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Minimal degree sequence for 2-bridge knots

by

Prabhakar Madeti and Rama Mishra (New Delhi)

Abstract. We discuss polynomial representations for 2-bridge knots and determine
the minimal degree sequence for all such knots. We apply the connection between rational
tangles and 2-bridge knots.

1. Introduction. It is known that, up to ambient isotopy, every non-
compact knot is equivalent to some polynomial knot [10]. In fact, one can say
that the set of all non-compact knot types is the same as the set of all poly-
nomial knot types because the isotopy between two equivalent polynomial
knots can be given by a one-parameter family of polynomial embeddings.
Thus, for a given knot type K (always non-compact for us) there exist three
real polynomials f(t), g(t) and h(t) such that the map t 7→ (f(t), g(t), h(t))
represents K. If deg f(t) = l, deg g(t) = m and deg h(t) = n, then we say
that the triple (l, m, n) is a degree sequence of K. We define (l, m, n) to be
the minimal degree sequence for the knot type K if it is minimal amongst all
degree sequences of K with respect to the lexicographic ordering in N

3. A
knot can be well understood if its minimal degree sequence is known. In fact
a polynomial knot with the minimal degree sequence has a diagram that
cannot be reduced further. Thus, to determine the minimal degree sequence
of a given knot type is an interesting problem.

In our earlier papers we have found a degree sequence for all torus
knots ([6], [7]) and also the minimal degree sequence for torus knots of
type (2, 2n + 1) ([7]). The minimal degree sequence for a general torus knot
of type (p, q) is still not known, except for the special case when q = 2p− 1
([5]). For convenience we state some known partial results:

Theorem ([7]). The minimal degree sequence for a torus knot of type

(2, 2n+1) is either (3, 2n+2, 2n+4) or (3, 2n+2, 2n+3) or (3, 2n+3, 2n+4)
according as n is of the form 3m, 3m + 1 or 3m + 2 respectively.
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Theorem ([5]). The minimal degree sequence for a torus knot of type

(p, 2p − 1), p ≥ 2, is given by (2p − 1, 2p, d), where 2p + 1 ≤ d ≤ 4p − 3.

When we determine the minimal degree sequence for torus knots of type
(2, 2n + 1), we use the fact that they have bridge number 2 and they are
alternating. Since all 2-bridge knots are alternating we have tried imitating a
similar technique and obtained the minimal degree sequence for all 2-bridge
knots. In this paper we prove the following:

Theorem. The minimal degree sequence for a 2-bridge knot K with N
crossings is either (3, N+1, N+2) or (3, N+1, N+3) or (3, N+2, N+3)
according as N ≡ 0, or 1 or 2 (mod 3) respectively.

2. Background material

Definition 2.1. Let DK be a knot diagram for a given knot K. An
overpass in DK is a subarc of the diagram which contains an over crossing
but no under crossing points. The number of overpasses in a given knot
diagram is called the bridge number of the diagram.

Definition 2.2. The bridge number br(K) of a knot K is the least
bridge number of all the knot diagrams of K. In fact br(K) turns out to
be the minimum value of the number of local maxima over all the regular
diagrams of K.

Remark 2.3.

1. By convention the bridge number of the unknot is 1.
2. br(K) is a knot invariant.

The bridge number for the knot diagram shown in Figure 1(i) is 3 whereas
for Figure 1(ii) it is 2. Both figures are the knot diagrams of the trefoil knot.
Thus the bridge number for the trefoil is 2.

Fig. 1

Definition 2.4. A knot K is called a 2-bridge knot if the bridge number
of K is 2.
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2-bridge knots are also known as rational knots which arise from rational

tangles. Rational tangles were introduced by John B. Conway ([2]–[4] and
[9]). To study them, first we need to define a tangle.

Definition 2.5. A tangle is analogous to a link except that it has free
ends. These ends are called strands that enter a box (the tangle box) within
which there are no free ends. Inside the box one may find closed loops that
are knotted and linked with the tangle strands. The strands of the tangle
may themselves be knotted and linked.

Definition 2.6. Two tangles T1 and T2 are said to be ambient isotopic

if it is possible to deform T1 into T2 without moving the end points and
without moving the strands outside the tangle box.

We are generally concerned with rational tangles, i.e., tangles with four
ends. Such tangles have 2-strands. To define a rational tangle formally, we
need a few definitions.

Definition 2.7. A tangle with two unlinked horizontal (resp. vertical)
strands is called a [0] tangle (resp. [∞] tangle). These two tangles are also
known as trivial tangles. They are shown in Figure 2:

Fig. 2

Definition 2.8. Given an integer n, a horizontal (resp. vertical) integer

tangle tn (resp. t′n) is a twist of two horizontal (resp. vertical) strands |n|
times in the positive or negative direction according to the sign of n. The
directions are shown in Figure 3 (resp. in Figure 4).

Definition 2.9. The horizontal sum “+” and the vertical sum “⊕” of
two tangles T1 and T2 are defined as in Figure 5. Thus, twisting two adjacent
strands of a tangle T1 is equivalent to adding (with +) an integer tangle tn2

on the right or the left of tn1
or adding (with ⊕) t′n2

on the top or bottom
of t′n1

, where n1 and n2 are any integers.

Remark 2.10.

1. It is easy to see that tn1
+tn2

isotopic
∼ tn1+n2

and t′n1
⊕t′n2

isotopic
∼ t′n1+n2

.
2. t0 = [0] and t′0 = [∞].
3. A negative twist cancels a positive twist topologically. Thus cancella-

tion of positive and negative integers is paralleled in tangle topology.
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Fig. 3

Fig. 4

Fig. 5

This particular cancellation is an instance of the Reidemeister move
in knot theory.

Definition 2.11. A rational tangle is a proper embedding of two un-
oriented arcs α1, α2 in a 3-ball B

3, so that the four end points lie on the
boundary of B

3, and such that there exists a homeomorphism of pairs

f : (B3, α1, α2) → (D2 × I, {x, y} × I),

where I is any closed interval.

Definition 2.12. Two rational tangles T1 and T2 in B
3 are said to

be isotopic (denoted as T1 ∼ T2) if there exists an orientation-preserving
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self-homeomorphism h : (B3, T1) → (B3, T2) such that h is the identity map
on the boundary.

Definition 2.13. The numerator closure of a rational tangle T , denoted
by N(T ), is obtained by joining the two upper endpoints and the two lower
endpoints of T with simple arcs, as shown in Figure 6.

Fig. 6

Definition 2.14. The denominator closure of a rational tangle T , de-
noted by D(T ), is obtained by joining each pair of the corresponding top
and bottom endpoints of T with simple arcs, as shown in Figure 7.

Fig. 7

Definition 2.15. A rational tangle is said to be in standard form if it
is created by a consecutive + of the tangles ±t1 only on the right (or only
on the left) and ⊕ by the tangles ±t1 only at the bottom (or only at the
top), starting from the tangle t0 or [t′0].

We can check the following:
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Proposition 2.16. A rational tangle can be obtained by performing

either of the following:

1. A finite alternating sequence of horizontal and vertical twists on [0].
2. A finite alternating sequence of vertical and horizontal twists on [∞].

Remark 2.17.

1. By Proposition 2.16, every rational tangle can be completely deter-
mined by how we perform a sequence, say [tn1

, . . . , tnk
], of vertical

and horizontal twists in an alternate manner.
2. If k is odd, we can obtain the relevant rational tangle by first perform-

ing tn1
horizontal twists on [0], then tn2

vertical twists, tn3
horizontal

twists, and repeating the twists alternately until finally we perform a
horizontal twist tnk

times. In this case we call this rational tangle a
horizontal rational tangle.

3. If k is even, we can obtain the relevant rational tangle by first perform-
ing tn1

vertical twists on [∞], then tn2
horizontal twists, and repeating

the twists alternately until finally we perform a horizontal twist tnk

times. We call such a rational tangle a vertical rational tangle.

Definition 2.18. A tangle is said to be alternating if the crossings in
the tangle alternate from under to over as we go along any component or
arc of the tangle.

There is a simple way of representing rational tangles by using a sequence
of integer tangles.

Definition 2.19. For any sequence of integers n1, . . . , nk, let Tn1
, . . . ,

Tnk
be a sequence of integer tangles, where Tni

= tni
or t′ni

. Consider the
sequence of rational tangles given by:

τn1
= Tn1

,

τnj+1
=

{

τnj
+ Tnj+1

if Tnj+1
= tnj+1

,

τnj
⊕ Tnj+1

if Tnj+1
= t′nj+1

,

for j ≥ 1.

The rational tangle τnk
is called a rational tangle with k integer tangles

Tn1
, . . . , Tnk

and is denoted by [Tn1
, . . . , Tnk

].

Remark 2.20.

1. The number of integer tangles in a rational tangle is not unique.
2. A rational tangle with k integer tangles is the same as a rational

tangle that is obtained by performing a finite alternating sequence of
vertical and horizontal twists on [0] or [∞]. Thus any rational tangle
is a rational tangle with k integer tangles for some k.
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It is easy to represent a rational tangle via a continued fraction built from
the integer tangles. Before defining a continued fraction in integer tangles,
let us formally define the following three operations.

Definition 2.21. If T is a rational tangle, then:

(i) −T = T ∗, the mirror image of T .
(ii) The clockwise inverse of T , denoted by 1/T c, is the tangle obtained

from T by rotating 90◦ clockwise and taking the mirror image.
(iii) The counterclockwise inverse of T , denoted by 1/T cc, is the tangle

obtained from T by rotating 90◦ counterclockwise and taking the
mirror image.

Theorem 2.22. If T is a rational tangle, then 1/T c and 1/T cc are

ambient isotopic.

Note. Since 1/T c and 1/T cc are ambient isotopic, we will represent
both by 1/T .

It is easy to check the following:

1. T is a horizontal rational tangle ⇔ 1/T is a vertical rational tangle.
2. t′nk

= 1/tnk
and tnk

= 1/t′nk
.

3. tni
+ t′nj

= tni
+ 1/tnj

.

4. tni
⊕ t′nj

=
1

tnj
+ 1/tni

.

5. −(T1 + T2) = (−T1) + (−T2), −(1/T1) = 1/(−T1), −tni
= t−ni

, and
−t′ni

= t′
−ni

.

Now we can build our rational tangles using the tangle operations +, ⊕,
−, and / as follows:

Any horizontal rational tangle T can be written in the form

(I) T = tnk
+

1

tnk−1
+ 1

...+ 1

tn1

and any vertical rational tangle T ′ can be written in the form

(II) T ′ =
1

tnk
+ 1

tnk−1
+ 1

...+ 1
tn1

.

Hence every rational tangle can be described via a continued fraction in
integer tangles and such rational tangles are said to be in continued fraction

form.

Remark 2.23.

1. Every rational tangle can be written in continued fraction form.
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2. As the continued fraction form and the standard form of a ratio-
nal tangle are equivalent, the above correspondence shows that it is
straightforward to write down the one from the other.

Definition 2.24. A rational tangle T = [tn1
, . . . , tnk

] is in canonical

form if T is alternating and k is odd. Moreover, T is called positive or
negative according to the sign of its terms.

We note that if T is alternating and k is even, then we can bring T
to canonical form by breaking tnk

to sign(tnk
) · (|tnk

| − 1) + sign(tnk
) · 1,

and thus, [tn1
, . . . , tnk

] to [tn1
, . . . , sign(tnk

) · (|tnk
| − 1), sign(tnk

) · 1]. As a
consequence, we have the following :

1. Every rational tangle can be isotoped to canonical form.
2. Every rational tangle can be brought via isotopy to standard form.

The above forms of rational tangles suggest associating to the rational
tangles (I) and (II) the arithmetic continued fractions

nk +
1

nk−1 + 1
...+ 1

n1

and
1

nk + 1
nk−1+

1

...+ 1
n1

.

We will represent these continued fractions by [n1, . . . , nk].

Remark 2.25. If a continued fraction [n1, . . . , nk] has even length, then
we can bring it to odd length via the last term transformations:

[n1, n2, . . . , nk] = [+1, n1 − 1, n2, . . . , nk] for n1 > 0,

[n1, n2, . . . , nk] = [−1, n1 + 1, n2, . . . , nk] for n1 < 0.

We say that a continued fraction is termwise positive (resp. negative) if all
the numerical terms in its expression are positive (resp. negative).

Definition 2.26. A continued fraction [n1, . . . , nk] is said to be in
canonical form if it is termwise positive or negative and k is odd.

We can observe that each of these continued fractions is equal to a ra-
tional fraction which we call the fraction of the tangle and denote by F (t).
In particular, F (tn) = n and F (t′n) = F (1/tn) = 1/n.

For any fraction of the tangle F (t) = α/β, there exist nk ∈ Z, n1, . . . ,
nk−1 ∈ Z− {0} such that α/β = [n1, . . . , nk]; moreover, we have the follow-
ing:

1.
α

β
± 1 = [n1, n2, . . . , nk ± 1],

2.
β

α
= [n1, n2, . . . , nk, 0],

3.
−α

β
= [−n1,−n2, . . . ,−nk].
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Thus we can show that: Every continued fraction [n1, . . . , nk] can be trans-

formed to a unique canonical form [m1, . . . , ml], where mi’s are either all

positive or all negative integers and l is odd.

Definition 2.27. A knot obtained by taking the numerator or denom-
inator closure of a rational tangle is called a rational knot.

Remark 2.28.

1. It is easy to observe that rational knots and 2-bridge knots are equiv-
alent.

2. Since every 2-bridge knot is obtained as the numerator closure of a
rational tangle, we can represent a 2-bridge knot by a standard regular
diagram of type [n1, . . . , nk] of the form shown in Figure 8, and denote
it by C(n1, . . . , nk).

Fig. 8

Thus a 2-bridge knot is denoted by C(n1, . . . , nk) where k is odd. This is
known as Conway’s normal form. Thus with a 2-bridge knot C(n1, . . . , nk)
where k is odd, we can associate a rational number

α

β
= [n1, n2, . . . , nl], gcd(α, β) = 1.

Conversely, from a rational number α/β (with |α/β| > 1), we can create a
2-bridge knot by taking its continued fraction expansion. In fact, we have
obtained a correspondence between the 2-bridge knot C(n1, . . . , nl) and the
rational number α/β. In the continued fraction expansion of α/β, we may
always assume that l is odd.

Theorem 2.29 (Schubert, 1956, see [1]). Suppose that K and K ′ are

2-bridge knots of type (α, β) and (α′, β′) respectively , which are obtained by

taking the numerator of a rational tangle. Then K and K ′ are equivalent if

and only if either

1. α = α′, β ≡ β′ (mod α) or

2. α = α′, ββ′ ≡ 1 (mod α).

Remark 2.30. If α is odd then K is a knot, otherwise it is a link. Since
our focus is on knots, we assume that α is odd. The observation made in
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Remark 2.28 is the main idea that we shall be using in the proof of our main
result.

3. Main result

Theorem 3.1. Let K be a 2-bridge knot with N crossings. Then the

minimal degree sequence for K is given by

(i) (3, N + 1, N + 2) when N ≡ 0 (mod 3);
(ii) (3, N + 1, N + 3) when N ≡ 1 (mod 3);
(iii) (3, N + 2, N + 3) when N ≡ 2 (mod 3).

Proof. Choose a regular diagram of K using its representation as a ratio-
nal knot in Conway’s normal form C(a1, . . . , an), where n is odd, as shown
in Figure 9. The non-compact version is shown in Figure 10. Let p/q be the
rational number associated to this canonical form, i.e.,

p

q
= [a1, . . . , an],

where p and q are relatively prime. Since K is alternating, all ai’s have the
same sign. Without any loss of generality we can assume that they are all
positive. Since the number of crossings is N , we have

∑n
i=1 ai = N .

Fig. 9

Fig. 10

We consider a regular projection of K into the XY plane as shown
in Figure 11. First we want to represent this plane curve by polynomial
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Fig. 11

parametrization. We observe that in this plane curve there is only one local
maximum and one local minimum in the X-direction. Thus we can represent
the X-coordinate by a polynomial f(t) of degree 3. For the sake of symmetry,
take f(t) = t(t2 − α2), where α is a real number. Thus, the X-coordinate
vanishes at t = −α, 0 and +α. Choose a real number β > α such that for
any t0 outside [−β, β], the equation f(t) = f(t0) has only one real root,
viz. t = t0. This ensures that the plane curve having f(t) as X-coordinate
has no self-intersection outside the interval [−β, β]. Now divide the interval
[−β, β] in 2n parts, [−β, α1], [α1, α2], . . . , [α2n−1, β], in such a way that for
each i = 1, . . . , n, there are exactly two intervals, say (αmi−1, αmi

) and
(αni−1, αni

), where ai parameter values si
1, . . . , s

i
ai

from (αmi−1, αmi
) and ai

parameter values ti1, . . . , t
i
ai

from (αni−1, αni
) satisfy

f(si
j) = f(tij) for all j = 1, . . . , ai.

Looking at the pattern of the intersections in the curve we can decide where
to choose the si

j and tij from. It is easy to see that

tij =
1

2
(−si

j ±
√

(4α2 − 3(si
j)

3)).

For each si
j we have two tij ’s. We will choose one tij corresponding to each si

j

which gives the double points in the curve. Therefore once we choose si
j ’s,

the choice of tij ’s is fixed (in fact, each tij is an analytic function of si
j). Now,

to represent the Y -coordinate of this plane curve we choose a polynomial
g(t) of degree N + 1 as

g(t) = tN+1 + β1t
N + β2t

N−1 + · · · + βN t + βN+1,

where the coefficients β1, . . . , βN are such that

g(si
j) = g(tij) ∀j = 1, . . . , ai and i = 1, . . . , n.

This gives a system of N linear equations in N variables β1, . . . , βN :

((si
1)

N − (ti1)
N )β1 + ((si

1)
N−1 − (ti1)

N−1)β2 + · · · + ((si
1) − (ti1))βN

= (ti1)
N+1 − (si

1)
N+1,
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((si
2)

N − (ti2)
N )β1 + ((si

2)
N−1 − (ti2)

N−1)β2 + · · · + ((si
2) − (ti2))βN

= (ti2)
N+1 − (si

2)
N+1,

...

((si
ai

)N − (tiai
)N )β1 + ((si

ai
)N−1 − (tiai

)N−1)β2 + · · · + ((si
ai

) − (tiai
))βN

= (tiai
)N+1 − (si

ai
)N+1,

for each i = 1, . . . , n. From the theory of linear equations, the above system
has a unique solution if and only if the rank of the coefficient matrix is N ,
i.e. det(A) 6= 0, where

A =









































(s1
1)

N − (t11)
N (s1

1)
N−1 − (t11)

N−1 . . . s1
1 − t11

(s1
2)

N − (t12)
N (s1

2)
N−1 − (t12)

N−1 . . . s1
2 − t12

...
...

...
...

(s1
a1

)N − (t1a1
)N (s1

a1
)N−1 − (t1a1

)N−1 . . . s1
a1

− t1a1

(s2
1)

N − (t21)
N (s2

1)
N−1 − (t21)

N−1 . . . s2
1 − t21

...
...

...
...

(s2
a2

)N − (t2a2
)N (s2

a2
)N−1 − (t2a2

)N−1 . . . s2
a2

− t2a2

...
...

...
...

(sn
an

)N − (tnan
)N (sn

an
)N−1 − (tnan

)N−1 . . . sn
an

− tnan









































.

As each tij is a function of si
j , and in det(A) the coefficient of the monomial

((s1
1)

N (s1
2)

N−1 · · · (s1
a1

)N−(a1−1))((s2
1)

N−a1 · · · (s2
a2

)N−a1−a2+1)

· · · ((sn
1 )N−a1−...−an−1−1 · · · (sn

an
))

is non-zero, det(A) is a non-zero analytic function of si
j where j = 1, . . . , ai

and i = 1, . . . , n.

By a standard Zariski argument, the set of N tuples of the form

(s1
1, . . . , s

1
a1

, s2
1, . . . , s

2
a2

, . . . , sn
1 , . . . , sn

an
)

for which det(A) 6= 0 is an open and dense set in R
N . We can observe

that the above system has a unique solution for β1, . . . , βN by choosing si
j

from the desired open intervals such that det(A) 6= 0. Thus we can get a
polynomial g(t) of degree N + 1 such that f(si

j) = f(tij) and g(si
j) = g(tij).

In fact, we can choose si
j such that (f(t), g(t)) is a generic immersion. Here

(f(t), g(t)) gives the desired projection, where

(s1
1, t

1
1), (s

1
2, t

1
2), . . . , (s

1
a1

, t1a1
), (s2

1, t
2
1), . . . , (s

2
a2

, t2a2
), . . . , (sN

an
, tNan

)

are the pairs of parameter values which give the intersections.
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To construct a polynomial h(t) which provides an over/under crossing
data for the corresponding 2-bridge knot, we choose

h(t) = tN+2 + γ1t
N+1 + γ2t

N + · · · + γN+1t + γN+2

such that h(sj
i ) − h(tji ) < 0 for i odd, and h(sj

i ) − h(tji ) > 0 for i even,
where j = 1, . . . , n and i = 1, . . . , an. For convenience, choose γi’s such that
h(sj

i )−h(tji ) = −1 for i odd, and h(sj
i )−h(tji ) = 1 for i even. Thus we have

the following system of linear equations:

((si
1)

N+1 − (ti1)
N+1)γ1 + ((si

1)
N − (ti1)

N )γ2 + · · · + ((si
1) − (ti1))γN+1

= (ti1)
N+2 − (si

1)
N+2 − 1,

((si
2)

N+1 − (ti2)
N+1)γ1 + ((si

2)
N − (ti2)

N )γ2 + · · · + ((si
2) − (ti2))γN+1

= (ti2)
N+2 − (si

2)
N+2 + 1,

...

((si
ai

)N+1 − (tiai
)N+1)γ1 + . . . + ((si

ai
) − (tiai

))γN+1

= (tiai
)N+2 − (si

ai
)N+2 + (−1)ai ,

for i = 1, . . . , n. This is a system of
∑n

i=1 ai = N linear equations in N + 1
variables. Its coefficient matrix is

B =









































(s1
1)

N+1 − (t11)
N+1 (s1

1)
N − (t11)

N . . . s1
1 − t11

(s1
2)

N+1 − (t12)
N+1 (s1

2)
N − (t12)

N . . . s1
2 − t12

...
...

...
...

(s1
a1

)N+1 − (t1a1
)N+1 (s1

a1
)N − (t1a1

)N . . . s1
a1

− t1a1

(s2
1)

N+1 − (t21)
N+1 (s2

1)
N − (t21)

N . . . s2
1 − t21

...
...

...
...

(s2
a2

)N+1 − (t2a2
)N+1 (s2

a2
)N − (t2a2

)N . . . s2
a2

− t2a2

...
...

...
...

(sn
an

)N+1 − (tnan
)N+1 (sn

an
)N − (tnan

)N . . . sn
an

− tnan









































.

The above system will have a solution if we can ensure that the rank of
B is N . But A is clearly a non-singular submatrix of B. Hence the above
system always has a solution. In fact, we can also find a polynomial h(t) of
degree more than N + 2, which still provides an over/under crossing data
for the corresponding 2-bridge knot. Thus (f(t), g(t), h(t)) is a polynomial
representation for a 2-bridge knot with N crossings.

To justify the minimality of this degree sequence we proceed as follows.
We first notice that the degree of f(t) cannot be made less than 3 since
otherwise the knot represented by t 7→ (f(t), g(t), h(t)) is equivalent to the



204 P. Madeti and R. Mishra

trivial knot. Also from Lemma 2.4 of [7] the degree of h(t) should be at least
N + 1. Now, we divide the argument into cases:

Case 1: N ≡ 0 (mod 3). Here N+1 and N+2 are co-prime to 3 and the
triple (3, N +1, N +2) satisfies the condition that none of the coordinates lie
in the semigroup generated by the other two. Also, if we reduce any of the
degrees, by a polynomial automorphism it will cut down to a degree sequence
which cannot represent the desired 2-bridge knot. Thus (3, N + 1, N + 2) is
the minimal degree sequence in this case.

Case 2: N ≡ 1 (mod 3). In this case N + 1 is co-prime to 3, but N +
2 is divisible by 3. Thus if we take a polynomial embedding with degree
(3, N + 1, N +2) then by a polynomial automorphism we will be able to cut
down these degrees to (3, N, N +1), which cannot represent a 2-bridge knot
with N crossings. Therefore, we take the polynomial h(t) to be of degree
N +3. Using the theory of linear equations, and the above argument, we can
find a polynomial h(t) of degree N+3 which provides the over/under crossing
data for this knot. As in the previous case, we can show that (3, N +1, N +3)
is the minimal degree sequence.

Case 3: N ≡ 2 (mod 3). In this case N + 1 is divisible by 3, but N + 2
is not. Here we choose

g(t) = tN+3 + β1t
N+2 + · · · + βN+3.

Choose si
j for i = 1, . . . , n and j = 1, . . . , ai, and the corresponding tij

such that f(si
j) = f(tij). Also choose a complex number s0 + it0 and the

corresponding s1
0 +it10 such that f(s0+it0) = f(s1

0+it10), hence f(s0−it0) =
f(s1

0 − it10). Now choose the coefficients β1, . . . , βN+3 of g(t) such that

(I)
g(si

j) = g(tij) for i = 1, . . . , n and j = 1, . . . , ai,

g(s0 + it0) = g(s1
0 + it10).

The last equation gives two linear equations by equating the real and imag-
inary parts. Hence we get a system of N + 2 equations in N + 2 variables.
By a similar argument as before we can ensure the existence of a solution
for β1, . . . , βN+3.

Thus we can get a regular projection of this knot by t 7→ (f(t), g(t))
where deg f(t) = 3 and deg g(t) = N + 3. Let (si

j , t
i
j) be points of intersec-

tions.
Let h(t) = tN+2 + γ1t

N+1 + · · · + γN+2. Choose γi such that

(II)
h(sj

i ) − h(tji ) = −1 for i odd,

h(sj
i ) − h(tji ) = +1 for i even.

This gives a system of N equations in N +1 variables and a choice of si
j can

be made such that the rank of the coefficient matrix for the system (I) and
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the system (II) can be simultaneously made to be N +2 and N respectively.
Thus we have h(t) of degree N +2 and (3, N +2, N +3) is a degree sequence
for this knot. Note that this regular projection is into the XZ-plane. This
degree sequence is minimal because if we reduce any of these degrees, by
earlier arguments we can show that it will not be possible to represent this
knot.

4. Examples. In this section we apply our theorem to some examples
and demonstrate how to obtain a polynomial representation of these 2-bridge
knots with minimal degree sequence.

Example 4.1 (A 2-bridge knot with four crossings). This is indeed our
figure eight knot. When we represent it as a rational knot in Conway’s
normal form we see that a 2-bridge knot with four crossings must be either
C(2, 1, 1) or C(1, 1, 2) and we can easily check that they are equivalent. By
our main theorem the minimal degree sequence of this knot must be (3, 5, 7).

In order to obtain a polynomial representation of this knot with the
degree sequence (3, 5, 7) we consider a regular diagram for this knot as shown
in Figure 12 and its projection into the XY -plane as shown in Figure 13.

Fig. 12 Fig. 13

Take X(t) = f(t) = t(t2 − 16). Choose

s1 = −4.53723, s2 = −4.16121, s3 = −3.82946, s4 = 0.010048

and find the corresponding

t1 = 3.01704, t2 = 0.344731, t3 = 4.15112, t4 = 3.99497

such that f(si) = f(ti) for i = 1, 2, 3, 4. Let

g(t) = t5 + α1t
4 + α2t

3 + α3t
2 + α4t.

We have to determine α1, α2, α3, α4 such that g(si) = g(ti) for i = 1, 2, 3, 4.
This gives us the following system of linear equations:

(s4
1 − t41)α1 + (s3

1 − t31)α2 + (s2
1 − t21)α3 + (s1 − t1)α4 = t51 − s5

1,

(s4
2 − t42)α1 + (s3

2 − t32)α2 + (s2
2 − t22)α3 + (s2 − t2)α4 = t52 − s5

2,

(s4
3 − t43)α1 + (s3

3 − t33)α2 + (s2
3 − t23)α3 + (s3 − t3)α4 = t53 − s5

3,

(s4
4 − t44)α1 + (s3

4 − t34)α2 + (s2
4 − t24)α3 + (s4 − t4)α4 = t54 − s5

4.
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This system has a unique solution if the rank of the coefficient matrix is 4,
i.e. if det(M) 6= 0. Substituting the above values of si and ti we find that

M =













340.946 −120.868 11.4839 −7.55427

299.818 −72.0951 17.1968 −4.50594

−81.8795 −127.689 −2.56703 −7.98058

−254.715 −63.7589 −15.9597 −3.98492













and det(M) = 3.07914. Hence the above system has a unique solution. After
obtaining the solution of this system we find that g(t) is given by

g(t) = t5 + 1.01t4 − 33.8144t3 − 14.0925t2 + 277.556t.

The parametric plot of (f(t), g(t)) (drawn using Mathematica) is shown in
Figure 14.

Fig. 14

Now, we want to construct a polynomial h(t) which provides an over/under
crossing data for this 2-bridge knot. Let

h(t) = t7 + β1t
6 + β2t

5 + β3t
4 + β4t

3 + β5t
2 + β6t.

Since our knot is alternating, we want

h(si) − h(ti) < 0 for i odd, h(si) − h(ti) > 0 for i even.

For convenience, take h(si) − h(ti) = −1 for i odd, and h(si) − h(ti) = 1
for i even. Thus we obtain four linear equations in six variables. By solving
these equations we get β1 = −13285.2, β2 = −241602.1, β3 = 181162,
β4 = 3.97824 ·106, β5 = 2986.5841178525206 and β6 = 12.084074534654706.
Hence

h(t) = t7 − 13285.2t6 − 241602t5 + 181162t4 + 3.97824 · 106t3

+ 2986.584t2 + 12.084075t.

Thus (f(t), g(t), h(t)) is a polynomial representation for the 2-bridge knot
[2,1,1]. A 3D plot of this knot is shown in Figure 15.
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Fig. 15

Example 4.2 (A 2-bridge knot with five crossings). In Conway’s normal
form it is C(2, 2, 1) and by our theorem its minimal degree sequence is
(3, 7, 8).

A regular diagram of this knot and its projection are shown in Figure 16
and Figure 17 respectively.

Fig. 16 Fig. 17

Let f(t) = t(t2 − 16). We choose s1 = −4.36684, s2 = −4.29429, s3 =
−2.74018, s4 = −0.957032 and s5 = 0.413846 and the corresponding t1 =
0.880321, t2 = 3.62001, t3 = 4.89012, t4 = 4.39171, and t5 = 3.77699 such
that f(si) = f(ti) for i = 1, . . . , 5. Let

g(t) = t8 + α1t
7 + α2t

6 + · · · + α6t
2 + α7t,

where the coefficients αi of g(t) are to be determined. Since a polynomially
parametrized plane curve (X(t), Y (t)) = (f(t), g(t)) can have seven nodes
whereas in the projection of this knot we require only five, we choose a
complex number s0 + is′0 = −5.00845 − i0.784492 and the corresponding
t0 + it′0 = 1.09112 + i2.4776 such that f(s0 + is′0) = f(t0 + it′0) and hence
f(s0 − it0) = f(s′0 − it′0). Now we impose the condition that g(si) = g(ti)
for each i = 1, . . . , 5 and g(s0 + is′0) = g(t0 + it′0). By solving the linear
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equations

g(s0) = g(t0), g(s′0) = g(t′0), g(si) = g(ti) for i = 1, 2, 3, 4, 5,

we will get

g(t) = 8 − 0.497173t7 − 46.9362t6 + 34.4793t5 + 649.263t4

− 544.114t3 − 2327.38t2 + 1120.43t.

The parametric plot of (f(t), g(t)) (drawn using Mathematica) is shown in
Figure 18.

Fig. 18

Again by a similar method we find the polynomial

h(t) = t7 − 97.8602t6 − 854.142t5 + 5766.69t4 + 7931.55t3

− 77465.7t2 + 125398.88t.

A 3D picture of this knot is shown in Figure 19.

Fig. 19
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Example 4.3 (A 2-bridge knot with six crossings). Let us take the ra-
tional knot in Conway’s normal form to be C(2, 1, 1, 1, 1). A regular diagram
of this knot and its projection are shown in Figures 20 and 21 respectively.

Fig. 20 Fig. 21

Let X(t) = f(t) = t(t2 − 16). We choose the points s1 = −4.50895,
s2 = −4.26245, s3 = −3.78869, s4 = −3.23304, s5 = −1.99952 and s6 =
0.0984486 and obtain the corresponding t1 = 1.38728, t2 = 3.67189, t3 =
−0.39353, t4 = 4.47319, t5 = 4.60551 and t6 = 3.94987 such that f(si) =
f(ti) for all i.

Let g(t) = t7 + α1t
6 + α2t

5 + α3t
4 + α4t

3 + α5t
2 + α6t + α7. We want to

choose the coefficients of g(t) such that g(si) = g(ti) for all i.
Using the theory of linear equations we obtain α1 = −2.32015, α2 =

−37.8493, α3 = 68.303, α4 = 294.038, α5 = −486.111, and α6 = 787.942.
Hence

g(t) = t7−2.32015t6−37.8493t5+68.303t4+294.038t3−486.111t2+787.942t.

The parametric plot of (f(t), g(t)) (drawn using Mathematica) is shown in
Figure 22.

Fig. 22

Let h(t) = t8 + β1t
7 + · · · + β7t + β8. We want to choose the coefficients

βi of h(t) such that h(si) − h(ti) < 0 for i odd, and h(si) − h(ti) > 0 for
i even. Using the method as in earlier examples we obtain β1 = 1.51699,
β2 = −57.9838, β3 = −54.5407, β4 = 1045.86, β5 = 821.517, β6 = −6025.3,
β7 = −5353.43 and β8 = 0.
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We can observe that (f(t), g(t), h(t)) represents a 2-bridge knot of type
[2, 1, 1, 1, 1] and the degree sequence (3, 7, 8) is the minimal degree sequence.
A 3D plot of this knot is shown in Figure 23.

Fig. 23
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suggesting this problem. Thanks are also due to Prof. A. Ranjan for reading
the manuscript and offering valuable suggestions.

References

[1] G. Burde and H. Zieschang, Knots, de Gruyter Stud. Math. 5, de Guyter, 1985.
[2] L. H. Kauffman and S. Lambropoulou, On the classification of rational tangles, Adv.

Appl. Math. 33 (2004), 199–237.
[3] —, —, On the classification of rational knots, Enseign. Math. 49 (2003), 357–410.
[4] K. Murasugi, Knot Theory and its Applications, translated from the 1993 Japanese

original by B. Kurpita, Birkhäuser, 1996.
[5] P. Madeti and R. Mishra, Minimal degree sequence for torus knots of type (p, 2p−1),

J. Knot Theory Ramif., to appear;
http://www.worldscinet.com/jktr/editorial/paper/750349.pdf.

[6] R. Mishra, Polynomial representation of torus knots of type (p, q), J. Knot Theory
Ramif. 8 (1999), 667–700.

[7] —, Minimal degree sequence for torus knots, ibid. 9 (2000), 759–769.
[8] A. Ranjan and R. Shukla, On polynomial representation of torus knots, ibid. 5

(1996), 279–294.
[9] D. Rolfsen, Knots and Links, Publish or Perish, Berkeley, 1976.

[10] A. R. Shastri, Polynomial representations of knots, Tohoku Math. J. 44 (1992),
11–17.

Department of Mathematics
Indian Institute of Technology Delhi
Hauz Khas, New Delhi 110 016, India
E-mail: mprabhakar iitd@yahoo.co.in

rama@maths.iitd.ac.in

Received 31 March 2004;

in revised form 21 October 2005


