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Abstract. A graph is called splitting if there is a 0-1 labelling of its vertices such
that for every infinite set C of natural numbers there is a sequence of labels along a 1-way
infinite path in the graph whose restriction to C is not eventually constant. We characterize
the countable splitting graphs as those containing a subgraph of one of three simple types.

1. Introduction. We begin with some basic notions from the theory
of cardinal characteristics of the continuum (see [1] for a general introduc-
tion). A cardinal characteristic of the continuum is a term t which denotes
the size of an uncountable subset of (some version of) the continuum, i.e.,
ℵ0 < t ≤ 2ℵ0 . (For many such characteristics t and t∗ the formula t = t∗ is
true in one model of set theory and false in another. We therefore have to dis-
tinguish between a cardinal characteristic and its denotation in some model.
But to avoid notational inconveniences we will leave this distinction implicit.)

An important sort of cardinal characteristic is given by the norms of
relations. Following [1], we call a triple (A−, A+, A) a relation if A ⊆
A− × A+, and we call such a relation sequential if A+ is a set of infinite
sequences. The norm of a relation A = (A−, A+, A) is the smallest cardi-
nality of a set Y ⊆ A+ that contains for every challenge x ∈ A− a response
y ∈ Y such that (x, y) ∈ A:

‖A‖ := min{|Y |; Y ⊆ A+ ∧ ∀x ∈ A− ∃y ∈ Y (x, y) ∈ A}.

A well-known sequential relation is S := ([ω]ℵ0 , ω2, sp), i.e., challenges
are infinite sets of natural numbers, responses are infinite binary sequences,
and a challenge C is met by a response g if g splits C, i.e., if g restricted
to C is not eventually constant (see Section 2 for formal definitions). The
norm of this relation is called the splitting number s; it is the smallest size
of a set of binary sequences containing for every infinite set C of natural
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numbers an element that splits C, the smallest size of a splitting family of
binary sequences.

It turns out that one cannot say exactly which size a splitting family has
to have; i.e., it is independent of the usual axioms of set theory whether, for
example, s = ℵ1. And the same is true with respect to the ‘response sets’ of
many other sequential relations. The traditional reaction to such ‘individual’
independencies has been the study of the relationships between the norms
of such relations.

A new approach to dealing with sequential relations, taken in [4] and [5],
consists in imposing an additional constraint on a response set restricting
the independence of its members: it is required that the sequences making
up the response set are sequences of labels that correspond to 1-way infinite
paths in a labelled graph. Thus, instead of asking for the smallest cardinality
of a response set, one asks for graphs that can be labelled in such a way
that the sequences of labels corresponding to 1-way infinite paths constitute
a response set.

Let us make these ideas more precise. A ray is a 1-way infinite path R
in a graph G, i.e., an injective sequence ω → V (G) of vertices such that
R(i)R(i+ 1) ∈ E(G) for all i ∈ ω. We write RG for the set of all rays in G.
Given any set M , we say that a function L : V (G) → M is an M -labelling
of G, and we define the corresponding set of label sequences thus:

LG,L := {g : ω →M ; ∃R ∈ RG g = L ◦R}.

Then, given a sequential relation A := (A−, A+, A) whose responses are
sequences in M , we define a corresponding property of graphs:

G is an A-graph :⇔ ∃L : V (G)→M ∀x ∈ A− ∃y ∈ A+ ∩LG,L (x, y) ∈ A.

So, while the norm of A is the smallest cardinality of a set Y such that
for every challenge there is a response in A+ ∩ Y , a graph G is an A-graph
if there is a labelling L of its vertices such that for every challenge there is
a response in A+ ∩LG,L. In the first case, one wants to meet all challenges
with as few responses as possible, while in the second case, one wants to
label a graph so that all challenges can be met by label sequences. The new
approach to dealing with sequential relations is motivated by the hypothesis
that it might be possible to tell precisely which structure such a ‘response
graph’ has to have, for example, by presenting a few simple structures such
that exactly the response graphs contain one of these structures.

In the above example S := ([ω]ℵ0 , ω2, sp), we see that a graph G is an S-
graph if and only if there is a 0-1 labelling L of its vertices such that for every
infinite set C of natural numbers there is a label sequence g ∈ LG,L that
splits C; these S-graphs are called splitting graphs. Put otherwise, a graph G
is a splitting graph if and only if there is a 0-1 labelling L of its vertices such
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that the resulting set LG,L of label sequences is a splitting family of binary
sequences. Note that a graph with a splitting subgraph is itself splitting. It
is our aim to present a few simple structures such that exactly the splitting
graphs contain one of these structures.

Results of the same type have been presented in [4] for unbounded graphs
and in [5] for dominating graphs, i.e., for B-graphs and D-graphs where B is
a sequential relation whose norm is the (un)bounding number b and where
D is a sequential relation whose norm is the dominating number d.

After we have defined some basic notions in Section 2, we present, in
Section 3, three simple types of splitting graphs. In Sections 4 and 5, we
then analyse the graphs that do not have graphs of two of these three types
as subgraphs. In the final Section 6, we present our main result, Theorem 12,
which states that a countable graph is splitting if and only if it has a subgraph
of one of the three simple types.

2. Terminology. Let YX be the set of functions from a set Y to a set
X, and let f�X be the restriction of a function f to a subset X of its domain.
A function s whose domain is an ordinal α and whose range is a subset ofX is
an α-sequence in X; it is a sequence of length α. We write the concatenation
of sequences s and t as s∧t and sometimes st. We usually denote ω-sequences
by a0

∧a1
∧ . . . or a0a1 . . ., and finite sequences by a0

∧ . . .∧an or a0 . . . an. We
write <ωX for the set of finite sequences in X.

A graph G is a pair of sets (V,E) where E is a symmetrical relation
on V ; these sets contain the vertices and edges of the graph. Given a graph
G = (V,E), we write V (G) := V and E(G) := E. If xy is an edge, the
vertices x and y are called neighbours, and the number of neighbours of
some vertex x is the degree of x.

Let 1 ≤ n ≤ ω. An injective n-sequence P in V (G) is a path in G if
P (i)P (i + 1) ∈ E(G) for all i < n − 1. The path P induces a graph G(P ):
the vertex set of G(P ) is simply the range of P , written as V (P ), and the
edge set of G(P ), denoted by E(P ), contains all those edges P (i)P (j) where
i, j < n and |i − j| = 1. The graph G(P ) is called the graph of P . By
‖P‖ := |P | − 1 = n− 1 we denote the length of P , i.e., its number of edges.
A path R of length ω is a ray. We shall need the following well-known fact
(see, for example, [3, p. 200]):

Lemma 1 (König). Let V0, V1, . . . be an infinite sequence of disjoint non-
empty finite sets, and let G be a graph on their union. Assume that every
vertex v in a set Vn with n ≥ 1 has a neighbour in Vn−1. Then G contains a
ray v0v1 . . . with vn ∈ Vn for all n.

A path P induces an order on its vertices: P (0) <P P (1) <P · · · . If x is
the last vertex of a path P of length n, the first vertex of a path Q, and the
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only vertex in V (P ) ∩ V (Q), we write P∧Q for (P �n)∧Q. If P = Q∧Q′ is a
path, then Q is an initial segment of P , and Q′ is a tail of P . Let P = x0x1 . . .
be a path, and let n < m. We denote by xnPxm the subpath of P between xn
and xm, and by x̊nPxm the subpath between xn+1 and xm (analogously for
xnPx̊m). If P = x0 . . . xn is a path, we call the subpath x̊0Px̊n the interior
of P , written P̊ , and we call its vertices the inner vertices of P .

A function L : V (G)→ {0, 1} is a 0-1 labelling of G. Given a ray R in a
graph G labelled by L, the sequence L ◦R is called a label sequence, and the
set of all label sequences {L ◦R; R is a ray in G} is denoted by LG,L.

A graph G is called splitting if there is a 0-1 labelling L of G such that
for every infinite set C of natural numbers there is a label sequence g ∈ LG,L

such that g�C is not eventually constant, i.e., neither g(n) = 0 for all but
finitely many n ∈ C nor g(n) = 1 for all but finitely many n ∈ C.

3. Examples of splitting graphs. In this section, we introduce three
simple types of splitting graphs. It will turn out that every countable splitting
graph contains a subgraph of one of these types.

We recall that a graph T is called a tree if for any two of its vertices
there is exactly one path from one to the other, and that a tree is called
a subdivided binary tree if each of its vertices has degree 2 or 3, and each of
its rays uses a vertex of degree 3.

Lemma 2. A subdivided binary tree is splitting.

Proof. Let T be a subdivided binary tree. We may assume that T has
a vertex r ∈ V (T ) of degree 2 which we call the root of T . Note that the
choice of r imposes a partial order on the vertex set of the tree: x ≤ y if x is
a vertex of the unique path in T from the root to y. The root together with
the vertices of degree 3 are called branching vertices.

Let Σ := <ω{r, `} be the set of finite sequences in a set {r, `} with
two elements. Now, define inductively a bijection between Σ and the set of
branching vertices which respects the order of the branching vertices: Let
x∅ := r, and, if xσ has been defined, let xσ∧r and xσ∧` be the two branch-
ing vertices immediately above the branching vertex xσ. We call a branch-
ing vertex xσ along a path P which starts in r a left turn if P continues
with xσ∧`.

To show that T is splitting, we have to define a 0-1 labelling L of T . We
let L(x) be the parity of the number of left turns on the path from the root
to x (see Figure 1).

To see that L witnesses that T is splitting, let C be any infinite set of
natural numbers. Now, build a ray as follows. Start at the root and proceed
up the right branch of the tree (i.e., make no left turns) until the number of
steps you have taken exceeds the first element of C (this ensures a label 0 for
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Fig. 1. A labelled subdivided binary tree

this element). At the next branching vertex, make a left turn and continue
rightward (i.e., no more left turns) until you have passed another element
of C larger than the height of your left turn (this ensures a label 1 for that
element of C). At the next branching vertex, again make a left turn and
continue rightward until you have ensured a 0 for another element of C.
Continue in this fashion.

To give the next example of a splitting graph, we introduce a new concept.
Let R be a ray with vertices R(0) = x0 ≤R y0 <R x1 ≤R · · · . We denote the
path xnRyn by Pn and the path ynRxn+1 by nP a. Furthermore, for every
n < ω, let nP b be a path from yn to xn+1 with V (R)∩ V (nP b) = {yn, xn+1}
and E(R) ∩ E(nP b) = ∅ such that the interiors of the nP b are pairwise
disjoint. The paths nP b are called additional paths. For notational simplicity,
we assume that the length of nP a is not smaller than the length of nP b for
all n < ω, and we let l(n) := ‖nP a‖ − ‖nP b‖.

We call the union B of the graph of the ray and the graphs of the ad-
ditional paths a ray with short cuts if l(n) 6= 0 for all n < ω, and a ray
with equal alternatives if l(n) = 0 for all n < ω. We call R the basic ray
of B, we call x0 the first vertex of B, and we call yn a branching vertex of
B for n < ω. Furthermore, given z ∈ V (R), we call a subgraph B′ ⊆ B
the canonical subgraph in B with first vertex z if B′ is obtained from B by
deleting the vertices of the initial segment Rz̊ of the basic ray and the inner
vertices of those additional paths that have their first vertex in Rz̊.

Lemma 3. A ray with short cuts is splitting.

Proof. Let B be a ray with short cuts as above. By deleting the inner
vertices of some additional paths, we may assume that l(n) + l(n + 1) ≤
‖xn+2Rxn+3‖ for all n < ω.

To show that B is splitting, we now define a 0-1 labelling L of B. Be-
ginning with the vertex x1 and the label 0, we label on x1Rx2 alternately
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l(0) vertices with 0 and l(0) vertices with 1. For the induction step, assume
that the vertices of the paths x1Rx2, x̊2Rx3, . . . , x̊n−1Rxn are labelled, let
c := L(xn), and let c′ be the other label. Beginning with the larger neighbour
of xn (larger with respect to <R) and the label c, we label on x̊nRxn+1 alter-
nately l(n− 1) vertices with c and l(n− 1) vertices with c′. (The remaining
vertices may be labelled arbitrarily.)

To see that this is splitting, let C be any infinite set of natural num-
bers. By taking appropriate short cuts, we now build a ray which induces
a sequence that splits C. Suppose we have defined an initial segment P of
this ray, and suppose that k is the largest element in C for which P (k) is
defined. Our aim is to extend P to some branching vertex yn so that for
some new element i from C the following holds: no matter whether we con-
tinue by following nP a on the basic ray or by taking the short cut nP b, the
vertex corresponding to i is one of V (xn+1Rxn+2). The periodic labelling
of these vertices then implies that the vertex corresponding to i is labelled
differently depending on which path we choose. We can therefore ensure a
label different from L(P (k)).

It is helpful to introduce the following notions. Let P be a finite path
from x0 to yn. We call the vertices V (xn+1Rxn+2) the target vertices of P ,
and we define two extensions of P :

a(P ) := P∧ nP a∧xn+1Rxn+2, b(P ) := P∧ nP b∧xn+1Rxn+2.

As indicated above, suppose that an initial segment P of the desired ray
has been defined, and suppose that k is the largest element in C for which
P (k) is defined. We then let i ∈ C−{0, . . . , k} be minimal with the property
that there is a branching vertex ym such that a path P ? extending P to ym
has the property that ‖a(P ?)xm+1‖ ≤ i < ‖a(P ?)‖.

If i ≤ ‖b(P ?)‖, then we are done. The expressions a(P ?)(i) and b(P ?)(i)
are defined since ‖b(P ?)‖ ≥ i, and these expressions stand for target vertices
of P ? since ‖a(P ?)xm+1‖ ≤ i. The definition of L then implies that the
vertices a(P ?)(i) and b(P ?)(i) are labelled differently.

If i > ‖b(P ?)‖, we let P ∗ := b(P ?)ym+1 (see Figure 2). The expressions
a(P ∗)(i) and b(P ∗)(i) are defined since

‖b(P ∗‖ ≥ ‖b(P ?)ym+1
∧ m+1P b‖+ l(m) + l(m+ 1) = ‖a(P ?)‖ > i,

which is a consequence of the definitions of b(P ∗) and a(P ?) and the assump-
tion that l(m) + l(m+ 1) is not larger than ‖xm+2Rxm+3‖. The expressions
a(P ∗)(i) and b(P ∗)(i) stand for target vertices of P ∗ since

‖a(P ∗)xm+2‖ = ‖b(P ?)ym+1
∧ m+1P a‖ = ‖b(P ?)‖ < i.

Again the definition of L then implies that the vertices a(P ∗)(i) and b(P ∗)(i)
are labelled differently.
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Fig. 2. The extensions of the path P ? and those of the path P ∗

Let B be a ray with equal alternatives as in the above definition. To be
splitting, B has to have an additional property. We call B bounded if there
is a number m < ω such that ‖Pn‖ ≤ m for all n < ω; such a number m is
called a bound for B.

It turns out to be helpful to reformulate this concept. Let us call a se-
quence

〈
nl; l < m

〉
(m ≤ ω) of natural numbers connected if nl+1 = nl + 1

for all l < m. If I is a set of natural numbers, ordered in the natural way,
we let I(n) be the length of the nth maximal connected sequence in I (for
n ≥ 1). Let I, for example, be the set {5, 8, 9, 10, 16}; then I(1) = 1, i.e., the
length of the first maximal connected sequence in I equals 1, I(2) = 3, and
I(3) = 1. Given B, a ray with equal alternatives as above, we let

Const(B) :=
{
i ∈ ω; R(i) ∈

⋃
n<ω

V (Pn)
}

and Var(B) := ω − Const(B).

Note that a ray B with equal alternatives is bounded if and only if there
is a number m < ω such that Const(B)(n) ≤ m for all n ≥ 1.

Lemma 4. A bounded ray with equal alternatives is splitting.

Proof. Let B be a bounded ray with equal alternatives, and letm < ω be
a bound for B. Given z ∈ V (B) and a ray R′ with R′(0) = x0 and z ∈ V (R′),
we say that the vertex z has a partner if R′−1(z) ∈ Var(B).

To show that B is splitting, we now define a 0-1 labelling L of B. We let
all vertices on the basic ray R be labelled with 0, and we let all the other
vertices be labelled with 1.

To see that this is splitting, let C be any infinite set of natural numbers.
The idea of the proof is fairly simple. Since the intervals where we have no
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choice are bounded in length by m, some translate of C (by an amount ≤ m)
contains infinitely many places where a choice can be made. We only have
to start our ray a little late to handle the translation and then make the
required choices.

To be precise, we will show that there are finitely many rays with equal
alternatives contained in B, say 0B, . . . , kB, such that C − {0, . . . ,m} ⊆⋃
j≤k Var(jB). This has the consequence that there is one of them, say jB,

that has the property that Var(jB) ∩ C is infinite; then the label sequence
induced by some ray R∗ whose first vertex is the first vertex of jB splits C.

To this end, we choose, for all j < ω, a vertex zj ∈ V (R) with minimal
distance to the vertex x0 such that there is a vertex z∗j ≥R zj with a distance
of nj steps from zj that has a partner. Either zj = x0, or there is some
branching vertex yi that is the smaller neighbour of z∗j (smaller with respect
to <R); this is a consequence of the minimality assumption. Therefore, the
distance between x0 and zj is not larger than m+ 1. Now, the claim follows
for those canonical subgraphs in B whose first vertices are R(0), . . . , R(m+1)
respectively.

The idea of boundedness can be generalized. A finite set B={0B, . . . , tB}
of pairwise disjoint rays with equal alternatives is called bounded if there is
a number m < ω such that (

⋂
s≤t Const(sB))(n) ≤ m for all n ≥ 1 (see

Figure 3).

Fig. 3. A bounded system of rays with equal alternatives with bound 7

Lemma 5. A bounded system of rays with equal alternatives is splitting.

Proof. The proof is similar to the previous one. Let B = {0B, . . . , tB}
be a bounded system of rays with equal alternatives, let m < ω be a bound
for B, and let sR be the basic ray of sB with first vertex sx0 (for all s ≤ t).
As above, we label all the vertices on the basic rays with 0, and all the other
vertices with 1.
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Let C be any infinite set of natural numbers. As in the proof of the pre-
vious lemma, it suffices to show that there are finitely many rays with equal
alternatives contained in

⋃
s≤t

sB, say 0B∗, . . . , kB∗, such that C − {0, . . . ,m}
is contained in

⋃
j≤k Var(jB∗).

To this end, we choose, for all j < ω and s ≤ t, a vertex zsj ∈ V (sR)
with minimal distance to sx such that there is a vertex z∗j ≥sR zj with a
distance of nj steps from zj that has a partner. For all j < ω, we then
choose s ≤ t such that the distance between sx and zsj is minimal, and
we let zj := zsj . As in the proof of the previous lemma, it follows that the
distance between zj and ‘its’ sx is not larger than m + 1. Here, the claim
follows for those (t+ 1) · (m+ 1) canonical subgraphs whose first vertices are
sR(0), . . . , sR(m+ 1) (s ≤ t) respectively.

4. Small and tiny graphs. In the remaining sections, we will demon-
strate that a countable graph is not splitting if it does not contain a subdi-
vided binary tree, a ray with short cuts, or a bounded system of rays with
equal alternatives (together with the results of the previous section, this will
yield our characterization of the countable splitting graphs). In this section,
we analyse the graphs that do not contain a ray with short cuts.

To begin, we have to introduce some further notions. Recall that a path
with first vertex x and last vertex y is called an x-y path. Let X,Y ⊆
V (G) be sets of vertices; then an x-y path P with V (P ) ∩ X = {x} and
V (P ) ∩ Y = {y} is an X-Y path. We call a family of {x}-Y paths F an
x-Y fan if V (P )∩V (P ′) = {x} for all distinct P, P ′ ∈ F . Given a subgraph
H ⊆ G, we call an x-y path P an H-path if V (H) ∩ V (P ) = {x, y} and
E(P ) ∩ E(H) = ∅. (Note that the set of inner vertices of an H-path is
disjoint from the vertex set of H.) A vertex z is an articulation of a graph
G if there are vertices x and y, distinct from z and from each other, such
that z is a vertex of every x-y path.

Furthermore, recall the notion of an end of a graph. If the rays R and
R′ in some graph G have infinitely many vertices in common or if there is
a disjoint infinite set of V (R)-V (R′) paths in G, then R and R′ are called
equivalent ; the corresponding equivalence classes of rays are the ends of G;
the degree of an end Ω of G is the supremum of the cardinalities of sets of
disjoint rays in Ω. We shall need the following simple lemma.

Lemma 6. A countable graph that does not contain a subdivided binary
tree has only countably many ends.

Proof. Let G be a countable graph, and let C0, C1, . . . be the components
of G. As a countable connected graph, every component Ci has a normal
spanning tree Ti (cf. [3, pp. 205–206]). Every end of Ci contains exactly one
normal ray of Ti (cf. [3, p. 205]). If G has uncountably many ends, some
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Ci has uncountably many ends, and therefore some Ti contains uncount-
ably many normal rays. Inductively, it is now possible to construct in Ti a
subdivided binary tree (cf. [3, p. 238]).

It is easy to see that a graph with an end of degree at least 2 con-
tains a ray with short cuts so that we can restrict our attention to graphs
which have only ends of degree 1: Let G be a graph that contains two dis-
joint rays R and R′ which are linked by a disjoint infinite set of V (R)-
V (R′) paths in G. Suppose that we have defined an ‘initial part’ of a ray
with short cuts by following R, R′, and some of the V (R)-V (R′) paths.
We then take a look at three V (R)-V (R′) paths lying ahead, say P1 =
x1 . . . y1, P2 = x2 . . . y2, P3 = x3 . . . y3 with x1 <R x2 <R x3 and y1 <R′
y2 <R′ y3. Now, either ‖x2Rx3‖ < ‖x2P2y2

∧y2R
′y3
∧y3P3x3‖, or ‖y2R

′y3‖ <
‖y2P2x2

∧x2Rx3
∧x3P3y3‖. Let us assume the former case obtains. Possibly

by using P1, we extend the initial segment of our basic ray to the vertex x2.
Then we use x2P2y2

∧y2R
′y3
∧y3P3x3 as a continuation of the basic ray and

x2Rx3 as the next short cut. By continuing in this manner we obtain a ray
with short cuts.

We will now introduce the basic notions of the following lemma. Let R
be a ray, and let H := G(R) be the graph of R. We call the pair (H,R)
a fragment in the first sense, and we say that R is the basic ray of this
fragment.

Let R be a ray with vertices R(0) = x0 ≤R y0 <R x1 ≤R · · · . The path
xnRyn is denoted by Pn, and the path ynRxn+1 by P ∗n . Furthermore, let
Xn ) G(P ∗n) be graphs such that the following conditions are satisfied for
all n < ω:

• every v ∈ V (Xn)− V (P ∗n) is a vertex of some G(P ∗n)-path,
• V (Xn) ∩

⋃
m<ω V (Pm) = {yn, xn+1},

• V (Xn) ∩
⋃
m>n V (Xm) = {xn+1} ∩ {yn+1},

• there is no inner vertex from P ∗n that is an articulation of Xn.

We then let H be the union of the graph of R and the graphs Xn for all
n < ω. We call the pair (H,R) a fragment in the second sense, or, more
informatively, a fragment in the second sense with respect to the infinite
sequence (Pn, P ∗n , Xn). We say that R is the basic ray of this fragment, and
we call the graphs Xn the additional graphs of this fragment. If (H,R) is a
fragment in the second sense with respect to (Pn, P ∗n , Xn), we let xn := Pn(0)
and yn := P ∗n(0) for all n < ω.

A small graph is composed of fragments in a way that reflects the types
of rays that exist in the graph, i.e., we call a graph G small if there is
a set U of fragments (H,R) such that the following two conditions are sat-
isfied:
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• for all ends Ω of G there is exactly one (H,R) ∈ U such that R ∈ Ω,
• for all rays R′ of G there is exactly one (H,R) ∈ U such that

|V (R′) ∩ V (R)| = ℵ0

and R′(n) ∈ V (H) for all but finitely many n < ω.

In this situation, we also say, more informatively, that G is small with respect
to U .

Let us now present the announced characterization of graphs that have
only ends of degree 1.

Lemma 7. All ends of a graph G have degree 1 if and only if G is small.

Proof. ⇐: Let G be a graph that is small with respect to U , and suppose
there is an end Ω and two disjoint rays R1 and R2 from Ω. It follows that R1

and R2 belong to the same fragment (H,R) ∈ U . Therefore, these rays are
equivalent to the ray R and have tails in the graph H. But this contradicts
the fact that (H,R) is a fragment.
⇒: Let G be a graph that has only ends of degree 1, let {Ωα; α < κ} be

the set of ends of G for some cardinal κ, and let R′α be any element of Ωα. We
say that a vertex v dominates a ray R if there is an infinite v-V (R) fan in G.
Given α < κ, we let Aα be the set of those vertices that dominate R′α. It is
easy to see that Aα is finite since Ωα has degree 1: If a ray R is dominated
by infinitely many vertices vn, n < ω, you can build two disjoint rays R1

and R2 which are equivalent to R. Begin with R1: Let v0 be the first vertex.
Take some v0-V (R) path P 0; then follow R and take some v2-V (R) path P 1

disjoint from P 0. Continue with R2: Let v1 be the first vertex. Take some
v1-V (R) path P 2 disjoint from P 0 and P 1 which ends at some vertex larger
than the vertices of R already used (in the sense of >R); then follow R and
take some v3-V (R) path P 3 disjoint from P 0, P 1, and P 2. Go back to R1

and continue in the same fashion.
Given α < κ, let us now define subgraphs Hα. To this end, we let Rα

be some tail of R′α that has no vertices in Aα. We let H0
α := G(Rα). For a

limit ordinal γ, we assume that Hβ
α has been defined for all β < γ, and we

let Hγ
α :=

⋃
β<γ H

β
α . For the induction step, we assume that Hγ

α has been
defined for some ordinal γ, and we check whether there is an Hγ

α-path which
does not use a vertex from Aα; if there is one, we let P

γ
α be such a path, and

we let Hγ+1
α := Hγ

α ∪G(P γα ); otherwise, we let Hγ+1
α := Hγ

α. Finally, we let
Hα :=

⋃
γ H

γ
α.

We now let U := {(Hα, Rα); α < κ}, and we claim that G is small with
respect to U . As every end has degree 1, for all rays R′ there is exactly one
α < κ such that |V (R′)∩V (Rα)| = ℵ0 and R′(n) ∈ V (Hα) for all but finitely
many n < ω. If Hα = G(Rα), the pair (Hα, Rα) is a fragment in the first
sense. If not, we need to find infinitely many articulations z ∈ V (Rα) of Hα;
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it is then possible to define paths Pα,n, paths P ∗α,n, and graphs Xα,n so that
(Hα, Rα) is a fragment in the second sense with respect to (Pα,n, P ∗α,n, Xα,n).
That it is possible to find these articulations is an easy and known conse-
quence of the theorem of Menger (1).

Our next aim is to analyse the graphs that do not contain a ray with
short cuts. A fragment (H,R) in the first sense is said to be rigid. A fragment
(H,R) in the second sense with respect to (Pn, P ∗n , Xn) is said to be rigid if
there are no two yn-xn+1 paths of different length in an additional graph Xn.
We call a graph G that is small with respect to U tiny with respect to U if
every fragment in U is rigid. Now, we are in a position to characterize the
graphs that do not contain a ray with short cuts.

Theorem 8. A graph G does not contain a ray with short cuts if and
only if G is tiny.

Proof. Since the implication from right to left is easy, we only show the
other one. Let G be a graph not containing a ray with short cuts. As a
consequence of Lemma 7, there is a set of fragments U such that G is small
with respect to U . Our aim is to replace each fragment (H,R) ∈ U by a rigid
fragment (H ′, R) so that G is small (and therefore tiny) with respect to the
resulting set {(H ′, R); (H,R) ∈ U}.

To this end, let (H,R) be an arbitrary fragment in U . If (H,R) is a
fragment in the first sense, we let H ′ := H. Let us therefore assume that
(H,R) is a fragment in the second sense with respect to (Pn, P ∗n , Xn). First,
suppose there are only finitely many n < ω such that there are two yn-xn+1

paths in Xn of different length; we then let H ′ be the result of deleting
from H the vertices in V (Xn) − V (P ∗n) for those n. Now, suppose there
are infinitely many n such that there are yn-xn+1 paths Q1

n and Q2
n in Xn

of different length. We may assume that the paths Q1
n and ynRxn+1 have

different length and that Q1
n is shorter than ynRxn+1. There has to be a

subpath Qn = yn . . . z of Q1
n that is a G(R)-path shorter than ynRz. But

now the graphs of these infinitely many paths Qn together with the graph
of R form a ray with short cuts contained in G (contradiction).

5. Minute graphs. In this section, we characterize the graphs that
contain neither a ray with short cuts nor a bounded system of rays with
equal alternatives. Let µ and κ be ordinals with µ ≤ κ, and let G be tiny
with respect to U := {(Hα, Rα); α < κ} where (Hα, Rα) is a fragment in the
first sense for all α < µ, and a fragment in the second sense with respect to

(1) In [2], this is a special case of Lemma 9 (let m(Ωα) := 1). Bruhn and Stein remark
that this lemma can be obtained from results of Polat [6].
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(Pα,n, P ∗α,n, Xα,n) for all α ≥ µ (α < κ). Given α ≥ µ, we let xα,n := Pα,n(0)
and yα,n := P ∗α,n(0) for all n < ω.

We begin by defining a system of rays containing the rays Rα, α < κ.
Given α < κ and a ∈ Z, we let Raα be the tail of Rα whose first vertex is
Rα(a) if a ≥ 0, and a ray such that Rα is a tail of it and Raα(a) = Rα(0) if
a < 0. (Note that Raα does not have to be a ray in G if a < 0.) We let

Const(α, a) :=


{i ∈ ω; Raα(i) ∈ V (Rα)} for α < µ,{
i ∈ ω; Raα(i) ∈

⋃
n<ω

V (Pα,n)
}

for α ≥ µ.

Given α ≥ µ and a ∈ Z, we now define a ray with equal alternatives
corresponding to the pair (α, a). Let n∗ < ω be minimal such that yα,n∗ ∈
V (Raα). We then call a graph B a ray with equal alternatives corresponding
to (α, a) if B is a ray with equal alternatives containing Raα as its basic ray
whose additional paths are yα,n-xα,n+1 paths in Xα,n for all n ≥ n∗.

There is a ray with equal alternatives corresponding to (α, a) for every
α ≥ µ and a ∈ Z: Since Xα,n 6= G(P ∗α,n), there is a nontrivial G(Rα)-path
Qα,n = yα,n . . . z in Xα,n; let Qα,n be such a path with z as large as possible
(with respect to <Rα). Since all yα,n-xα,n+1 paths in Xα,n have the same
length, it follows that z = xα,n+1.

For α ≥ µ and a ∈ Z, we let Ba
α be such a ray with equal alternatives

corresponding to (α, a). Note that Const(α, a) = Const(Ba
α) if Ba

α is defined.
Note furthermore that Ba

α ⊆ Hα if a ≥ 0.
Our next aim is to define a function that maps the rays of G to pairs

in κ × Z. To this end, let R be any ray in G. There is exactly one α < κ
such that |V (R) ∩ V (Rα)| = ℵ0 and R(i) ∈ V (Hα) for all but finitely many
i < ω. Furthermore, if α < µ, there is exactly one a ∈ Z such that, for all
but finitely many i < ω, R(i) = Raα(i), and if α ≥ µ, there is exactly one
a ∈ Z such that the following two conditions are satisfied for all but finitely
many i < ω:

R(i) ∈
⋃
n<ω

V (Pα,n) ⇔ Raα(i) ∈
⋃
n<ω

V (Pα,n),

Raα(i) ∈
⋃
n<ω

V (Pα,n) ⇒ R(i) = Raα(i).

In each case, we call (α, a) the pair corresponding to R.
We now return to our analysis of the graphs that contain neither a ray

with short cuts nor a bounded system of rays with equal alternatives. Let G
be tiny with respect to some set U as in the preceding discussion. We call
G minute with respect to U if for all finite M ⊆ κ× Z,⋂

(α,a)∈M

Const(α, a) = ℵ0,
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and we use this concept to present a characterization of graphs that con-
tain neither a ray with short cuts nor a bounded system of rays with equal
alternatives.

Theorem 9. A graph G is minute if and only if G contains neither a
ray with short cuts nor a bounded system of rays with equal alternatives.

Proof. ⇒: Let G be a minute graph. Theorem 8 implies that G does not
contain a ray with short cuts.

Suppose G contains a bounded system of rays with equal alternatives,
i.e., suppose 0B, . . . , tB are disjoint rays with equal alternatives contained
in G with basic rays 0R, . . . , tR such that there is a natural number r with
(
⋂
s≤tConst(

sB))(n) ≤ r for all n ≥ 1 (recall that I(n) is the length of the
nth maximal connected sequence in I, for any I ⊆ ω ordered in the natural
way).

For s ≤ t and q ≤ r, we let s,qB be the canonical subgraph in sB with first
vertex sR(q), and we let (αs,q, as,q) be the pair corresponding to the basic
ray of s,qB. It follows that

⋂
s≤t, q≤r Const(αs,q, as,q) < ℵ0 (contradiction).

⇐: Let G be a graph that contains neither a ray with short cuts nor a
bounded system of rays with equal alternatives. Theorem 8 implies that G
is tiny with respect to some set U := {(Hα, Rα); α < κ} for some ordinal κ.
As in the preceding discussion, we assume that there is an ordinal µ ≤ κ
such that (Hα, Rα) is a fragment in the first sense if α < µ, and a fragment
in the second sense with respect to (Pα,n, P ∗α,n, Xα,n) if α ≥ µ.

Suppose G is not minute, i.e., there are finitely many α0, . . . , αm in κ
and a0, . . . , am in Z such that

⋂
`≤mConst(α`, a`) is finite; we may assume

that α` ≥ µ for all ` ≤ m, i.e., each Hα` is a fragment in the second sense.
Our first aim is to replace each a` by some b` so that no b` is negative

while
⋂
`≤m Const(α`, b`) is still finite. We achieve this by letting b` := a`+k

for all ` ≤ m where k := max`≤m{−a`; a` < 0}. Note that
Const(Bb`

α`
) = Const(α`, b`) = {n− k; n ∈ Const(α`, a`) ∧ n ≥ k}

for all ` ≤ m; therefore,
⋂
`≤mConst(Bb`

α`
) is indeed still finite.

Our next aim is to replace the Bb`
α`

involved by Bc`
α`

in such a way that
the resulting Bc`

α`
are ‘as often as possible’ pairwise disjoint, i.e., we would

like to get rid of pairs (Bb`
α`
, Bbk

αk
) if V (Bb`

α`
)∩V (Bbk

αk
) 6= ∅ although α` 6= αk.

We achieve this by letting c` := b` + r for all ` ≤ m where r is defined as
follows: Let r`,k := 0 if α` = αk; otherwise, let r`,k be the smallest number
such that Bb`+r`,k

α` and Bbk+r`,k
α` are disjoint (the existence of such a number

is guaranteed by the definition of ‘small’); then let r := max`,k≤m r`,k. Note
that, for all ` ≤ m,

Const(Bc`
α`

) = {n− r; n ∈ Const(Bb`
α`

) ∧ n ≥ r};
therefore,

⋂
`≤m Const(Bc`

α`
) is still finite. We let `B := Bc`

α`
.
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Now, let B be a maximal subset of {`B; ` ≤ m} whose elements are pair-
wise disjoint, and let i0B, i1B, . . . be an enumeration of {`B; ` ≤ m} −

⋃
B.

The assumption that G does not contain a bounded system of rays with
equal alternatives implies that for every m∗ < ω, there is n ≥ 1 such that
(
⋂
B∈B Const(B))(n) > m∗. Let q be the smallest number such that

(]) ∃m∗ < ω ∀n ≥ 1
( ⋂
B∈B

Const(B) ∩
⋂
s≤q

Const(isB)
)

(n) ≤ m∗;

such a number q exists since
⋂
`≤mConst(`B) is finite. The minimality of q

implies that

(+) ∀m∗ < ω ∃n ≥ 1
( ⋂
B∈B

Const(B) ∩
⋂
s<q

Const(isB)
)

(n) > m∗.

Let tB be an element of B such that tB and iqB are not disjoint. Since
tB and iqB are not disjoint, we know that αt = αiq . Let us assume, without
loss of generality, that ct = ciq +s for some s < ω. We infer that Const(tB)∩
Const(iqB))(n) ≥ Const(iqB)(n) − s for all n ≥ 1. But this contradicts the
formulas (]) and (+).

6. The characterization of splitting graphs. In this final section,
we characterize the countable splitting graphs. We begin with a lemma con-
cerning countable graphs without a subdivided binary tree.

Lemma 10. A countable, minute graph G that does not contain a subdi-
vided binary tree is minute with respect to some countable U .

Proof. Let G be a countable graph not containing a subdivided binary
tree such that G is minute with respect to some U . From Lemma 6 we know
that G has only countably many ends. The definition of ‘small’ then implies
that U is countable.

The final gap in the proof of the characterization of the countable split-
ting graphs is closed by the following lemma.

Lemma 11. A graph that is minute with respect to some countable U is
not splitting.

Proof. Let G be minute with respect to U = {(Hj , Rj); j < ω}. We may
assume that each (Hj , Rj) is a fragment in the second sense with respect
to (Pj,n, P ∗j,n, Xj,n). Recall from the discussion in Section 5 the definitions
of Raj , Const(j, a), and ‘pair corresponding to R’. Recall furthermore that
for every ray R in G, the following two conditions are satisfied for all but
finitely many i < ω with respect to the pair (j, a) corresponding to R:
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(]i)

R(i) ∈
⋃
n<ω

V (Pj,n) ⇔ Raj (i) ∈
⋃
n<ω

V (Pj,n),

Raj (i) ∈
⋃
n<ω

V (Pj,n) ⇒ R(i) = Raj (i).

We let f = (f1, f2) be a bijection between ω and ω × Z, and we let Cm :=
Const(f1(m), f2(m)) for all m < ω. (A number i is in Cm if and only if
R
f2(m)
f1(m)(i) ∈

⋃
n<ω V (Pf1(m),n).) Since G is minute with respect to U , we

infer that
⋂
`≤mC` is infinite for all m < ω.

To see that G is not splitting, let any 0-1 labelling L of G be given.
For m < ω and c ∈ {0, 1}, we let cCm be the set of those i ∈ Cm with
L(Rf2(m)

f1(m)(i)) = c, i.e., we let cCm be the set Cm ∩ (L ◦ Rf2(m)
f1(m))

−1(c). Given
a binary sequence σ : m + 1 → {0, 1} of length m < ω, we let σCm :=⋂
l≤m

σ(l)C l. Our aim is to find an infinite binary sequence g such that
g�1C0 ⊇ g�2C1 ⊇ · · · and |g�(m+1)Cm| = ℵ0 for all m < ω.

Suppose there is such a sequence g. We then let C∗m := g�(m+1)Cm. Now,
we choose an increasing sequence n0 < n1 < · · · such that nm ∈ C∗m for all
m < ω, and we let C := {nm; m < ω}. To complete the proof, we show that
the sequence (L ◦R)�C converges for every ray R in G.

To this end, let R be any ray in G, and let (j, a) := (f1(m), f2(m)) be the
pair corresponding to R (for some natural number m). We then let i∗ be the
smallest number such that the conditions (]i) are satisfied for all i ≥ i∗. For
all i ∈ C∗m, we know that L(Raj (i)) = L(Rf2(m)

f1(m)(i)) = σ(m). We infer that
R(i) = σ(m) for all i ∈ C∗m with i ≥ i∗. If we then let m∗ := max{m, i∗}, we
know that L(R(nk)) = σ(m) for all k ≥ m∗.

To define the sequence g, we use Lemma 1. Let

Vm := {σCm; σ : m+ 1→ 2 ∧ |σC ′m| = ℵ0}.

It is not difficult to see that each Vm is non-empty. Given k ≤ m and
cm, cm−1, . . . , ck ∈ {0, 1}, we let

Mk :=
⋂
`≤m

C` ∩
⋂

k≤`≤m
(L ◦Rf2(`)

f1(`))
−1 (c`).

By induction, we will define cm, cm−1, . . . , c0 ∈ {0, 1} such thatMk is infinite
for all k ≤ m. (We then let σ := c0 . . . cm so that σCm = M0 is an element of
Vm.) We already remarked that the set

⋂
`≤mC` is infinite. There has to be

a cm ∈ {0, 1} such that Mm is infinite, and given cm, cm−1, . . . , ck in {0, 1}
with k > 0 such that Mk is infinite, there has to be a ck−1 ∈ {0, 1} such
that Mk−1 is infinite.

To apply Lemma 1, we have to define a graph on
⋃
m<ω Vm. To this end,

given an element σ∧cCm in Vm for m > 0 and c ∈ {0, 1}, we let the element
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σCm−1 in Vm−1 be a neighbour of it. Since we may assume that distinct Vm
are disjoint, Lemma 1 gives a ray g�1C0

g�2C1 . . . where g is an infinite binary
sequence.

Now, we are in a position to characterize the countable splitting graphs.
Theorem 12. A countable graph G is splitting if and only if a subdivided

binary tree, a ray with short cuts, or a bounded system of rays with equal
alternatives is contained in G.

Proof. The implication from right to left is given by Lemmas 2, 3, and 5.
For the other direction, suppose G is a countable graph that contains

neither a subdivided binary tree, nor a ray with short cuts, nor a bounded
system of rays with equal alternatives. Theorem 9 then implies that G is
minute; Lemma 10 shows that G is minute with respect to some countable U ;
and Lemma 11 tells us that G is not splitting.
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