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Diffusion to infinity for periodic orbits
in meromorphic dynamics

by
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Abstract. A small perturbation of a rational function causes only a small pertur-
bation of its periodic orbits. We show that the situation is different for transcendental
maps. Namely, orbits may escape to infinity under small perturbations of parameters. We
show examples where this “diffusion to infinity” occurs and prove certain conditions under
which it does not.

1. Introduction. The Fatou set F (f) of a meromorphic function f :
C→ Ĉ is defined in exactly the same manner as for rational functions; F (f)
is the set of points z ∈ C such that all the iterates are defined and form a
normal family on a neighborhood of z. The Julia set J(f) is the complement
of F (f) in Ĉ. Thus, F (f) is open, J(f) is closed, F (f) is completely invariant
while f−1(J(f)) = J(f) \ {∞} and f(J(f) \ {∞}) ⊂ J(f). For description
of the dynamics of meromorphic functions see e.g. [5]. We would however
like to note that it easily follows from Montel’s criterion of normality that if
f : C→ Ĉ has at least one pole which is not an omitted value then (see [5])

J(f) =
⋃

n≥0

f−n(∞).

We define the prepoles of order p ∈ N ∪ {0} as the set

Pp = {z ∈ C : fp(z) =∞}, p ≥ 1, P0 = {∞}.
For all meromorphic functions it is known that the Julia set is the closure

of the repelling periodic points (see [2], [6], [3]). We want to investigate the
structure of the repelling periodic points in the Julia set J(f).
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In 1967 Baker conjectured that if p ≥ 2 then every entire function f
has infinitely many periodic points of primitive period p. Earlier, he had
proved in [1] that there exists at most one positive integer p (depending
on f) for which this fails to be true. Baker’s conjecture was proved by Berg-
weiler [4]. He actually shows that f has infinitely many repelling periodic
points with this property. Thus for an entire function the unique accumula-
tion point of repelling periodic cycles of period p is the essential singularity
of f , i.e. ∞. For meromorphic functions with at least one pole which is not
an omitted value many prepoles of order p−1 are accumulation points of re-
pelling periodic points of period p. For more precise description see Lemma 6
in [5].

Diffusion to infinity. For families of rational functions, periodic orbits
of any period cannot suddenly appear or disappear. Let Fλ be a rational
function depending analytically on some parameter λ. If Fλ0 has a periodic
point p0, then under a small perturbation of λ there will be related periodic
points nearby; all periodic orbits of a given period for small changes of
the parameter are realized in this way. For entire functions, however, it is
possible that as the parameter tends to some value λ0 inside the parameter
space, the orbit nevertheless migrates toward ∞ so that at λ0 it has no
counterpart. An example is the family Fλ(z) = z(ez + 1−λ) for which log λ
is a fixed point which tends to ∞ as λ → 0 (this example was suggested
by the referee). This appears more likely still for families of meromorphic
functions, since all that is needed for a point of an orbit to escape to ∞ is
that the preceding point should go to a pole.

Since both the repelling periodic orbits and the prepoles are dense in
the Julia set, and at first sight one is inclined to think that they move
independently with parameter, we should observe many collisions, perhaps
on a dense set of parameters. Such collisions are dynamically serious events,
since they imply a periodic orbit escaping to ∞ and certainly contradict
structural stability.

The results of this paper go in two directions. First, we show that under
certain conditions which are naturally satisfied by most popular families,
diffusion of periodic orbits to ∞ may only occur in one case: if a finite
asymptotic value of the map hits the pole. This immediately “explains” how
structural stability is possible if the asymptotic values are under control.
Secondly, we prove that if a post-asymptotic pole is present, the diffusion
can naturally occur. This has previously been noticed for attracting orbits
(see [7]), and we give an example of disappearing repelling orbits, which is
perhaps a more disturbing phenomenon since it happens on the Julia set.

Acknowledgements. We are grateful to the referee for numerous in-
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1.1. Setting of the problem

Hypotheses. Let Ω be an open subset of C. We consider a family
F : C×Ω → Ĉ which is continuous, for every fixed λ0 ∈ Ω the map F (·, λ0) is
meromorphic in C, and for every fixed z0 ∈ C the mapping F (z0, ·) : Ω → Ĉ
is meromorphic (perhaps constantly equal to ∞).

Uniform pole hypothesis. Given the family F which satisfies the “general
hypotheses” specified before, assume additionally that there is a constant
Q so that for every compact K ⊂ Ω and N0 > 0 there is M0 < ∞ so that
whenever for some z ∈ C and λ ∈ K,

M0 < |F (z, λ)| <∞,
then |Fz(z, λ)| > N0 and |Fλ(z, λ)| < Q|Fz(z, λ)|.

These hypotheses were modeled on the families z 7→ λ exp(z), λ tan z,
λ sec z, λ 6= 0, in which cases they are satisfied. For λ exp(z) they hold
vacuously, while in the remaining cases the only way for F (z, λ) to get near
∞ is to pass through a pole, and all these poles satisfy uniform estimates.

Some notations. For λ0 ∈ Ω define a set A(λ0) ∈ C by the condition
a ∈ A(λ0) if and only if there are continuous functions X : (0, 1) → C
and Λ : (0, 1) → Ω so that limt→0X(t) = ∞, limt→0 Λ(t) = λ0 and
limt→0 F (X(t), Λ(t)) = a.

Finite asymptotic values of F (·, λ0) are members of A(λ0). In simple
cases this may be it, on the other hand for F (z, λ) = λz the set A(0) is
easily seen to be the whole complex plane.

For a function of several variables, we will consider its iterates with
respect to the first variable, regarding the remaining ones as fixed. For ex-
ample, we will write

F 3(x, λ) := F (F (F (x, λ), λ), λ).

Periodic orbits and regularity. A periodic point with period p ≥ 1 for us
will be a pair (x, λ) which satisfies the condition F p(x, λ) = x, whether or
not p is minimal with this property.

Definition 1. A parameter λ0 ∈ Ω is considered regular for period p
if for every pair of continuous functions X : (0, 1) → C and Λ : [0, 1) → Ω
chosen so that for every t ∈ (0, 1) the pair (X(t), Λ(t)) is a periodic orbit of
period p and Λ(0) = λ0, the limit limt→0X(t) := x0 ∈ C exists and (x0, λ0)
is a periodic orbit of period p.

Observe that if all values from an open connected set U ⊂ Ω are regular
for some period p, then for every λ0, λ1 ∈ U and a periodic orbit (x1, λ1)
of period p, there exist x0 ∈ C and continuous functions X : [0, 1] → C,
Λ : [0, 1] → Ω with X(i) = xi, Λ(i) = λi for i = 0, 1 and such that for each
t ∈ [0, 1] the pair (X(t), Λ(t)) is a periodic orbit of period p.
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Thus, a λ0 is regular if no periodic orbit disappears as parameter values
approach λ0. On the other hand, if all values in a neighborhood are regu-
lar, then every periodic orbit with λ in that neighborhood is obtained by
perturbing some periodic orbit for λ0.

Theorem 1. For some λ0 ∈ Ω and p ≥ 1 suppose that A(λ0) does not
contain prepoles of F (·, λ0) of order less than p. Then λ0 is regular for
period p.

Examples of the disappearance of periodic orbits

Theorem 2. For the family F (z, λ) = λ tan z, λ 6= 0, which satisfies
our hypotheses, for every p ≥ 2 there exists a parameter value λ0 such that
F p−2(λ0i, λ0) is well defined and a pole, and λ0 is not regular. Moreover ,
one can pick functions Λ and X as in Definition 1 in such a way that
limt→0X(t) = ∞ and either (X(t), Λ(t)) is an attracting periodic orbit for
every t ∈ (0, 1), or it is repelling for every t.

2. Proof of regularity. Let us start with a lemma offering a stringent
limitation on how an orbit could escape to ∞.

Lemma 1. For every period p ≥ 1 and λ0 ∈ Ω there are an open set λ0 ∈
V ⊂ Ω and M <∞ and a constant L such that the following property holds:
if λ ∈ V , (x, λ) is a periodic orbit of period p, and M ≤ |F j(x, λ)| <∞ for
j = 0, . . . , p− 1, then |(F p)z(x, λ)| > 2 and |(F p)λ(x, λ)| < L|(F p)z(x, λ)|.

Proof. We will choose V so that V is compact in Ω and then based
on the uniform pole hypothesis we made about F , specify N0 = 2 and set
M equal to M0 postulated by that hypothesis. Now clearly the first claim
follows.

The ratio of derivatives (F p)λ(x, λ)/(F p)z(x, λ) can be written as

(F p)λ(x, λ)
(F p)z(x, λ)

=
p−1∑

j=0

1
(F j)z(x, λ)

· Fλ(F j(x, λ), λ)
Fz(F j(x, λ), λ)

.

The first term is bounded by 1 and the ratio of derivatives is bounded by Q.
The second claim of the lemma follows as well.

Lemma 2. Let Λ : (0, 1)→ Ω be continuous with λ0 := limt→0 Λ(t) well
defined in Ω. Suppose that there is a continuous function X : (0, 1) → C
so that for every t ∈ (0, 1) the pair (X(t), Λ(t)) is a periodic orbit of some
fixed period p. Then limt→0X(t) exists in the Riemann sphere.

Proof. To the contrary, suppose thatX(t) has no limit as t→ 0. Consider
the set of limit points on the sphere: z ∈ L if and only if there is a sequence
tn → 0 with X(tn) → z. Then L is a non-empty connected set of at least
two points, thus of uncountably many. So, there is z0 ∈ L with the property
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that z0, F (z0, λ0), . . . , F p−1(z0, λ0) are all well defined in C. Then (z0, λ0)
has an open neighborhood U in C × Ω such that for every (z, λ) ∈ U ,
z, . . . , F p−1(z, λ) are well defined in C. For a sequence tn → 0 the points
(X(tn), Λ(tn)) are in U for almost all n.

But then by extracting a subsequence we ensure that X(tnj) → x0 and
then (x0, λ0) is a periodic orbit of period p. But periodic points of period p
are isolated in C for fixed λ0, so it follows that actually x0 = limt→0X(t).

Proof of Theorem 1. To check that λ0 is regular, consider functions Λ
and X as in Definition 1. By Lemma 2, the functions

X(t), F (X(t), Λ(t)), . . . , F p−1(X(t), Λ(t))

all have limits in Ĉ. If all these limits are finite, then they form a periodic
orbit of F (·, λ0) and so the regularity condition is satisfied.

The case when all these limits are infinite is impossible in view of Lem-
ma 1. Indeed, then for t small enough all points X(t), . . . , F p−1(X(t), Λ(t))
are outside a fixed neighborhood of D(0,M). Then Lemma 1 implies that
X(t) depends holomorphically with bounded derivative on Λ(t), which
means that it cannot escape to ∞.

Hence, some points of the orbit tend to ∞, while others have finite
limits. Without loss of generality, let limt→0X(t) = a be finite, while
limt→0 F

p−1(X(t), Λ(t)) = ∞. Then a ∈ A(λ0), and its (p − 1)st image
under F (·, λ0) is not defined in the plane (perhaps an earlier image is al-
ready undefined). So, the hypothesis of Theorem 1 is violated.

3. Examples. We will now prove Theorem 2. In the case when
(X(t), Λ(t)) are attracting, an example was exhibited in [7]. So we will con-
centrate on constructing a repelling example. The example will be found in
the family F (z, λ) = λ tan z where λ ∈ Ω := C \ {0}. We choose λ0 so that
the asymptotic value λ0i gets to a pole of tan z after exactly p − 2 steps,
with some p ≥ 2.

When λ is close to λ0, we can find a unique v(λ) close to 0 with the
property that F p−2(λ(i+v(λ))) is a pole of tan z. The dependence λ 7→ v(λ)
is holomorphic, but it could have a critical point at λ0. With this caveat,
we can use v to locally reparametrize a neighborhood of λ0.

For an integer n let Sn denote the set of z ∈ C with =z > 1 and <z ≥ πn.

Lemma 3. There exist a fixed ε0 > 0 and a neighborhood W of λ0 such
that for every ε ∈ (0, ε0) there exists N so that the following conditions hold
provided that λ ∈W and ε0 ≥ |v(λ)| > ε:

• for every n ≥ N there exists a point s ∈ Sn, periodic with period p
under F (·, λ) and such that tan s ∈ D(i+ v(λ), |v(λ)|/2),
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• if s ∈ SN is periodic with period p under F (·, λ) and

tan s ∈ D(i+ v(λ), |v(λ)|/2),

then |(F p)z(s, λ)| ≥ 2 and tan s ∈ D(i+ v(λ), |v(λ)|/4).

Proof. For λ near λ0, F p−1(·, λ) maps D(i + v(λ), |v(λ)|/2) into the
complement of D(0, L1|v(λ)|−1), and D(i + v(λ), |v(λ)|/4) onto the com-
plement of D(0, L2|v(λ)|−1), where L1, L2 are positive constants. On the
other hand, Sn \ Sn+1 maps onto a fixed neighborhood of i under tan z for
every n. It follows that the choice of N > L1ε

−1 implies that F p(·, λ) maps
D(i+v(λ), |v(λ)|/2) onto a set containing the closure of this disk in a one-to-
one fashion, hence implying the existence claim. On the other hand, choosing
N > L2/ε implies that tan p is actually in D(i + v(λ), |v(λ)|/4) and, since
this disk is mapped by F p(·, λ) onto a set containing D(i+ v(λ), |v(λ)|/2),
this implies the expansion claim as well.

Now let us specify some small ε, adjust N , and pick initial λ1 for which
|v(λ1)| > ε. Suppose that s ∈ Sn, n ≥ N + 5; such an initial point can
always be found from the existence part of Lemma 3. As we vary λ, we
get, at least locally, a holomorphic arc of repelling periodic points s(λ). By
Lemma 3, as long as s(λ) ∈ SN , we have tan s(λ) ∈ D(i + v(λ), |v(λ)|/4)
and |(F p)′z(s(λ), λ)| ≥ 2.

First, perturb λ in such a way that |v(λ)| remains fixed but arg v(λ)
changes by 4π. Let λ(t) for 0 ≤ t ≤ 1, λ(0) = λ1, be the corresponding path
in the parameter space. Since arg v(λ) changes by 4π, arg(tan(s(λ(t)))− i)
has changed by no more than 9

2π at any point t0 during the perturba-
tion. Thus, s(λ(t0)) is in SN , so that the whole perturbation is well de-
fined.

Moreover, as t varies from 0 to 1, arg(tan(s(λ(t)))− i) varies by at least
7
2π and so m 6= n after the complete perturbation. Choosing the direction
of rotating v(λ) appropriately, we can ensure that s(λ(1)) ∈ Sn+1.

Another perturbation consists in moving v(λ) radially toward 0. An ar-
gument similar to the previous construction shows that as long as |v(λ)| > ε
we have s(λ(t)) ∈ Sn−1 provided that s(λ(0)) ∈ Sn.

Combining these two perturbations we can crash v(λ) into 0 all the
time moving through orbits of the type s(λ). Indeed, we shrink v(λ) ra-
dially as long as possible using the second perturbation. Using the first
perturbation we can then increase n as much as needed without changing
|v(λ)| until it becomes more than N(ε/100) + 6. This allows us to again
shrink |v(λ)| a hundred times while varying n by no more than 1. Com-
bining the perturbations in this way we allow λ tend to λ0. Since tan s(λ)
converges to i, s(λ) itself goes to ∞ and thus the proof of Theorem 2 is
complete.
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