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Abstract. A 1984 problem of S. Z. Ditor asks whether there exists a lattice of car-
dinality ℵ2, with zero, in which every principal ideal is finite and every element has at
most three lower covers. We prove that the existence of such a lattice follows from either
one of two axioms that are known to be independent of ZFC, namely (1) Martin’s Axiom
restricted to collections of ℵ1 dense subsets in posets of precaliber ℵ1, (2) the existence of
a gap-1 morass. In particular, the existence of such a lattice is consistent with ZFC, while
the nonexistence implies that ω2 is inaccessible in the constructible universe.

We also prove that for each regular uncountable cardinal κ and each positive integer n,
there exists a (∨, 0)-semilattice L of cardinality κ+n and breadth n + 1 in which every
principal ideal has fewer than κ elements.

1. Introduction. Various representation theorems, stating that every
object of “size” ℵ1 belongs to the range of a given functor, rely on the exis-
tence of lattices called 2-ladders. By definition, a 2-ladder is a lattice with
zero, in which every principal ideal is finite, and in which every element has
at most two lower covers. Every 2-ladder has cardinality at most ℵ1, and the
existence of 2-ladders of cardinality exactly ℵ1 was proved in Ditor [3] (cf.
Proposition 4.3 below). These 2-ladders have been used in various contexts
such as abstract measure theory (Dobbertin [4]), lattice theory (Grätzer,
Lakser, and Wehrung [7]), ring theory (Wehrung [18]), or general algebra
(Růžička, Tůma, and Wehrung [14]). A sample result, established in [14],
states that every distributive algebraic lattice with at most ℵ1 compact el-
ements is isomorphic to the lattice of all normal subgroups of some locally
finite group. (Here and in many related results, the ℵ1 bound turns out to
be optimal.)

The basic idea of “ladder proofs” is always the same: we are given cat-
egories A and B together with a functor Φ : A→ B and a “large” object S
of B (of “size” ℵ1), which we wish to represent as Φ(X) for some object X
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in the domain of Φ. We represent S as a direct limit S = lim−→i∈I Si of (say)
“finite” objects Si, where I is an upward directed poset of cardinality ℵ1 (of-
ten the lattice of all finite subsets of S in case we are dealing with a concrete
category). Then, using the existence of a 2-ladder of cardinality ℵ1, we can
replace the original poset I by that 2-ladder. Under “amalgamation-type”
conditions, this makes it possible to represent each Si as some Φ(Xi), with
transition morphisms between the Xis being constructed in such a way that
X = lim−→i∈I Xi can be defined and Φ(X) ∼= S.

We define 3-ladders the same way as 2-ladders, except that “two lower
covers” is replaced by “three lower covers”. The problem of existence of
3-ladders of cardinality ℵ2 was posed in Ditor [3]. Such 3-ladders would pre-
sumably be used in trying to represent objects of size ℵ2. Nevertheless I
must reluctantly admit that no potential use of the existence of 3-ladders of
cardinality ℵ2 has been found so far, due to the failure of a certain three-
dimensional amalgamation property, of set-theoretical nature, stated in Sec-
tion 10 in Wehrung [19], thus making Ditor’s problem quite “romantic” (and
thus, somewhat paradoxically therefore arguably, attractive).

However, this situation has been evolving recently. For classes A and B

of algebras, the critical point crit(A; B) is defined in Gillibert [6] as the least
possible cardinality of a semilattice in the compact congruence class of A

but not of B if it exists (and, say, ∞ otherwise). In case both A and B are
finitely generated lattice varieties, it is proved in Gillibert [6] that crit(A; B)
is either finite, or ℵn for some natural number n, or ∞. In the second case
only examples with n ∈ {0, 1, 2} have been found so far (Ploščica [12, 13],
Gillibert [6]). Investigating the possibility of n = 3 (i.e., crit(A; B) = ℵ3)
would quite likely require 3-ladders of cardinality ℵ2.

The present paper is intended as an encouragement in that direction.
We partially solve one of Ditor’s problems by giving a (rather easy) proof
that for each regular uncountable cardinal κ and each positive integer n,
there exists a (∨, 0)-semilattice of cardinality κ+n and breadth n + 1 in
which every principal ideal has fewer than κ elements (cf. Theorem 5.3).
Furthermore, although we are still unable to settle whether the existence of
a 3-ladder of cardinality ℵ2 is provable in the usual axiom system ZFC of
set theory with the Axiom of Choice, we prove that it follows from either
one of two quite distinct, and in some sense “orthogonal”, set-theoretical
axioms, namely a weak form of Martin’s Axiom plus 2ℵ0 > ℵ1 denoted
by MA(ℵ1; precaliber ℵ1) (cf. Theorem 7.9) and the existence of a gap-1
morass (cf. Theorem 9.1). In particular, the existence of a 3-ladder of car-
dinality ℵ2 is consistent with ZFC, while the nonexistence of a 3-ladder
of cardinality ℵ2 implies that ω2 is inaccessible in the constructible uni-
verse.
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Our proofs are organized in such a way that no prerequisites in lattice
theory and set theory other than the basic ones are necessary to read them.
Hence we hope to achieve intelligibility for both lattice-theoretical and set-
theoretical communities.

2. Basic concepts. We shall use standard set-theoretical notation and
terminology. Throughout the paper, “countable” will mean “at most count-
able”. A cardinal is an initial ordinal, and we denote by κ+ the successor car-
dinal of a cardinal κ. More generally, we denote by κ+n the nth successor car-
dinal of κ, for each natural number n. We denote by dom f (resp., rng f) the
domain (resp., range) of a function f , and we put f [X] := {f(x) | x ∈ X} for
each X ⊆ dom f . We denote by P(X) the powerset of a set X, and by t the
partial operation of disjoint union. A function f is finite-to-one if the inverse
image of any singleton under f is finite. For a set Ω and a cardinal λ, we set

[Ω]λ = {X ∈ P(Ω) | |X| = λ},
[Ω]≤λ = {X ∈ P(Ω) | |X| ≤ λ},
[Ω]<λ = {X ∈ P(Ω) | |X| < λ}.

Two elements x and y in a poset P are comparable if either x ≤ y or y ≤ x.
We say that x is a lower cover of y if x < y and there is no element z ∈ P
such that x < z < y; in addition, if x is the least element of P (denoted by
0P if it exists), we say that y is an atom of P . We say that P is atomistic if
every element of P is a join of atoms of P . For a subset X and an element p
in P , we set

X ↓ p := {x ∈ X | x ≤ p}.
We say that X is a lower subset of P if P ↓x ⊆ X for each x ∈ X. (In forcing
terminology, this means that X is open.) An ideal of P is a nonempty, up-
ward directed, lower subset of P ; it is a principal ideal if it is equal to P ↓ p
for some p ∈ P . A filter of P is an ideal of the dual poset of P . We say
that P is lower finite if P ↓ p is finite for each p ∈ P . An order-embedding
from a poset P into a poset Q is a map f : P → Q such that f(x) ≤ f(y) iff
x ≤ y, for all x, y ∈ P . An order-embedding f is a lower embedding if the
range of f is a lower subset of Q. Observe that a lower embedding preserves
all meets of nonempty subsets in P , and all joins of nonempty finite subsets
of P in case Q is a join-semilattice.

For an element x and a subset F in P , we denote by xF the least element
of F above x if it exists.

Šanin’s classical ∆-Lemma (cf. Jech [8, Theorem 9.18]) is the following.

∆-Lemma. Let W be an uncountable collection of finite sets. Then there
are an uncountable subset Z of W and a finite set R (the root of Z) such
that X ∩ Y = R for all distinct X,Y ∈ Z.
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We recall some basic terminology in the theory of forcing, which we shall
use systematically in Section 7. A subset X in a poset P is dense if it meets
every principal ideal of P . We say that X is centred if every finite subset
of X has a lower bound in P . We say that P has precaliber ℵ1 if every
uncountable subset of P has an uncountable centred subset; in particular,
this implies the countable chain condition. For a collection D of subsets
of P , a subset G of P is D-generic if G ∩ D 6= ∅ for each dense D ∈ D.
The following classical lemma (cf. Jech [8, Lemma 14.4]) is, formally, a poset
analogue of Baire’s category theorem.

Lemma 2.1. Let D be a countable collection of subsets of a poset P .
Then each element of P is contained in a D-generic filter on P .

For |D| = ℵ1 there may be no D-generic filters of P (cf. Jech [8, Ex-
ercise 16.11]), nevertheless for restricted classes of partial orderings P we
obtain set-theoretical axioms that are independent of ZFC. We shall need
the following proper weakening of the ℵ1 instance of Martin’s Axiom MA
usually denoted by either MAℵ1 or MA(ℵ1) (cf. Jech [8, Section 16] and
Weiss [20, Section 3]); the first parameter ℵ1 refers to the cardinality of D.

MA(ℵ1; precaliber ℵ1). For every poset P of precaliber ℵ1 and every col-
lection D of subsets of P , if |D| ≤ ℵ1, then there exists a D-generic filter
on P .

3. Simplified morasses. For a positive integer n, trying to build cer-
tain structures of size ℵn+1 as direct limits of countable structures may im-
pose very demanding constraints on the direct systems used for the construc-
tion. The pattern of the repetitions of the countable building blocks and their
transition morphisms in the direct system is then coded by a complex com-
binatorial object called a gap-n morass. Gap-n morasses were introduced by
Ronald Jensen in the seventies, enabling him to solve positively the finite gap
cardinal transfer conjecture in the constructible universe L. The existence
of morasses is independent of the usual axiom system of set theory ZFC. For
example, there are gap-1 morasses in L (cf. Devlin [2, Section VIII.2]), and
even in the universe L[A] of sets constructible with oracle A, for any A ⊆ ω1;
hence if ω2 is not inaccessible in L, then there is a gap-1 morass in the am-
bient set-theoretical universe V (cf. Devlin [2, Exercise VIII.6]). Conversely,
the existence of a gap-1 morass implies the existence of a Kurepa tree, while
in the generic extension obtained by Levy collapsing an inaccessible cardi-
nal on ω2 while preserving ω1, there is no Kurepa tree (cf. Silver [15]). In
particular, the nonexistence of a gap-1 morass is equiconsistent, relatively
to ZFC, to the existence of an inaccessible cardinal.

However, even for n = 1 the combinatorial theorems involving morasses
are hard to come by, due to the extreme complexity of the definition of gap-
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n morasses. Fortunately, the definition of a gap-1 morass has been greatly
simplified by Dan Velleman [16], where it is proved that the existence of a
gap-1 morass is equivalent to the existence of a “simplified (ω1, 1)-morass”.

We denote the (noncommutative) ordinal addition by +. For ordinals
α ≤ β, we denote by β − α the unique ordinal ξ such that α + ξ = β. Fur-
thermore, we denote by τα,β the order-embedding from ordinals to ordinals
defined by

(3.1) τα,β(ξ) =
{
ξ if ξ < α,
β + (ξ − α) if ξ ≥ α.

We shall use the following definition, obtained by slightly amending the one
in Devlin [2, Section VIII.4] by requiring θ0 = 2 instead of θ0 = 1, but all
δαs nonzero (which could not hold for θ0 = 1). It is easily obtained from a
simplified morass as defined in Devlin [2, Section VIII.4] by adding a new
zero element to each θα (that is, by replacing θα by 1 + θα) and replacing
any f ∈ Fα,β by the unique zero-preserving map sending 1 + ξ to 1 + f(ξ),
for each ξ < θα.

Definition 3.1. Let κ be an infinite cardinal. A simplified (κ, 1)-morass
is a structure

M =
(
(θα | α ≤ κ), (Fα,β | α < β ≤ κ)

)
satisfying the following conditions:

(P0) (a) θ0 = 2, 0 < θα < κ for each α < κ, and θκ = κ+.
(b) Fα,β is a set of order-embeddings from θα into θβ, for all α < β ≤ κ.

(P1) |Fα,β| < κ for all α < β < κ.
(P2) If α < β < γ ≤ κ, then

Fα,γ = {f ◦ g | f ∈ Fβ,γ and g ∈ Fα,β}.
(P3) For each α < κ, there exists a nonzero ordinal δα < θα such that

θα+1 = θα + (θα − δα) and Fα,α+1 = {idθα , fα}, where fα denotes the
restriction of τδα,θα from θα into θα+1.

(P4) For every limit ordinal λ ≤ κ, all αi < λ and fi ∈ Fαi,λ for i < 2, there
exists α < λ with α0, α1 < α together with f ′i ∈ Fαi,α for i < 2 and
g ∈ Fα,λ such that fi = g ◦ f ′i for each i < 2.

(P5) θα =
⋃

(f [θξ] | ξ < α and f ∈ Fξ,α) for each α > 0.

It is proved in Velleman [16] that for κ regular uncountable, there exists
a (κ, 1)-morass iff there exists a simplified (κ, 1)-morass. For the countable
case, the existence of an (ω, 1)-morass is provable in ZFC (see Velleman [17]).

Simplified morasses as above satisfy the following simple but very useful
lemma, which is the basis of the construction of the Kurepa tree obtained
from a (κ, 1)-morass (cf. Velleman [16, Lemma 3.2]).
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Lemma 3.2. Let α < β ≤ κ, let ξ0, ξ1 < θα, and let f0, f1 ∈ Fα,β. If
f0(ξ0) = f1(ξ1), then ξ0 = ξ1 and f0�ξ0 = f1�ξ1.

4. Ladders and breadth. The classical definition of breadth (see Ditor
[3, Section 4]) runs as follows. Let n be a positive integer. A join-semilattice
S has breadth at most n if for every nonempty finite subset X of L, there
exists a nonempty Y ⊆ X with at most n elements such that

∨
X =

∨
Y .

This is a particular case of the following definition of breadth, valid for
every poset, and, in addition, self-dual: we say that a poset P has breadth
at most n, if for all xi, yi (0 ≤ i ≤ n) in L, if xi ≤ yj for all i 6= j in
{0, 1, . . . , n}, then there exists i ∈ {0, 1, . . . , n} such that xi ≤ yi.

Definition 4.1. Let k be a positive integer. A k-ladder is a lower finite
lattice in which every element has at most k lower covers.

Every k-ladder has breadth at most k. The diamond M3 has breadth 2
but it is not a 2-ladder. Every finite chain is a 1-ladder. The chain ω of
all nonnegative integers is also a 1-ladder. Note that k-ladders are called
k-frames in Dobbertin [4]; the latter terminology being already used for a
completely different lattice-theoretical concept (von Neumann frames), we
will not use it. The following is proved in Ditor [3].

Proposition 4.2. Let k be a positive integer. Then every lower finite
lattice of breadth at most k (thus, in particular, every k-ladder) has at
most ℵk−1 elements.

Proposition 4.2 is especially easy to prove by using Kuratowski’s Free Set
Theorem (see Kuratowski [10]). The converse is obviously true for k = 1—
that is, there exists a 1-ladder of cardinality ℵ0 (namely, the chain ω of all
natural numbers); also for k = 2, by the following result of Ditor [3], also
proved by Dobbertin [4]. We include a proof for convenience.

Proposition 4.3. There exists an atomistic 2-ladder of cardinality ℵ1.

Proof. We construct inductively an ω1-sequence F = (Fα | α < ω1) of
countable atomistic 2-ladders such that α < β implies that Fα is a proper
ideal of Fβ. Once this is done, the 2-ladder Fω1 :=

⋃
(Fα | α < ω1) will

clearly solve our problem.
We take F0 := {0}. If λ < ω1 is a limit ordinal and all Fα for α < λ

are constructed, set Fλ :=
⋃

(Fα | α < λ). Suppose that Fα is constructed.
If Fα is finite, pick outside objects p, 1 and put Fα+1 := Fα ∪ {p, 1}, with
the additional relations p < 1 and x < 1 for each x ∈ Fα. If Fα is infi-
nite, then, as it is a countable lattice, it has a strictly increasing cofinal
sequence (cn | 1 ≤ n < ω). Consider a one-to-one sequence (dn | n < ω) of
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objects outside Fα and put

Fα+1 := Fα ∪ {dn | n < ω},
with the additional relations cn < dn for 1 ≤ n < ω and dn < dn+1 for
0 ≤ n < ω. The ω1-sequence F thus constructed is as required.

The most natural attempt at proving the existence of a 3-ladder of car-
dinality ℵ2, by imitating the proof of Proposition 4.3, would require that
every 3-ladder of cardinality ℵ1 has a cofinal meet-subsemilattice which is
also a 2-ladder (cf. the proof of Theorem 7.9). We do not know whether this
statement is a theorem of ZFC, although, by Theorem 7.8, it is consistent
with ZFC. The following example shows that the most straightforward at-
tempt at proving that statement, by expressing structures of cardinality ℵ1

as directed unions of countable structures, fails.

Example 4.4. There exists a countable 3-ladder K ′ with an ideal K and
a cofinal meet-subsemilattice F of K which is also a 2-ladder, although there
is no cofinal meet-subsemilattice of K ′ of breadth at most two containing F .

Proof. We denote by K ′ the lattice represented in Figure 1, and we put

K := K ′ \ {tn | n < ω},
F := {xn | n < ω} ∪ {yn | n < ω} ∪ {xn ∧ yn | n < ω}.

x0 y0 z0

x0 ∧ y0

x1 ∧ y1

x1 y1 z1

t0

t1

Fig. 1. The lattice K′

Suppose that there is a cofinal meet-subsemilattice F ′ ofK ′, with breadth
at most two, containing F . As F ′ is cofinal inK ′, there exists n < ω such that
tn ∈ F ′. As xn+1 belongs to F , it also belongs to F ′, thus zn = tn ∧ xn+1
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also belongs to F ′, so {xn, yn, zn} is contained in F ′, and so, as F ′ has
breadth at most two, xn ∧ yn ∧ zn belongs to {xn ∧ yn, xn ∧ zn, yn ∧ zn}, a
contradiction.

A particular case of the problem above is stated on top of page 58 in
Ditor [3]: Let F be a 2-ladder of cardinality ℵ1. Does the 3-ladder F × ω,
endowed with the product order, have a cofinal meet-subsemilattice which is
also a 2-ladder? The answer is affirmative, due to the following easy result.

Proposition 4.5. Let K be an infinite, lower finite lattice. Then K×ω
has a cofinal meet-subsemilattice isomorphic to K.

Proof. As K is an infinite, lower finite lattice, it has a strictly increasing
sequence (an | n < ω). As K is lower finite, for each x ∈ K there exists a
largest natural number n such that an ≤ x; denote this integer by f(x). We
defineK ′ as the graph of f , that is,K ′ := {(x, f(x)) | x ∈ K}. As f is a meet-
homomorphism, K ′ is a meet-subsemilattice of K × ω. Furthermore, x 7→
(x, f(x)) defines a lattice isomorphism of K onto K ′, and K ′ is obviously
cofinal in K × ω.

5. Large semilattices with bounded breadth. In this section we
shall see that weak analogues of k-ladders, obtained by replacing ℵ0 by a
regular uncountable cardinal and the condition that every element has at
most k lower covers by the breadth being below k, can be easily constructed
(cf. Theorem 5.3).

The following Lemma 5.1 is a slightly more general version of [3, Proposi-
tion 4.3]. It says that breadth can be verified on the generators of a join-sem-
ilattice, the difference from [3, Proposition 4.3] lying in the definition of a
generating subset.

A subset G in a join-semilattice L generates L if every element of L is
a (not necessarily finite) join of elements of G. Equivalently, for all a, b ∈ L
such that a � b, there exists g ∈ G such that g ≤ a and g � b.

Lemma 5.1. Let L be a join-semilattice, let G be a generating subset of
L, and let n be a positive integer. Then L has breadth at most n iff for every
subset U ∈ [G]n+1, there exists u ∈ U such that u ≤ ∨(U \ {u}).

Proof. We prove the nontrivial direction. Let A ∈ [L]n+1, and suppose
that a �

∨
(A \ {a}) for each a ∈ A. As G generates L, there exists ua ∈ G

such that ua ≤ a and ua �
∨

(A \ {a}), for all a ∈ A. Hence ua �
∨

(ux |
x ∈ A \ {a}) for each a ∈ A, a contradiction as all elements ux belong to G
and by assumption.

An algebraic closure operator on a poset P is a map f : P → P such that
f ◦ f = f (we say that f is idempotent), x ≤ f(x) for each x ∈ P , x ≤ y
implies that f(x) ≤ f(y) for all x, y ∈ P , and for each nonempty upward
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directed subset X of P admitting a join, the join of f [X] exists and is equal
to f(

∨
X). (We shall refer to the latter property as the join-continuity of f .)

Lemma 5.2. For each regular uncountable cardinal κ and each positive
integer n, there exists an algebraic closure operator f on [κ+n]<κ such that

(∀U ∈ [κ+n]n+2)(∃ξ ∈ U)(ξ ∈ f(U \ {ξ})),(5.1)

f(X) = X for each X ∈ [κ+n]≤n.(5.2)

Proof. It follows from Kuratowski [10] (see also Theorem 45.7 in Erdős
et al. [5]) that there exists a map f0 : [κ+n]n+1 → [κ+n]<κ such that

(5.3) (∀U ∈ [κ+n]n+2)(∃ξ ∈ U)(ξ ∈ f0(U \ {ξ})).
We set

g(X) = X ∪
⋃

(f0(Y ) | Y ∈ [X]n+1) for each X ∈ [κ+n]<κ.

As κ is regular, g is a self-map of [κ+n]<κ. It obviously satisfies both (5.1)
and (5.2), together with all properties defining an algebraic closure operator
except idempotence. Now we set

f(X) =
⋃

(gk(X) | k < ω) for each X ∈ [κ+n]<κ.

As κ is regular uncountable, f is a self-map of [κ+n]<κ. It obviously satis-
fies both (5.1) and (5.2), together with all properties defining an algebraic
closure operator except idempotence. Furthermore, for every X ∈ [κ+n]<κ,

f ◦ f(X) =
⋃

(f ◦ gl(X) | l < ω) (by the join-continuity of f)

=
⋃

(gk ◦ gl(X) | k, l < ω) (by the definition of f)

= f(X) (because gk ◦ gl = gk+l),

so f ◦ f = f .

Therefore, we obtain a positive answer to the specialization of Ques-
tion A, page 57 in Ditor [3] to regular uncountable cardinals.

Theorem 5.3. For each regular uncountable cardinal κ and each positive
integer n, there exists an atomistic (∨, 0)-semilattice L of breadth n+ 1 and
cardinality κ+n such that |L ↓ x| < κ for each x ∈ L.

Proof. Let f be an algebraic closure operator as in Lemma 5.2. We endow
L := {f(X) | X ∈ [κ+n]<ω} with containment. Obviously, L is a (∨, 0)-
semilattice and |L ↓ x| < κ for each x ∈ L. As |L| = κ+n, it follows from [3,
Theorem 5.2] that L has breadth at least n+1. As n is nonzero and by (5.2),
every singleton {ξ} with ξ < κ+n belongs to L, so L is atomistic, and so
G := {{ξ} | ξ < κ+n} generates L in the sense required by the statement of
Lemma 5.1. Therefore, it follows from (5.1) together with Lemma 5.1 that L
has breadth at most n+ 1.
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For n := 1, it is not known whether Theorem 5.3 extends to singular
cardinals, for instance κ := ℵω (cf. Problem 2 in Ditor [3]). For n := 2,
it is not known whether Theorem 5.3 extends to κ := ℵ0 (cf. Problem 1
in Ditor [3]), although we shall prove in two different ways that a positive
answer is consistent with ZFC (cf. Theorems 7.9 and 9.1).

6. Preskeletons in normed lattices

Definition 6.1. A normed lattice is a pair (K, ∂), where K is a lattice
and ∂ is a join-homomorphism from K to the ordinals (the “norm”). In such
a case we put

Kξ := {x ∈ K | ∂x = ξ}, K≤ξ := {x ∈ K | ∂x ≤ ξ}.
Observe that each K≤ξ is either empty or an ideal of K (we will say that it
is an extended ideal of K). We call the subsets Kξ the levels of K. We say
that (K, ∂) is transitive if its range, that is, the range of ∂, is an ordinal. Of
course, in such a case, ∂0 = 0.

Observe that conversely, every increasing well-ordered sequence (K≤ξ |
ξ < θ) of extended ideals of K with union K defines a norm ∂, via the rule

∂x := least ξ < θ such that x ∈ K≤ξ for each x ∈ K.
In case K is lower finite, the set {y ∈ K ↓ x | ∂y ≤ ξ} is a finite ideal of K,
for every x ∈ K and every ordinal ξ, hence it has a largest element, which
we shall denote by x(ξ). The assignment (x, ξ) 7→ x(ξ) is isotone, that is,
x ≤ y and ξ ≤ η implies that x(ξ) ≤ y(η). We shall put

Proj(x) = {x(ξ) | ξ ∈ rng ∂} for each x ∈ K.
Observe that Proj(x) is a chain. Furthermore, as Proj(x) is a subset of K↓x,
it is finite. The binary relation E defined by the rule

(6.1) x E y ⇔ x ∈ Proj(y), for all x, y ∈ K,
is a partial ordering on K in which all principal ideals are finite chains. We
shall always denote by ∂ the norm function on a normed lattice.

We shall repeatedly use the following easy observation.

Lemma 6.2. The following implications hold, for any elements x and y
in a lower finite normed lattice K:

(i) x ≤ y implies that ∂x = ∂(y(∂x)).
(ii) x(∂y) ≤ y iff x ∧ y = x(∂y).

Proof. (i) From x ≤ y it follows that x ≤ y(∂x), hence ∂x ≤ ∂(y(∂x)) ≤ ∂x.
(ii) We need to prove only the direct implication. It is trivial that x(∂y) ≤

x ∧ y. For the converse, observe that ∂(x ∧ y) ≤ ∂y, thus, as x ∧ y ≤ x, we
obtain x ∧ y ≤ x(∂y), and so the equality holds.
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Definition 6.3. A preskeleton of a lower finite normed lattice K is a
subset F of K satisfying the following conditions:

(i) F ∩Kξ is a (possibly empty) chain for every ordinal ξ;
(ii) F is projectable, that is, x(ξ) belongs to F for any x ∈ F and any

ordinal ξ.

If, in addition, F ∩ Kξ is cofinal in Kξ for each ξ, we say that F is a
skeleton of K.

Lemma 6.4. Every preskeleton F of a lower finite normed lattice K
satisfies the following properties:

(i) F is a meet-subsemilattice of K;
(ii) every element of F has at most two lower covers in F .

In particular, if F is upward directed, then it is a 2-ladder.

Proof. (i) Let x, y ∈ F and put α := ∂(x∧ y). Hence x∧ y = x(α) ∧ y(α).
From x ∧ y ≤ x(α) it follows that α = ∂(x ∧ y) ≤ ∂(x(α)), thus ∂(x(α)) = α.
Similarly, ∂(y(α)) = α. As both x(α) and y(α) belong to F , it follows that
they are comparable, and therefore x ∧ y ∈ {x(α), y(α)} ⊆ F .

(ii) Let x ∈ F . We denote by x∗ the largest element of F ∩K∂x smaller
than x if it exists (i.e., as F∩K∂x is a chain, if F∩K∂x has an element smaller
than x), and by x− the largest element of Proj(x) \ {x} if it exists (i.e., if
there exists an element in Proj(x) smaller than x). It suffices to prove that
every element y ∈ F smaller than x lies either below x∗ or below x−. From
y ≤ x it follows that ∂y ≤ ∂x and y ≤ x(∂y). If ∂y = ∂x then, as y < x,
x∗ exists and y ≤ x∗. If ∂y < ∂x, then, as y ≤ x and by Lemma 6.2(i),
∂(x(∂y)) = ∂y < ∂x, thus x− exists and y ≤ x(∂y) ≤ x−.

Now let F be upward directed. Together with (i) and the lower finiteness
of F , this implies that F is a lattice. Therefore, by (ii), F is a 2-ladder.

In particular, every skeleton of K is both a 2-ladder and a meet-sub-
semilattice of K. Easy examples show that a skeleton of K may not be a
join-subsemilattice of K.

7. The poset Sk(K) of all finite preskeletons of K. As the present
section involves Martin’s Axiom in an essential way, we shall use forcing ter-
minology (open, dense) rather than poset terminology (lower subset, coini-
tial) throughout (cf. Section 2).

Definition 7.1. Let K be a lower finite normed lattice (cf. Defini-
tion 6.1). We denote by Sk(K) the set of all finite preskeletons of K (cf.
Definition 6.3), ordered by reverse containment. Furthermore, we put

Ska(K) := {F ∈ Sk(K) | (∃x ∈ F )(a ≤ x and ∂a = ∂x)} for each a ∈ K,
and DK = {Ska(K) | a ∈ K}.
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It is clear that Ska(K) is an open subset of Sk(K).

Lemma 7.2. The subset Ska(K) is dense in Sk(K) for each a ∈ K.

Proof. Let E ∈ Sk(K); we must find F ∈ Ska(K) containing E. Put
b := a ∨ ∨E. As the finite chain Proj(b) is projectable, the subset F :=
E ∪ Proj(b) is projectable. Furthermore, for each x ∈ E, from x ≤ b it
follows that x ≤ b(∂x), and so F is a preskeleton of F .

Put α := ∂a. From a ≤ b it follows that a ≤ b(α) and ∂b(α) = α
(cf. Lemma 6.2(i)). Therefore, the element b(α) witnesses that F belongs
to Ska(K).

Definition 7.3. A normed lower finite lattice is locally countable if all
its levels are countable.

Proposition 7.4. Every locally countable normed lower finite lattice K
has cardinality at most ℵ1 and range of order-type at most ω1.

Proof. Without loss of generality, θ := rng ∂ is an ordinal. For each α < θ
and each a ∈ Kα, the map (K≤α → Kα, x 7→ x ∨ a) is finite-to-one, thus,
as Kα is countable, K≤α is countable as well. As |K≤α| ≥ |α|, it follows that
θ ≤ ω1. Therefore, K =

⋃
(Kα | α < θ) has cardinality at most ℵ1.

In the following lemma, we shall use the ∆-Lemma together with the
notions of “centred” and “precaliber” (cf. Section 2).

Lemma 7.5. Suppose that K is locally countable. Then the poset Sk(K)
has precaliber ℵ1.

Proof. Let (Fα | α < ω1) be an ω1-sequence of elements of Sk(K). We
must find an uncountable U ⊆ ω1 such that {Fα | α ∈ U} is centred. Put
eα :=

∨
Fα (an element of K), Xα := K ↓ eα (a finite subset of K), and

Sα = ∂[Fα] (a finite subset of rng ∂), for each α < ω1. Two successive
applications of the ∆-Lemma yield an uncountable subset U1 of ω1 and
finite sets X, S such that

(7.1) (∀α 6= β in U1)(Xα ∩Xβ = X and Sα ∩ Sβ = S).

As S is a finite subset of rng ∂, it is contained in δ+1 for some δ ∈ rng ∂. For
each α ∈ U1, Fα ∩K≤δ is a finite subset of K≤δ, hence, as K≤δ is countable,
there are a finite subset F of K≤δ and an uncountable subset U2 of U1 such
that

(7.2) (∀α ∈ U2)(Fα ∩K≤δ = F ).

We claim that {Fα | α ∈ U2} is centred. It is sufficient to prove that for
each nonempty finite subset A of U2, the union F :=

⋃
(Fα | α ∈ A) belongs

to Sk(K). As F is obviously projectable, it suffices to prove that any elements
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x, y ∈ F ∩ Kξ for ξ ∈ rng ∂ are comparable. Let α, β ∈ A be such that
(x, y) ∈ Fα × Fβ. If α = β then, as Fα is a preskeleton of K, we are done.
Suppose that α 6= β. As ξ = ∂x = ∂y belongs to Sα ∩ Sβ = S (cf. (7.1)), we
get ξ ≤ δ, thus, by (7.2), x ∈ Fα∩K≤δ = Fβ∩K≤δ ⊆ Fβ, so {x, y} ⊆ Fβ∩Kξ,
and so, as Fβ ∩Kξ is a chain, x and y are comparable.

The following lemma describes DK-generic filters over Sk(K).

Lemma 7.6. Let K be a lower finite normed lattice and let G be a DK-
generic filter of Sk(K). Then G :=

⋃
G is a skeleton of K. In particular, G

is a cofinal meet-semilattice in K and it is a 2-ladder.

Proof. As G is an upward directed (for containment) set of preskeletons
of K, G is also a preskeleton of K. As G meets Ska(K) for each a ∈ K, G is
cofinal on each level of K. In particular, G is cofinal in K, thus it is upward
directed, and thus (cf. Lemma 6.4) it is a 2-ladder.

An immediate application of Lemmas 2.1, 7.2, and 7.5 yields the fol-
lowing theorem. However, as there is an easy direct proof, we provide it as
well.

Theorem 7.7. Every countable lower finite normed lattice K has a
skeleton.

Proof. As K is countable, it has a cofinal chain C. It is obvious that the
subset F :=

⋃
(Proj(c) | c ∈ C) is projectable. For any ξ ∈ rng ∂, any two

elements of F ∩Kξ have the form c(ξ) and d(ξ) for some c, d ∈ C. As c and d
are comparable, so are c(ξ) and d(ξ). This proves that F is a preskeleton
of K. As C is cofinal in K, every x ∈ K lies below some c ∈ C. Hence
x ≤ c(∂x) and, by Lemma 6.2(i), ∂x = ∂(c(∂x)). Therefore, F ∩K∂x is cofinal
in K∂x.

For lattices of cardinality ℵ1 we get the following result:

Theorem 7.8. Assume that the axiom MA(ℵ1; precaliber ℵ1) holds. Let
K be a lower finite lattice of cardinality at most ℵ1. Then K has a skeleton.

Proof. Write K = {eξ | ξ < ω1}, and denote by Iα the ideal of K gen-
erated by {eξ | ξ < α}, for each α < ω1. Finally, for each x ∈ K, denote by
∂x the least ordinal α such that x ∈ Iα. Then (K, ∂) is a locally countable,
lower finite normed lattice. Now apply Lemmas 7.2 and 7.5.

We obtain the following result.

Theorem 7.9. Suppose that MA(ℵ1; precaliber ℵ1) holds. Then there ex-
ists an atomistic 3-ladder of cardinality ℵ2.

Proof. We argue as in the proof of Proposition 4.3. We construct induc-
tively an ω2-sequence K = (Kα | α < ω2) of atomistic 3-ladders of cardinal-
ity at most ℵ1 such that α < β implies that Kα is a proper ideal of Kβ.
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Once this is done, the 3-ladder Kω2 :=
⋃

(Kα | α < ω2) will clearly solve
our problem.

We set K0 := {0}. If λ < ω2 is a limit ordinal and all Kα, for α < λ, are
constructed, set Kλ :=

⋃
(Kα | α < λ). Let α < ω2 and suppose that Kα is

constructed, of cardinality at most ℵ1. By Theorem 7.8 and Lemma 6.4, Kα

has a cofinal meet-subsemilattice F which is also a 2-ladder. We consider
an isomorphic copy F ∗ of F disjoint (set-theoretically) from Kα, via an
isomorphism f : F � F ∗, and we consider the partial ordering on Kα+1 :=
KαtF ∗ obtained as the union of the respective partial orderings of Kα and
F ∗ together with the additional pairs

x < f(y) just in case x ≤ y, for all (x, y) ∈ Kα × F.
As F is a meet-subsemilattice of Kα, Kα+1 is a lattice. It is easily seen to
be an atomistic 3-ladder (the only atom in Kα+1 not in Kα is f(0F )). In
particular, the lower covers of f(x), for x ∈ F , are x and (in case x > 0F )
f(x0), f(x1), where x0 and x1 are the lower covers of x in F .

The ω2-sequence K thus constructed is as required.

8. Amalgamating countable normed 3-ladders

Definition 8.1. A poset P is the strong amalgam of two subsets A
and B over a subset I if P = A ∪B, I = A ∩B, and for all (a, b) ∈ A×B,
a ≤ b (resp., a ≥ b) iff there exists x ∈ I such that a ≤ x ≤ b (resp.,
a ≥ x ≥ b).

The proof of the existence of a 3-ladder of cardinality ℵ2 from an (ω1, 1)-
morass is based on the following lemma (the maps τδ,θ are defined in (3.1)).

Lemma 8.2. Let K be a countable, transitive, normed 3-ladder with
range θ, let δ be an ordinal with 0 < δ < θ, and put

I := {x ∈ K | ∂x < δ}.
Then there are a countable, transitive, normed 3-ladder K with range θ′ :=
θ + (θ − δ), containing K as an ideal, and a lower embedding f : K ↪→ K
such that the following conditions hold:

(i) K ∪ f [K] is the strong amalgam of K and f [K] over I;
(ii) every element of K is the join of two elements of K ∪ f [K];

(iii) f�I is the identity map on I;
(iv) ∂f(x) = τδ,θ(∂x) for each x ∈ K.

Proof. It is straightforward to construct a (set-theoretical) copy K∗ of K
such that K ∩ K∗ = I, isomorphic to K via a bijection f : K � K∗ such
that f�I = idI . Defining the ordering on K∪K∗ according to Definition 8.1,
we find that K ∪ K∗ is a strong amalgam of K and K∗ = f [K] over I.



Large semilattices of breadth three 15

(As δ > 0, 0K = f(0K) remains the least element of K ∪K∗.) We extend
the norm ∂ to K ∪K∗ by setting

(8.1) ∂f(x) := τδ,θ(∂x) for each x ∈ K.
Observe that the extension of ∂ thus defined preserves all finite joins within
each block K or f [K].

Pick o ∈ Kδ and fix a cofinal chain C in K with least element o. We set

F := {(c, u) ∈ C ×K | u E c and δ ≤ ∂u}
(cf. (6.1)). Observe that c(δ) = u(δ) for each (c, u) ∈ F .

We refer the reader to Section 2 for the notation xF .

Claim 1. The subset F is a cofinal meet-subsemilattice of K ×K. Fur-
thermore,

(x, y)F = (xC ∨ yC , (xC ∨ yC)(δ∨∂y)) for each (x, y) ∈ K ×K.
Proof of Claim. As (c, c) ∈ F for each c ∈ C, F is cofinal in K ×K. Let

(c, u), (d, v) ∈ F . We must prove that (c∧d, u∧v) ∈ F . We may assume that
c ≤ d. It is straightforward to verify that u ∧ v = c(∂u) ∧ d(∂v) = c(∂u∧∂v),
and so (c ∧ d, u ∧ v) = (c, c(∂u∧∂v)) ∈ F .

Now let (x, y) ∈ K ×K, put c := xC ∨ yC and η := δ ∨ ∂y. As o ∨ y ≤ c
and ∂(o∨y) = η, it follows from Lemma 6.2(i) that ∂c(η) = η, hence (c, c(η))
belongs to F ; it obviously lies above (x, y). For each (c, u) ∈ F above (x, y),
it follows from x ≤ c, y ≤ u ≤ c, and c ∈ C that c = xC ∨ yC ≤ c. From
y ≤ u it follows that ∂y ≤ ∂u, thus, as δ ≤ ∂u, we get η ≤ ∂u, and thus
c(η) ≤ c(∂u) ≤ c(∂u) = u (the latter equality following from the relation
u E c). Therefore, (c, c(η)) ≤ (c, u). Claim 1

As F is a cofinal meet-subsemilattice of K×K, it is a lower finite lattice;
its least element is (o, o).

Claim 2. The lattice F is a 2-ladder.

Proof of Claim. We prove that every element (c, u) ∈ F has at most two
lower covers in F . We denote by c∗ the unique lower cover of c in C if it
exists (i.e., c > o), and by u− the largest element of Proj(u) \ {u} such that
δ ≤ ∂u− if it exists (i.e., ∂u > δ). If c∗ exists, then (c0, u0) := (c∗, (c∗)(∂u))
is an element of F smaller than (c, u). If u− exists, then (c1, u1) := (c, u−)
is an element of F smaller than (c, u).

Now let (d, v) ∈ F be such that (d, v) < (c, u). If d < c, then c∗ exists
and d ≤ c∗, but v ≤ u, thus

v = d(∂v) (because v ∈ Proj(d))

≤ (c∗)(∂u) (because d ≤ c∗ and ∂v ≤ ∂u),
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and so (d, v) ≤ (c0, u0). Now suppose that d = c. Hence v < u, but
u, v ∈ Proj(c), thus v ∈ Proj(u), so u− exists and v ≤ u−, and so (d, v) ≤
(c1, u1). Therefore, each lower cover of (c, u) in F is equal to (ci, ui) for some
i < 2. Claim 2

Now we endow the disjoint union K := (K ∪ f [K]) t F with the partial
ordering obtained as the union of the respective partial orderings of the
strong amalgam K ∪ f [K] and the 2-ladder F together with the pairs

x < (c, u) just in case x ≤ c,(8.2)

f(x) < (c, u) just in case x ≤ u,(8.3)

for each x ∈ K and each (c, u) ∈ F . It is important to observe that there is
no ambiguity between (8.2) and (8.3) in case x ∈ I (i.e., x = f(x)), because
c(δ) = u(δ). It is straightforward to verify that K is a lower finite poset in
which both K and f [K] are lower subsets. Furthermore, by Claim 1, K is
a (∨, 0)-semilattice, in which the join operation on pairs of elements not in
the same block K or f [K] is given by

x0 ∨ f(x1) = (xC0 ∨ xC1 , (xC0 ∨ xC1 )(∂x1)),(8.4)

x ∨ (c, u) = (xC ∨ c, (xC ∨ c)(∂u)),(8.5)

f(x) ∨ (c, u) = (xC ∨ c, (xC ∨ c)(∂x∨∂u)),(8.6)

(c0, u0) ∨ (c1, u1) = (c0 ∨ c1, (c0 ∨ c1)(∂u0∨∂u1)),(8.7)

for all x ∈ K, all x0, x1 ∈ K \ I, and all (c, u), (c0, u0), (c1, u1) ∈ F . For
example, x0∨f(x1) is the least element of F above (x0, x1), thus, by Claim 1
and as δ ≤ ∂x1, it is equal to (xC0 ∨ xC1 , (xC0 ∨ xC1 )(∂x1)). Observe that (8.4)
implies immediately that every element of K is the join of two elements
of K ∪ f [K]—indeed, (c, u) = c ∨ f(u) for each (c, u) ∈ F .

We set

(8.8) ∂(c, u) := τδ,θ(∂u) for each (c, u) ∈ F.
In order to verify that the extension of ∂ defined in (8.1) and (8.8) is a
join-homomorphism, we consider the expressions (8.4)–(8.7) and we use re-
peatedly the fact that τδ,θ(∂u) ≥ θ for each (c, u) ∈ F , hence τδ,θ(∂u) ab-
sorbs ∂x for each x ∈ K. The verifications of these facts are straightforward.

As ∂�K has range θ, ∂�f [K] has range δ ∪ (θ′ \ θ), and ∂�F has range
contained in (and in fact equal to) θ′ \ θ, we infer that the range of ∂ is θ′.

As both K and f [K] are lower subsets of K and 3-ladders, in order to
verify that K is a 3-ladder, it suffices to verify that each (c, u) ∈ F has at
most three lower covers in K. We use the notations c∗ and u− introduced in
the proof of Claim 2. By using Claim 2, it is easy, although a bit tedious, to
verify that every lower cover of (c, u) in K has one of the following forms:
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• (c, u−), (c∗, (c∗)(∂u)), and f(u) if c > o and ∂u > δ;
• c, (c∗, (c∗)(δ)), and f(u) if c > o and ∂u = δ;
• o and f(o) if c = o.

In any case, (c, u) has at most three lower covers in K.

9. Getting a large 3-ladder from a morass

Theorem 9.1. Suppose that there exists an (ω1, 1)-morass. Then there
exists an atomistic 3-ladder of cardinality ℵ2.

Proof. As discussed in Section 3, there exists a simplified (ω1, 1)-morass.
We shall use the same notation as in Definition 3.1. We shall construct
inductively a system

K =
(

(Kξ | ξ ≤ ω1),
(
f∗ | f ∈

⋃
(Fα,β | α < β ≤ ω1)

))
satisfying the following conditions:

(K0) Each Kξ is an atomistic normed 3-ladder with range θξ.
Accordingly, we shall denote by ∂, or ∂ξ in case ξ needs to be spec-
ified, the norm function on Kξ.

(K1) Kξ is countable for each ξ < ω1.
(K2) If ξ < η ≤ ω1 and f ∈ Fξ,η, then f∗ : Kξ ↪→ Kη is a lower embed-

ding.
(K3) If ξ < η < γ ≤ ω1, then (f ◦g)∗ = f∗ ◦g∗ for all (f, g) ∈ Fη,γ×Fξ,η.
(K4) If ξ < η ≤ ω1, then ∂η ◦ f∗ = f ◦ ∂ξ for each f ∈ Fξ,η.

Provided we can carry out this construction we shall be done, since then
Kω1 is a normed 3-ladder with range ω2, thus of cardinality at least ℵ2.
As every 3-ladder has cardinality at most ℵ2 (cf. Proposition 4.2), Kω1 has
cardinality exactly ℵ2.

We start with K0 := P({0, 1}) (endowed with containment) with the
norm operation defined by ∂∅ = 0, ∂{0} = 1, and ∂{1} = ∂{0, 1} = 2.
Suppose the construction has been carried out up to the level α (that is,
replace ≤ ω1 by ≤ α in (K0)–(K4) above). We shall show how to extend it
to the level α+ 1. We put

(9.1) Iα := {x ∈ Kα | ∂x < δα}.
By Lemma 8.2, there exists a countable, transitive, normed 3-ladder Kα+1

with range θα + (θα − δα) = θα+1, containing Kα as an ideal, together with
a lower embedding

f∗α : Kα ↪→ Kα+1

such that the following conditions hold:

(i) Kα ∪ f∗α[Kα] is the strong amalgam of Kα and f∗α[Kα] over Iα;
(ii) every element of Kα+1 is the join of two elements of Kα ∪ f∗α[Kα];
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(iii) f∗α�Iα is the identity map on Iα;
(iv) ∂f∗α(x) = fα(∂x) for each x ∈ Kα (recall that fα is the restriction

of τδα,θα from θα into θα+1).

In particular, it follows from the induction hypothesis and from (ii) that
Kα+1 is also atomistic.

We put id∗θα := idKα . Hence f∗ is a lower embedding from Kα into Kα+1,
for each f ∈ Fα,α+1. It follows immediately from the definition that

(9.2) ∂α+1 ◦ f∗ = f ◦ ∂α for each f ∈ Fα,α+1.

We must define f∗ for each ξ < α and each f ∈ Fξ,α+1. It follows from (P2)
(cf. Definition 3.1) that there are g ∈ Fα,α+1 and h ∈ Fξ,α such that f = g◦h.
We have no other choice than to define f∗ := g∗ ◦ h∗. It follows easily from
Lemma 3.2 that the map h is uniquely determined, but g may not be. This
uniqueness problem arises iff f = h = fα ◦ h, in which case the range of h
is contained in the intersection of θα and the range of fα, which is δα. In
this case, we need to prove that f∗α ◦ h∗ = f∗α, that is, rng h∗ ⊆ Iα. This is
obvious by (9.1), as rng h ⊆ δα, so, by using the induction hypothesis, the
relations

∂h∗(x) = h(∂x) < δα

hold for each x ∈ Kξ.
At this stage we are able to define f∗ = g∗◦h∗ as above. Once this is done,

the verification of (K3) is straightforward. This concludes the successor case.
Now let λ ≤ ω1 be a limit ordinal and suppose that the construction

of K has been carried out for all levels < λ (i.e., replace ≤ ω1 by < λ in the
formulations of (K0)–(K4)). The proof of this case runs as the proof of the
limit case of the gap-2 transfer theorem using a simplified morass presented
in Devlin [2, Section VIII.4], so we shall merely outline it. We put

Fλ :=
⋃

(Fα,λ | α < λ) (disjoint union),

and we define d(f), for f ∈ Fλ, as the unique α < λ such that f ∈ Fα,λ. For
f, f ′ ∈ Fλ, let f C f ′ if d(f) < d(f ′) and there exists a (necessarily unique)
g ∈ Fd(f),d(f ′) such that f = f ′ ◦ g. It follows from the induction hypothesis
that the map πf,f ′ = g∗ : Kd(f) ↪→ Kd(f ′) is a lower embedding and

(9.3) ∂d(f ′) ◦ πf,f ′ = g ◦ ∂d(f).

It follows from (P2) and (P4) that C is an upward directed strict ordering
on Fλ, so we can form the direct limit

(Kλ, f
∗ | f ∈ Fλ) = lim−→ (Kd(f), πf,f ′ | f C f ′ in Fλ)

in the category of lattices and lattice homomorphisms. As all πf,f ′s are lower
embeddings, so are all f∗s. As Kλ is the directed union of all the ranges of
the lower embeddings f∗ : Kd(f) ↪→ Kλ and all the Kd(f)s are atomistic
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3-ladders, Kλ is an atomistic 3-ladder. Furthermore, it follows from (9.3)
that there exists a unique map ∂λ : Kλ → θλ such that ∂λ ◦f∗ = f ◦∂d(f) for
each f ∈ Fλ, and it is straightforward to verify that ∂λ is a join-homomor-
phism. As ∂d(f) has range θd(f) for each f ∈ Fλ and by (P5), the map ∂λ
has range θλ. This completes the construction.

As recalled in Section 3, the nonexistence of an (ω1, 1)-morass implies
that ω2 is inaccessible in the constructible universe L. Hence,

Corollary 9.2. If there is no 3-ladder of cardinality ℵ2, then ω2 is
inaccessible in L.

We still do not know whether the nonexistence of a 3-ladder of cardinal-
ity ℵ2 is consistent with ZFC. We thus reach the intriguing conclusion that
the existence of a 3-ladder of cardinality ℵ2 follows from either one of two
axioms of set theory, namely MA(ℵ1; precaliber ℵ1) and the existence of a
gap-1 morass, which do not imply each other. Indeed, as there are morasses
in L, and L satisfies the Generalized Continuum Hypothesis, while on the
other hand MA(ℵ1; precaliber ℵ1) implies that 2ℵ0 = 2ℵ1 (for the Martin–
Solovay forcing, constructed from ℵ1 almost disjoint subsets of ω, used in
the proof of Jech [8, Theorem 16.20], has precaliber ℵ1), the existence of an
(ω1, 1)-morass does not imply MA(ℵ1; precaliber ℵ1). A simpler argument,
pointed out by the referee, runs as follows. If MA(ℵ1; countable) (i.e., MA(ℵ1)
restricted to countable notions of forcing) holds, then, following the argu-
ment of Jech [8, Exercise 16.10] (using Cohen forcing), it is easy to prove
that 2ℵ0 > ℵ1. In particular, the existence of a gap-1 morass does not even
imply MA(ℵ1; countable).

Conversely, Devlin [1] finds a model of ZFC+MA(ℵ1) without any Kurepa
tree, thus a fortiori without any (ω1, 1)-morass.

The question whether there exists a k-ladder of cardinality ℵk−1 for k ≥ 3
is also raised in [3]. This question seems to get harder as k grows larger (we
have no proof of this, although the similar implication with lower finite lat-
tices of breadth k is easy to establish). The proof of Theorem 9.1 suggests
(without proving it) that the existence of a gap-n morass would entail the
existence of an (n+2)-ladder of cardinality ℵn+1, for every positive integer n.
However, such a program would run into a number of technical difficulties,
starting with the lack of a formally established equivalence between gap-n
morasses and their simplified versions for n ≥ 3 (cf. Morgan [11] for the case
n = 2), or even the lack of formally established proofs that the latter exist
in L[A] for any A ⊆ ω1. Furthermore, our result that MA(ℵ1; precaliber ℵ1)
implies the existence of a 3-ladder of cardinality ℵ2 (Theorem 7.9) suggests
that morasses may not even be the optimal tool required to solve that prob-
lem. Another objection is that unlike morasses, higher and higher versions
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of Martin’s Axiom would apparently not be able to construct ladders of car-
dinality beyond the continuum. . . Still, without the question whether ZFC
implies the existence of a 3-ladder of cardinality ℵ2 being settled, the morass
track and the Martin’s Axiom track seem to be all we have.

Acknowledgments. I am grateful to Rich Laver for inspiring early e-
mail discussions about the consistency problem of 3-ladders of cardinality ℵ2.
I also thank Michael Pinsker for his many remarks and corrections, that led
in particular to substantial simplifications of several proofs.
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Département de Mathématiques, BP 5186
Université de Caen
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