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C1 stable maps: examples without saddles

by

J. Iglesias, A. Portela and A. Rovella (Montevideo)

Abstract. We give here the first examples of C1 structurally stable maps on man-
ifolds of dimension greater than two that are neither diffeomorphisms nor expanding. It
is shown that an Axiom A endomorphism all of whose basic pieces are expanding or at-
tracting is C1 stable. A necessary condition for the existence of such examples is also
given.

1. Introduction. The space of C1 maps of a compact manifold M will
be denoted by C1(M). An equivalence (conjugacy) between f and g is a
homeomorphism h of M such that hf = gh. If such an equivalence exists,
the maps f and g are said to be topologically equivalent. A map f ∈ C1(M)
is C1 structurally stable, or simply C1 stable, if there exists a neighborhood
U of f in C1(M) such that f and g are topologically equivalent for every
g ∈ U .

The characterization of C1 stable maps is a central problem in dynamics.
For invertible maps of compact manifolds (diffeomorphisms), the charac-

terization of C1 stability was obtained by Robinson [Rob] and Mañé [Ma2].
A few years earlier, it had been shown by Shub [Sh] that an expanding map
is stable. Since then, no new examples of C1 stable maps on manifolds of
dimension greater than one have been discovered.

It is known that if M is a compact manifold then the following conditions
are necessary for a map f ∈ C1(M) to be C1 structurally stable:

(1) The set of critical points of f is empty.
(2) The map f is Axiom A without cycles.
(3) If the unstable set of a basic piece Λ intersects another basic piece,

then Λ is an expanding basic piece.

Note that this contrasts with the chronology of discovering for diffeomor-
phisms: sufficient conditions (namely, Axiom A + Strong Transversality)
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for C1 structural stability of diffeomorphisms were obtained by C. Robin-
son in 1976, a long time before R. Mañé obtained a proof of the necessity
of these conditions. In the case of noninvertible maps, it is known that
hyperbolicity is necessary for stability, but no set of sufficient conditions
have been established until now, and no nonexpanding examples have been
known. Looking for a characterization of C1 stable maps, our interest now
is to provide sufficient conditions and introduce new examples of C1 stable
maps.

Now we briefly comment on the necessary conditions stated above. The
first item is obvious since it concerns C1 maps. It follows that f is locally
invertible and so a covering map. There exist examples of maps (on manifolds
of dimension greater than one) having critical points that are Cr structurally
stable (r>1) and have nontrivial nonwandering sets (see [IPR1] and [IPR2]).

To explain the second item, it is convenient to briefly recall the history
of the definition of Axiom A. The first definition was given by Przytycki
([Prz1]): a map f is Axiom A if its nonwandering set is hyperbolic and the
set of periodic points of f is dense in Ω(f). However, as proved by Przytycki
in [Prz2], a map f that has this property and is C1 Ω-stable, must satisfy the
no cycles condition, and also the restriction of f to Λ is injective whenever
Λ is a basic piece that is not expanding. Following [Ma1], we include this
last condition in the definition of Axiom A.

The proof of the second item is a consequence of the work of several au-
thors. On one hand, Aoki, Moriyasu and Sumi [AMS], adapting the proof of
the C1 stability conjecture given by Mañé [Ma2], proved that C1 Ω stability
implies that the nonwandering set has a hyperbolic structure. The adapta-
tion of Pugh’s C1 closing lemma for critical point free endomorphisms was
obtained by Wen [Wen], and trivially implies the density of periodic points
in the nonwandering set when the map is stable. As explained in the above
paragraph, Przytycki proved that an Ω-stable map cannot have cycles and
must satisfy the remaining condition. Actually, the first two items character-
ize C1 Ω-stable maps without nonwandering critical points. When the set of
critical points intersects the nonwandering set, some conditions were shown
to be sufficient for C1 Ω-stability in [DRRV], but a full characterization was
not established, at least in dimensions ≥ 3. The third item was also proved
by Przytycki in [Prz2].

In Przytycki’s last mentioned article, there is an example of an Ω-stable
map that satisfies the three items above; it was asked if this example is
structurally stable or not. As far as we know, this question has remained
unsolved since then. It is our purpose to show that his example is C1 struc-
turally stable in a forthcoming work. The nonwandering set of Przytycki’s
map is the union of an attracting fixed point, a saddle type basic piece and
an expanding set. The main difficulty in proving the stability comes from
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the fact that there exist intersections of the unstable manifolds of saddle
type basic pieces. Without this type of basic pieces, one has the following
simple result.

Theorem 1. Let M be a compact manifold. If f ∈ C1(M) is an Axiom
A map without critical points, and every basic piece is either expanding or
attracting, then f is C1 structurally stable.

We have known for some time how to prove similar assertions; the ideas
are contained in [IP], [IPR1] and [IPR2]. However, we have not known any
examples of maps satisfying the hypotheses; the discovery of simple examples
in dimensions greater than two motivated us to write the present work.

Theorem 2. Let M be a manifold admitting an expanding map, and
embed M into some sphere S. Then there exists a noninvertible Axiom A
map f in C1(M × S) whose nonwandering set is the union of an expanding
set and a nonperiodic attractor, and moreover f has no critical points, so
Theorem 1 implies that f is C1 structurally stable.

A very simple formula is also available in S1×S2: if the extended complex
plane is seen as the two-dimensional sphere, then

f : S1 × S2 → S1 × S2, f(z, w) = (z2, z/2 + w/3),

is a C1 stable map. The nonwandering set of f is the union of an attracting
solenoid A contained in S1 × D(0; 1), and an expanding circle S1 × {∞}.
The map f has degree two and is injective in A, so f−1(A) must have a
component A′ 6= A. Behind this simple formula is hidden the fact that A′

must be contained in the immediate basin of A. Even when singularities are
forbidden, f is not injective in the immediate basin of an injective attractor.
It is interesting to realize that this possibility depends on the topology of
the attractor. This is the subject of the next result.

A neighborhood U of an attractor Λ of a map f is called admissible if it
is contained in the basin of attraction of Λ, the closure of f(U) is contained
in U , the restriction of f to U is injective and each connected component of
U intersects Λ.

Definition 1. The attractor Λ is called topologically simple if there
exists an admissible neighborhood U of Λ such that for each closed curve γ
in U there exists a closed curve γ′ in f(U) such that γ and γ′ are homotopic
and the homotopy is contained in U .

For example, a periodic attractor and a DA attractor are topologically
simple, while a solenoid is not.

Theorem 3. Let M be a compact connected manifold, and f ∈ C1(M)
a nonivertible Axiom A map without critical points. If f has a topologically
simple attractor Λ, then:
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(1) The restriction of f to B0, the immediate basin of attraction of Λ,
is injective.

(2) If the dimension of M is greater than one, then in the boundary of
B0 there are nonwandering points that do not belong to an expanding
basic piece.

For an Axiom A map, denote by Γ (f) the union of the basic pieces that
are neither expanding nor attracting (repelling basic pieces that are not ex-
panding are contained in Γ (f)). The second item of Theorem 3 implies that
Γ (f) is not empty if there exists a topologically simple attractor. Therefore,
under the presence of such an attractor, the hypotheses of Theorem 1 do
not hold.

2. Sufficient conditions for stability. In this section we prove Theo-
rem 1. The proof is inspired by that of Theorem C in [IPR2]. In that result,
there were critical points in the basin of the attractor but it was assumed
that the union of the expanding pieces of the map was completely invariant,
which is not the case here.

We begin by recalling the definition of an expanding set: A compact
invariant set Λ is expanding if there exist constants C > 0 and λ > 1 such
that |Dfnx (v)| ≥ Cλn|v| for every n > 0 and every vector v. If f is an
Axiom A map, then an expanding basic piece is an expanding set Λ such
that f is transitive on Λ. In this case, there exists an open neighborhood U
of Λ such that f(U) ⊃ Ū and

⋂
n≥0 f

−n(U) = Λ.
We first claim that the map f is C1 Ω-stable: as was explained in the

introduction, it is sufficient to prove that f is critical points free and Axiom
A without cycles. Note that the no cycles condition is a trivial consequence
of the nature of the basic pieces and of the absence of critical points; indeed,
it may happen that the unstable set of an expanding basic piece contains a
different expanding piece (see Fig. 1), but cycles are forbidden since their
intersections are nonwandering.

p

Fig. 1. f is an Axiom A map of S1. The basic pieces are: two attracting fixed points, a
fixed repeller p and an expanding Cantor set K. The preimage f−1(p) is not contained in
Ω(f).



C1 stable maps 27

There exists a C1 neighborhood U of f such that for every g ∈ U one can
define A(g) as the union of the attracting basic pieces of g, B(g) as the union
of the basins of the elements of A(g), and J(g) as the union of the preimages
of the expanding basic pieces of g. It follows that J(g) ∪ B(g) = M . Note
that for the one-dimensional map f of Fig. 1, the set J(f) is not equal to
the union of the expanding basic pieces.

However, J(f) is always an expanding set:

Lemma 1. J(f) is an expanding set.

Proof. We first show that M is the disjoint union of J(f) and B(f). Note
that if Λ is an expanding basic piece, then there exists a neighborhood U
of Λ such that every point of U \Λ eventually escapes from U . If x /∈ B(f),
then the sequence {fn(x) : n ≥ 0} must converge to an expanding basic
piece Λ, and this implies that fN (x) ∈ Λ for some N > 0. It follows that
x ∈ J(f). Thus J(f) is compact, invariant and

lim
n→+∞

‖Dfn(v)‖ = +∞ ∀v ∈ TJ(f)M, v 6= 0.

A standard argument, which we omit here, implies the assertion of the
lemma.

It is a well known fact that hyperbolic attractors are stable. As the
restriction of f to a neighborhood of A(f) is a diffeomorphism onto its
image, there exists an equivalence h between the restrictions of f and G to
neighborhoods U(f) of A(f) and U(g) of A(g). Moreover, the equivalence
can be taken as close to the identity as wished by shrinking the neighborhood
U of f .

Denote by h the equivalence between f and g referred to above. The first
step of the proof consists in extending h to B(f). This would be trivial if
f were a diffeomorphism. Indeed, let x be a point in f−k(U(f)); to define
h(x) one has to choose a gk-preimage of h(f(x)), and there are a lot of them.
However, our arguments will imply that there exists one of these preimages
that is closest to x. This is easy to prove for a finite number of preimages,
but at each step, one is forced to shrink the neighborhood of f . A different
argument will be used when the preimages taken are sufficiently close to an
expanding set. Lemma 2 will provide precise estimates, and Lemma 3 will
explain the order of choices of neighborhoods and constants. The second
step of the proof consists in extending h to the complement J(f) of B(f).

Some definitions and notations are in order before proceeding to the
statement of the first lemma. Define Uk(f) = f−k(U(f)). Let d denote the
distance in M , and B(x; r) be the ball of center x and radius r. As the
maps have no critical points and the manifold M is compact, there exists
ε0 > 0 such that g(x) = g(y) implies x = y or d(x, y) > ε0 whenever
g ∈ U . If W is a subset of M and δ > 0, denote by Nδ(W ) the set of
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homeomorphisms h : W → h(W ) ⊂M that are δ-close to the identity of W .
If, moreover, h conjugates the corresponding restrictions of f and g, then
we write h ∈ Nδ(W ; g).

Lemma 2.

(1) Let ρ be a positive constant less than or equal to ε0/2. Then there
exist δ = δ(ρ) > 0 and a neighborhood U = U(ρ) of f such that, if
W is any subset of M and h belongs to Nδ(W ; g) for some g ∈ U ,
then there exists a unique extension h′ of h in Nρ(W ∪ f−1(W ); g).

(2) There exist a positive number δ0 and a neighborhood V of J(f) such
that the following property holds. Given any δ < δ0 there exists a
neighborhood U of f such that, given any W ⊂ V , any g ∈ U and
any h ∈ Nδ(W ; g), there exists a unique extension h′ of h in Nδ(W ∪
f−1(W ); g).

Proof. (1) Let x ∈ f−1(W ); one has to prove that there exists a unique
x′ ∈ B(x; ρ) such that g(x′) = h(f(x)).

Note that given any ρ > 0 there exists a neighborhood U of f and a
positive number δ such that, for every g in U and x ∈M ,

g(B(x; ρ)) ⊃ B(g(x); 2δ).

Note also that if ρ < ε0/2, then g|B(x;ρ) is a homeomorphism onto its image.
To prove part (1) it suffices to show that h(f(x)) ∈ B(g(x); 2δ). But

d(h(f(x)), g(x)) ≤ d(h(f(x)), f(x)) + d(f(x), g(x)) ≤ 2δ

if the C0 distance between f and g is less than δ. This defines h in f−1(W );
it is a homeomorphism since it is open by definition (locally h = g−1hf).
Moreover h(x) = h(y) implies h(f(x)) = h(f(y)), hence f(x) = f(y) and so
x = y because h is close to the identity.

(2) If U is a small neighborhood of f , and V is a small neighborhood
of J(f), then Lemma 1 implies that there exists a number λ > 1 and an
adapted metric in M such that Dgx λ-expands any direction, for any x ∈ V
and g ∈ U . Using part (1), let δ0 = δ(ε0/2). Now, if δ < δ0, and if for some
g ∈ U(ε0/2) one has an h ∈ Nδ(W ; g), then there is an extension h′ of h to
f−1(W ) that still conjugates f and g. It must be shown that the extension
remains in the δ-neighborhood of the identity. Indeed, if f(x) ∈ W and
h(x) = x′, then d(f(x), f(x′)) ≥ λd(x, x′). Moreover,

d(f(x), f(x′)) ≤ d(f(x), g(x′)) + d(g(x′), f(x′)) ≤ δ + d0,

where d0 is the C0 distance between f and g. Taking U so small that d0 <
(λ− 1)δ, it follows that d(x, x′) < δ.
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By Lemma 2(1), one can extend h to U1(f) if the neighborhood U is
small enough. This can be repeated a finite number of times, but it is not
enough to cover B(f). We will show how the second part of the lemma
implies that close to the boundary of the basin, the distance from h to the
identity will not increase. We are using here the fact that the complement
of the basin is an expanding set. It follows that there exist neighborhoods V
of J(f) and U of f , and a positive constant λ > 1, such that for an adapted
metric, Dgx expands vectors at a rate at least λ for any x ∈ V and g ∈ U .
Note that the neighborhood V of J(f) can be taken backward invariant for
every g ∈ U .

Lemma 3. Given any δ > 0 there exists a neighborhood U of f such that
the set Nδ(B(f); g) is empty for no g ∈ U .

Proof. Fix an admissible neighborhood U(f) ofA(f). Then choose neigh-
borhoods V of J(f) and U of f such that every g ∈ U is λ-expanding in V .
By Lemma 1 there exists a positive integer k such that V ∪ Uk(f) = M .

If U is sufficiently small and ρ is a small positive constant one can obtain,
for each fixed g ∈ U , an h ∈ Nρ(U(f), g); then, repeatedly applying Lem-
ma 2(1), there exists an extension of h in Nδ(Uk(f); g), again denoted by h.

Now, since V is backward invariant, the fundamental neighborhood
Uk+1(f)\Uk(f) is contained in V , so that Lemma 2(2) gives an extension of
h to Uk+1(f), and this extension remains in the δ-neighborhood of the iden-
tity. By induction the homeomorphism h is extended to

⋃
n>0 Un(f) = B(f)

to a conjugacy between f|B(f) and g|B(g) that is δ-close to the identity in
B(f).

It remains to prove the second part of the theorem, which consists in
extending h to the whole manifold.

Let ε be a constant of expansivity of the restriction of f to J(f), that is,
for every z 6= w in J(f), there exists N ≥ 0 such that d(fN (z), fN (w)) > ε.
For every g in a neighborhood of f the same ε is a constant of expansivity
for the restriction of g to J(g).

By Lemma 3, one can choose U such that the distance between the
identity and h is less than ε/2, where h : B(f) → B(g) is a conjugacy
between f and some fixed g ∈ U . Let x ∈ ∂B(f) and {xn} a sequence in
B(f) that converges to x. We claim that the sequence {h(xn)} converges.
Otherwise, one can choose accumulation points z 6= y of the set {h(xn)}.
By the choice of ε there exists N ≥ 0 such that d(gN (y), gN (z)) > ε. Then
the sequence {hfN (xn) : n > 0} accumulates at gN (y) and gN (z), but as
{fN (xn)} converges to fN (x), a contradiction appears because h is ε/2-close
to the identity. This proves the claim. Define h on the boundary of B(f) as
the limit of {h(xn)}. The claim implies that h is continuous and surjective.
Finally, h is injective because two points z and w with the same image would
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have d(fn(z), fn(w)) eventually greater than ε, while h(fn(z)) = h(fn(w))
for every n > 0. This extends h to the closure of B(f), which equals the
whole manifold unless J(f) has nonempty interior, in which case the map
is expanding and the stability already established by Shub.

3. Existence of examples. This section is devoted to the proof of
Theorem 2. Let T be an expanding map of degree greater than one on a
manifold M and assume that there exists an embedding J from M into Sn.
Consider Sn as the one-point compactification of Rn and assume that JM
is contained in the ball B(0; 1). To simplify notation we will also assume
that J is the inclusion. Let α > 0 be such that T (x) = T (y) implies x = y
or |Jx − Jy| > α, where | · | is the Euclidean norm in Rn. For each z ∈ M
let pz : Rn → Rn be given by pz(w) = aw + (1 − a)z, where 0 < a < 1
is to be chosen. Note that pz can be extended to a diffeomorphism of Sn

having an attracting fixed point at z and a repelling fixed point at∞. Define
f : M × Sn → M × Sn by f(z, w) = (T (z), pz(w)). Note that f is a locally
invertible map with the same degree and class of differentiability as T .

We make the following choices: if a < α/(α+ 2), then (1− a)α/2a > 1;
take a number r ∈ (1, (1− a)α/2a), and define U = M ×B(0; r).

Claim 1. The closure of f(U) is contained in U .

Note that pz(B(0; r)) is equal to the ball B((1−a)z; ar), whose closure is
contained in B(0; r), because r > 1 implies that (1−a)|z|+ar ≤ (1−a)+ar
< r. This implies the claim.

Claim 2. The restriction of f to U is injective.

Assume that f(z, w) = f(z1, w1) with z 6= z1, |w| < r and |w1| < r. This
implies that Tz = Tz1, so |z − z1| > α. Moreover, pz(w) = pz1(w1) implies
that aw + (1− a)z = aw1 + (1− a)z1. But this is impossible because

|a(w − w1) + (1− a)(z − z1)| ≥ (1− a)α− 2ar > 0

by the choice of r.

Claim 3. The intersection Λ of the future iterates of U is a transitive
hyperbolic attractor.

This part of the construction is a trivial generalization of the solenoid
attractor: the solenoid is obtained when M is the circle S1, T (z) = z2 and
n = 2. Consider the inverse limit of T , that is, the set Σ of sequences
z = {z(m) : m ≥ 0} such that T (z(m)) = z(m − 1) for every m > 1,
and endow it with the product topology. Given z ∈ M let Uz = {z} ×
B(0; r). If z = {zm} ∈ Σ, note that fn(Uz(m)) is a decreasing sequence of
relatively compact sets whose diameters converge to 0, which implies that
their closures intersect in a unique point, denoted i(z(0)). It is then easily



C1 stable maps 31

seen that i : Σ → Λ is a homeomorphism realizing a conjugacy between the
restriction of f to Λ and the shift σ given by σ(z)(m) = T (z(m)).

Claim 4. The basin of attraction of Λ is equal to M × Sn \M × {∞}.

Note that |pz(w)| ≤ a|w|+(1−a), but the function x ∈ R 7→ ax+(1−a) ∈
R has a fixed attractor at x = 1 that attracts every x > 1. It follows that
for any w ∈ Sn \ {∞} such that |w| > 1, there exists a positive k such that
fk(z, w) ∈ U .

Claim 5. f is Axiom A with Γ (f) = ∅.

Note that M × {∞} is an expanding basic piece. It follows that the
nonwandering set of f is the union of Λ with this expanding set. By Claim 2,
the restriction of f to Λ is injective. The claim and the theorem are proved.

4. Proof of Theorem 3. We first give a short description of the proof.
The hypothesis on the attractor Λ implies that the restriction of f to B0

(the immediate basin of Λ) is injective. Next it is assumed that Γ (f) does
not intersect the boundary of B0. Applying Lemma 1 it follows that ∂B0

is contained in an expanding set. We will show that this contradicts the
hypotheses of the theorem.

Let Λ be a topologically simple attractor of a noninvertible Axiom A
map f in a manifold of dimension at least two. The immediate basin of Λ is
the union of the connected components of the basin that intersect Λ. Taking
an iterate of f one can assume that the attractor Λ is connected; hence B0

is connected and f(B0) = B0.
Let U be an admissible neighborhood of Λ such that every closed curve

in U is homotopic to a closed curve in f(U), with the homotopy contained
in U . Define by induction an increasing sequence of open sets as follows: let
U0 = U and Un be the connected component of f−1(Un−1) that contains
Un−1. The first four claims give the proof that f is injective in B0.

Claim 1. The restriction of f to Un is a covering map.

The restriction is locally injective because f has no critical points. To
prove that it is a covering map it suffices to show that it is proper. Let
{xk} be a sequence in Un converging to a point x /∈ Un. The sequence
{f(xk)} converges to a point y in the closure of Un−1. We have to prove
that y /∈ Un−1. If y ∈ Un−1, then there exists a ball B centered at x such
that f(B) ⊂ Un−1, which is absurd since Un ∪ B is a connected set whose
image is contained in Un−1 and strictly contains Un.

Claim 2. Every closed curve in Un is homotopic to a closed curve con-
tained in Un−1.
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Indeed, given a closed curve γ contained in Un let γ′ be a closed curve
in f(U0) that is homotopic to fn(γ). This implies that every fn-lift of γ′ is
a closed curve contained in Un−1, and one of them is homotopic to γ.

Claim 3. There exists a map g defined in Ũ=
⋃
Un such that g(f(x))=x.

Define g : f(U0)→ U0 as the inverse of f|U0
. Assume g was extended until

Un−1 and take any x ∈ Un. If γi, i = 1, 2, are curves in Un joining a point
in Λ to x, then γ1γ

−1
2 is a closed curve in Un that has a homotopic curve γ′

in Un−1. As γ′ has a closed lift under f , namely g(γ′), it follows that any
f -lift of γ1γ

−1
2 is closed, and one of them is homotopic to g(γ′). Therefore,

the corresponding f -lifts of γ1 and γ2 have the same end point x′, which
must be sent to x by f . This allows us to define g(x) = x′, thus extending g
to a diffeomorphism from Un with the property f(g(x)) = x. Note also that
g(Un) = Un+1.

Claim 4. The restriction of f to B0(Λ) is injective.

The above claim implies that f is injective on Ũ . It remains to show that
Ũ = B0(Λ). Indeed, let x ∈ B0(Λ) and let α be a curve in B0(Λ) joining
x to a point in Λ. There exists K > 0 such that fK(α) ⊂ U0, but as UK
is the connected component of f−K(U0) that contains U0, we conclude that
α ⊂ UK , whence x ∈ UK .

This proves assertion (1) of the theorem. To prove (2) assume, by contra-
diction, that Γ (f) ∩ ∂B0 = ∅. This implies by Lemma 1 that the boundary
of B0 is an expanding set.

As ∂U0 is compact, there exist open balls C1, . . . , CN covering ∂U0 such
that the closure of each Cj is contained in B0 \ Λ.

Claim 5. For each 1 ≤ j ≤ N , the diameter of gn(Cj) converges to 0
as n tends to ∞.

Take a neighborhood V of the boundary of B0 such that f is expanding
in V . Then the inverse g of f is a contraction defined in V ∩ B0. There
exists k0 such that gk(Cj) is contained in V ∩B0 for every k ≥ k0 and every
1 ≤ j ≤ N . This implies the claim.

Moreover, the boundary of Uk is contained in
⋃N
j=1 g

k(Cj). It follows
that the boundary of Uk converges as k → ∞ to a finite union of single
points, which constitute the boundary of B0. As M is a connected manifold
of dimension greater than one, the closure of B0 is the whole manifold, and
f is a diffeomorphism, contradicting the assumptions.
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