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Skein algebras of the solid torus and

symmetric spatial graphs

by

Nafaa Chbili (Tokyo)

Abstract. We use the topological invariant of spatial graphs introduced by S. Yamada
to find necessary conditions for a spatial graph to be periodic with a prime period. The
proof of the main result is based on computing the Yamada skein algebra of the solid torus
and then proving that it injects into the Kauffman bracket skein algebra of the solid torus.

1. Introduction. Throughout this paper a graph is a finite one-dimen-
sional CW-complex. We assume that vertices of our graphs have valency
greater than or equal to 3. If G is a graph, we denote by V(G) the set of
vertices and by E(G) the set of edges of G. An embedding of such a graph
into the three-sphere is called a spatial graph. Let p ≥ 2 be an integer.
A spatial graph G̃ is said to be p-periodic if there exists an orientation

preserving diffeomorphism h of (S3, G̃) such that h is of order p and the set

of fixed points of h is a circle that does not intersect G̃. If G̃ is a periodic
spatial graph, we will denote the quotient spatial graph by G̃.

By the positive solution of the Smith conjecture [1], the action defined
by h on the three-sphere is topologically conjugate to an orthogonal action.
In other words, if we identify the three-sphere with R

3 ∪ ∞, then we may
assume that h is the rotation by the angle of 2π/p around the standard
z-axis in the Euclidean space R

3. Hence, a p-periodic spatial graph may be
represented by a diagram in R

2 which is invariant under a planar rotation.
Let G̃ be a p-periodic spatial graph. We define the wrapping number of

G̃ to be the minimum number of intersection points of G̃ with P , where P
runs over all half-planes bounded by the axis of the rotation [7].
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The periodicity of knots and links has been the subject of extensive
literature. Both the new and the classical invariants have been used success-
fully in this study. In particular, several criteria for periodicity of links have
been introduced in terms of invariants of skein type. For instance, using the
Jones polynomial (or, equivalently, the Kauffman bracket), Murasugi [8] and
Traczyk [11] introduced necessary conditions for a link to be periodic with
a prime period. These criteria have been extended to the skein polynomial
(HOMFLYPT) by Przytycki [9].

In [13], Yamada introduced a topological invariant of spatial graphs
which takes values in R = Z[A±1, d−1], where d = −A2 − A−2. This in-
variant, denoted here by Y , can be defined recursively on planar diagrams
of spatial graphs. When restricted to knots, this invariant is essentially the
Jones polynomial of some cable of the knot.

The goal of this paper is to use the Yamada polynomial to find nec-
essary conditions for a spatial graph to be periodic. In the special cases
corresponding to periodic graphs with wrapping number one or two, Marui
[7] introduced necessary conditions, in terms of the Yamada polynomial, for
a spatial graph to be periodic with wrapping number one or two. The main
result in our paper is given by the following theorem, where the congruences
hold in the ring Z[A±1, d−1].

Theorem 1.1. Let p be a prime and G̃ a spatial graph. If G̃ is p-periodic,
then

(1) Y (G̃)(A) ≡ (Y (G̃)(A))p mod p, dp − d.

(2) Y (G̃)(A) ≡ Y (G̃)(A−1) mod p, A2p − 1.

Application. Let P be the Peterson graph and P̃ be the embedding of
P given by Figure 1. Marui [7] proved that this spatial graph cannot be
5-periodic with wrapping number two.

Fig. 1
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If we apply Theorem 1.1(2) we can prove that P̃ is not 5-periodic with
any wrapping number. From the computation in [7], we have the following
congruence:

Y (P̃ )(A) ≡ 2(4A6 + 4 + A4 + A8) mod 5, A10 − 1.

Obviously this polynomial does not satisfy condition (2) of Theorem 1.1.

Hence, the spatial graph P̃ is not 5-periodic.

It is worth mentioning here that the finite group Z/5Z acts freely on the
abstract graph P .

Remark. Let G be a graph and let G̃ be a spatial embedding of G which
is p-periodic. Then the rotation induces actions of the finite group Z/pZ on
E(G) and V(G). Obviously, the action of Z/pZ on V(G) is free. Moreover,
vertices that belong to the same orbit have the same valency. Hence, we
can get some restriction on the possible periods for a spatial graph G̃ from
the properties of the original abstract graph; in particular, from the number
and valency of vertices. For instance, we can easily see that for all integers
p an embedding of a θ-curve cannot be p-periodic. Also, an embedding of
the complete graph Kn cannot be 2-periodic.

2. The Yamada polynomial. A ribbon graph is an oriented compact
surface with boundary that retracts by deformation onto a graph. A spatial

ribbon graph is an embedding of a ribbon graph into the three-sphere. It is
well known that the study of spatial ribbon graphs up to isotopy is equiv-
alent to the study of planar graph diagrams up to extended Reidemeister
moves [13].

In [13], S. Yamada introduced an invariant R of regular isotopy of spa-
tial graphs. This invariant takes its values in the ring Z[A±1] and may be
defined recursively on diagrams of spatial graphs. A similar invariant of
trivalent graphs, with good weight associated with the set of edges, was
also introduced by Yamada [14]. This invariant was extended by Yokota [15]
using the linear skein theory introduced by Lickorish [6].

In the present paper, we find it more convenient to slightly change the
recursive formulas introduced by Yamada. Namely, we define an invariant
Y of spatial graphs recursively by the initialization Y (∅) = 1 and the four
relations in Figure 2. Notice that the vertical dots in our figures mean an
arbitrary number of edges. It is also worth mentioning that the following
identities hold for diagrams which are identical except in a small disk where
they look as indicated below.

Throughout this paper, these relations will be referred to as the Yamada

skein relations.
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Fig. 2

Theorem 2.1. Y is an invariant of ribbon spatial graphs.

Proof. Comparing the recursive formulas defining the Yamada polyno-
mial R (see [13, Section 5]) to the formulas in Figure 2, we can easily see

that for any spatial graph G̃ we have

Y (G̃)(A) = (−d)χ(G)R(G̃)(A4),

where χ(G) is the Euler characteristic of the graph G. Since R is an invariant
of ribbon spatial graphs, so is Y .

The Kauffman bracket [4] polynomial

,


is an invariant of regular iso-

topy of framed links which can be defined recursively by the relations

©∪ L


= d


L


,


L


= A


L0


+ A−1

L∞


,

where d = −A2 − A−2, L, L0 and L∞ are three links which are identical
except in a three-ball where they are as in Figure 3.

Fig. 3

It is worth mentioning that the Kauffman bracket is a version of the Jones
polynomial for unoriented framed links. Murasugi and Traczyk studied the
Jones polynomial of periodic links. They provided criteria for periodicity of
links in terms of the Jones polynomial. Here, we give corollaries of these
criteria using the Kauffman bracket (see also [2]).

Theorem 2.2 ([8, 11]). Let p be a prime and let L be a p-periodic link.

Then

(1)

L


≡ (


L


)p mod p, dp − d, where L is the quotient link.

(2)

L


(A) ≡


L


(A−1) mod p, A2p − 1.



Skein algebras of the solid torus 5

3. Skein modules. Let M be an oriented three-manifold and L the
set of all isotopy classes of framed links in M . Let R = Z[A±1, d−1], where
d = −A2 −A−2. Let K(M) be the free R-module generated by all elements
of L. We define the Kauffman bracket skein module of M , K(M), to be the
quotient of K(M) by the submodule generated by all expressions of the form

©∪ L − dL, L − AL0 − A−1L∞,

where L, L0 and L∞ are three links which are identical except in a three-
ball where they are as in Figure 3. The Kauffman bracket skein module was
computed for several manifolds. In particular, it was shown that there is
an algebra structure on the skein module of F × I, where F is an oriented
surface. The unit is the empty set and the product is given by including a
copy of F × I into each of F × [0, 1/2] and F × [1/2, 1].

Theorem 3.1 ([10, 12]). The skein algebra K(S1×I×I) is isomorphic to

the polynomial algebra R[z], where z is represented by a curve in the annulus

as in Figure 4.
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z
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Fig. 4

Let M be an oriented three-manifold and G the set of all isotopy classes of
embeddings of ribbon graphs in M . Let RG be the free R-module generated
by G. The Yamada skein module of M , which will be denoted by Y(M), is
defined as the quotient of the module RG by the submodule generated by
all expressions of the form:
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Fig. 5

One can define a graph skein theory for three-manifolds. This theory
enjoys the same properties as the skein theory associated to links in three-
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manifolds (see [10]). The existence of the Yamada polynomial for spatial
graphs is equivalent to the fact that Y(S3) is isomorphic to R. As in the
case of the Kauffman bracket skein module there is an algebra structure on
the Yamada skein module of F × I, where F is an oriented surface (see [3]).

Theorem 3.2. The Yamada skein algebra of the solid torus Y(S1×I×I)
is isomorphic to the polynomial algebra R[z], where z is represented by a

curve in the annulus as in Figure 4.

Proof. In the annulus S1×I, we denote by bn the bouquet which is made
up of n non-trivial loops, with the convention that b0 is the empty diagram ∅.
Let Sn be the graph with 2 vertices and n + 1 edges as in Figure 6. Finally,
let θn be the θn-curve (contained in some disk).

& %

' $
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� �� �� �...

Sn

& %

' $
t����

��
��

��
��

...

bn

& %

' $
t� �� �� �...

θn

Fig. 6

Lemma 3.3. We have the following identities in Y(S1 × I × I):

(i) θn = −d−1θn−1 +

(
−

d2 − 1

d

)n−2

(d2 − 1)b0,

(ii) Sn = −d−1Sn−1 +

[
−(d2 − 1)

d

]n−2

b1,

(iii) bn = Sn + d−1θn.

Proof. A routine verification using the Yamada skein relations.

Let D be a diagram of a spatial graph in the solid torus. It is easy to
see that one can use the first Yamada skein relation to transform D into
a linear combination of diagrams with no crossings. By using the second
Yamada skein relation, it is possible to transform each of those diagrams
into a linear combination of diagrams such that each connected component
has only one vertex. Finally, by applying the third and fourth Yamada skein
relations, the diagram D may be written as a linear combination of bouquets
with no contractible cycles. This means that the set of all bouquets with no
contractible cycles generates the Yamada skein module of the solid torus.

Now, according to (i) and (ii) of Lemma 3.3, each of θn and Sn may be
written as a linear combination of b1 and b0. Hence, (iii) implies that bn
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can be expressed as a linear combination of b1 and b0. Thus, we conclude
that the Yamada skein module of the solid torus is generated by all links
in the annulus S1 × I, without trivial components but including the empty
diagram. Finally, the skein algebra of the solid torus is isomorphic to the
polynomial algebra R[z]. This ends the proof of Theorem 3.2.

Throughout the rest of the paper we denote by τ2 the Temperley–Lieb
algebra with the standard two generators

and � �� � .

Let

f1 = − d−1 � �� �
be the Jones–Wenzl projector in τ2.

Let G be a graph diagram. We define G′ to be the linear combination of
link diagrams obtained from G by replacing each edge of G by two planar
strands with a projector f1 in the cable, and by replacing each vertex of G
by a diagram as in Figure 7 (the figure illustrates the case of a four-valent
vertex). Here, writing an integer n beneath an edge e means that this edge
has to be replaced by n parallel ones.
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@ 2�

� 2@
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2

� ��� ��
Fig. 7

Let M be a three-manifold which is homeomorphic to the product F ×I,
where F is an oriented surface and I is the unit interval. Let ϕ be the map
from RG to K(M) defined on the generators by ϕ(G) = G′ and extended
by linearity to RG (see also [14] and [15]).

Lemma 3.4. Let Q be the submodule of RG generated by the Yamada

skein relations. Then ϕ(Q) = 0.

Proof. For the first skein relation we refer the reader to [5, p. 35]. Using
the definition of f1 and the fact that f2

1 = f1, we can prove the result for
the other skein relations. This is explained by the calculations below:

• the second skein relation:
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• the third skein relation:
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• the fourth skein relation:

= _ -1

= 2d _ 1( )

d

.

Since for every ribbon graph D we have ϕ(D∪©) = ϕ(D)ϕ(©), the identity
above implies that ϕ(D∪©−(d2−1)D) = 0. This ends the proof of Lemma
3.4.

By Lemma 3.4, ϕ defines a map from the Yamada skein module Y(S1 ×
I × I) to the Kauffman bracket skein module K(S1 × I × I); denote it by Φ.
It is easy to see that Φ is a homomorphism of algebras. Moreover, we have

Lemma 3.5. The algebra homomorphism Φ is injective.

Proof. Direct computation shows that Φ(z) = z2 − 1. Hence, Φ is injec-
tive.
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4. Proof of Theorem 1.1. Let G̃ be a p-periodic spatial graph. Let L
G̃

be the set of all links that appear when we expand G̃ as a linear combination
of links using the map Φ, that is,

Φ(G̃) =
∑

D∈L
G̃

dαDD,

where αD is an integer.
As there is an action of the finite cyclic group of order p on the set of

vertices and on the set of edges of G̃, we can see easily that this group acts
on L

G̃
. Moreover, there are two types of orbits:

• Orbits made up of only one link which is p-periodic. Let L
p,G̃

be the
subset of L

G̃
made up of p-periodic links.

• Orbits made up of p links which are cyclically permuted by the rota-
tion.

In the second case the p links are the same. Moreover, if D and D′ belong
to the same orbit then αD = αD′ . Hence the contribution of the links from
the same orbit adds to zero modulo p. Consequently, we have the following
congruence modulo p:

Φ(G̃) ≡
∑

D∈L
p,G̃

dαDD.

If D is p-periodic then by Theorem 2.2, we have the following identity in
the Kauffman bracket skein module:

D ≡ Dp mod p, dp − d.

Thus,

Φ(G̃) ≡
∑

D∈L
p,G̃

dαDDp mod p, dp − d.

It is easy to see that if D ∈ L
p,G̃

then αD can be written pα′
D for some

integer α′
D. If we expand the graph diagram G̃ into a linear combination

of links using the map Φ, we can see that the links that appear in the sum
are exactly the quotients of the elements of L

p,G̃
. Moreover, if D appears in

Φ(G̃) with coefficient αD, then D appears in Φ(G̃) with coefficient α′
D. This

allows us to conclude that

Φ(G̃) ≡ (Φ(G̃))p mod p, dp − d.

Using the fact that Φ is an injective homomorphism of algebras we conclude
that in the Yamada skein module of the solid torus we have

G̃ ≡ (G̃)p mod p, dp − d.

This ends the proof of part (1) of Theorem 1.1.
Similar arguments are used to prove the second part.
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