣ ·
∣∣∣∣

1
λaeλa

∣∣∣∣ =
e−a

4|λa|2
≥ Ca.

Fig. 6. The sets U0, U1 and U2 in the proof of Proposition 3.1

Now

|E3
λa(0)| = |λa| exp(ReE2

λa(0)) ≤ (a+ 1) exp(−aea/
√

2)� Ca

for large a. Hence E3
λa

(0) is contained in U0. Moreover, if w ∈ U2, then

|Eλa(w)− E3
λa(0)| ≤ max

z∈U2
|E′λa(z)| ≤ |λa exp(ReE2

λa(0) + 1)|

≤ (a+ 1)e exp(−aea/
√

2)� Ca

as before. Hence,

dist(0, ∂E3
λa(U0)) ≤ (a+ 1)(e+ 1) exp(−aea/

√
2)� Ca,

and it follows that E3
λa

(U0) is properly contained in U0. Thus we have an
attracting cycle whose orbit visits U0, U1 and U2.
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Before proceeding, we observe that the above estimates guarantee that
the entire half plane Re z ≤ ReE2

λa
(0) + 1 is contained in the basin of the

cycle.
We now claim that the S-kneading sequence of λa is 0k∗.
Proposition 3.2. Let k ∈ Z and set λa = a + (2k + 1)πi. Then for

sufficiently large a, Eλa has an attracting 3-cycle with S(λa) = 0k∗.
Proof. Let γ(t) = t+ (2k + 1)πi for t ≥ a. Then Eλa(γ(t)) is a straight

line which lies to the left of E2
λa

(0). By the above observation, Eλa(γ(t))
lies in the connected component of the immediate basin of attraction which
contains E2

λa
(0). Hence γ(t) lies in the component of the immediate basin

which contains λa.
Let S be the strip {z | |Im z| ≤ π}. There is a preimage of γ(t) contained

in the interior of S, at least for t large. We claim that the entire preimage of
γ(t) lies in S. The preimage of γ(t) can never meet the boundary of S, for
Eλa maps the boundary of S into the left half plane, far from γ(t). Hence
the preimage of γ(t) lying in S must be the preimage that contains 0.

We then consider the set B as above so that B contains E3
λa

(0). It then
follows that B2 contains E2

λa
(0) and Eλa(γ(t)). After taking one more preim-

age, the big finger B1 contains λa and γ(t), and its translations contain the
half lines {t+ (2j+ 1)π | t ≥ a}. Moreover, the finger B0 contains 0 and the
preimage of γ(t) in S. It follows then that the fingers are indexed so that
B1 = Fk and hence S(λa) = 0k∗.

3.2. The general case.. Now we proceed to the general case. For the
remainder of this section we fix a kneading sequence s = 0s1 . . . sn−2∗. Let
ŝ = max |si| and define M = (2ŝ+ 1)π. We assume throughout that a > M .
Let H(a) denote the closed half strip

H(a) = {z | Re z ≥ a, |Im(z)| ≤M}.
We let L(a) denote the left boundary of H(a). We will prove:

Theorem 3.3. For each sufficiently large a, there is λa ∈ L(a) for which
Eλa has an attracting n-cycle with S(λa) = s.

If we denote the first n points on the orbit of 0 by wi, so w0 = 0, w1 = λa,
. . . , wn = Enλa(0), as in the previous special case, we will construct λa so
that the orbit of 0 under Eλa has the following properties:

1. wi ∈ H(a) for i = 1, . . . , n−2 and Rewi+1 � Rewi for i = 0, . . . , n−3.
2. wn−1 lies in the left half plane and

|Rewn−1| � Rewn−2.

3. wn lies close to 0 and, as in the period 3 case, there is an attracting
cycle of period n lying close to w0, . . . , wn−1.
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We will divide the proof into three parts, namely Propositions 3.5–3.7
(Proposition 3.4 is auxiliary). Afterwards we will see how Theorem A (see
Section 1) follows.

Let ν = ν(a) = |a+(2ŝ+1)πi| = maxz∈L(a) |z|, and note that ν(a)−a→ 0
as a→∞.

For −ŝ ≤ i ≤ ŝ, let Hi(a) be the substrip of H(a) given by

Hi(a) = {z ∈ H(a) | Re z ≥ a, (2i− 1)π ≤ Im z ≤ (2i+ 1)π}.
See Figure 7.
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Fig. 7. The sets H(a), L(a) and the substrips Hi(a) for the case ŝ = 3

For j = 1, . . . , n − 2, define wj(λ) = Ejλ(0). Note that each wj is a
function of the parameter λ and is analytic. For example, w1(λ) = λ and
w2(λ) = λeλ.

For j = 1, . . . , n− 2, define

Is1...sj (a) = {λ ∈ L(a) |wi(λ) ∈ Hsi(a) for i = 1, . . . , j}.
Note that Is1(a) = L(a) ∩Hs1(a) and that the Is1...sj are nested, provided
they are nonempty. The following proposition shows that each of the Is1...sj
consists of a single vertical segment.

We say that a smooth curve µ(t) in Hsi(a) is a vertical curve if the curve
connects the upper and lower boundaries of Hsi(a).

Proposition 3.4. For each sufficiently large a and 1 ≤ j ≤ n − 2, the
set {wj(λ) | λ ∈ Is1...sj (a)} consists of a single vertical curve in Hsj (a).
Hence Is1...sj is a single vertical segment.

Proof. If j = 1, there is nothing to prove since w1(λ) = λ and Is1(a) =
L(a) ∩ Hs1(a). Let j > 1. We parametrize the segment Is1(a) as λ(t) =
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a+ (2s1π + t)i for t ∈ (−π, π) and consider the set

Js1s2(a) = {λ ∈ Is1(a) | w2(t) ⊂ H(a)},
where w2(t) = w2(λ(t)) = λ(t)eλ(t). We will show that, given any ε > 0 and
taking a large enough,

|Argw′2(t)− π/2| < ε(1)

for any t such that λ(t) ∈ Js1s2(a). This implies that, when t runs from −π
to π, as the curve w2(t) crosses the strip H(a), its tangent vector points
upwards and it is almost vertical. It follows that the imaginary part of w2(t)
is an increasing function of t, and hence the curve crosses the strip only
once. We now proceed to show (1).

Set a0 large enough so that

|Arg λ(t)| < ε

3(n− 3)
= ε′

for all t ∈ (−π, π).
The tangent vector to w2(t) is

w′2(t) = λ′(t)eλ(t)(1 + λ(t)) = ieλ(t)(1 + λ(t))

and thus

|Argw′2(t)− π/2| = |Arg eλ(t) + Arg(1 + λ(t))| ≤ |Arg eλ(t)|+ ε′.

If λ(t) ∈ Js1s2 , it is clear that |w2(t)| > |λ(t)|. Since both are inside the
strip H(a), we have ε′ > |Argw2(t)| = |Arg λ(t) + Arg eλ(t)|. It is then easy
to see that |Arg eλ(t)| < 2ε′. Plugging this in the expression above, we obtain

|Argw′2(t)− π/2| < 3ε′ =
ε

n− 3
< ε

as required.
We now proceed to investigate Is1s2s3 which will illustrate the general

case. As above, consider

Js1s2s3(a) = {λ ∈ Is1s2(a) | w3(t) ⊂ H(a)},
where w3(t) = w3(λ(t)) = λ(t)ew2(t) and w2(t) ∈ Hs2(a). For these values
of t, we will show that

|Argw′3(t)− π/2| < ε.(2)

Now the tangent vector to w3(t) is

w′3(t) = ew2(t)(λ′(t) + λ(t)w′2(t)) = ew2(t)(i+ λ(t)w′2(t))

and thus
Argw′3(t) = Arg ew2(t) + Arg(i+ λ(t)w′2(t)).

We claim that

π/2− 4ε′ < Arg(i+ λ(t)w′2(t)) < π/2 + 4ε′.
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Indeed, we showed above that

π/2− 3ε′ < Argw′2(t) < π/2 + 3ε′.

Moreover, since |Arg λ(t)| < ε′, we obtain

π/2− 4ε′ < Arg(λ(t)w′2(t)) < π/2 + 4ε′.

Finally, it remains to add the vector i to this expression, which makes the
argument even closer to π/2.

To finish the proof of (2) observe that, by the same argument as in the
first case, Argw3(t) = Arg(λ(t)ew2(t)) < ε′ and hence |Arg ew2(t)| < 2ε′.
Putting all this together we have

π/2− 6ε′ < Argw′3(t) < π/2 + 6ε′

as we wanted to prove.
It is easy to check that we may iterate this procedure to deduce that, for

j = 2, . . . , n− 2 and for all t such that λ(t) ∈ Js1...sj (a),

|Argw′j(t)− π/2| < 3(j − 1)ε′ = (j − 1)
ε

n− 3
≤ ε,

which concludes the proof of the proposition.

Proposition 3.5. Let ε > 0. For each sufficiently large a, there is λa ∈
L(a) satisfying

1. wi(λa) ∈ Hsi(a) for i = 1, . . . , n− 2.
2. Imwn−2(λa) = (2sn−2 + 1)π.
3. Ej−1

a−ε(a−ε) ≤ Rewj(λa) ≤ |wj(λa)| ≤ Ej−1
a+ε(a+ε) for j = 1, . . . , n−2,

where Eb is the real exponential Eb(x) = bex.

Proof. By the previous proposition, if λ ∈ Is1...sj (a), then the curve
λ 7→ wj(λ) is a vertical curve in Hsj (a). We will show that, moreover,

Ej−1
a−ε(a− ε) ≤ Rewj(λ) ≤ Ej−1

a+ε(a+ ε)

for each j. Then λa will be defined as the upper endpoint of Is1...sn−2(a).
If λ ∈ Vs1(a), then exp(λ) lies on a circle of radius ea centered at 0.

Hence λ 7→ w2(λ) = λeλ is a nearly circular arc contained in the annulus

Ea(a) ≤ |z| ≤ Eν(ν)(3)

where we recall that ν = maxz∈L(a) |z|. This arc crosses Hs2(a) in a single
vertical curve η2, provided a is sufficiently large.

Given ε > 0, we claim we may choose a large enough so that if λ ∈
Is1s2(a) then

Ea−ε(a− ε) ≤ Rew2(λ) ≤ |w2(λ)| ≤ Ea+ε(a+ ε).(4)

Indeed, both estimates are deduced from (3). The lower estimate holds since
the circle of radius Ea(a) meets H(a) in a nearly vertical arc. The upper
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estimate follows since ν(a)− a → 0 as a → ∞ and hence we may choose a
so that ν < a+ ε.

Now we exponentiate points on η2. The result is a curve whose endpoints
lie in R−. Multiplication of this curve by the appropriate λ ∈ Is1s2(a) ex-
pands this curve, but the image must cross Hs3(a) in a single vertical curve
which we denote by η3.

As above, we claim that by choosing a large enough we have, for λ ∈
Is1s2s3(a),

E2
a−ε(a− ε) ≤ Rew3(λ) ≤ |w3(λ)| ≤ E2

a+ε(a+ ε).(5)

The upper estimate holds since

|w3(λ)| = |λ| exp(Rew2(λ)) ≤ ν exp(Ea+ε(a+ ε)) ≤ E2
a+ε(a+ ε).

To obtain the lower estimate, first set Ra,ε = a exp(Ea−ε(a−ε)) and observe
that, by (4),

|w3(λ)| = |λ|eRew2(λ) ≥ Ra,ε.
By a simple trigonometric argument (see Figure 8) one can see that

Rew3(λ) ≥
√
Ra,ε −M2.(6)

PSfrag replacements
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Fig. 8. Sketch of the construction above

We then have, on the one hand,

Ra,ε −
√
Ra,ε −M2 −→

a→∞
0,

and, on the other hand,

Ra,ε − E2
a−ε(a− ε) = ε exp(Ea−ε(a− ε)) −→

a→∞
∞.

Putting everything together, we obtain the lower estimate in (5).
It is now clear that continuing in the same fashion we obtain the required

Is1...sj (a). Note that, by construction, if λ is the upper endpoint of Is1...sj (a),
then zj(λ) ∈ ∂Hsj (a). Hence, pick λ to be the upper endpoint of Is1...sn−2(a)
and then Imwn−2(λa) = (2sn−2 + 1)π.

Proposition 3.6. Choose λa as in Proposition 3.5. Then Eλa has an
attracting cycle of period n.
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Proof. By the same arguments as in Proposition 3.5, it is clear that

En−2
a−ε (a− ε) ≤ |wn−1(λ)| ≤ En−2

a+ε (a+ ε).

We know that Im wn−2(λa) = (2sn−2 + 1)π, and hence

Rewn−1(λa) ≤ −En−2
a−ε (a− ε) cos(Arg λa)

since Argwn−1λa = Arg λa + π. Now |Arg λz| ≤ π/4 so that

Rewn−1(λa) ≤ −(En−2
a (a)− 1)/

√
2.

Let B be an open ball of radius 1 about wn−1(λa). The preimages of B
containing wj(λa) for j = 1, . . . , n−2 are open sets, and En−1−j

λa
maps them

univalently onto B. Let U be the preimage of B containing 0. Then En−1
λa

maps U univalently onto B.
Let F : B → U denote the appropriate branch of the inverse of En−1

λa
taking wn−1(λa) to 0. We have

|F ′(wn−1(λa))| =
∣∣∣∣

1∏n−2
j=0 E

′
λa

(wj(λa))

∣∣∣∣=
1∏n−1

j=1 |wj(λa)|

≥ 1
∏n−1
j=1 E

j−1
a+ε(a+ ε)

by Proposition 3.5. By the Koebe 1/4 Theorem we have

dist(0, ∂U) ≥ 1
4
|F ′(wn−1(λa))| ≥

1
4

1
∏n−1
j=1 E

j−1
a+ε(a+ ε)

.

Now consider wn(λa). We have

|wn(λa)| = |Eλa(wn−1(λa))| = |λa| exp(Rewn−1(λa))

≤ (a+ ε) exp
(
− 1√

2
En−2
a−ε (a− ε)

)
� 1

4
1

∏n−1
j=0 (Ej−1

a+ε(a+ ε))
.

The last inequality follows (for a large enough and ε small enough) since
the expression for |Eλa(wn−1(λa))| contains one higher iterate of Ea. Hence
wn(λa) lies well within U . We claim that Eλa(B) ⊂ U as well. Indeed, for
w ∈ B, we have

|E′λa(w)| ≤ |E′λa(wn−1(λa) + 1)| = |λa| exp(Rewn−1(λa) + 1)

≤ (a+ ε) exp
(
− 1√

2
En−2
a−ε (a− ε) + 1

)
� 1

4
1

∏n−1
j=1 E

j−1
a+ε(a+ ε)

as above. This shows that Eλa(B) lies well within U since

|Eλa(w)− Eλa(wn−1(λa))| ≤ max
w∈B
|E′λ(w)|.

It follows that Eλa has an attracting cycle of period n that lies close to
wj(λa) for j = 0, . . . , n− 1.
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The following proposition completes the proof of Theorem 3.3.

Proposition 3.7. Choose λa as in Proposition 3.5. Then S(λa) =
0s1 . . . sn−2∗.

Proof. Let γ(t) = t+ (2sn−2 + 1)πi with t ≥ Re wn−2(λa) so wn−2(λa)
is the left endpoint of this horizontal line. We claim that γ(t) belongs to the
basin of attraction of the attracting cycle. Indeed, Eλa(γ(t)) is a straight
line lying to the left of wn−1(λa). Hence |E2

λa
(γ(t))| ≤ |wn(λa)| and it follows

that this line lies in the immediate basin containing wn−1(λa).
For any ε > 0 we let τ = ε/n. Then for a sufficiently large we have

|Argwj(λa)| ≤ τ for j = 1, . . . , n − 2. This follows since |Argwj(λa)| ≤
|Arg(a+ (2ŝ+ 1)πi)|, which may be made arbitrarily small as a increases.

Now let µj(t) denote the curve that contains wn−2−j(λa) and satisfies
Ejλa(µj(t)) = γ(t) for t ≥ Re wn−2(λa) and j = 1, . . . , n − 2. So µ1(t)
contains wn−3(λa) while µn−2(t) contains 0. By construction, each µj is in
a different component of the immediate basin of the attracting cycle. To
prove the result, we will show that µj(t) ⊂ Hsn−2−j (a) for each j ≤ n − 3
and |Imµn−2(t)| < π.

Consider µ1(t). We have Eλa(µ1(t)) = γ(t) so that

E′λa(µ1(t)) · µ′1(t) = γ′(t).

Therefore
ArgE′λa(µ1(t)) + Arg µ′1(t) = Arg γ′(t) = 0

and consequently

|Argµ′1(t)| = |ArgE′λa(µ1(t))| = |ArgEλa(µ1(t))| = |Arg γ(t)| ≤ τ.
In particular, this implies µ1(t) lies to the right of its endpoint, wn−3(λa),
for t > Re wn−2(λa).

Continuing inductively, we find that

|Argµ′j(t)| ≤ τj
so that |Argµ′j(t)| ≤ ε for all j, and that each µj(t) lies to the right of its
endpoint, wn−z−j(λa).

Now suppose that Im µj(t0) = (2k + 1)π for some k ∈ Z. It follows that
Eλa(µj(t0)) lies in the left half plane. But Eλa(µj(t)) = µj−1(t) if j > 1 and
Eλa(µ1(t)) = γ(t). This contradicts the fact that µj−1(t0) lies to the right of
the endpoint of µj−1. Hence each µj must lie in a horizontal strip of width
at most 2π and contained between the translates of γ(t). This implies that
µj(t) ⊂ Hsn−2−j (a), and the result follows.

This concludes the proof of Theorem 3.3. To complete the proof of The-
orem A, observe that the result holds for any a larger than a certain value
a0. Following the construction, we then see that we have constructed a curve
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of λa-values, one for each sufficiently large a ∈ R, having the property that
Reλa = a and S(λ) = s. Note that λa lies in the intervals Is1...sn−2(a) and,
by construction, we have Im Is1...sn−3α(a) < Im Is1...sn−3β(a) if and only if
α < β. Thus, the hyperbolic components of the same period are ordered lex-
icographically. The following corollary shows how the components of period
n+ 1 may be inserted between the components of period n.

Corollary 3.8. Let λa and λ̃a have kneading sequences 0s1 . . . sn−2∗
and 0s1 . . . (sn−2 + 1)∗ for a sufficiently large. Then, given any k ∈ Z, there
exists λa(k) with Reλa(k) = a and S(λa(k)) = 0s1 . . . (sn−2 + 1) k∗.

Proof. By construction, the λ-values in the vertical segment in between
λa and λ̃a are exactly those belonging to Is1...(sn−2+1)(a). Hence, if we it-
erate the process one step further to obtain λa(k) such that S(λa(k)) =
0s1 . . . (sn−2 + 1) k∗, we must iterate once more for values of λ in this seg-
ment. Hence each of the λ(k) belongs to Is1...(sn−2+1)(a).

Appendix. Let Eλ, Ω, n, z0(λ), . . . , zn−1(λ), A∗ and A∗(zi) be as in
Section 2.1. Our goal in this section is to show how the disc Bλ in the
construction of the kneading sequence may be defined for any λ ∈ Ω so that
it varies holomorphically with respect to λ. Although this is not crucial in
this paper, we believe it is interesting in itself.

More precisely, our goal is to prove the following proposition.

Proposition A.1. For any λ ∈ Ω, there exists a topological disc Bλ
such that

(a) ∂Bλ is a simple closed curve in C;
(b) 0, z0 ∈ Bλ;
(c) Enλ (Bλ) ⊂ Bλ;
(d) Bλ ⊂ A∗(z0);
(e) Bλ depends holomorphically on the parameter λ. More precisely , the

boundary of Bλ is defined by a map

γ : Ω × T→ ∂(Bλ) ⊂ C, (λ, t) 7→ γ(λ, t),
satisfying

(1) for a fixed t ∈ T, the map λ 7→ γλ(t) = γ(λ, t) from Ω to A∗(z0) is
holomorphic;

(2) for a fixed λ ∈ Ω, the map t 7→ γλ(t) is an injection (and hence γλ
is a simple closed curve).

Remark A.2. Observe that conditions (1) and (2) imply that the map
γ (appropriately rewritten after choosing a basepoint λ0 ∈ Ω) defines a
holomorphic motion (see [9]) of ∂Bλ0 . Then we can deduce from the λ-lemma
that the map γ is jointly continuous.
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To prove Proposition A.1 we shall study how the linearizing coordinates
of the attracting cycle behave in its basin of attraction, and use them to
define precisely the boundary of the set Bλ. From the construction it will
become clear how this curve depends on the parameter.

For any λ ∈ Ω, let %λ = (Enλ )′(z0(λ)) be the multiplier of the periodic
orbit, and let φλ be the linearizing coordinates defined on a neighborhood
Uλ of z0 and conjugating En

λ to multiplication by %λ. That is,

φλ ◦Enλ (z) = %λ · φλ(z).(7)

Lemma A.3. The linearizing coordinates φλ and the neighborhood Uλ
may be chosen such that 0 ∈ ∂Uλ, φλ(Uλ) = D, and φλ(0) = 1.

Proof. Let φ̃λ be some linearizing coordinates on a neighborhood Ũλ,
i.e., satisfying

φ̃λ ◦Enλ (z) = %λ · φ̃λ(z)(8)

for all z ∈ Ũλ. We may assume we have restricted Ũλ so that it is mapped
by φ̃λ to a round disc centered at 0.

By construction we know that 0 ∈ A∗(z0). If 0 ∈ Ũλ, we are done by
further restricting Ũλ and composing with a rotation. So we assume this
is not the case. Hence there exists p ∈ N such that Enp

λ (0) ∈ Ũλ. Let
ω̃ = φ̃λ(Enpλ (0)). Then the preimage of the disc D(0, |ω̃|) under φ̃λ is a
neighborhood of z0 contained inside Ũλ, which we denote by Ṽ . Since Ṽ
does not contain 0, we may pull it back by the branch of (En

λ )−1 that maps
z0 to itself, and obtain a new neighborhood of z0 that strictly contains Ṽ .
The map φ̃λ can be extended to this new domain by using the functional
equation (8) (see Figure 9).

We may repeat this process exactly p times to obtain a nested sequence of
(bounded) neighborhoods of z0, where the map φ̃λ is well defined and whose
image is a nested sequence of discs of radii |ω̃|, |ω̃/%λ|, |ω̃/%2

λ|, . . . , |ω̃/%
p
λ|

respectively.
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Fig. 9. Sketch of the construction in the proof of Lemma A.3 for p = 2. Both maps are
univalent on these domains.
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We denote the largest neighborhood of z0 in the process by Uλ. Observe
that, by construction, Uλ contains 0 in its boundary and it is mapped by φ̃λ
to a round disc of radius |ω̃/%pλ| = |φ̃λ(0)|.

Since the linearizing coordinates are defined uniquely up to multiplica-
tion by a nonzero scale factor, the map defined as

φλ(z) = φ̃λ(z)/φ̃λ(0)

on the domain Uλ has the required properties.

Let V0 = Uλ. The boundary of V0 is a (real-analytic) closed simple curve
containing 0 in its boundary. Hence, we may still take one further preimage
of Uλ under Enλ (taking the appropriate branch of the inverse), and obtain
a finger V1 (open, simply connected, unbounded to the right) that strictly
contains V0 and is mapped one-to-one onto V0 by Enλ . See Figure 10. To see
this, one can check that the set of preimages of V0 under Eλ is a collection of
disjoint fingers unbounded in the left half plane, which are 2πi-translations
of each other and map univalently onto V0. Only one of them contains the
point zn−1 and hence this finger is contained in A∗(zn−1). We now pull back
this finger along the periodic orbit and obtain V1. The linearizing map φλ
sends V1 onto the disc D(0, |%λ|−1) univalently.

We are now ready to define the set Bλ in Proposition A.1. We observe
that, by construction, any disc of radius in between 1 and |%λ|−1 has a
preimage under φλ which contains 0, and is mapped under En

λ strictly inside
itself. In particular, if we take for example

γλ(t) = φ−1
λ (e2πit%

−1/2
λ )

for t ∈ T, and we define Bλ to be the open set bounded by γλ, this set is
a topological disc in A∗(z0) which contains 0 and z0 and maps one-to-one
strictly inside itself under En

λ .
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Fig. 10. The unbounded domain V1 where φλ is univalent and the construction of the
curve γλ, boundary of Bλ

It remains to be checked that the curve γλ depends holomorphically on
the parameter λ. More precisely we want to show that the map

γ : Ω × T→ ∂(Bλ) ⊂ C, (λ, t) 7→ φ−1
λ (e2πit%

−1/2
λ ),
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is well defined and holomorphic in λ. To see this we just need to recall that
the multiplier function

% : Ω → D∗, λ 7→ %λ,

is a universal covering map [8]. Hence no closed loop in Ω can ever map to
a closed loop in D surrounding the point 0. This implies that the principal
square root %1/2

λ is well defined and holomorphic in λ. Since φλ is biholo-
morphic in z and λ we conclude that γ is holomorphic in λ.

This concludes the proof of Proposition A.1.
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