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Porcupine-like horseshoes:
Transitivity, Lyapunov spectrum, and phase transitions

by

Lorenzo J. Dı́az and Katrin Gelfert (Rio de Janeiro)

Abstract. We study a partially hyperbolic and topologically transitive local diffeo-
morphism F that is a skew-product over a horseshoe map. This system is derived from
a homoclinic class and contains infinitely many hyperbolic periodic points of different
indices and hence is not hyperbolic. The associated transitive invariant set Λ possesses
a very rich fiber structure, it contains uncountably many trivial and uncountably many
non-trivial fibers. Moreover, the spectrum of the central Lyapunov exponents of F |Λ con-
tains a gap and hence gives rise to a first order phase transition. A major part of the
proofs relies on the analysis of an associated iterated function system that is genuinely
non-contracting.
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1. Introduction. In this paper we provide examples of non-hyperbolic
transitive sets that we call porcupine-like horseshoes or, briefly, porcupines,
which show a rich dynamics although they admit a quite simple formulation.
Their dynamics are conjugate to skew-products over a shift whose fiber
dynamics are given by genuinely non-contracting iterated function systems
(IFS) on the unit interval.

Naively, from a topological point of view, a porcupine is a transitive set
that looks like a horseshoe with infinitely many spines attached at various
levels and in a dense way. In terms of its hyperbolic-like structure, it is a
partially hyperbolic set with a one-dimensional center, whose spectrum of
central Lyapunov exponents contains an interval with negative and positive
values which, in particular, illustrates that the porcupine is non-hyperbolic.
Although the dynamics on the porcupine is transitive, its spectrum of cen-
tral exponents has a gap and thus gives rise to a first order phase transi-
tion.

Our goal is to present these examples and to explore their dynamical
properties. We are not aiming for the most general setting possible, but
instead want to present the ideas behind our constructions. We think that
these examples are representative models for a number of key properties of
non-hyperbolic dynamics.

1.1. Non-contracting iterated function systems. The analysis in
this paper is essentially built on properties of a certain class of non-con-
tracting iterated function systems associated to the central dynamics of the
porcupine.

We consider f0, f1 : [0, 1]→ R that are Ck smooth, k ≥ 1, and satisfy

• f0 is orientation preserving, has an expanding fixed point q, a con-
tracting fixed point p > q, and no further fixed points in (q, p),
• f1 is an orientation reversing contraction;

such maps form an open set in the corresponding product topology. And
we study the codimension 1 submanifold of maps satisfying the (q, p)-cycle
condition

f1(p) = q

(compare Figure 2).
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Now we consider compositions of the maps fi, i = 0, 1. Given a sequence
ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2 := {0, 1}Z, for a point x ∈ [q, p], we define the
(forward) Lyapunov exponent of the IFS generated by f0, f1 at (x, ξ) by

χ(x, ξ) := lim
n→∞

1
n

log |(f[ξ0...ξn])
′(x)|, where f[ξ0...ξn] := fξn ◦ · · · ◦ fξ0 .

We restrict our considerations to points that remain in the interval [q, p]
under forward and backward iterations. For that we define the admissible
domain Iξ ⊂ [q, p] by

Iξ :=
⋂
m≥1

(fξ−1 ◦ · · · ◦ fξ−m)([q, p]).

We obtain the following auxiliary result, which is a one-dimensional ver-
sion of the main result in this paper (Theorem 2).

Theorem 1. For the IFS generated by maps f0, f1 as above satisfying
the (q, p)-cycle condition, we have:

(A) There is an uncountable and dense set of sequences ξ ∈ Σ2 such
that the admissible domain Iξ is non-trivial. There is a residual set
of sequences ξ ∈ Σ2 such that Iξ contains a single point only.

(B) The points that are fixed with respect to f[ξ0...ξm] for certain ξ ∈ Σ2

and m ≥ 0 are dense in [q, p]. Moreover, there exist x ∈ (q, p) and
ξ ∈ Σ2 such that {f[ξ0...ξm](x)}m≥0 is dense in [q, p].

(C) There exists ρ ∈ (0, log |f ′0(q)|) such that the spectrum of all possible
Lyapunov exponents is contained in

[log |f ′0(p)|, ρ] ∪ {log |f ′0(q)|}.
The cycle condition seems to play a role similar to the Misiurewicz prop-

erty in one-dimensional dynamics best illustrated by the behavior of the
quadratic map f(x) = 1−2x2 that has some alike features (1). However, we
point out that in our case the breaking of hyperbolicity and the spectral gap
are not caused by any critical behavior. Note also that in our case the spec-
trum is richer and contains a continuum with positive and negative values.
In our case, the cycle condition and the fact that f1 is orientation reversing
allows transitivity. However, typical orbits only slowly approach the cycle
points p (which corresponds to the critical point) and q (which corresponds
to the post-critical point) giving rise to some transient behavior and hence
to the gap in the spectrum.

(1) A differentiable interval map satisfies the Misiurewicz condition if the forward
orbit of a critical point does not accumulate onto critical points. Note that f is conjugate
to the tent map in [−1, 1] and that this conjugation is differentiable in (−1, 1). Thus, in
particular, the spectrum of the Lyapunov exponents of f contains only the two values
2 log 2 and log 2.
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It would be interesting to find other representative examples that have
a gap in the Lyapunov spectrum and hence indicate the presence of a first
order phase transition (the associated pressure function is not differentiable,
see Proposition 5.6). We believe that this point deserves special attention.
A collection of examples that exhibit phase transitions are provided in [19]
in the case of interval maps and in [23] for abstract shift spaces.

1.2. Non-hyperbolic transitive homoclinic classes. We now put
the above abstract results into the framework of local diffeomorphisms and
return to the analysis of porcupines.

The porcupines considered in this paper are in fact homoclinic classes
(see Definitions 1.2 and 1.3) that contain infinitely many saddles of different
indices (dimension of the unstable direction) scattered throughout the class
preventing hyperbolicity. Moreover, they exhibit a rich topological structure
in their fibers (which are tangent to the central direction): there are uncount-
ably many fibers whose intersections with the porcupine are continua and
infinitely many fibers whose intersections with the porcupine are just points.
Further, the spectrum of the central Lyapunov exponents of these sets has
a gap and contains an interval (containing positive and negative values).
These properties will be stated in Theorem 2 that is a higher-dimensional
version of Theorem 1 for local diffeomorphisms.

We point out that porcupines also have strong indications to exhibit a
lot of genuinely non-hyperbolic properties, to be explored elsewhere. For ex-
ample, the transitive porcupines that we construct do not possess the shad-
owing property and, following the constructions in [17, 13, 5], one can show
that they carry non-hyperbolic ergodic measures with large supports and, in
view of [4], we expect that they also display robust heterodimensional cycles.

Let us point out some further motivation. Il’yashenko in his lecture [18]
presented topological examples of fibered systems over a shift map that pos-
sess recurrent sets (which he calls bony sets) containing some fibers. Tran-
sitive porcupines provide examples of smooth realizations of such systems.
Kudryashov [20, 21] recently obtained a quite general open class of smooth
skew-product systems which exhibit bony attractors. Our examples are also
motivated by the construction in [14] of bifurcating homoclinic classes and
the subsequent study of their Lyapunov spectrum in [22]. These sets have
indeed porcupine-like features but are “essentially hyperbolic” in the sense
that all their ergodic measures are hyperbolic.

Let us now point out two topological properties of our examples (in fact
also present in [14]):

(1) the porcupine is the homoclinic class H(Q∗, F ) of a saddle Q∗ that
contains two fixed points P and Q of different indices that are related
by a heterodimensional cycle (see Definition 2.4),
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(2) the saddle Q has the same index as Q∗, but is not homoclinically
related to Q (compare Definition 1.3).

Comparing with the one-dimensional setting in Section 1.1 the points P
and Q play the role of p and q, and the heterodimensional cycle corresponds
to the cycle property. Our examples are “essentially non-hyperbolic”: The
porcupines contain infinitely many saddles of different indices. This property
(and the fact that the porcupine is transitive) is the main reason that the
central Lyapunov spectrum contains an interval with positive and negative
values. We remark that (2) is also the main reason for the presence of a
gap in the spectrum of the central Lyapunov exponents in [22]. In fact,
the condition about the saddle Q in (2) is necessary to obtain such a gap
(see Lemma 5.1). In our example the spectrum of the Lyapunov exponent
associated to the central direction contains a continuum with positive and
negative values and an isolated point. This is, as far as we know, the first
example with a spectral gap that is essentially non-hyperbolic and is not
related to the occurrence of critical points.

We are aware of the fact that sets that display properties (1) and (2)
above are quite specific: By the Kupka–Smale theorem saddles of generic
diffeomorphisms are not related by heterodimensional cycles, and by [2]
property (2) is C1 non-generic. But this clearly does not imply that the
classes discussed here are not representative.

Finally, we would like to mention that this paper provides a systematic
study of non-hyperbolic homoclinic classes. Besides the above references, we
would like to mention [1], [13], and [5] where ergodic properties (related to
the Lyapunov spectrum) of homoclinic classes are stated.

Before presenting our results, let us state precisely the main objects we
are going to study.

Definition 1.1 (Partial hyperbolicity). An F -invariant compact set Λ is
said to be partially hyperbolic if there is a dF -invariant dominated splitting
Es ⊕ Ec ⊕ Eu where dF|Es is uniformly contracting, dF|Eu is uniformly
expanding, and Ec is non-trivial and non-hyperbolic. We say that Ec is the
central bundle. The set Λ is called strongly partially hyperbolic if the three
bundles Es, Ec, and Eu are non-trivial. See [7, Definition B.1] for more
details.

Definition 1.2 (Porcupines). We call a compact F -invariant set Λ of a
(local) diffeomorphism F a porcupine-like horseshoe or just a porcupine if

• Λ is the maximal invariant set in some neighborhood, transitive (ex-
istence of a dense orbit), and strongly partially hyperbolic with one-
dimensional central bundle,
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• there is a subshift of finite type σ : Σ → Σ and a semiconjugation
π : Λ → Σ such that σ ◦ π = π ◦ F , π−1(ξ) contains a continuum for
uncountably many ξ ∈ Σ and is a single point for uncountably many
ξ ∈ Σ.

We call π−1(ξ) a spine and say that it is non-trivial if it contains a contin-
uum. The spine of a point X ∈ Λ is the set π−1(π(X)).

For examples resembling porcupines but having non-trivial spines only
we refer to [3, 15, 16]. Concerning bony attractors, according to the definition
in [20] such an attractor may have only non-trivial fibers. Furthermore, there
are quite interesting examples in [20, 21] of bony attractors where the trivial
fibers form a “graph” of a continuous function over a subset of the shift
space.

We are in particular interested in the case where σ is the full shift defined
on Σ2 = {0, 1}Z and Λ is a homoclinic class. More precisely, we have the
following standard definition:

Definition 1.3 (Homoclinic class). Given a diffeomorphism F , the ho-
moclinic class H(P, F ) of a saddle point P of F is defined to be the closure
of the transverse intersections of the stable and unstable manifolds of the
orbit of P . Two saddle points P and Q are said to be homoclinically related
if the invariant manifolds of their orbits meet cyclically and transversely. We
say that a homoclinic class is non-trivial if it contains at least two different
orbits.

Given a neighborhood U of the orbit of P , we call the closure of the set
of points R that are in the transverse intersections of the stable and unstable
manifolds of the orbit of P and have an orbit entirely contained in U the
homoclinic class relative to U . We denote this set by HU (P, F ).

Remark 1.4. Homoclinically related saddles have the same index. We
also remark that the homoclinic class of a saddle may contain periodic points
that are not homoclinically related to it. Indeed, this is the situation ana-
lyzed in this paper. Finally, observe that the homoclinic class H(P, F ) coin-
cides with the closure of all saddle points that are homoclinically related to
P . Moreover, a homoclinic class is always transitive. Finally, a non-trivial
homoclinic class is always uncountable.

Definition 1.5 (Lyapunov spectrum and gaps). Consider a compact
invariant set Λ of a diffeomorphism F with a partially hyperbolic splitting
Es⊕Ec⊕Eu. Given a Lyapunov regular point S ∈ Λ, its Lyapunov exponent
associated to the central direction Ec is

(1.1) χc(S) := lim
n→∞

1
n

log‖dFn|EcS‖.
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We consider the spectrum of central Lyapunov exponents of Λ defined by

Icreg(Λ) := {χc(S) : S ∈ Λ and S is Lyapunov regular}.
We say that (ρ, ρ′) is a gap of the spectrum of Λ if there are numbers
λ ≤ ρ < ρ′ ≤ β such that

(ρ, ρ′) ∩ Icreg(Λ) = ∅ and λ, β ∈ Icreg(Λ).

The following is our main result.

Theorem 2. There are C1 local diffeomorphisms F having a porcupine
ΛF with the following properties:

(A) There is a continuous semiconjugation $ : ΛF → Σ2, σ◦$ = $◦F ,
such that

(a) There is an uncountable and dense subset of sequences ξ ∈ Σ2

such that $−1(ξ) is non-trivial. There is a residual subset of
sequences ξ ∈ Σ2 such that $−1(ξ) is trivial.

(b) There is an uncountable and dense subset of ΛF with non-trivial
spines.

(B) The subset of ΛF of saddles of index u+1 is dense in ΛF . Moreover,
ΛF contains also infinitely many saddles of index u and thus is not
uniformly hyperbolic.

(C) There are numbers 0 < ρ < ρ′ such that (ρ, ρ′) is a gap of the spec-
trum of central Lyapunov exponents of ΛF . Moreover, this spectrum
contains an interval with negative and positive values. Furthermore,
the pressure function t 7→ P (−t log ‖dF |Ec‖) is not differentiable at
some point, that is, has a first order phase transition.

Furthermore, there is an open set U such that ΛF is the (relative) homoclinic
class H = HU (R,F ) of a saddle R of index u+ 1 ≥ 2 satisfying:

(D) The set H = ΛF is the locally maximal invariant set in U . Moreover,
this class contains the (relative) non-trivial homoclinic class of a
saddle of index u. Further, there is a saddle Q ∈ H of index u + 1
such that HU (Q,F ) = {Q} ⊂ H.

Our examples are associated to step skew-product diffeomorphisms, lo-
cally we have

F (x̂, x) = (Φ(x̂), fbx(x)), x̂ ∈ [0, 1]n, x ∈ [0, 1],

where Φ is a horseshoe map and fbx = f0 or f1 for some injective maps f0 and
f1 of [0, 1]. We observe that for our analysis we require only C1 smoothness,
that is, less than the often required C1+ε hypothesis, and we base our proofs
on a tempered distortion argument. Any step skew-product diffeomorphism
with C∞ fiber maps f0, f1 and with the properties stated below will provide
an example for Theorem 2.
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Concerning the structure of spines, we find that non-trivial spines are
tangent to the central direction Ec and that spines of saddles of index u+ 1
are non-trivial and dense in ΛF . We also observe that, given any periodic
sequence ξ ∈ Σ2, there is a periodic point Pξ in $−1(ξ). Under some mild
additional Kupka–Smale-like hypothesis, the spine of any saddle of index
u+1 also contains saddles of index u. In fact, in this case, for every periodic
sequence ξ there is a saddle S ∈ ΛF of index u projecting to ξ, $(S) = ξ
(see Theorem 4.16).

Question 1.6. Do there exist examples of porcupine-like transitive sets
such that $−1(ξ) contains a continuum for an “even larger” subset of Σ2?
Here larger could mean, for instance, a residual subset of Σ2 or a set of large
dimension and we would like to state this question in a quite vague sense.

Let us observe that in the examples in [20] the set with non-trivial fibers
is “small”, though the setting is slightly different from ours.

Fig. 1. Construction of a porcupine

This paper is organized as follows. In Section 2 we describe the construc-
tion of our examples and derive first preliminary properties. In Section 3 we
collect properties of the IFS generated by the interval maps f0 and f1. In Sec-
tion 4 we prove that the porcupine is a (relative) homoclinic class of a saddle
of index u+ 1 and that it contains a non-trivial homoclinic class of a saddle
of index u. This implies that the porcupine is a transitive non-hyperbolic
set containing infinitely many saddles of both types of indices. In that sec-
tion we will systematically use the results in Section 3. The skew-product
structure allows us to translate properties of the IFS to the global dynamics.
We will also study some particular cases that imply stronger properties. In
Section 5 we finally study the Lyapunov exponents that are associated to
the central direction. Note that our methods of proof in Sections 4 and 5
are based on those used previously in studying heterodimensional cycles and
homoclinic classes (see for example [10, 2, 4, 14]). We conclude the proof of
Theorem 2 in Section 6.
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2. Examples of porcupine-like homoclinic classes. In this section
we are going to construct examples of porcupine-like homoclinic classes with
the properties claimed in Theorem 2.

Consider s, u ∈ N, the cube Ĉ = [0, 1]s+u, and a diffeomorphism Φ

defined on Rs+u having a horseshoe Γ in Ĉ conjugate to the full shift σ
on two symbols and whose stable bundle has dimension s and whose un-
stable bundle has dimension u. Denote by $ : Γ → Σ2 the conjugation
map, $ ◦ Φ = σ ◦$. We consider the subcubes Ĉ0 and Ĉ1 of Ĉ such that
Φ maps each Ĉi in a Markovian way into Ĉ, where Ĉi contains all the
points X of the horseshoe whose 0-coordinate ($(X))0 is i. In order to pro-
duce the simplest possible example, we will assume that Φ is affine in Ĉ0

and Ĉ1.

Definition 2.1 (The map F ). Let C = Ĉ× [0, 1]. Given a point X ∈ C,
we write X = (x̂, x), where x̂ ∈ Ĉ and x ∈ [0, 1]. We consider the map

F : Ĉ× [0, 1]→ Rs+u × R
given by

F (x̂, x) :=

{
(Φ(x̂), f0(x)) if X ∈ Ĉ0 × [0, 1],
(Φ(x̂), f1(x)) if X ∈ Ĉ1 × [0, 1],

where f0, f1 : [0, 1] → [0, 1] are assumed to be C1 injective interval maps
satisfying the following properties (see Figure 2):

f0

f1

f1

fN0
I0 I1

0 1

Fig. 2. Iterated function system satisfying (F0), (F1), and (F01)

(F0.i) The map f0 is increasing and has exactly two hyperbolic
fixed points, 0 (repelling) and 1 (attracting). Let f ′0(0) = β
> 1 and f ′0(1) = λ ∈ (0, 1). Moreover, λ ≤ f ′0(x) ≤ β for all
x ∈ [0, 1].
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(F0.ii) There are fundamental domains I0 = [a0, b0] ⊂ (0, 1), b0 =
f0(a0), and I1 = [a1, b1], b1 = f0(a1), of the map f0 together
with numbers α > 1 and N ≥ 1 such that

fN0 (I0) = I1 and λ · (fN0 )′(x) > α > 1 for all x ∈ I0.
Moreover, f0 is expanding in [0, b0] and contracting in [a1, 1].

(F1.i) The map f1 is a decreasing contraction satisfying

γ′ := min{|f ′1(x)| : x ∈ [0, 1]}≤ γ := max{|f ′1(x)| : x∈ [0, 1]}< 1.

(F1.ii) We have

|f ′1(x)| ≥ α > 1/α for all x ∈ [f2
1 (a1), a1].

(F01) The following conditions are satisfied:

(1) f1(1) = 0,
(2) f1([a1, 1]) ⊂ [0, a0),
(3) [0, f−2

0 (b0)) ⊂ f1([0, 1]).

Note that in order to get the conditions above we need to require that

λ
1− λ

1− β−1
> 1.

The maximal invariant set of F in the cube C is defined by

(2.1) ΛF := Λ+
F ∩ Λ

−
F , where Λ±F :=

⋂
i∈N

F±i(C).

Remark 2.2. We point out that we restrict our analysis to the dynamics
within the cube C. Notice that the usual definition of a (locally) maximal
invariant set Λ with respect to F requires that F is well-defined in some
neighborhood U of Λ and that Λ =

⋂
i∈Z F

i(U). Observe that in our case
we can consider an extension of the local diffeomorphism F to some neigh-
borhood of C such that ΛF is the locally maximal invariant set with respect
to such an extension. Indeed, this can be done since the extremal points P
and Q are hyperbolic.

From now on we restrict our considerations to the dynamics in C. In
particular, we consider relative homoclinic classes in C. For notational sim-
plicity, we suppress the dependence on C and simply write H(R,F ).

Note that, by construction, for any saddle Q∗ ∈ C the homoclinic class
H(Q∗, F ) is contained in ΛF but, in principle, may be different from ΛF .
The analysis of the dynamics of F |ΛF will be completed in Section 4.

For simplicity, we assume that the rate of expansion of the horseshoe is
stronger than any expansion of f0 and f1, that is, in particular, stronger
than β, and that the rate of contraction of the horseshoe is stronger than
any contraction of f0 and f1, that is, in particular, stronger than min{λ, γ′}.
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In this way the DF -invariant splitting Ess⊕Ec⊕Euu defined over ΛF and
given by

(2.2) Ess := Rs × {0u, 0}, Ec := {0s, 0u} ×R, Euu := {0s} ×Ru × {0}
is dominated. Note that this splitting is DF -invariant because of the skew-
product structure of F .

The following is a key result in our constructions. Its proof will be com-
pleted in Section 6.

Proposition 2.3. There is a periodic point Q∗ ∈ ΛF of index u + 1
whose homoclinic class H(Q∗, F ) is a porcupine-like set having all the prop-
erties claimed in Theorem 2.

Let us now introduce some more notation and derive some simple prop-
erties that can be obtained from the above definitions.

Notation. We equip the sequence spaceΣ2 = {0, 1}Z with the usual met-
ric d(ξ, η) =

∑
i∈Z 2−|i||ξi−ηi| for ξ = (. . . ξ−1.ξ0ξ1 . . .), η = (. . . η−1.η0η1 . . .)

∈ Σ2. We denote by ξ = (ξ0 . . . ξm−1)Z the periodic sequence of period m
such that ξi = ξi+m for all i. We will always refer to the least period of a
sequence. The zero sequence with ξi = 0 for all i is denoted by 0Z. Further,
we denote by ξ = (0N.10N) the sequence with ξ0 = 1, ξ±i = 0 for all i 6= 0.

Let θ = $−1(0Z) be the fixed point of Φ which corresponds to the zero
sequence 0Z. Note that θ = 0s+u. Simplifying the representation, we also
assume that [0, 1]s × {0u} = W s

loc(θ, Φ) and {0s} × [0, 1]u = W u
loc(θ, Φ). Set

(2.3) P := (θ, 1) and Q := (θ, 0).

These saddles have indices u and u+ 1, respectively. The previous assump-
tions and the choice of f0 imply immediately that

[0, 1]s × {0u} × (0, 1] ⊂W s(P, F ),
{0s} × [0, 1]u × {1} ⊂W u(P, F ),
[0, 1]s × {0u} × {0} ⊂W s(Q,F ),
{0s} × [0, 1]u × [0, 1) ⊂W u(Q,F ).

(2.4)

In what follows we write

W s
loc(Q,F ) = [0, 1]s × {(0s, 0)} and W u

loc(P, F ) = {0s} × [0, 1]u × {1}.
Definition 2.4 (Heterodimensional cycle). A diffeomorphism F is said

to have a heterodimensional cycle associated to saddle points P and Q of
different indices if their invariant manifolds intersect cyclically, that is, if
W s(P, F ) ∩W u(Q,F ) 6= ∅ and W u(P, F ) ∩W s(Q,F ) 6= ∅. Here we denote
by W s(P, F ) (resp. W u(P, F )) the stable (resp. unstable) manifold of the
orbit of P with respect to F .

The definition of F immediately implies the following fact.
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Lemma 2.5 (Heterodimensional cycle). The points P and Q defined
in (2.3) are saddle fixed points with indices u and u + 1, respectively, that
are related by a heterodimensional cycle.

bC0

bC1

Q P

Fig. 3. Heterodimensional cycle

Proof. Note that by (2.4) we have

{(0s, 0u)} × (0, 1) ⊂W s(P, F ) ∩W u(Q,F ).

On the other hand, as f1(1) = 0, we have

F (W u
loc(P, F )) = F (({0s} × [0, 1]u × {1}) ∩C1)

= {θs} × [0, 1]u × {0} ⊂W u(P, F ),

where θs = $−1(0N.10N) and (θs, 0u, 0) ∈W s(Q,F ), and hence W s(Q,F )∩
W u(P, F ) 6= ∅. This gives a heterodimensional cycle associated to P and Q,
proving the lemma.

We will now derive some properties of the homoclinic class H(P, F ).

Lemma 2.6. The homoclinic class H(P, F ) contains the saddle Q. There-
fore, this class is non-trivial and non-hyperbolic. Moreover, there are points
in {(0s, 0u)} × (0, 1) that are contained in H(P, F ).

Proof. Let x̂ = (xs, 0u) = $−1(0N.10N) and Φ(x̂) = (ys, 0u). Note that
by Definition 2.1 we have

(2.5) F (({xs}× [0, 1]u×{0})∩C1) = {ys}× [0, 1]u×{f1(0)}⊂W u(P, F ),

and therefore, by (2.4) and since f1(0) ∈ (0, 1), (ys, 0u, f1(0)) is a trans-
verse homoclinic point of P . This implies that H(P, F ) is non-trivial. More-
over, it implies that W u(P, F ) accumulates at W u

loc(P, F ) from the left and
thus X = (xs, 0u, 0) is a limit point of a sequence Xi := (xsi , 0

u, xi), xi =
f1(fN+i

0 (f1(0))) > 0, of transverse homoclinic points of P from the right.
Finally, as X ∈W s(Q,F ) and H(P, F ) is invariant, we have Q ∈ H(P, F ).
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To prove that {(0s, 0u)} × (0, 1) contains points of H(P, F ), for each
δ > 0 and each (closed) fundamental domain D of f0 in (0, 1) consider the
disk

Dδ := [0, δ]s × {0u} ×D ⊂W s(P, F ).

Note that for large j the set F−j(Dδ) contains some point Xi. Therefore,
Dδ contains a transverse homoclinic point of P . As this holds for any δ > 0
and since H(P, F ) is a closed set, the set {(0s, 0u)} ×D intersects H(P, F )
and the claimed property follows.

Let us consider the attracting fixed point p̂ = f1(p̂) ∈ (0, 1) and de-
note by (p̂s, p̂u) = $−1(1Z) the corresponding fixed point for the horseshoe
map Φ. Note that P̂ = (p̂s, p̂u, p̂) is fixed with respect to F and has index u.

Lemma 2.7. The saddles P̂ and P are homoclinically related.

Proof. Let P̂ = (p̂s, p̂u, p̂) and note that p̂s × [0, 1]u × p̂ ⊂ W u(P̂ , F ).
Thus, together with p̂ ∈ (0, 1) and [0, 1]s ×{0u}× (0, 1] ⊂W s(P, F ), we see
that W u(P̂ , F ) and W s(P, F ) meet transversely.

Let us now show that W s(P̂ , F ) and W u(P, F ) also meet transversely.
First note that [0, 1] ⊂ W s(p̂, f1) and therefore [0, 1]s × {p̂u} × [0, 1] ⊂
W s(P̂ , F ). Also note that by (2.5) we have {ys}×[0, 1]u×{f1(0)}⊂W u(P, F ),
where f1(0) in (0, 1). Thus W s(P̂ , F ) t W u(P, F ) 6= ∅, proving the asser-
tion.

Remark 2.8. The construction in the proof of Lemma 2.7 also shows
that any saddle P ∈ ΛF of F of index u satisfies W u(P , F ) t W s(P, F ) 6= ∅
and W u(P , F ) t W s(P̂ , F ) 6= ∅.

As, by construction, W s
loc(Q,F ) does not intersect W u(Q,F ) \ {Q}, we

immediately obtain the following fact.

Lemma 2.9. We have H(Q,F ) = {Q}.

3. One-dimensional central dynamics. In this section we are going
to derive properties of the abstract iterated function system generated by
the interval maps f0 and f1 introduced in Section 2. These properties will
carry over immediately to corresponding properties of the spines. We point
out that, in contrast to other commonly studied IFSs, in our case the system
is genuinely non-contracting and, in particular, in Section 3.2 we will study
expanding itineraries of these IFSs.

3.1. Iterated function system. Let us start with some notation.

Notation 3.1. Slightly abusing notation, for a given finite sequence
ξ = (ξ0 . . . ξm), ξi ∈ {0, 1}, let

f[ξ] = f[ξ0...ξm] := fξm ◦ · · · ◦ fξ1 ◦ fξ0 : [0, 1]→ [0, 1].
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Moreover, let

C[ξ] = C[ξ0...ξm] := {X ∈ C : F i(X) ∈ Cξi for all i = 0, . . . ,m}.

Given any set K ⊂ C, let

K[ξ] = K[ξ0...ξm] := K ∩C[ξ0...ξm].

Given a finite sequence ξ = (ξ−m . . . ξ−1), ξi ∈ {0, 1}, we denote

f[ξ.] = f[ξ−m...ξ−1.] := (fξ−1 ◦ · · · ◦ fξ−m)−1.

Given a finite sequence ξ = (ξ−m . . . ξ−1.ξ0 . . . ξn), ξi ∈ {0, 1}, let

f[ξ] = f[ξ−m...ξ−1.ξ0...ξn] := f[ξ0...ξn] ◦ f[ξ−m...ξ−1.].

Note that these maps are only defined on a closed subinterval of [0, 1].
A sequence ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2 is said to be admissible for a point
x ∈ [0, 1] if the map f[ξ−m...ξ−1.] is well-defined at x for all m ≥ 1. Note that
admissibility of a sequence ξ does not depend on the symbols (ξ0ξ1 . . .).

3.2. Expanding itineraries. We now start investigating expanding
behavior of the iterated function system.

Recall that I0 = [a0, b0] = [f−1
0 (b0), b0]. Given a closed interval J ⊂

[f−2
0 (b0), b0], we start by localizing an itinerary for which the iterated func-

tion system is expanding. We will always assume that closed intervals are
non-trivial. Recall the definition of a1 in (F0.ii) and define

n(J) := min{n ≥ 1: fn0 (J) ⊂ [a1, 1)}.

Now let J ′ := f[0n(J)1](J) and observe that by (F01)(2) this interval is con-
tained in (0, a0). Let

m(J) := min{m ≥ 0: fm0 (J ′) ∩ I0 6= ∅}.

Note that, by our choice of fundamental domains, we have m(J) ≥ 1 and
either n(J) = N or N + 1 with N given in (F0.ii).

Lemma 3.1 (Expanding itineraries). There is a constant κ > 1 such that
for every closed interval J ⊂ [f−2

0 (b0), b0] and every x ∈ J we have

|(f[0n(J)1 0m(J)])
′(x)| ≥ κ.

Proof. Recall that n(J) is N or N + 1 and that m(J) ≥ 1. Observe that
the hypotheses (F0.i), (F0.ii), and (F1.ii) imply that for any x ∈ J we have

|(f[0n(J)1 0m(J)])
′(x)| = |(fm(J)

0 ◦ f1 ◦ fn(J)
0 )′(x)| ≥ αα

λ
λ > 1,

using the fact that fm(J)
0 is applied to points in an interval [0, a0] where

f ′0 > 1. Taking κ := αα proves the lemma.
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Definition 3.2 (Expanding successor). To every interval J⊂[f−2
0 (b0), b0],

we associate the finite sequence ξ(J) given by

ξ0 = · · · = ξn(J)−1 = 0, ξn(J) = 1, ξn(J)+1 = · · · = ξn(J)+m(J) = 0,

where n(J) and m(J) are defined as above. In view of Lemma 3.1, we call
(ξ0 . . . ξn(J)+m(J)) the expanding itinerary of J . We call the interval

f[ξ0...ξn(J)+m(J)](J) ⊂ (0, 1)

the expanded successor of J . We say that an interval J ′′ is the ith expanded
successor of J if there is a sequence of intervals J0 = J, J1, . . . , Ji−1, Ji = J ′′

such that for all j = 0, . . . , i− 1, we have

Jj ⊂ [f−2
0 (b0), b0] and Jj+1 is the expanded successor of Jj .

We denote the ith expanded successor of J by J〈i〉. Using this notation we
define the finite sequence ξ〈i〉 = ξ(J〈i〉) with

(3.1) J〈i+1〉 = f[ξ〈i〉](J〈i〉).

We denote by |ξ〈i〉| the length of this sequence.

Remark 3.3. For future applications we remark that n(J) and m(J)
are both bounded from above by some number independent of the interval
J ⊂ [f−2

0 (b0), b0]. Therefore, the definition of the expanded successor of an
interval J involves a concatenation of a number of maps f0 and f1 that
is bounded by some constant independent of J . In particular, there are
constants κ1, κ2 > 0 independent of J such that for all x ∈ J we have

κ1 ≤ |(f[0n(J)1 0m(J)])
′(x)| ≤ κ2.

In what follows we denote by |I| the length of an interval I.

Remark 3.4. Let J be a closed subinterval in [f−2
0 (b0), b0]. By Lem-

ma 3.1, there is a constant κ > 1 independent of J such that the expanded
successor J〈1〉 = f[ξ(J)](J) of J satisfies

|J〈1〉| = |f[ξ(J)](J)| ≥ κ|J |.

Moreover, by the definition of m(J), the interval J〈1〉 intersects [f−1
0 (b0), b0].

The following lemma is the main result of this subsection.

Lemma 3.5. Given a closed interval J ⊂ [f−2
0 (b0), b0], there is a num-

ber i(J) ≥ 1 such that the jth expanded successor J〈j〉 of J is defined
for all j = 1, . . . , i(J) − 1 and J〈i(J)〉 contains the fundamental domain
[f−2

0 (b0), f−1
0 (b0)].

Proof. Note that the expanded successor is defined for any interval J ⊂
(f−2(b0), b0]. Assume, inductively, that for all j = 0, . . . , i the jth expanded
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successor J〈j〉 of J = J〈0〉 is defined and J〈j〉 ⊂ [f−2
0 (b0), b0]. Then the

(i+ 1)th expanded successor J〈i+1〉 of J is also defined.
Since for every j = 0, . . . , i the interval J〈j+1〉 is the successor of J〈j〉, by

Lemma 3.1 we have
|J〈i+1〉| ≥ κi+1|J〈0〉|.

Since the size of [f−2
0 (b0), b0] is bounded there is a first i(J) such J〈0〉, J〈1〉,

. . . , J〈i(J)〉 are defined and J〈i(J)〉 is not contained in [f−2
0 (b0), b0]. Since by

Remark 3.4 the interval J〈i(J)〉 intersects [f−1
0 (b0), b0], this implies

[f−2
0 (b0), f−1

0 (b0)] ⊂ J〈i(J)〉,

from which the claimed property follows.

The following result can be of independent interest.

Proposition 3.6 (Sweeping property). Given a closed interval H⊂(0,1),
there is a finite sequence (ξ0 . . . ξn) such that f[ξ0...ξn](H) contains the fun-
damental domain [f−2

0 (b0), f−1
0 (b0)].

Proof. Just note that there existsm≥1 such that f[0m1](H)⊂(0, f−2
0 (b0)).

Therefore, there is k ≥ 1 such that f[0m10k](H) contains an interval J ⊂
(f−2

0 (b0), b0) to which we can apply Lemma 3.5.

Definition 3.7 (Expanding sequence). In view of Lemma 3.5, given a
closed interval J ⊂ [f−2

0 (b0), b0] we consider its (finite) expanding sequence
ξ(J) obtained by concatenating the finite sequences ξ〈i〉 = ξ(J〈i〉) corre-
sponding to the expanding successors ξ〈1〉, . . . , ξ〈i(J)〉 of J .

Note that, by the definition of i(J), we have [f−2
0 (b0), b0] ⊂ f[ξ(J)](J) and

|(f[ξ(J)])′(x)| > 1 for all x ∈ J .

An immediate consequence of Lemma 3.5 and the previous comments is
the following lemma.

Lemma 3.8. Given a closed interval J ⊂ [f−2
0 (b0), b0] and its expanding

sequence ξ(J), there is a unique expanding fixed point q∗J ∈ J of f[ξ(J)].
Moreover, W u(q∗J , f[ξ(J)]) contains [f−2

0 (b0), f−1
0 (b0)].

Proof. Observe that J ⊂ [f−2
0 (b0), b0] ⊂ f[ξ(J)](J) and f[ξ(J)] is uniformly

expanding in J .

3.3. Lyapunov exponents close to 0. In this section we are going to
construct fixed points (of contracting and expanding type) of certain maps
f[ξ0...ξm−1] whose Lyapunov exponents are arbitrarily close to 0. Here, given
p ∈ [0, 1] and an admissible sequence ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2 of p, the
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(forward) Lyapunov exponent of p with respect to ξ is

χ(p, ξ) := lim
n→∞

1
n

log |(f[ξ0...ξn−1])
′(p)|

whenever this limit exists. Otherwise we denote by χ(p, ξ) and χ(p, ξ) the
lower and the upper Lyapunov exponent defined by taking the lower and the
upper limit, respectively.

Given a periodic sequence (ξ0 . . . ξm−1)Z ∈ Σ2 and a point p(ξ0...ξm−1)Z =
f[ξ0...ξm−1](p(ξ0...ξm−1)Z), we have

(3.2) χ(p, (ξ0 . . . ξm−1)Z) =
1
m

log |(f[ξ0...ξm−1])
′(p(ξ0...ξm−1)Z)|.

We are going to prove the existence of periodic points of contracting and
expanding type with Lyapunov exponents arbitrarily close to 0.

Proposition 3.9. For every ε>0 there exists a finite sequence (1`0m10j)
such that the map f[1`0m10j ] is uniformly contracting in [0, 1] and its fixed
point p is attracting, has a Lyapunov exponent in (−ε, 0), and has a stable
manifold W s(p, f[1`0m10j ]) that contains the interval [0, 1].

Proposition 3.10. For every ε > 0 there exists a finite sequence
(ξ0 . . . ξn−1) such that the map f[ξ0...ξn−1] has an expanding fixed point whose
Lyapunov exponent is in (0, ε).

Before proving the two propositions, we formulate some preliminary re-
sults.

3.3.1. Tempered distortion. First, we verify a distortion property. Note
that we establish the tempered distortion property that holds true if f0 is
only a C1 map, instead of focusing on a bounded distortion property that
would require the standard C1+ε assumption.

We will say that an interval J ⊂ (0, 1) contains at most K consecutive
fundamental domains of f0 if any orbit of f0 hits this interval at most K+1
times.

Lemma 3.11 (Tempered distortion). Given p̂ ∈ (0, 1) and K ≥ 1, there
exists a positive sequence (ρk)k≥0 decreasing to 0 such that for every interval
J containing p̂ and containing at most K consecutive fundamental domains
of f0 we have

e−kρ|k|
|f±k0 (J)|
|J |

≤ (f±k0 )′(x) ≤ ekρ|k| |f
±k
0 (J)|
|J |

for all k ∈ Z and x ∈ J .

Proof. Let x, y ∈ J . As f ′0 is bounded away from 0 and the map y 7→ log y
is Lipschitz if y is bounded away from 0, there exists some positive constant
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c and a positive sequence (ρ̃k)k decreasing to 0 such that for every k ≥ 1,∣∣∣∣log
(fk0 )′(x)
(fk0 )′(y)

∣∣∣∣ ≤ c k−1∑
n=0

|f ′0(fn0 (x))− f ′0(fn0 (y))| ≤ c
k−1∑
n=0

ρ̃n.

Here the latter estimate follows from continuity of f ′0 and the fact that
|f ′0(x)− f ′0(y)| → 0 as |x− y| → 0 and the observation that |fn0 (J)| → 0 as
n→∞. Now set

ρk :=
c(ρ̃0 + · · ·+ ρ̃k−1)

k

and note that ρk → 0 as k →∞. Taking y such that |(fk0 )′(y)| = |fk(J)|/|J |
we get the claimed property.

Analogously, |f−n0 (J)| → 0 as n → ∞, from which we can deduce the
case k ≤ 0.

3.3.2. Looping orbits. We now show that the derivative along a looping
orbit starting in and returning to a fixed fundamental domain grows only
subexponentially with respect to its length.

Lemma 3.12. Given a fundamental domain J ⊂ (0, 1), there exists a
number K ≥ 1 such that for all m ≥ 1 sufficiently large the interval f[0m1](J)
contains at most K consecutive fundamental domains of f0.

Proof. For each m ≥ 1 define am ∈ (0, 1) by

fm0 (J) = [1− am, f0(1− am)].

Note that, because f0(1) = 1, f ′0(1) = λ and the derivative f ′0 is continuous,
and fm0 (J) converges to 1 (and thus am → 1) as m → ∞, if m is large
enough we have

|fm0 (J)| = f0(1− am)− (1− am) ≈ f0(1)− amf ′0(1)− (1− am) = am(1− λ)

and hence

(3.3)
1
2
am(1− λ) ≤ |fm0 (J)| ≤ 2am(1− λ).

Recalling the definitions of γ and γ′ in (F1.i), one has

(3.4) γ′
1
2
am(1− λ) ≤ |f1(fm0 (J))| ≤ γ2am(1− λ).

Similarly one finds that there is a constant C > 1 independent of large m
such that C−1am ≤ f1(f0(1− am)) ≤ Cam. Hence

(3.5) f[0m1](J) ⊂ [C−1am, Cam(1 + 2γ(1− λ))].

Noting that the derivative of f0 in f[0m1](J) is close to β and larger than
some β′ close to β, we see that for large m the interval f[0m1](J) contains at
most `+ 2 fundamental domains where ` is the largest natural number with

(β′)`C−1am ≤ Cam(1 + 2γ(1− λ)).
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Notice that am cancels and hence ` does not depend on m if m is large
enough. This finishes the proof of the lemma.

We will now use the above lemma to prove the following.

Lemma 3.13. Given a fundamental domain J ⊂ (0, 1) of f0, there exists
m0 ≥ 1 and a positive sequence (ρn)n decreasing to 0 such that for every
m ≥ m0 there exists j > 0 such that the interval f[0m10j ](J) intersects J . If
j = j(m) is the smallest positive number with this property then

e−jρj−mρm ≤ |(f[0m10j ])
′(x)| ≤ ejρj+mρm

for every x ∈ J and every m ≥ m0 and j = j(m).

Proof. Let J = [a, f0(a)] ⊂ (0, 1) be a fundamental domain with respect
to f0. There exists m0 ≥ 1 such that for every m ≥ m0 and every x ∈ J
we have fm0 (x) > f−1

1 (a), and f1(fm0 (x)) is in the expanding region of f0.
Moreover, the interval f[0m10j ](J) intersects J for some j > 0.

As in the above proof, for each m ≥ m0 set

fm0 (J) = [1− am, f0(1− am)].

Just as for (3.3) we obtain
1
2
am(1− λ) ≤ |fm0 (J)| ≤ 2am(1− λ).

The tempered distortion result in Lemma 3.11 now implies that there is a
positive sequence (ρ̂k)k decreasing to 0 such that for all x ∈ J ,

(3.6)
1
2
am(1− λ)
|J |

e−mbρm ≤ (fm0 )′(x) ≤ 2
am(1− λ)
|J |

embρm .
We now consider the fundamental domain of f0,

L := [f−1
0 (f1(1− am)), f1(1− am)].

Note that by Lemma 3.12 the interval f[0m1](J) contains at most K funda-
mental domains. By our choice the right extreme of L is the right extreme
of f[0m1](J) and therefore

f[0m1](J) ⊂ L̃ := L ∪ f−1
0 (L) ∪ · · · ∪ f−K0 (L).

In the next step we compare the lengths of L̃ and fm0 (J). Arguing exactly
as above, using the fact that f ′0(0) = β, f ′0(x) ≤ β, γ′ ≤ |f ′1| ≤ γ, and that
f1(1− am) is close to 0 = f1(1) for m large enough, we obtain

(3.7)
1
2
γam(1− β−1) ≤ |L| ≤ γ′am(1− β−1).

Since for i ≥ 0 we have β−i|L| ≤ |f−i0 (L)| ≤ (β′)−i|L| for some 1 < β′ < β,
from (3.7) we immediately obtain constants k1, k2 > 0 such that

(3.8) k1am ≤ |L̃| ≤ k2am.
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Fix constants M− and M+ such that if J ′, J ′′ are any two non-disjoint
fundamental domains of f0 then

(3.9) M−|J ′| ≤ |J ′′| ≤M+|J ′|.

For large m the sets f[0m1](J) and L̃ are both to the left of J . Thus there
exists a smallest positive integer j = j(m) such that f j0 (f[0m1](J)) (and thus
f j0 (L̃)) intersects J for the first time (the same number for both intervals).
We now apply the tempered distortion property in Lemma 3.11 to L̃. Hence,
there exists a sequence (ρ̃k)k decreasing to 0 such that for all x ∈ L̃,

e−jeρj |f j0 (L̃)|
|L̃|

≤ |(f j0 )′(x)| ≤ ejeρj |f j0 (L̃)|
|L̃|

.

The definition of L̃ and (3.9) imply that

M−|J | ≤ |f j0 (L̃)| ≤ M̃+|J |, where M̃+ =
K∑
j=0

(M+)j .

Thus, by the previous two equations, for x ∈ L̃ we obtain

e−jeρjM−|J |
|L̃|

≤ |(f j0 )′(x)| ≤ ejeρj M̃+|J |
|L̃|

.

This inequality together with (3.8) implies that for all x ∈ L̃ (and thus for
all x ∈ f[0m1](J)) we have

(3.10)
e−jeρjM−|J |

k2am
≤ |(f j0 )′(x)| ≤ ejeρjM̃+|J |

k1am
.

Now putting together (3.6) and (3.10) and recalling that γ′ ≤ |f ′1| ≤ γ, we
see that the factors |J | and am cancel. Hence we obtain, for every x ∈ J ,

e−jbρj−meρm (1− λ)γ′M−

2k2
≤ |(f j0 ◦ f1 ◦ fm0 )′(x)| ≤ ejbρj+meρm 2(1− λ)γM̃+

k1
.

Thus there is some C̃ > 1 independent of m and j = j(m) such that

C̃−1e−jbρj−meρm ≤ |(f j0 ◦ f1 ◦ fm0 )′(x)| ≤ C̃ejbρj+meρm .
The claimed property now follows with ρn := max{ρ̂n, ρ̃n + 1

2n log C̃}.
3.3.3. Weak contracting and expanding looping orbits. We are now ready

to prove the above propositions.

Proof of Proposition 3.9. Recall that we denoted by p̂ ∈ (0, 1) the at-
tracting fixed point of f1. Consider a fundamental domain J of f0 containing
p̂ in its interior, and some `0 ≥ 1 such that for all ` ≥ `0 the interval f `1([0, 1])
is contained in J . This is possible because f `1([0, 1]) converges to p̂.
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By Lemma 3.13, there exists m0 ≥ 1 and a positive sequence (ρn)n
decreasing to zero such that for every m ≥ m0 and j = j(m) the intervals
f[0m10j ](J) and J intersect and for every x ∈ J we have

e−jρj−mρm ≤ |(f[0m10j ])
′(x)| ≤ ejρj+mρm .

Recall now the choice of the constants γ and γ′ in (F1.i). Therefore, for
every m ≥ m0 and j = j(m), every ` ≥ `0, and every x ∈ [0, 1] we obtain

(3.11) (γ′)`e−jρj−mρm ≤ |(f[1`0m10j ])
′(x)| ≤ ejρj+mρmγ`.

Let now ` = `(m, j) ≥ `0 be the smallest such that the right-hand side
in (3.11) is < 1, so that

(3.12)
jρj +mρm
− log γ

< ` ≤ jρj +mρm
− log γ

+ 1.

Since f `1([0, 1]) ⊂ J we can apply the above estimates to any x ∈ f `1([0, 1]).
Thus, f[1`0m10j ] is a contraction in [0, 1] and hence has a unique fixed point
p[1`0m10j ] whose basin of contraction contains [0, 1]. Moreover, the Lyapunov
exponent χ(p[1`0m10j ], ξ) with ξ = (1`0m10j)Z satisfies

M(`,m, j) :=
` log γ′ − jρj −mρm

j +m+ `+ 1
≤ χ(p[1`0m10j ], ξ) < 0.

Using (3.12), we deduce that
1

j +m+ 1
log γ′

(
jρj +mρm
− log γ

+ 1
)
− 1
j +m+ 1

(jρj +mρm) ≤M(`,m, j).

When we now take m arbitrarily large the index j = j(m) is also large.
Hence the lower bound M(`,m, j) is arbitrarily close to 0. As the exponent
is negative, this finishes the proof of the proposition.

Proof of Proposition 3.10. Take the fundamental domain I= [f−1
0 (b0), b0].

By Lemma 3.13, there existsm0 ≥ 1 and a positive sequence (ρk)k decreasing
to zero such that for every m ≥ m0 and j = j(m) the intervals f[0m10j ](I)
and I intersect and for every x ∈ I we have

(3.13) e−jρj−mρm ≤ |(f[0m10j ])
′(x)| ≤ ejρj+mρm .

This implies, possibly after slightly decreasing (ρk)k, that

(3.14) |f[0m10j ](I) ∩ (f−1
0 (I) ∪ I)| ≥ e−jρj−mρm .

We now consider the subinterval

Jm,j := f[0m10j ](I) ∩ (f−1
0 (I) ∪ I)

and its expanded successors as defined in Definition 3.2.
First recall that by Remark 3.3 the number of applications of the maps

f0 and f1 involved in the definition of the expanded successor of an interval
is uniformly bounded from above and below by numbers N1 > N2 ≥ 1 that
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do not depend on the interval. Moreover, by Remark 3.3 each expanded
itinerary has a uniform expansion bounded from below and above by num-
bers κ1 > κ2 > 1 independent of the itinerary.

Therefore, as the length of the interval in (3.14) is bounded from below
and each expanded successor involves a uniform expansion bounded from
below by κ2, we need to repeat the expanded successors a finite number
N = N(m, j) of times to obtain the covering of the fundamental domain
[f−2

0 (b0), f−1
0 (b0)] as stated in Lemma 3.5. Now we denote by Fm,j the re-

sulting concatenated map. Moreover, by construction the interval

f[ξ0...ξn](Jm,j) := (f0 ◦ Fm,j)(Jm,j)

covers the original interval I and hence there exists an expanding fixed
point pm,j ∈ I of f[η] with η := (0m10jξ0 . . . ξn). Moreover, by the comments
above, n satisfies NN2 + 1 ≤ n < NN1 + 1.

We finally estimate the Lyapunov exponent of pm,j . Using the length
estimate of Jm,j in (3.14) and the uniform expansion of each expanded suc-
cessor by a factor of at least κ2, we can estimate

(3.15) N ≤ C + jρj +mρm
log κ2

,

where C > 0 only depends on the length of [f−2
0 (b0), f−1

0 (b0)]. Hence,
by (3.13) and since each expanding iterate expands by at most κ1, the
Lyapunov exponent at pm,j satisfies

0 < χ(pm,j , η) ≤ N log κ1 + jρj +mρm

NN2 + j +m
≤ N log κ1 + jρj +mρm

j +m
,

Now (3.15) implies that

χ(pm,j , η) ≤ C + jρj +mρm
log κ2

log κ1

j +m
+
jρj +mρm
j +m

.

Recall that j = j(m) is large when m is large. Thus, ρj , ρm → 0 and hence
this exponent is arbitrarily close to 0.

3.4. Admissible domains. In this subsection we explore the rich struc-
ture of admissible domains.

Notation 3.2. Given ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2 and m ≥ 1, let

(3.16) I[ξ−m...ξ−1.] := fξ−1 ◦ · · · ◦ fξ−m([0, 1]).

This is always a non-trivial subinterval of [0, 1]. Note that fξi([0, 1]) ⊂ [0, 1]
for every ξi ∈ {0, 1}. Therefore, for each one-sided infinite sequence ξ =
(. . . ξ−2ξ−1.) the sets I[ξ−m...ξ−1.] form a nested sequence of non-empty com-
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pact intervals. Thus, the set

I[ξ] :=
⋂
m≥1

I[ξ−m...ξ−1.]

is either a singleton or a non-trivial interval. For completeness, for each
n ≥ 0 we write

I[ξ−m...ξ−1.ξ0...ξn] := I[ξ−m...ξ−1.].

Remark 3.14. Note that given a sequence ξ ∈ Σ2, any point x ∈ I[ξ] is
admissible for ξ. Observe that for all m ≥ 1 the interval I[ξ−m...ξ−1.] is the
maximal domain of f[ξ−m...ξ−1.], which justifies our notation.

Note that any ξ ∈ Σ2 is given by ξ = ξ−.ξ+, where ξ+ ∈ Σ+
2 := {0, 1}N

and ξ− ∈ Σ−2 := {0, 1}−N.

Proposition 3.15. We have the following properties:

(1) The set {ξ ∈ Σ2 : I[ξ] is a single point} is residual in Σ2.
(2) Given ξ+ ∈ Σ+

2 , the set {ξ− ∈ Σ−2 : I[ξ−.ξ+] is non-trivial} is un-
countable and dense in Σ−2 .

Moreover, for every closed interval J ⊂ [0, 1) and every ξ+ ∈ Σ+
2 the set of

ξ− ∈ Σ−2 with I[ξ−.ξ+] ⊃ J is uncountable.

We postpone the proof of this proposition until the end of this section.
Let us first collect some basic properties of the admissible domains I[ξ].

Lemma 3.16. Given a finite sequence (ξ−m . . . ξ−1), if ξ−k = 1 for at
least two indices k ∈ {1, . . . ,m} then I[ξ−m...ξ−1.] ⊂ (0, 1).

Proof. Let m ≥ 1 be the smallest such that ξ−m = 1. By property (F01)
we have I[ξ−m...ξ−1.]([0, 1]) = [0, c1] ⊂ [0, 1). Recall that f0([0, 1]) = [0, 1] and
f0(0) = 0. If k ≥ m is the smallest such that ξ−k = 1 then

I[ξ−k...ξ−m...ξ−1.] = [f1 ◦ fk−m−1
0 (c1), f1(0)],

where f1 ◦ fk−m−1
0 (c1) > 0 and f1(0) < 1. This implies that for all ` ≥ k we

have I[ξ−`...ξ−1.] ⊂ (0, 1). This proves the lemma.

Note that fk0 ([0, 1]) = [0, 1] implies that

I[0kξ−m...ξ−1.] = (fξ−1 ◦ . . . ◦ fξ−m)(fk0 ([0, 1])) = I[ξ−m...ξ−1.].

This yields the following result.

Lemma 3.17. For all k ≥ 1 we have I[0kξ−m...ξ−1.] = I[ξ−m...ξ−1.].

Lemma 3.18. Given ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2 satisfying ξ−m = 0 for
all m ≥ m0 for some m0 ≥ 1, the domain I[ξ] = I[ξ−m0 ...ξ−1.] is a non-trivial
interval.
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Proof. Recall that I[ξ−m...ξ−1.] is a non-trivial interval for any m ≥ 1.
Hence, the claim follows from Lemma 3.17.

We now start investigating the structure of admissible domains. Recall
the choice of the constants γ and β in (F1.i) and (F0.i).

Definition 3.19. We call a sequence ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2 asymp-
totically contracting if for every m ≥ 1 we have

(3.17) lim sup
m→∞

γkmβm−km = 0, where km =
m∑
i=1

ξ−i.

With (3.16) and properties (F0.i) and (F1.i), if ξ is asymptotically con-
tracting the length of the interval I[ξ] satisfies

|I[ξ]| ≤ lim
m→∞

γkmβm−km = 0.

The following lemma is hence an immediate consequence.

Lemma 3.20. For every asymptotically contracting sequence ξ ∈ Σ2 the
set I[ξ] consists of a single point. Moreover, if ξ = (ξ0 . . . ξm−1)Z is periodic,
then this point is an attracting fixed point of the map f[ξ0...ξm−1].

Remark 3.21. Given any asymptotically contracting sequence η =
η−.η+ ∈ Σ2, the set {η−.ξ+ : ξ+ ∈ Σ+

2 } consists of only asymptotically
contracting sequences. Observe that this set is clearly uncountable.

Lemma 3.22. The function ξ 7→ |I[ξ]| is upper semicontinuous but not
continuous. However, it is continuous at every η ∈ Σ2 for which I[η] is a
single point.

Proof. Let η ∈ Σ2. Since the I[η−n...η−1.] form a nested sequence of com-
pact intervals, their length is non-increasing and for any ε > 0 there exists
N ≥ 1 such that |I[η]| ≤ |I[η−n...η−1.]| < |I[η]|+ ε for every n ≥ N . For every
ξ ∈ Σ2 with d(ξ, η) ≤ δ :=

∑
|i|>N 2−|i| we have ξi = ηi for every |i| ≤ n and

thus |I[ξ−n...ξ−1.]| = |I[η−n...η−1.]|. Since I[ξ−n...ξ−1.] is also nested, we obtain

|I[ξ]| ≤ |I[ξ−n...ξ−1.]| = |I[η−n...η−1.]| < |I[η]|+ ε,

which implies upper semicontinuity.
If I[η] is a single point only then |I[η−n...η−1.]| = |I[ξ−n...ξ−1.]| < ε and∣∣|I[η]| − |I[ξ]|∣∣ ≤ ∣∣|I[η]| − |I[η−n...η−1.]|

∣∣+ |I[ξ−n...ξ−1.]| − |I[ξ]| ≤ 2ε.

This implies continuity at η.
Finally, observe that the function ξ 7→ |I[ξ]| is not continuous in general.

Indeed, recall that I[η] = [0, 1] for η = (0Z). However, as every sequence
ξ ∈ Σ2 with ξ−i = 1 for all i large enough is asymptotically contracting,
Lemma 3.20 shows that I[ξ] then contains only one point. Clearly, such a ξ
can be chosen arbitrarily close to η.
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To complete our analysis of admissible domains let us consider the sets
I[ξ] that contain a repelling point.

Lemma 3.23. For every periodic sequence ξ = (ξ0ξ1 . . . ξm−1)Z ∈
Σ2 \ {0Z} for which f[ξ0...ξm−1] has a repelling fixed point q, the set I[ξ] is
a non-trivial interval. Moreover, this interval contains points p∞ and p̃∞
with p∞ < q < p̃∞ that are fixed for f2

[ξ0...ξm−1].

Proof. Assume that q is a repelling fixed point of f[ξ0...ξm−1]. Consider a
point p ∈W u

loc(q, f[ξ0...ξm−1]) and note that the sequence pk := f2k
[ξ0...ξm−1](p),

k ≥ 1, is well-defined. Assume that p < q. Note that f2k
[ξ0...ξm−1] preserves

orientation and hence we can set p∞ := limk→∞ pk ∈ [0, 1]. Observe that
f2
[ξ0...ξm−1](p∞) = p∞. Since p ∈ W u

loc(q, f[ξ0...ξm−1]) and p 6= q, we con-
clude p∞ 6= q. Then, since f2

[ξ0...ξm−1] preserves orientation, we conclude that
[p∞, q] ⊂ I[ξ].

Completely analogously, we can show that I[ξ] contains an interval [q, p̃∞]
where p̃∞ = f2

[ξ0...ξm−1](p̃∞) 6= q. This completes the proof.

Observe that, as a consequence of Proposition 3.10, there are infinitely
many periodic sequences ξ such that I[ξ] contains a repelling periodic point
and therefore is non-trivial, by Lemma 3.23.

We now start by analyzing further properties of admissible domains.
Continuing Remark 3.21, we show that the set of asymptotically contracting
sequences is in fact much richer.

Lemma 3.24. Given any ξ+ ∈ Σ+
2 , the set

Aξ+ := {η = η−.ξ+ : η− ∈ Σ−2 and η is asymptotically contracting}
is uncountable.

Proof. Fix any ξ+ ∈ Σ+
2 . To prove that Aξ+ ⊂ Σ2 is uncountable we use

the standard Cantor diagonal argument.
Assume for contradiction that Aξ+ is countable. Notice that for every

asymptotically contracting sequence ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2, we cannot
have ξ−i = 0 for all large enough i. Let Ãξ+ ⊂ Aξ+ consist of the sequences
ξ = (. . . ξ−1.ξ

+) for which ξ−i = 0 for infinitely many i. Clearly, this set is
also countable. Consider some enumeration of it,

Ãξ+ = {ξ1 = (. . . 1L
1
20K

1
2 1L

1
10K

1
1 .ξ+), ξ2 = (. . . 1L

2
20K

2
2 1L

2
10K

2
1 .ξ+), . . .}.

Here we allow also Kk
1 = 0, in which case the symbol 0 is neglected. We now

construct a “new” sequence that is in Ãξ+ but not in that enumeration. Let
L1 = L1

1 + 1 and for k ≥ 2 choose

Lk+1 > max{Lk, Lk+1
k+1} such that β · γ

Pk+1
i=1 Li · βk < 1

2k
.
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Observe that the sequence (. . . 01L201L10.ξ+) is asymptotically contracting.
By construction this sequence is not in the enumeration of Ãξ+ above, which
is a contradiction. Hence, Ãξ+ (and thus Aξ+) is uncountable.

The following lemma shows that the set of sequences ξ having a non-
trivial admissible domain I[ξ] is also very rich.

Lemma 3.25. For every closed interval J ⊂ (0, 1) and every ξ+ ∈ Σ+
2

the set
Aξ+,J := {ξ = (ξ−.ξ+) : ξ− ∈ Σ−2 and I[ξ] ⊃ J}

is uncountable.

Proof. First, let us show that Aξ+,J is non-empty. Note that given any
J ⊂ (0, 1), there exists k = k(J) ≥ 1 such that f−k0 (J) ⊂ (0, c1), where
c1 = f1(0). Let now J0 := J and K1 := k(J0) = k(J) and note that by the
definition in (3.16) we have

J0 ⊂ fK1
0 ([0, c1]) = (fK1

0 ◦ f1)([0, 1]) = I[10K1 .].

For ` ≥ 0 define recursively

K`+1 ≥ k(J`) such that f
−K`+1

0 (J`) ⊂ (0, c1)

and
J`+1 := (f−1

1 ◦ f−K`+1

0 )(J`).

Then

J`+1 = (f−1
1 ◦ f−K`+1

0 ◦ · · · ◦ f−1
1 ◦ f−K1

0 )(J) = f
[10K`+1 ...10K1 .]

(J) ⊂ [0, 1]

and hence J ⊂ I
[10K`+1 ...10K1 .]

for every ` ≥ 1 (recall Remark 3.14). This
implies J ⊂ I[ξ] for ξ = (. . . 10K` . . . 10K1 .ξ+), proving that Aξ+,J is non-
empty.

We point out that, since f−m0 (J`) ⊂ (0, c1) for every m > K`+1, we can
repeat the construction above replacing at each step K` by any K` > K`.
In this way, we get a new sequence ξ such that J ⊂ I[ξ]. In particular, the
set of sequences ξ such that J ⊂ I[ξ] is infinite.

The above remark guarantees that the set Aξ+,J is infinite. To prove
that it is uncountable we use again the Cantor diagonal argument. Arguing
towards a contradiction, assume that Aξ+,J is countable and consider its
subset defined by

Ãξ+,J := {ξ = (. . . 0K310K210K1 .ξ+) ∈ Σ2 :

there are infinitely many blocks of 0s of length K`

satisfying K`+1 > K` for all ` ≥ 1
and I[ξ−m...ξ−1.] ⊃ J for all m ≥ 1}
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and its enumeration

Ãξ+,J = {ξ1 = (. . . 10K
1
` . . . 10K

1
1 .ξ+), ξ2 = (. . . 10K

2
` . . . 10K

2
1 .ξ+), . . .}.

Let now J ′0 = J and K1 = max{K1
1 + 1, k(J ′0) + 1} with J ′0 ⊂ f

[0K1 ]
([0, c1])

and write J ′1 := (f−1
1 ◦ f−K1

0 )([0, 1]). Note that J ′1 ⊂ I[10K1 ]
. Arguing induc-

tively, for ` ≥ 2 choose

K`+1 > max{K`,K
`+1
`+1 , k(J ′`) + 1} and J ′`+1 := (f−1

1 ◦ f−K`+1

0 )(J ′`).

If we bear in mind the above remark and argue as above, these choices give

I
[10K`+110K`1...10K1 .]

⊃ J ′`+1.

Clearly, none of the sequences (. . . 10K` . . . 10K1 .ξ+) is in Ãξ+,J , contradict-
ing that Ãξ+,J is countable. Hence Aξ+,J is uncountable.

We finally provide the proof of our proposition.

Proof of Proposition 3.15. We first prove that the set of sequences with
trivial spines is residual. As an immediate consequence of Definition 3.19,
given any sequence ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2, for any m ≥ 1 the sequence
ξ′ = (. . . 11ξ−m . . . ξ−1.ξ0ξ1ξ2 . . .) is asymptotically contracting. Moreover,
by Lemma 3.20 the domain I[ξ′] is a single point only. Clearly, the distance
between ξ and ξ′ can be made arbitrarily small by increasing m. This proves
that the sequences ξ such that I[ξ] is trivial are dense in Σ2. Given ε > 0,
set

Aε := {ξ ∈ Σ2 : |I[ξ]| ≤ ε}.
The second statement in Lemma 3.22 in particular implies that Aε contains
an open and dense subset of Σ2. Thus,

⋂
n≥1A1/n contains a residual subset

that consists of sequences for which I[ξ] is a single point. This proves the
first part of the proposition.

We now look at the set of sequences with non-trivial spines. Given any
sequence ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2, recall that I[ξ−m...ξ−1.] for any m ≥ 1
is a non-trivial interval. By Lemma 3.17 we have I[0kξ−m...ξ−1.] = I[ξ−m...ξ−1.]

for any k ≥ 1. Further, recall that I[ξ−m...ξ−1.] = I[ξ−m...ξ−1.ξ0...ξm]. Thus,
the sequence ξ′ = (. . . 00ξ−m . . . ξ−1.ξ0ξ1 . . .) satisfies I[ξ′] = I[ξ−m...ξ−1.] and
hence contains an interval. Clearly, the distance between ξ and ξ′ can be
made arbitrarily small by increasing m. Together with Lemma 3.25, this
proves the second part of the proposition.

3.5. Gap in the Lyapunov spectrum. We finally establish some gap
in the spectrum of Lyapunov exponents.

Proposition 3.26 (Spectral gap). Let

χ̃ := sup{χ(p, ξ) : p ∈ [0, 1], ξ ∈ Σ2 \ E},
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where
E := {ξ = (ξ−.ξ+) : ξ+ = (ξ0 . . . ξk0N), k ≥ 0}.

Then β̃ := exp χ̃ < β.

Proof. The idea of the proof is quite simple although the proof itself is
a bit technical. Note that the exponent χ(p, ξ) could be close to β only if
the orbit {f[ξ0...ξm](p)}m≥1 stays arbitrarily close to 0 infinitely often. Note
also that each visit close to 0 is preceded by a visit close to 1. This implies
that the effect of expansion (iterates of f0 close to 0) will be compensated
by a (previous) contraction (iterates of f0 close to 1 and some iterates of f1)
that will force the exponent to decrease. Now we will provide the details.

For simplicity of exposition we assume that f0 is non-linear in a neigh-
borhood of 0. A similar proof can be done in the general case. Let δ > 0 be
close to 0 and define

H0 := [0, δ], H ′0 := f−1
1 (H0) = [h′0, 1].

Recalling condition (F01), we see that if δ is small enough then

(3.18) f1(H0) ∩H0 = ∅, f1(H ′0) ∩H ′0 = ∅, f1([0, 1]) ∩H ′0 = ∅.
We first introduce some constants that will be used throughout the proof:

(3.19) α̃ := min
H′0

|f ′1|, α̂ := max
H′0

|f ′1|.

Note that α̃/α̂ ∼ 1 if δ is small enough. Further define

β0 := sup{f ′0(x) : x /∈ H0} = sup{f ′0(x), f ′1(x) : x /∈ H0} < β.

Observe that β0 < β follows from our simplifying assumption that f0 is
non-linear close to 0. Let

β′0 := inf{f ′0(x) : x ∈ H0} < β, λ′0 := sup{f ′0(x) : x ∈ H ′0}.
Note that if δ is small then λ′0 and β′0 are close to λ and β and thus

(3.20) |log λ| log β
log β′0

− |log λ′0|+
log β

2
< log β′0.

To prove the proposition, note that it is enough to consider the case that
ξi = 0 for infinitely many i ≥ 1. Indeed, otherwise, because f1 is a contrac-
tion, we have χ(p, ξ) < 0. Moreover, by replacing p by some iterate, we can
assume that p 6= 0. Further, we can assume that the orbit {f[ξ0...ξm](p)}m≥0

hits the interval H0 infinitely many times. Indeed, otherwise this orbit is
contained in the interval (δ, 1] in which the derivatives f ′0 and f ′1 are up-
per bounded by β′0 and thus the Lyapunov exponent of χ(p, ξ) is upper
bounded by log β′0. Hence, without loss of generality, possibly replacing p by
some positive iterate, we can assume that p ∈ H0 and fξ0(p) /∈ H0.

For every m ≥ 0 write
pm+1 := f[ξ0...ξm](p).
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We define three increasing sequences (rk)k, (ek)k, (ik)k of positive integers
as follows (compare Fig. 4): ik < rk ≤ ek < ik+1,

pj ∈ H0 if and only if rk ≤ j ≤ ek for some k,(3.21)
pj ∈ H ′0 if and only if ik ≤ j ≤ rk − 1 for some k.(3.22)

... ...... ...
0 1

prk pek pik prk−1

H0 H ′0

Fig. 4. Definition of the sequences (rk)k, (ek)k, (ik)k

Note that indeed by our choices the only way of entering H0 is by coming
from H ′0 after applying f1, and the only way of entering H ′0 is after apply-
ing f0. More precisely: Since f1(H0)∩H0 = ∅ (recall (3.18)), we have ξj = 0
for every j ∈ {rk, . . . , ek − 1} whenever rk < ek. By definition of rk we have
prk ∈ H0 and prk−1 6∈ H0 and thus prk−1 > prk . Since f0 is an increasing
function, we have prk 6= f0(prk−1). Thus,

prk = f1(prk−1), prk−1 ∈ H ′0, and ξrk−1 = 1.

Since f1([0, 1]) ∩ H ′0 = ∅ (recall (3.18)), we have ξj = 0 for every index
j ∈ {ik − 1, . . . , rk − 2}. In particular this implies that

(3.23) pik ∈ [h′0, f0(h′0)).

By the definitions of H0 and of the sequences above we have pj /∈ H0 for
all j ∈ {ek + 1, ik+1 − 1}, and therefore

(3.24) log |(f[ξek+1...ξik+1−1])
′(pek+1)| < (β0)ik+1−ek−1.

Denote by Nk the number of iterates of the point pik in H ′0, that is,

Nk := rk − ik − 1.

Claim 3.27. We have prk ≥ α̃α̂
−1λNk+1δ.

Proof. Recall that by (3.23) we have pik < f0(h′0) and hence

fNk0 (pik) = prk−1 < fNk0 (f0(h′0)) = fNk+1
0 (h′0).

Since h′0 = f−1
1 (δ), with (3.19) we can estimate 1 − h′0 ≥ α̂−1δ. Hence, by

(F0.i) we can estimate

1− prk−1 > 1− fNk+1
0 (h′0) ≥ λNk+1α̂−1δ.

Finally, since f1(0) = 1, we have

prk = f1(prk−1) ≥ α̃λNk+1α̂−1δ.
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By Claim 3.27, ek − rk ≤ M̃k + 1, where M̃k is defined by

(β′0)fMk α̃α̂−1λNk+1δ = δ,

that is,

(3.25) M̃k ≤Mk :=
⌊

(Nk + 1)|log λ| − log α̃/α̂
log β′0

⌋
+ 1.

Let us now estimate the finite-time Lyapunov exponents associated to
each of the finite sequences (ξik . . . ξek).

Claim 3.28. There exists β′′0 < β such that

log |(f[ξik ...ξek ])′(pik)|
ek − ik + 1

≤ log β′′0 .

Proof. We can freely assume that the number of iterations in the interval
H0 is the maximum possible (clearly this is the case that maximizes the
derivative f[ξik ...ξek ]). That is, suppose that ek − rk = Mk. Recalling the
definition of α̂ in (3.19), with the above we obtain

log |(f[ξik ...ξek ])′(pik)|
ek − ik + 1

≤ Mk log β + log α̂−Nk|log λ′0|
Mk +Nk + 1

.

From (3.25) we conclude that

log |(f[ξik ...ξek ])′(pik)|
ek − ik + 1

≤ 1
Mk +Nk + 1

[(
(Nk + 1)|log λ| − log

α̃

α̂

)
log β
log β′0

+ log β −Nk|log λ′0|
]

≤ Nk

Mk +Nk + 1

(
|log λ| log β

log β′0
− |log λ′0|

)
+

log β
Mk +Nk + 1

+
1

Mk +Nk + 1

(
|log λ| − log

α̃

α̂

)
log β
log β′0

≤
(
|log λ| log β

log β′0
− |log λ′0|+

log β
2

)
+

1
Mk +Nk + 1

[
|log λ| − log

α̃

α̂

]
log β
log β′0

,

where in the last line we also used Mk +Nk + 1 ≥ 2. By (3.20),

log |(f[ξik ...ξek ])′(pik)|
ek − ik + 1

< log β′0 +
1

Mk +Nk + 1

[
|log λ| − log

α̃

α̂

]
log β
log β′0

.

Let L ≥ 1 be large enough such that the rightmost term in the last
estimate is less than ε := (log β− log β′0)/2 whenever Mk +Nk + 1 ≥ L, and
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thus the claim is proved if Mk +Nk + 1 ≥ L. In the finitely many remaining
possible cases with |f ′1| ≤ γ (recall (F1.i)) we can estimate

log |(f[ξik ...ξek ])′(pik)|
ek − ik + 1

≤ max
`=1,...,L

log(β`γ)
`+ 1

< max
`=1,...,L

`

`+ 1
log β < log β.

Hence, with

β′′0 := exp max
{

log β′0 + ε,max
`

`

`+ 1
log β

}
we have β′′0 < β. This proves the claim.

We are now ready to get an upper bound for χ(p, ξ). It is enough to
consider segments of orbits corresponding to exit times ek and starting at
the point p1:

log |(f[ξ1...ξek ])′(p1)|
ek

≤
k∑
j=0

ej − ij + 1
ek

log |(f[ξij ...ξej ]
)′(pij )|

ej − ij + 1

+
ij+1 − ej − 1

ek

log |(f[ξej+1...ξij+1−1])′(pej+1)|
ij+1 − ej − 1

.

By (3.24) and Claim 3.28 this derivative is bounded from above by
max{log β0, log β′′0} < log β. This completes the proof of the proposition.

4. Transverse homoclinic intersections

4.1. The maximal invariant set. In this section we are going to prove
that the maximal invariant set of F in the cube C (recall the definition
in (2.1)) is the homoclinic class of a saddle of index u+ 1.

Theorem 4.1. Given the periodic point q∗ = q∗I0 ∈ [0, 1] and the ex-
panding sequence ξ = ξ(I0) provided by Lemma 3.8 applied to the interval
I0 = [f−1

0 (b0), b0], set q̂ = $−1(ξ). Then the periodic point Q∗ = (q̂, q∗) has
index u+ 1 and ΛF = H(Q∗, F ).

Note that this result implies in particular that ΛF is transitive and con-
tains both saddles of index u+ 1 and of index u and thus is not hyperbolic.
To prove Theorem 4.1, we will use the properties of the iterated function
system in Section 3. This translation is possible by the skew structure of F .
In fact, the following remark follows immediately from this structure.

Remark 4.2. Given a periodic sequence ξ = (ξ0 . . . ξm−1)Z ∈ Σ2 and
a fixed point r ∈ [0, 1] of the map f[ξ0...ξm−1], there is a canonically asso-
ciated saddle point R = (rs, ru, r) where (rs, ru) = $−1((ξ0 . . . ξm−1)Z). If
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|f ′[ξ0...ξm−1](r)| 6= 1 then the saddle R is hyperbolic and

{rs} × [0, 1]u ×W u(r, f[ξ0...ξm−1]) ⊂W u(R,F ),

[0, 1]s × {ru} ×W s(r, f[ξ0...ξm−1]) ⊂W s(R,F ).

Note that if |f ′[ξ](r)| > 1 (respectively, |f ′[ξ](r)| < 1) then the saddle R has
index u+ 1 (respectively, u).

We introduce some notation. Given a periodic sequence (ξ0 . . . ξm−1)Z

∈ Σ2 and a fixed point r(ξ0...ξm−1)Z = f[ξ0...ξm−1](r(ξ0...ξm−1)Z), we will consider
the point

R(ξ0...ξm−1)Z := ($−1((ξ0 . . . ξm−1)Z), r(ξ0...ξm−1)Z),

which is periodic under F . Notice that there can exist fibers that contain
more than one periodic point, so in general the points r(ξ0...ξm−1)Z and hence
R(ξ0...ξm−1)Z are not unique.

Remark 4.3. Note that Remark 4.2 implies, in particular, that for every
periodic point R ∈ ΛF \ {Q,P} the manifold W u(R,F ) transversely inter-
sects [0, 1]s×{0u}×(0, 1) ⊂W s(P, F ), and W s(R,F ) transversely intersects
{0s} × [0, 1]u × (0, 1) ⊂W u(Q,F ).

Remark 4.4. If R = R(ξ0...ξm−1)Z = (rs, ru, r) is a periodic point such
that W s(r, f[ξ0...ξm−1]) contains the forward orbit of either 0 or 1, then
W u(P, F ) intersects W s(R,F ) transversely.

We have the following relation for periodic points with index u.

Lemma 4.5. Consider a periodic sequence ξ = (ξ0 . . . ξm−1)Z ∈ Σ2 with
ξ 6= 0Z and an associated periodic point of the map F ,

R = R(ξ0...ξm−1)Z = (rs, ru, r(ξ0...ξm−1)Z) = (rs, ru, r).

(1) If R has index u and if the stable manifold W s(r, f[ξ0...ξm−1]) contains
[0, 1] then R is homoclinically related to P .

(2) If R has index u + 1 and if the unstable manifold W u(r, f[ξ0...ξm−1])
contains a fundamental domain of f0 in (0, 1) then for every saddle
R̃ ∈ ΛF with R̃ 6= Q the manifolds W s(R̃, F ) and W u(R,F ) intersect
transversely.

Proof. Note that as ξ 6= 0Z, we have r ∈ (0, 1) and thus R 6= Q, P .
Suppose that R has index u. Remark 4.3 implies that W u(R,F ) trans-

versely intersects W s(P, F ). To see that W u(P, F ) transversely intersects
W s(R,F ) (and thus R and P are homoclinically related) it suffices to note
that {ys} × [0, 1]u × {f1(0)} ⊂ W u(P, F ) for some ys ∈ (0, 1)s, and that
[0, 1] ⊂W s(r, f[ξ0...,ξm−1]). Remark 4.2 then implies (1).
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To prove (2) note that our assumptions imply that for some fundamental
domain D = [d, f0(d)] ⊂ (0, 1) of f0 and some zs ∈ (0, 1)s we have

∆ := {zs} × [0, 1]u ×D ⊂W u(R,F ).

Remark 4.3 applied to R̃ implies that W s(R̃, F ) accumulates at W s(Q,F )
from the right and therefore (from the definition of f1) W s(R̃, F ) accumu-
lates to {0s}× [0, 1]u×{1} from the left. In particular, for every δ > 0 there
are x ∈ (1− δ, 1) ⊂ (f0(d), 1) and zu ∈ (0, 1) such that

(4.1) Υ := [0, 1]s × {(zu, x)} ⊂W s(R̃, F ).

The choice of x implies that some negative iterate of Υ by F transversely
meets ∆ ⊂ W u(R,F ). Thus W s(R̃, F ) transversely intersects W u(R,F ),
ending the proof of the lemma.

Remark 4.6. Note that (4.1) and the fact that x can be taken arbitrarily
close to 1 implies that for every saddle R ∈ ΛF , R 6= Q, every fundamental
domain D of f0 in (0, 1), and every xs ∈ [0, 1] we have {xs} × [0, 1]u ×D t
W s(R,F ) 6= ∅.

We continue exploring the skew-product structure and the strong un/
stable directions of the global transformation F .

Remark 4.7. Consider an interval I ⊂ [0, 1], a point ys ∈ [0, 1]s, and
the disk ∆ = {ys} × [0, 1]u × I. Given a finite sequence ξ = (ξ0 . . . ξm) with
Notation 3.1 there is some ys ∈ [0, 1]s such that

Fm+1(∆[ξ]) = {ys} × [0, 1]u × f[ξ](I).

Lemma 4.8. Given the periodic point Q∗ = (qs, qu, q∗) = (q̂, q∗) in Theo-
rem 4.1, the unstable manifold W u(Q∗, F ) transversely intersects the s-disk
[0, 1]s × {(xu, x)} for any (xu, x) ∈ [0, 1]u × (0, 1).

Proof. Consider the finite sequence ξ = ξ(I0) associated to q∗ as provided
by Lemma 3.8. Recall that by Lemma 3.8 the fundamental domain D =
[f−2

0 (b0), f−1
0 (b0)] is contained in W u(q∗, f[ξ]). This implies that

∆0 := {qs} × [0, 1]u ×D ⊂W u(Q∗, F ).

Let us consider the following forward iterations of ∆0 under F . For i ≥ 0
define recursively

∆i+1 := F i+1(∆0 ∩C[0i+1]) = F (∆i ∩C0) = {qsi+1} × [0, 1]u × f i+1
0 (D)

for some point qsi+1 ∈ [0, 1]s. Observe that⋃
i≥0

f i0(D) ⊃ [f−2
0 (b0), 1).
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Thus for every x ∈ [f−2
0 (b0), 1) there is some point ys(x) ∈ [0, 1]s such that

Υx = {ys(x)} × [0, 1]u × {x} ⊂W u(Q∗, F ).

This implies that the lemma holds when x ∈ [f−2
0 (b0), 1).

To complete the proof, first observe that, by (F01)(iii) for any x ∈
(0, f−2

0 (b0)) one has
x′ = f−1

1 (x) ∈ [f−2
0 (b0), 1).

Thus, we can consider the disk Υx′ and the point zs(x′) ∈ [0, 1]s given by

F (Υx′ ∩C1) = {zs(x′)} × [0, 1]u × {f1(x′)} = {zs(x′)} × [0, 1]u × {x}.

By construction, the u-disk F (Υx′ ∩ C1) is contained in W u(Q∗, F ) and
intersects the s-disk [0, 1]s × {(xu, x)}. This ends the proof of the lemma.

Remark 4.9. Given X = (xs, xu, x) ∈ ΛF , we denote by W ss(X,F )
(resp. W uu(X,F )) the strong stable manifold of X (resp. the strong un-
stable manifold of X) defined as the unique invariant manifold tangent to
Es (resp. Eu) at X and of dimension s (resp. dimension u). Note that

[0, 1]s × {(xu, x)} ⊂W ss(X,F ), {0s} × [0, 1]u × {x} ⊂W uu(X,F ).

Remark 4.9 and Lemma 4.8 immediately imply the following.

Corollary 4.10. For every X = (xs, xu, x) ∈ ΛF with x ∈ (0, 1) we
have W u(Q∗, F ) t W ss(X,F ) 6= ∅. In particular, W u(Q∗, F ) t W s(R,F )
for every saddle R ∈ ΛF \ {P,Q}.

Notation 4.1. For a point X ∈ C and a number i ∈ Z such that
F i(X) ∈ C let us write

Xi = F i(X) = (xsi , x
u
i , xi).

Given xs ∈ Rs we denote Bs
δ(x

s) := {x ∈ Rs : d(x, xs) < δ}. We will also
use the analogous notation Bu

δ (xu).
The following proposition is the main step in the proof of Theorem 4.1.

Proposition 4.11. Let X = (xs, xu, x) ∈ ΛF be such that xi ∈ (0, 1)
for infinitely many i ≤ 0. For δ > 0, the disk

∆s
δ(X) := Bs

δ(x
s)× {(xu, x)}

transversely intersects W u(Q∗, F ). Set

X(δ) := (xs(δ), xu, x) ∈ ∆s
δ(X) t W u(Q∗, F ).

Then for every ε > 0 the disk

∆cu
ε (X(δ)) := {xs(δ)} ×Bu

ε (xu)× [x− ε, x+ ε] ⊂W u(Q∗, F )

intersects W s(Q∗, F ) transversely.
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Proof. Since xi ∈ (0, 1) for infinitely many i ≤ 0, the uniform expansion
in the s-direction with respect to F−1 implies that there is some iterate
i ≤ 0 such that xi ∈ (0, 1) and

[0, 1]s × {(xui , xi)} ⊂ F i(∆s
δ(X)).

Thus, by Lemma 4.8, F i(∆s
δ(X)) intersects W u(Q∗, F ) transversely and

hence ∆s
δ(X) intersects W u(Q∗, F ) transversely.

Note that, since X ∈ ΛF , the definition of X(δ) implies that X(δ) ∈ Λ+
F .

Consider now the forward orbit of X(δ) and let ξ = (ξ0ξ1 . . .) ∈ Σ+
2 be the

one-sided sequence determined by

F i(X(δ)) ∈ Cξi , i ≥ 0.

We let ∆0 := ∆cu
ε (X(δ)) and (using Notation 3.1) recursively define, for

i ≥ 0,
∆i+1 := F (∆i ∩Cξi) = F i+1(∆0 ∩C[ξ0...ξi]).

The uniform expansion in the u-direction implies that there is a least iterate
i0 such that we cover the unstable vertical direction, that is,

(4.2) ∆i0 = {ys(δ)} × [0, 1]u × L
for some ys(δ) ∈ [0, 1]s and some interval L ⊂ (0, 1). Clearly, this covering
property is also true for any i ≥ i0.

Notice that, in general, we have no information about the location of
the interval L. Thus, in principle, we cannot apply our preliminary results
about expanding itineraries in Section 3.2 and we need to consider some
additional iterates of L. More precisely, first consider some image H of L
under the iterated function system such that we can apply these arguments
to H. Recall that, in particular, such an interval H must be contained in
[f−2

0 (b0), b0]. Take j0 large enough such that f j00 (L) is close enough to 1 and

f[0j01](L) ⊂ (0, f−1
0 (a0)) = (0, f−2

0 (b0)).

Consider now the smallest `0 ≥ 0 such that

f[0j010`0 ](L) ∩ (f−2
0 (b0), b0] 6= ∅

and consider the finite sequence η := (0j010`0). Let

H := f[η](L) ∩ [f−2
0 (b0), b0]

and consider the disk

(4.3) ∆̃ := F j0+1+`0(∆i0 ∩C[η]) = {ỹs} × [0, 1]u ×H,
where ỹs is some point in [0, 1]s. In comparison to (4.2), this disk is now
appropriate to apply our arguments on expanding itineraries.

By Remark 4.6, if H contains a fundamental domain of f0 then ∆̃ meets
W s(Q∗, F ) transversely and, since ∆̃ is a positive iterate of ∆cu

ε (X(δ)), we
are already done in this case.
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In the general case we will see that some forward iterate of H will contain
the fundamental domain [f−2

0 (b0), f−1
0 (b0)]. To prove that, we apply our

results about expanded successors in Section 3.2. By Lemma 3.5, there exist
expanded successors H = H〈0〉, H〈1〉, . . . ,H〈i(H)〉 of H such that H〈i(H)〉
contains [f−2

0 (b0), f−1
0 (b0)]. Together with the expanded successor, for j =

0, . . . , i = i(H), we obtain an expanded finite sequence ξ〈j〉 = ξ(H〈j(H)〉) of
length |ξ〈j〉| (recall (3.1)).

We now define recursively a sequence of disks as follows. Let ∆̂0 := ∆̃
with ∆̃ defined in (4.3) and for j = 0, . . . , i(H)− 1 let

∆̂j+1 := F |ξ〈j〉|(∆̂j ∩C[ξ〈j〉]).
Notice that

∆̂j+1 = {ysj+1} × [0, 1]u × f[ξ〈j〉](H〈j〉) = {ysj+1} × [0, 1]u ×H〈j+1〉

for some point ysj+1 ∈ [0, 1]s. As H〈i(H)〉 contains the fundamental domain
[f−2

0 (b0), f−1
0 (b0)] of f0, by Remark 4.6 the disk ∆̂i(H) meets W s(Q∗, F )

transversely. Hence, the proposition is proved in that case also.

As a consequence of the proof of Proposition 4.11 we obtain the following.

Remark 4.12. Observe that {(0s, 0u)} × (0, 1) ⊂ H(Q∗, F ). As the ho-
moclinic class is a closed set, we can conclude that {(0s, 0u)} × [0, 1] ⊂
H(Q∗, F ). In particular, P,Q ∈ H(Q∗, F ).

Remark 4.13. The proof of the proposition implies that for any hy-
perbolic periodic point R 6= Q of index u + 1 the manifolds W u(R,F ) and
W s(Q∗, F ) intersect transversely.

This remark, Corollary 4.10, and the fact that being homoclinic is an
equivalence relation, together imply the following result.

Corollary 4.14. Every pair of saddles of index u + 1 in ΛF that are
different from Q are homoclinically related.

We finally formulate a simple fact.

Lemma 4.15. Given any sequence ξ ∈ Σ2, the point (xs, xu) = $−1(ξ),
and some point x ∈ I[ξ], we have X = (xs, xu, x) ∈ ΛF .

Proof. Recall Notation 4.1. As an immediate consequence of the skew-
product structure of F , by the definition of I[ξ] we have xi ∈ [0, 1] for all
i ∈ Z. Since F is topologically conjugate to the shift map one finds that
(xsi , x

u
i ) ∈ Ĉ for all i ∈ Z. Hence F i(X) ∈ C for all i ∈ Z and thus X ∈ ΛF .

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Clearly, given any X = (xs, xu, x) ∈ H(Q∗, F ), we
have (xs, xu) ∈ Ĉ. It hence remains to prove ΛF ⊂ H(Q∗, F ). We consider
two cases.
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Case 1: X = (xs, xu, x) ∈ ΛF and x−i ∈ (0, 1) for infinitely many
i > 0. By Proposition 4.11, and using the notation there, there exists a
point

X(δ) = (xs(δ), xu, x) ∈ ∆s
δ(X) ∩W u(Q∗, F ).

Note that it belongs to the forward invariant set Λ+
F and the disk ∆cu

ε (X(δ))
⊂W u(Q∗, F ) transversely intersects W s(Q∗, F ) and hence contains a trans-
verse homoclinic point of Q∗. Thus

∆cu
ε (X(δ)) ∩H(Q∗, F ) 6= ∅.

By Proposition 4.11 we have X(δ) ∈ H(Q∗, F ). As δ can be taken arbitrarily
small, the point X(δ) can be taken arbitrarily close to X and thus X ∈
H(Q∗, F ). This implies the theorem in Case 1.

Case 2: There is i0 such that X = (xs, xu, x) ∈ ΛF and x−i ∈ {0, 1}
for all i ≥ i0. Replacing X by its iterate F−i0(X), we can assume that
x−i ∈ {0, 1} for all i ≥ 0. We now distinguish two more cases.

Case 2.1: x0 = 1. Since f`(x) = 1 if and only if ` = 0 and x = 1, as
the only possibility for the backward branch of X we must have x−i = 1 for
all i ≥ 0. Moreover, the sequence ξ = $−1(x0) must satisfy ξ−i = 0 for all
i ≥ 0. Hence X−i ∈ C0 for all i ≥ 0 and therefore X is of the form (0s, xu, 1).

Note that I[ξ] = [0, 1]. Thus, by Lemma 4.15, given any τ > 0 for every
y ∈ (1− τ, 1) there is a point Y = (0s, xu, y) in ΛF . Note that these points
form an uncountable set. Since the set of all preimages

{f[ξ−m...ξ−1.]({0, 1}) : (ξ−m . . . ξ−1) ∈ {0, 1}−m, m ≥ 1}
is countable, without loss of generality we can assume that the point Y and
its preimages with central coordinates y−i additionally satisfy y−i ∈ (0, 1)
for all i ≥ 0. Now applying Case 1 to Y we conclude that Y ∈ H(Q∗, F ).
Since a homoclinic class is a closed set and Y can be chosen arbitrarily close
to X, we obtain X ∈ H(Q∗, F ).

Case 2.2: x0 = 0. To distinguish the two possible types of backward
branches of X in this case, observe that f`(x) = 0 if either x = 0 and ` = 0
or x = 1 and ` = 1.

Case 2.2a: x−i = 0 for all i ≥ 0. Hence in this case X−i ∈ C0 for all
i ≥ 0, and we can conclude as in Case 2.1.

Case 2.2b: There exists a first index i such that x−i = 1. Replacing X
by the iterate f−i(X), we can now conclude as in Case 2.1.

This proves that ΛF ⊂ H(Q∗, F ) and hence proves the theorem.

4.2. Particular cases. Supplementing the results in the previous sec-
tion we obtain, under additional mild hypotheses on the maps f0, f1, further
properties of the homoclinic class.
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First, we assume that the following Kupka–Smale-like condition is satis-
fied:

(FKS) Every periodic point of any composition f[ξ0...ξm] is hyperbolic.

Note that this condition is generic among pairs of maps f0, f1 satisfying
conditions (F0), (F1), and (F01).

Theorem 4.16. Under the additional hypothesis (FKS), for every peri-
odic sequence ξ = (ξ0 . . . ξm−1)Z there is a periodic point Rξ of F of index u
in the fiber of ξ (that is, π(Rξ) = ξ) that is homoclinically related to P .

Proof. The arguments in the proof of Lemma 3.23 and the hypothesis
(FKS) together imply that the set⋂

k∈N
(f[ξ0...ξm])

2k([0, 1])

is either an attracting fixed point of f[ξ0...ξm] or an interval whose extremes
are hyperbolic attracting periodic points of f[ξ0...ξm]. In either case, consider
one such attracting point and denote it by rξ. By constructionW s(r, f[ξ0...ξm])
contains either 0 or 1. By Remark 4.4, this implies that W s(Rξ, F ) trans-
versely intersects W u(P, F ). On the other hand, by Remark 4.3 we know
that W u(Rξ, F ) and W s(P, F ) intersect transversely. This implies that the
saddles Rξ and P are homoclinically related, proving the proposition.

Recall that in the previous case under conditions (F0), (F1), (F01) we
have H(P, F ) ⊂ ΛF . We now consider another particular case. Assume that:

(FB) If f1([0, 1]) = [0, c] then f ′0(x) ∈ (0, 1) for all x ∈ [c, 1].

Theorem 4.17. Under the additional hypothesis (FB) we have H(P, F) =
ΛF = H(Q∗, F ).

The argument is somewhat analogous to the one for Theorem 4.1. More-
over, it follows very closely the exposition in [7, Section 6.2] using a con-
struction of so-called blenders.

First, we have a completely analogous version of Proposition 4.11.

Proposition 4.18. Let Y = (ys, yu, y) ∈ ΛF be such that yi ∈ (0, 1) for
infinitely many i ≥ 0. For δ > 0, the disk

∆u
δ (Y ) := {ys} ×Bu

δ (yu)× {y}
transversely intersects W s(P, F ). Let

Y (δ) := (ys, yu(δ), y) ∈ ∆u
δ (Y ) t W s(P, F ).

Then for every small ε > 0 the disk

∆cs
ε (Y (δ)) := Bs

ε(y
s)× {yu(δ)} × [y − ε, y + ε] ⊂W s(P, F )

intersects W u(P, F ) transversely.
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After proving this proposition the proof of Theorem 4.17 is identical to
the one of Theorem 4.1, so we refrain from giving the details.

Proof of Proposition 4.18. The first steps are identical to the ones of the
proof of Proposition 4.11.

Further, to show that ∆cs
ε (Y (δ)) t W s(P, F ) 6= ∅, we consider the iterate

of an interval J := [y− ε, y+ ε] under the maps f[ξ−m...ξ−1.]. First note that,
under the hypothesis (FB), the maps f−1

0 and f−1
1 are uniformly expanding

in [c, 1] and [0, c], respectively, with derivatives having moduli ≥ κ > 1. An
immediate consequence (see also the Lemma in [6]) is that f[ξ−m...ξ−1.](J)
for large m contains the point c. Just observe that if c /∈ f[ξ−m...ξ−1.](J)
then either f[ξ−m...ξ−1.](J) ∈ [0, c) or f[ξ−m...ξ−1.](J) ∈ (c, 1]. In the first
case let ξ−m−1 = 0 while in the second let ξ−m−1 = 1. Consequently,
|f[ξ−m−1...ξ−1.](J)| ≥ κm+1|J |. Thus, there is a first m with the desired prop-
erty.

Now, to finish the proof, note that the skew-product structure implies
that there exist ỹu ∈ [0, 1]u such that

[0, 1]s × {ỹu} × f[ξ−m...ξ−1.](J) ⊂W s(P, F )

and, recalling that c = f1(0), this implies that there is ỹ s ∈ [0, 1]s such that

{ỹ s} × [0, 1]u × {f1(0)} ⊂W u(P, F ).

This means that ∆cs
ε (Y (δ)) t W u(P, F ) 6= ∅.

5. Lyapunov exponents in the central direction. We now continue
our discussion of Lyapunov exponents started in Section 3.3. Recall that, due
to the skew-product structure and our hypotheses, the splitting in (2.2) is
dominated and for every Lyapunov regular point coincides with the Oseledec
splitting provided by the multiplicative ergodic theorem. Here, in particular,
a point S is Lyapunov regular if for i = uu, c, and ss for every v ∈ EiS the
limit

(5.1) χi(S) := lim
n→±∞

1
n

log ‖dFnS (v)‖

exists. In the following we will focus only on the Lyapunov exponent χc(S)
associated to the central direction Ec. Observe that given a Lyapunov regular
point S = (ss, su, s) ∈ ΛF and ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2 given by ξ =
$((ss, su)), we have

(5.2) χc(S) = lim
n→∞

1
n

log |(f[ξ0...ξn−1])
′(s)|.

Clearly, χc(S) is well-defined for every periodic point.

5.1. Spectra of Lyapunov exponents. Let us consider spectra of
central exponents from various points of view.
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5.1.1. Spectrum related to periodic points. Given a saddle S, we define
the spectrum of saddles homoclinically related to S by

Ihomrel(S) := {χc(R) : R hyperbolic periodic homoclinically related to S},

and the periodic point spectrum of the homoclinic class of S by

Iper(H(S, F )) := {χc(R) : R ∈ H(S, F ) periodic}.

Clearly, Ihomrel(S) ⊂ Iper(H(S, F )). Let Q∗ be the saddle provided by The-
orem 4.1. Since the homoclinic class H(Q∗, F ) coincides with the maximal
invariant set ΛF , we have

(5.3) Ihomrel(Q) ∪ Ihomrel(Q∗) ∪ Ihomrel(P ) ⊂ Iper(H(Q∗, F )).

Moreover, Ihomrel(Q) = {log β} by Lemma 2.9.
Let us recall the following standard fact (see also [2, Corollary 2]).

Lemma 5.1. Given two saddles S and S′ that are homoclinically related
and satisfy χc(S) ≤ χc(S′), we have

[χc(S), χc(S′)] ⊂ Ihomrel(S) = Ihomrel(S′).

Proof. Recall that if S and S′ are homoclinically related then there exists
a horseshoe ΛS,S′ ⊂ ΛF that contains both saddles. In particular ΛS,S′
is a uniformly hyperbolic locally maximal and transitive set with respect
to F . The existence of a Markov partition implies that we can construct
orbits in the hyperbolic set that spend a fixed proportion of time close to S
and S′, respectively. This is enough to obtain periodic points in ΛS,S′ with
Lyapunov exponents dense in [χc(S), χc(S′)]. Finally, any such periodic orbit
is homoclinically related to S and S′.

5.1.2. Spectrum of Lyapunov regular points. Let

Ireg(H(S, F )) := {χc(R) : R ∈ H(S, F ) Lyapunov regular}.

We finally obtain the possible spectrum of central Lyapunov exponents.
Recall the definition of β̃ in Proposition 3.26 that is the largest Lyapunov
exponent as in (5.2) that is different from β.

Proposition 5.2. Let

β∗ := exp sup{χ : χ ∈ Ireg(H(Q∗, F )), χ 6= log β}.

We have

Iper(H(Q∗, F )) = [log λ, log β∗] ∪ {log β}

⊂ Ireg(H(Q∗, F )) ⊂ [log λ, log β̃] ∪ {log β}.

Remark 5.3. Using different methods involving shadowing-like proper-
ties, one can in fact show that [log λ, log β̃]∪{log β} is the set of all possible
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upper/lower central Lyapunov exponents, that is, all exponents that are ob-
tained when we replace lim by lim sup/lim inf in (5.1). Hence, in particular,
we have equalities in Proposition 5.2. For the details we refer to [12].

Proof of Proposition 5.2. We first prove that (0, log β∗)⊂Iper(H(Q∗, F )).
Note that by Proposition 3.10 for every ε > 0 there exist a finite sequence
(ξ0 . . . ξm−1) and a fixed point q(ξ0...ξm−1)Z ∈ (0, 1) of f[ξ0...ξm−1] that has
Lyapunov exponent in (0, ε). Therefore, the corresponding periodic point
Q(ξ0...ξm−1)Z has central Lyapunov exponent in (0, ε). By Corollary 4.14 this
point is homoclinically related to Q∗. By Lemma 5.1 and (5.3) we hence
obtain

[0, χc(Q∗)] ⊂ Iper(H(Q∗, F )).

Similarly,
[χc(Q∗), log β∗] ⊂ Iper(H(Q∗, F )),

proving that
[0, log β∗] ⊂ Iper(H(Q∗, F )).

Now we consider the negative part of the spectrum. Note that by Propo-
sition 3.9 for every ε > 0 there exist a finite sequence (ξ0 . . . ξm−1) and a
fixed point p(ξ0...ξm−1)Z of f[ξ0...ξm−1] that has Lyapunov exponent in (−ε, 0)
and whose stable manifold contains [0, 1]. By Lemma 4.5(1) the correspond-
ing hyperbolic periodic point P(ξ0...ξm−1)Z is homoclinically related to the
fixed point P . Exactly as above, we obtain

[log λ, 0] ⊂ Iper(H(P, F )).

Since H(P, F ) ⊂ H(Q∗, F ), this proves

[log λ, log β∗] ∪ {log β} ⊂ Iper(H(Q∗, F )).

By the definition of β∗ we have

Iper(H(Q∗, F )) ⊂ [log λ, log β∗] ∪ {log β}.
Clearly, Iper(H(Q∗, F )) ⊂ Ireg(H(Q∗, F )). Finally, note that by Propo-

sition 3.26, any Lyapunov regular point is either contained in the stable
manifold of Q and hence has exponent log β, or has exponent less than or
equal to log β̃, proving

Ireg(H(Q∗, F )) ⊂ [log λ, log β̃] ∪ {log β}.
This finishes the proof of the proposition.

5.1.3. Spectrum of ergodic measures. The following results will be need-
ed in the following section. We denote byM(Λ) the set of F -invariant Borel
probability measures supported on a set Λ, and by Merg(Λ) the subset of
ergodic measures. For µ ∈M(Λ) let

χc(µ) :=
�
log ‖dF |Ec‖ dµ.
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Denote by δQ the Dirac measure at Q and consider

Ierg(H(Q∗, F )) := {χc(µ) : µ ∈Merg(H(Q∗, F )) \ {δQ}}.

The following is an immediate consequence of Proposition 3.26.

Proposition 5.4. We have (log β̃, log β) ∩ Ierg(H(Q∗, F )) = ∅.

5.2. Phase transitions. In this section we continue our analysis of
spectral properties and study equilibrium states. Recall that, given a con-
tinuous potential ϕ : ΛF → R, an F -invariant Borel probability measure ν
is called an equilibrium state of ϕ with respect to F |ΛF if

hν(F ) +
�
ϕdν = max

µ∈M(F |ΛF )

(
hµ(F ) +

�
ϕdµ

)
,

where hµ(F ) denotes the measure-theoretic entropy of µ. Notice that as the
central direction has dimension one, such a maximizing measure indeed ex-
ists by [11, Corollary 1.5] (see also [9]). Without loss of generality, we can
always assume that this measure is ergodic. Indeed, given an equilibrium
state for ϕ that is non-ergodic, any ergodic measure in its ergodic decom-
position is also an equilibrium state for ϕ. Note that

(5.4) P (ϕ) = max
µ∈M(F |ΛF )

(
hµ(F ) +

�
ϕdµ

)
is the topological pressure of ϕ with respect to F |ΛF (see [24]). An equilibrium
state for the zero potential ϕ = 0 is simply a measure of maximal entropy
h(F ) = h(F |ΛF ).

We will study the family of continuous potentials

ϕt := −t log ‖dF |Ec‖, t ∈ R,

and will continue denoting P (t) = P (ϕt). Note that t 7→ P (t) is convex
(and hence continuous and differentiable on a residual set; see also [24] for
further details). Recall that a number α ∈ R is said to be a subgradient at
t if P (t+ s) ≥ P (t) + sα for all s ∈ R.

Lemma 5.5. For any t ∈ R and any equilibrium state µt of the potential
ϕt the number −χc(µt) is a subgradient of s 7→ P (s) at s = t. If moreover
s 7→ P (s) is differentiable at s = t then χc(µt) = −P ′(t).

Proof. Given t ∈ R and an equilibrium state µt, it follows from the
variational principle (5.4) that for all s ∈ R we have

P (t+ s) ≥ hµt(F )− (t+ s)χc(µt) = P (t)− sχc(µt),

that is, −χc(µt) is a subgradient at t.



Porcupine-like horseshoes 97

If the pressure is differentiable at t then this subgradient is unique and
thus all equilibrium states of ϕt have the same exponent given by −P ′(t).

We now derive the existence of a first order phase transition, that is, a
parameter t at which the pressure function is not differentiable. Note that in
our case, by Lemma 5.5, this is equivalent to the existence of a parameter t
and (at least) two equilibrium states for ϕt with different central exponents.

Proposition 5.6. There exists a parameter tQ∈[−h(F)/(log β−log β̃), 0)
such that for every t ≤ tQ the measure δQ is an equilibrium state for ϕt and
P (t) = −t log β. Moreover, s 7→ P (s) is not differentiable at s = tQ and

D−P (tQ) = − log β and D+P (tQ) ≥ − log β̃.

Proof. We first show that δQ is an equilibrium state for some t. Recall
that (F0.i) implies that χc(δQ) = log β. Note that the variational prin-
ciple (5.4) implies that for every t ∈ R we have

(5.5) P (t) ≥ hδQ(F )− tχc(δQ) = −t log β.

Aiming for a contradiction, assume that there exists no t ∈ R such that δQ
is an equilibrium state for ϕt. Then, by (5.4), P (t) > −t log β for all t. By
Proposition 5.4 there is no ergodic F -invariant measure different from δQ
with central Lyapunov exponent within the interval (log β̃,∞). Hence, for
any t ∈ R any ergodic equilibrium state of ϕt different from δQ has exponent
≤ log β̃. In particular, for every t < 0 we have

(5.6) P (t) = hµt(F ) + |t|χc(µt) ≤ h(F ) + |t| log β̃

for some ergodic equilibrium state µt of ϕt. Summarizing, for t < 0 we have

(5.7) |t| log β < P (t) ≤ h(F ) + |t| log β̃.

But this is a contradiction if t < 0 and |t| < h(F )/(log β− log β̃). Therefore,
there exists t ∈ R such that δQ is an equilibrium state for ϕt.

Since P (0) = h(F ) ≥ log 2 > 0, by continuity of t 7→ P (t) we have

tQ := max{t ∈ R : P (t) = −t log β} < 0.

Consider τ ∈ (tQ, 0) and an ergodic equilibrium state µτ for ϕτ . Since P (τ) 6=
−τ log β we have µτ 6= δQ. Hence, by Proposition 5.4, we have χ(µτ ) ≤ log β̃.
Note again that P (τ) > −τ log β. Thus, arguing as in (5.6) and (5.7), we
get |τ | < h(F )/(log β − log β̃). In particular, this implies

|tQ| ≤
h(F )

log β − log β̃
.

This completes the first part of the lemma.



98 L. J. Dı́az and K. Gelfert

It remains to estimate the left and right derivatives at tQ. Consider again
τ ∈ (tQ, 0) and an ergodic equilibrium state µτ for ϕτ . As above, µτ 6= δQ
and χc(µτ ) ≤ log β̃. By Lemma 5.5, −χc(µτ ) is a subgradient at τ . Hence,
D+P (tQ) ≥ − log β̃. On the other hand, by the definition of tQ, we have
D−P (tQ) = − log β. Hence t 7→ P (t) is not differentiable at tQ.

6. Proofs of the main results

Proof of Theorem 1. Items (A) and (C) follow immediately from Propo-
sitions 3.15 and 3.26, respectively. Finally, (B) is a one-dimensional version
of Theorem 2(B) using also transitivity in item (D), so we will omit its
proof.

Proof of Theorem 2. Item (A.a) follows from Theorem 1(A) together
with the skew-product structure of F .

By Theorem 4.1 there is a saddle Q∗ of index u + 1 such that the ho-
moclinic class H = H(Q∗, F ) coincides with the locally maximal invariant
set ΛF in C. This homoclinic class coincides with the closure of all saddle
points homoclinically related to Q∗. By Corollary 4.14 every saddle of index
u + 1 in ΛF is homoclinically related to Q∗. By Lemma 3.23 the spine of
every periodic point of index u+ 1 is non-trivial. Hence, the set of all points
with non-trivial spines is dense in ΛF . This shows (A.b).

The first part of item (B) follows from the previous arguments. Re-
call that P has index u and that its homoclinic class of P is non-trivial
(Lemma 2.6) and therefore contains infinitely many saddles of index u. Since
this class is contained in ΛF we are done.

The first part of item (C) follows from Theorem 1(C) together with
the skew-product structure of F . The fact that the spectrum contains an
interval and the existence of a phase transition follow immediately from
Propositions 5.2 and 5.6.

Again, by Theorem 4.1 for the saddle Q∗ of index u+ 1 the homoclinic
class H = H(Q∗, F ) is the locally maximal set in C and hence contains
the non-trivial class H(P, F ). Finally, Lemmas 2.9 implies that H(Q,F ) =
{Q} ⊂ H. This proves item (D) and hence the theorem.
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Ilha do Fundão
Rio de Janeiro 21945-909, Brazil

E-mail: gelfert@im.ufrj.br

Received 17 January 2011;
in revised form 9 September 2011


	Introduction
	Non-contracting iterated function systems
	Non-hyperbolic transitive homoclinic classes

	Examples of porcupine-like homoclinic classes
	One-dimensional central dynamics
	Iterated function system
	Expanding itineraries
	Lyapunov exponents close to 0
	Tempered distortion
	Looping orbits
	Weak contracting and expanding looping orbits

	Admissible domains
	Gap in the Lyapunov spectrum

	Transverse homoclinic intersections
	The maximal invariant set
	Particular cases

	Lyapunov exponents in the central direction
	Spectra of Lyapunov exponents
	Spectrum related to periodic points
	Spectrum of Lyapunov regular points
	Spectrum of ergodic measures

	Phase transitions

	Proofs of the main results

