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Burnside keibyMaiej Niebrzydowski and Józef H. Przytyki (Washington, DC)
Abstrat. This paper is motivated by a general question: for whih values of k and

n is the universal Burnside kei Q(k, n) �nite? It is known (starting from the work ofM. Takasaki (1942)) that Q(2, n) is isomorphi to the dihedral quandle Zn and Q(3, 3)is isomorphi to Z3 ⊕ Z3. In this paper, we give a desription of the algebrai struturefor Burnside keis Q(4, 3) and Q(3, 4). We also investigate some properties of arbitraryquandles satisfying the universal Burnside relation a = · · · a ∗ b ∗ · · · ∗ a ∗ b. Invariants oflinks related to the Burnside kei Q(k, n) are invariant under n-moves.1. Introdution. A kei, , also alled an involutory quandle, was in-trodued by Mituhisa Takasaki in 1942 [Tak℄ as an abstrat algebra (Q, ∗)with a binary operation ∗ : Q × Q → Q satisfying the following onditions:(i) a ∗ a = a for any a ∈ Q,(ii) (a ∗ b) ∗ b = a,(iii) (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) (right distributivity).We use a standard onvention for produts in nonassoiative algebras, alledthe left-normed onvention, that is, whenever parentheses are omitted in aprodut of elements a1, a2, . . . , an of Q then
a1 ∗ a2 ∗ · · · ∗ an = ((· · · ((a1 ∗ a2) ∗ a3) ∗ · · ·) ∗ an−1) ∗ an(left assoiation), for example, a ∗ b ∗ c = (a ∗ b) ∗ c. The onditions given inthe above de�nition are related to Reidemeister moves (see Figure 1).We will onsider free keis with the universal relation

rn : a = · · · a ∗ b ∗ · · · ∗ a ∗ b,2000 Mathematis Subjet Classi�ation: Primary 57M25; Seondary 55N99, 20D99.Key words and phrases: kei, quandle, involutory quandle, Burnside kei, Burnsidegroup, n-move, quasigroup, Nakanishi Conjeture.[211℄
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in whih there are n letters on the right hand side and a, b are any elementsof the quandle. We denote suh a kei with k generators by Q(k, n) and allit the universal Burnside kei.In [Joy℄, D. Joye assoiated an involutory quandle to a link. In a similarway we an assoiate to every link L its nth Burnside kei, Qn(L), by assigninggenerators to ars of a �xed diagram of L, writing the relation of the form
u ∗ v = w for eah rossing (here u and w are generators orresponding tothe under-ars and v is assigned to the over-ar) and adding the universalrelation rn.The relation rn orresponds to loal hanges in a link diagram alled
n-moves. It follows that Qn(L) is invariant under Reidemeister moves and
n-moves. For example, r3: a = b ∗ a ∗ b orresponds to invariane under
3-moves and r4: a = a ∗ b ∗ a ∗ b makes Q4(L) invariant under 4-moves.



Burnside kei 213Figure 2 illustrates this orrespondene in the ase n = 3, 4. In fat, Qn(L)is also invariant under rational n/m-moves [D-I-P℄.We notie that the relation r3: a = b ∗ a ∗ b is equivalent to a ∗ b = b ∗ a,in other words, Q(k, 3) is a free ommutative kei on k generators (1).Problem 1. For whih values of k and n is Q(k, n) �nite? How manyelements does it have?In this paper, we fous on �nitely generated ommutative keis and keissatisfying the 4th universal Burnside relation a = a ∗ b ∗ a ∗ b.2. Commutative keis2.1. Examples. Let us �rst reall that there are two well known lassesof examples of �nite ommutative keis:(1) dihedral kei, Z3 (with i ∗ j = 2j − i = −j − i modulo 3), orrespond-ing to Fox 3-olorings, and its diret sums Zn
3 with oordinatewiseoperation;(2) the 3rd Burnside group, B(k, 3) = {x1, . . . , xk | w3 = 1 for anyword w}, with the ore operation a ∗ b = ba−1b, and its quotients.Notie that B(k, 3) is a ommutative kei as the equality a ∗ b = b ∗ a followsfrom the identity ba−1b=ab−1a, whih, inB(k, 3), is equivalent to (ba−1)3 =1.Our motivation for Problem 1 is a theorem by Burnside [Bu℄ stating that

B(k, 3) is a �nite group.2.2. Some properties of ommutative keis. First, let us desribe somegeneral properties of involutory quandles satisfying the relation r3. Anyquandle is distributive from the right, but in the ase of ommutative keis,we also have distributivity from the left:
c ∗ (a ∗ b) = (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) = (c ∗ a) ∗ (c ∗ b).From axiom (ii) in the de�nition of kei, it follows that for any a, b ∈ Q, thereexists a unique c ∈ Q suh that a = c ∗ b (and obviously c = a ∗ b).Here, we mention that if we replae axiom (ii) with the above statementwithout the ondition that c = a ∗ b, we get a general de�nition of a quandle(see [F-R℄ for a desription of quandle theory from the historial perspetive).For a survey on knot invariants derived from quandles see [Kam℄.The equality a = c ∗ b is equivalent to

a ∗ c = b and c ∗ a = b.

(1) The ommutativity relation should not be onfused with the abelian ondition,
(a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d), introdued in [Joy℄.



214 M. Niebrzydowski and J. H. PrzytykiIt follows that any ommutative kei is a quasigroup (2) and the set {a, b, c =
a ∗ b} is a subquandle. If m denotes the size of a �nite ommutative kei,then there are (

m
2

)
/3 suh 3-element subquandles and eah element x ∈ Qbelongs to (m − 1)/2 of them (hoosing any element p ∈ Q \ x determinesthe third element of the quandle, x ∗ p).An involutory quandle Q is said to be algebraially onneted if for eahpair a, b in Q, there are a1, . . . , as ∈ Q suh that

a ∗ a1 ∗ · · · ∗ as = b.We say that an involutory quandle is strongly algebraially onneted if it isalgebraially onneted and s = 1 in the above de�nition.Lemma 2. Any kei satisfying the universal relation rk for some odd k isstrongly algebraially onneted.Proof. Our relation rk now has the form
a = b ∗ a ∗ b ∗ · · · ∗ a ∗ b.Using the �rst axiom of a quandle and the relation x ∗ y ∗ z ∗ y = x ∗ (z ∗ y),we an write rk as

a = b ∗ b ∗ a ∗ b ∗ · · · ∗ a ∗ b =





b ∗ (b ∗ a ∗ · · · ∗ a ∗ b)or
b ∗ (a ∗ b ∗ · · · ∗ a ∗ b),depending on how many letters a and b we have in the relation rk. In eitherase, in order to get from a to b we need to use only one operator (that anbe written using (k + 1)/2 letters a and b).Every algebraially onneted quandle (not neessarily involutory) is ametri spae if we de�ne the distane between x, y ∈ Q as the minimalnumber of operators needed to obtain one element from the other. A sig-ni�ant lass of algebraially onneted quandles is the knot quandles (see[Joy℄ for a de�nition). Sine our metri is unhanged under isomorphism ofquandles, some properties of the metri spae (for example its diameter) areknot invariants. Lemma 2 states that the diameter of any quandle (that is,the diameter of the orresponding metri spae) satisfying rk for some odd

k is 1.Two distint elements x and y of a quandle Q are alled behaviorallyequivalent if
z ∗ x = z ∗ y for all z ∈ Q.

(2) A quasigroup is a set G together with a binary operation · with the property thatfor eah x, y ∈ G, there are unique elements w, z ∈ G suh that x · w = y and z · x = y.



Burnside kei 215It turns out that there are no behaviorally equivalent elements in quandlesof the sort onsidered above.Lemma 3. If Q is a kei satisfying the relation rk for some odd k, then ithas no behaviorally equivalent elements. Moreover , if z ∗ x = z ∗ y for some
z ∈ Q, then x = y.Proof. Assume that z ∗ x = z ∗ y for some x, y, z ∈ Q. In the ase ofa ommutative kei we get the result immediately. Our assumption impliesthat x ∗ z = y ∗ z and this fores the equality x = y. Let us onsider the ase
k > 3. Sine the relation rk holds for all elements, we have

z = x ∗ z ∗ x ∗ · · · ∗ z ∗ x (with k letters on the right),whih is equivalent to
z ∗ x ∗ z = x ∗ z ∗ x ∗ · · · ∗ z ∗ x ∗ z ∗ x (with k − 2 letters on the right)and

z = y ∗ z ∗ y ∗ · · · ∗ z ∗ y,equivalent to
z ∗ y ∗ z = y ∗ z ∗ y ∗ · · · ∗ z ∗ y ∗ z ∗ y.We an replae the initial assumption with

z ∗ x ∗ z = z ∗ y ∗ zand use the relation rk to hange this equation to:
x ∗ z ∗ x ∗ · · · ∗ z ∗ x ∗ z ∗ x = y ∗ z ∗ y ∗ · · · ∗ z ∗ y ∗ z ∗ y;

x ∗ z ∗ x ∗ · · · ∗ z ∗ (z ∗ x) = y ∗ z ∗ y ∗ · · · ∗ z ∗ y ∗ z ∗ y;

x ∗ z ∗ x ∗ · · · ∗ z ∗ (z ∗ y) = y ∗ z ∗ y ∗ · · · ∗ z ∗ y ∗ z ∗ y;

x ∗ z ∗ x ∗ · · · ∗ z ∗ y ∗ z ∗ y = y ∗ z ∗ y ∗ · · · ∗ z ∗ y ∗ z ∗ y.Now we an anel the last four letters on both sides of the last equation.We repeat this redution until we obtain x = y or x ∗ z ∗x = y ∗ z ∗ y. In thelatter ase, we use the �rst quandle axiom to write:
x ∗ x ∗ z ∗ x = y ∗ y ∗ z ∗ y;

x ∗ (z ∗ x) = y ∗ (z ∗ y),and we redue one more time to obtain x = y.For every quandle Q, we an onsider its operator group, Op(Q), gen-erated by automorphisms fx: Q → Q de�ned by yfx = y ∗ x. Behaviorallyequivalent elements of Q de�ne equal elements in Op(Q). On the other hand,if there are no behaviorally equivalent elements in Q, then the map x 7→ fxis injetive and Q is isomorphi to the union of the onjugay lasses of theimages of the generators of Q in Op(Q) (see also [Joy℄).



216 M. Niebrzydowski and J. H. PrzytykiCorollary 4. Any kei Q satisfying the universal relation rk for someodd k embeds into the onjugation quandle of its operator group, Conj(Op(Q))(with the quandle operation f ∗ g = g−1fg, f, g ∈ Conj(Op(Q))).Absene of behaviorally equivalent elements enables us to prove the fol-lowing theorem (3).Theorem 5. The order of a �nite ommutative kei Q is a power of 3.Proof. Let a, b ∈ Q and let P be the 3-element subquandle {a, b, a ∗ b}.From the right distributivity property, it follows that for any x ∈ Q, theset S := P ∗ x = {a ∗ x, b ∗ x, (a ∗ b) ∗ x} is also a subquandle. We ask:what other elements of Q send P to S? There an be at most three suhoperators, sending a to a∗x, b∗x or (a∗ b)∗x (here we use the fat that twooperators x, y ∈ Q ating in the same way on one element are the same).Using Lemma 2, we an �nd them easily:(1) a ∗ (a ∗ x) = x;(2) a ∗ (b ∗ x) = b ∗ x ∗ a = x ∗ b ∗ a;(3) a ∗ (a ∗ b ∗ x) = a ∗ b ∗ x ∗ a = b ∗ a ∗ x ∗ a = b ∗ (x ∗ a) = x ∗ a ∗ b.From the left distributivity, it follows that the set of these three operators isa subquandle. We still need to hek that operators (2) and (3) send b and
a ∗ b to S:

b ∗ (x ∗ b ∗ a) = x ∗ b ∗ a ∗ b = x ∗ (a ∗ b) = (a ∗ b) ∗ x;

(a ∗ b) ∗ (x ∗ b ∗ a) = b ∗ a ∗ (x ∗ b ∗ a) = b ∗ a ∗ a ∗ b ∗ x ∗ b ∗ a = b ∗ x ∗ b ∗ a

= x ∗ b ∗ b ∗ a = a ∗ x;

b ∗ (x ∗ a ∗ b) = x ∗ a ∗ b ∗ b = x ∗ a = a ∗ x;

(a ∗ b) ∗ (x ∗ a ∗ b) = a ∗ b ∗ b ∗ a ∗ x ∗ a ∗ b = a ∗ x ∗ a ∗ b = x ∗ a ∗ a ∗ b

= x ∗ b = b ∗ x.In this way we obtain a partition of Q into 3-element disjoint subquandlesof the form {x, x ∗ b ∗ a, x ∗ a ∗ b}, in whih two elements belong to the sametriple if they send P to the same subquandle. This relation between elementsis an equivalene relation but not a ongruene (u ∼ v, s ∼ t does not imply
u ∗ s ∼ v ∗ t), so we annot simply form a quotient quandle. Instead, wede�ne a natural quandle operation on triples:
(x, x ∗ b ∗a, x ∗a ∗ b) ∗̂ (y, y ∗ b ∗a, y ∗a ∗ b) = (x ∗ y, x ∗ y ∗ b ∗a, x ∗ y ∗a ∗ b).The set of suh triples, with the operation ∗̂, forms a ommutative kei thatis three times smaller than the original kei, Q. Thus we an use the indutiveargument to onlude that the size of Q is a power of 3.

(3) After our paper appeared on the web, we reeived a very interesting e-mail fromMihael Kinyon [Kin℄. In partiular, he brought to our attention the fat that �nite om-mutative involutory quandles are exatly symmetri distributive quasigroups (or in om-binatorial language, Hall triple systems) and suh systems have order 3k for some k.



Burnside kei 2172.3. Q(4, 3) has 81 elements. It was shown by M. Takasaki [Tak℄ that
Q(2, n) is isomorphi to the dihedral quandle Zn and Q(3, 3) is isomorphito Z3 ⊕ Z3. Here we give a desription of Q(4, 3).T. Ohtsuki wrote a omputer program whih helps to analyze the om-mutative kei. Using this program he found that Q(4, 3) has 81 elements [Oht℄.A di�erent omputation, involving the operator group of the quandle, wasmade by the �rst author (4). Here we follow, in a ruial point, Ohtsuki'sapproah to obtain a omputer free proof.Theorem 6. Q(4, 3) has 81 elements.As noted by Takasaki, every element of the kei an be written in a left-normed form (usually not uniquely). For example, in Q(4, 3), (a∗b)∗(c∗d) =
a∗b∗c∗d∗c = a∗b∗d∗c∗d = b∗a∗c∗d∗c = b∗a∗d∗c∗d = c∗d∗a∗b∗a =
c ∗ d ∗ b ∗ a ∗ b = d ∗ c ∗ a ∗ b ∗ a = d ∗ c ∗ b ∗ a ∗ b. The length of a kei element
w assoiated to a partiular kei presentation is the length of the shortestleft-normed word representing w, in the hosen generators of kei.Lemma 7.(i) Every element of Q(4, 3), in the generating set {a, b, c, d}, is oflength at most 7.(ii) There are (at most) eight elements in Q(4, 3) of length 7 and theyhave representatives:

a ∗ b ∗ c ∗ d ∗ b ∗ c ∗ d, a ∗ b ∗ d ∗ c ∗ b ∗ d ∗ c,

b ∗ a ∗ c ∗ d ∗ a ∗ c ∗ d, b ∗ a ∗ d ∗ c ∗ a ∗ d ∗ c,

c ∗ a ∗ b ∗ d ∗ a ∗ b ∗ d, c ∗ a ∗ d ∗ b ∗ a ∗ d ∗ b,

d ∗ a ∗ b ∗ c ∗ a ∗ b ∗ c, d ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b.Proof. We use brakets [ ℄ to stress for whih group of letters our prop-erties are used. The brakets [ ℄ (unlike ( )) do not hange the left-normedonvention. Let {x0, x1, x2, x3} = {a, b, c, d}. We have the following identitiesin Q(4, 3).
x0 ∗ x1 ∗ x2 ∗ x0 = x0 ∗ x2 ∗ x1.(1)Indeed, x0 ∗ x1 ∗ x2 ∗ x0 = x1 ∗ x0 ∗ x2 ∗ x0 = x1 ∗ (x0 ∗ x2) = x0 ∗ x2 ∗ x1.

w ∗ x0 ∗ x1 ∗ x0 = w ∗ x1 ∗ x0 ∗ x1.(2)Indeed, w ∗ x0 ∗ x1 ∗ x0 = w ∗ (x1 ∗ x0) = w ∗ (x0 ∗ x1) = w ∗ x1 ∗ x0 ∗ x1.
x0 ∗ x1 ∗ x2 ∗ x3 ∗ x2 = (x0 ∗ x1) ∗ (x2 ∗ x3) = (x2 ∗ x3) ∗ (x0 ∗ x1)(3)

= x2 ∗ x3 ∗ x0 ∗ x1 ∗ x0.

(4) Mihael Kinyon kindly informed us that the fat that Q(4, 3) has 81 elements alsofollows from the result that the smallest nonassoiative ommutative Moufang loop is oforder 81 (see [Bel℄).



218 M. Niebrzydowski and J. H. Przytyki(4) x0 ∗ x1 ∗ x2 ∗ x3 ∗ x2 ∗ x is reduible to a word of length 4 for x = xi,
i = 0, 1, 2, 3,for example x0∗x1∗x2∗x3∗x2∗x1 = (x0∗x1)∗(x2∗x3)∗x1 = x2∗x3∗x1∗x0.

x0 ∗ x1 ∗ x2 ∗ x3 ∗ x0 ∗ x1 = x0 ∗ x1 ∗ x3 ∗ x2 ∗ x0.(5)Indeed, x0 ∗x1 ∗x2 ∗x3 ∗x0 ∗x1 ∗x0 = ((x0 ∗x1) ∗ (x2 ∗x3)) ∗x2 ∗ (x0 ∗x1) =
(x2 ∗ x3) ∗ (x0 ∗ x1 ∗ x2) = (x0 ∗ x1 ∗ x2) ∗ (x2 ∗ x3) = x0 ∗ x1 ∗ x3 ∗ x2.

x0 ∗ x1 ∗ x2 ∗ x3 ∗ x0 ∗ x3 = x0 ∗ x2 ∗ x1 ∗ x3 ∗ x0.(6)Indeed, x0 ∗ x1 ∗ x2 ∗ x3 ∗ x0 ∗ x3 = x1 ∗ x0 ∗ x2 ∗ x3 ∗ x0 ∗ x3
(1)
= x1 ∗ x0 ∗ x2 ∗

x0 ∗ x3 ∗ x0
(2)
= x0 ∗ x2 ∗ x1 ∗ x3 ∗ x0.

x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2 = x3 ∗ x2 ∗ x1 ∗ x0 ∗ x2 ∗ x1.(7)Indeed, x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2 = ((x0 ∗ x1) ∗ (x2 ∗ x3)) ∗ (x1 ∗ x2) =
((x3 ∗ x2) ∗ (x1 ∗ x0)) ∗ (x2 ∗ x1) = x3 ∗ x2 ∗ x1 ∗ x0 ∗ x2 ∗ x1.

x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2 ∗ x3 = x0 ∗ x2 ∗ x3 ∗ x1 ∗ x2 ∗ x3 ∗ x1(8)
= x0 ∗ x3 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2.Indeed,

x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ [x2 ∗ x3 ∗ x2]
(2)
= (x0 ∗ x1) ∗ x2 ∗ x3 ∗ x1 ∗ x3 ∗ x2 ∗ x3

= (x1 ∗ x0 ∗ x2 ∗ x3 ∗ x1 ∗ x3) ∗ x2 ∗ x3

(6)
= (x1 ∗ x2 ∗ x0 ∗ x3 ∗ x1 ∗ x2) ∗ x3

(5)
= x1 ∗ x2 ∗ x3 ∗ x0 ∗ x1 ∗ x3

= x2 ∗ x1 ∗ x3 ∗ x0 ∗ x1 ∗ x3

(7)
= x0 ∗ x3 ∗ x1 ∗ x2 ∗ x3 ∗ x1as required.

x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2 ∗ x3 ∗ x0 = x0 ∗ x1 ∗ x3 ∗ x2 ∗ x1 ∗ x3 ∗ x2.(9)This equality is the most di�ult and allows us to omplete the proof ofLemma 7. We follow Ohtsuki's analysis of his omputer omputation. Henotied that the key point is to use the ommutation identity
(x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2 ∗ x3 ∗ x0) ∗ x2

= x2 ∗ (x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2 ∗ x3 ∗ x0)and to show that the last expression an be redued to x0∗x1∗x3∗x2∗x1∗x3by properties (1)�(8). This is done in Lemma 8 below.Lemma 8. x2∗(x0∗x1∗x2∗x3∗x1∗x2∗x3∗x0) = x0∗x1∗x3∗x2∗x1∗x3.Proof. To improve readability, we omit ∗ in the presentation of words inthis proof. Using the identity wxyx = w(yx) = w(xy) = wyxy seven times



Burnside kei 219we obtain
x2(x0x1x2x3x1x2x3x0) = x2x0x3x2x1x3x2x1x0x1x2x3x1x2x3x0.Now, after applying identities (1)�(8) several times, we obtain:

(x2x0x3x2)x1x3x2x1x0x1x2x3x1x2x3x0
(1)
=x2x3x0x1x3x2x1x0x1x2x3x1x2x3x0

= (x3x2x0x1x3x2)x1x0x1x2x3x1x2x3x0

(5)
= x3x2x1x0x3[x1x0x1]x2x3x1x2x3x0

(2)
= (x3x2x1x0x3x0)x1x0x2x3x1x2x3x0

(6)
= (x3x1x2x0x3x1)x0x2x3x1x2x3x0

(5)
= (x3x1)x0x2x3x0x2x3x1x2x3x0

= (x1x3x0x2x3x0)x2x3x1x2x3x0
(7)
= x2x0x3x1x0[x3x2x3]x1x2x3x0

(2)
= (x2x0)x3x1x0x2x3x2x1x2x3x0 = (x0x2x3x1x0x2)x3x2x1x2x3x0

(5)
= (x2x0)x1x3x0x3x2x1x2x3x0 = (x0x2x1x3x0x3)x2x1x2x3x0

(6)
= x0x1x2x3x0[x2x1x2]x3x0

(2)
= (x0x1x2x3x0x1)x2x1x3x0

(5)
= (x0x1x3x2x0x2)x1x3x0

(6)
= (x0x3)x1x2x0x1x3x0 = (x3x0x1x2x0x1)x3x0

(7)
= x2x1x0x3x1[x0x3x0]

(2)
= (x2x1)x0x3x1x3x0x3 = (x1x2x0x3x1x3)x0x3

(6)
= (x1x0x2x3x1x0)x3

(5)
= (x1x0)x3x2x1x3 = x0x1x3x2x1x3as required.We proved, in Lemma 7, that Q(4, 3) is �nite, but in fat we an easilybuild, using Lemmas 7 and 8 and their proofs, the multipliation table of

Q(4, 3) with 81 elements. We still need to argue that the order of Q(4, 3) isnot smaller than 81. One of the possible arguments is to show that applia-tion of the relations present in Q(4, 3) does not lead to any further redutionsin the number of elements of Q(4, 3). This argument is quite laborious andmehanial as it requires a lot of similar omputations, so it is suitable fora omputer veri�ation. A more sophistiated argument uses the kei epi-morphism p : Q(4, 3) → Z3
3 . The epimorphism p is de�ned on generators of

Q(4, 3) as follows:
p(a) = (0, 0, 0), p(b) = (1, 0, 0), p(c) = (0, 1, 0), p(d) = (0, 0, 1).For example, we have p(a∗b) = (2, 0, 0), p(a∗c) = (0, 2, 0), p(a∗d) = (0, 0, 2),

p(b ∗ c) = (2, 2, 0), p(b ∗ d) = (2, 0, 2), p(c ∗ d) = (0, 2, 2).From Theorem 5, it follows that it is enough to prove that p is not amonomorphism. We notie that
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p((a ∗ b) ∗ (c ∗ d)) = (1, 1, 1) = p((a ∗ c) ∗ (b ∗ d)) = p((a ∗ d) ∗ (b ∗ d)).However, the elements (a∗b)∗(c∗d) and (a∗c)∗(b∗d) are distint in Q(4, 3). Toshow that, we de�ne a new kei homomorphism q : Q(4, 3) → B(4, 3) whihextends the identity map between the sets of generators. We have to hekwhether q((a ∗ b) ∗ (c ∗ d)) = q((a ∗ c) ∗ (b ∗ d)). We have

q((a ∗ b) ∗ (c ∗ d)) = q(c ∗ d)(q(a ∗ b))−1q(c ∗ d) = dc−1d(b−1ab−1)dc−1d,and similarly
q((a ∗ c) ∗ (b ∗ d)) = db−1d(c−1ac−1)db−1d.Thus, we need to show that

q((a∗b)∗(c∗d))(q((a∗c)∗(b∗d)))−1 = dc−1d(b−1ab−1)dc−1bd−1ca−1cd−1bd−1is not equal to 1 in B(4, 3). We redue this problem, after onjugating by
d−1, to the question whether

c−1db−1ab−1dc−1bd−1ca−1cd−1b 6= 1in the Burnside group B(4, 3). The above relation was veri�ed both by usingthe omputer algebra system GAP [GAP4℄, and by alulations in the asso-iated Lie algebra of B(4, 3) made by Mietek D¡bkowski [Dab℄ (see [VL℄ forbakground information on Burnside groups). Thus, we have shown that pis not a monomorphism and Q(4, 3) has exatly 81 elements.
Remark (alternative approah). As mentioned before (see page 215),the operator group of the quandle Q, Op(Q), is generated by the images ofelements of Q under the map x 7→ fx. Beause of the relation

fx∗y = f−1
y fxfy,whih holds in the operator group for any x, y ∈ Q, Op(Q) is generatedby the images of the generators of Q. In partiular if Q is generated by nelements, then so is Op(Q).As previously noted (see Corollary 4 and the omment preeding it),

Q(4, 3) embeds into its operator group. To simplify notation, we use thesame symbols for quandle elements and their images in the orrespondingoperator group. From the seond kei axiom it follows that the squares ofgenerators (and therefore also the squares of onjugates of generators) areequal to the identity in Op(Q(4, 3)). The relation x ∗ y = y ∗x, whih is truefor all elements of Q(4, 3), yields the relation yxy = xyx (or xyxyxy = 1) in
Op(Q(4, 3)), where x and y belong to onjugay lasses of the generators of
Q(4, 3). Therefore, Q(4, 3) an be embedded into the (possibly bigger) group
G

(3)
(a,b,c,d) with the following presentation:

{a, b, c, d | a2 = b2 = c2 = d2 = 1, xyxyxy = 1},



Burnside kei 221where x and y are any onjugates of the generators a, b, c, d. Using GAP, wefound a �nite presentation for G
(3)
(a,b,c,d) as follows. We add to the presentation

{a, b, c, d | a2 = b2 = c2 = d2 = 1}all relations of the form (w−1αwv−1βv)3 = 1, where α, β ∈ {a, b, c, d} and w,
v are all possible two-letter words on the letters a, b, c, d. The group with thispresentation is �nite, and we an hek that all required relations betweenonjugates of generators are satis�ed (xyxyxy = 1 for any onjugates of
a, b, c, d). Again, using GAP, we omputed that the order of this groupis 118098 = 2 · 310 and that the number of elements in the union of theonjugay lasses of a, b, c and d is 81 (whih is also the order of Q(4, 3)).Elements of these onjugay lasses form a 4-generator ommutative kei withonjugation as a quandle operation, therefore their number annot exeedthe order of the free kei Q(4, 3).2.4. Q(4, 3) as an extension of Z3

3 by Z3. We show that Q(4, 3) is iso-morphi to the quandle (Z3×Z3
3 , ∗̂), with the operation ∗̂ de�ned as follows:

(a1, x1) ∗̂ (a2, x2) = (a1 ∗ a2 + c(x1, x2), x1 ∗ x2).In this de�nition, + denotes addition in Z3, ∗ is the quandle operation de-sribed in Example 2.1(1), and c(x1, x2): Z3
3 × Z3

3 → Z3 is a funtion whihsatis�es the following onditions (related to the de�nition of kei):(i) c(x, x) = 0;(ii) c(x ∗ y, y) = c(x, y);(iii) c(x1 ∗x3, x2 ∗x3)− c(x1 ∗x2, x3) = −c(x1, x2)+ c(x2, x3)+ c(x1, x3);(iv) c(x, y) = c(y, x).The �rst ondition orresponds to the �rst kei axiom, (a, x) ∗̂ (a, x) = (a, x).The seond ondition is a onsequene of the seond kei axiom, ((a, x) ∗̂
(b, y)) ∗̂ (b, y) = (a, x).Condition (iii) follows from the right distributivity:

((a1, x1) ∗̂ (a2, x2)) ∗̂ (a3, x3) = ((a1, x1) ∗̂ (a3, x3)) ∗̂ ((a2, x2) ∗̂ (a3, x3))leads to the following, after �rst omputing the left and right sides of theabove equation:
L = (a1 ∗ a2 + c(x1, x2), x1 ∗ x2) ∗̂ (a3, x3)

= (a1 ∗ a2 ∗ a3 − c(x1, x2) + c(x1 ∗ x2, x3), x1 ∗ x2 ∗ x3),
R = (a1 ∗ a3 + c(x1, x3), x1 ∗ x3) ∗̂ (a2 ∗ a3 + c(x2, x3), x2 ∗ x3)

= ((a1 ∗ a3) ∗ (a2 ∗ a3) + 2c(x2, x3) − c(x1, x3)
+ c(x1 ∗ x3, x2 ∗ x3), (x1 ∗ x3) ∗ (x2 ∗ x3)).From this we get

c(x1 ∗ x3, x2 ∗ x3) − c(x1 ∗ x2, x3) = −c(x1, x2) − 2c(x2, x3) + c(x1, x3).Taking into aount that we work modulo 3, we get ondition (iii).



222 M. Niebrzydowski and J. H. PrzytykiThe last ondition follows from the fat that we work with a ommutativekei.Condition (iii) turns eah suh c into a twisted 2-oyle in the seond quan-dle ohomology group of Z3
3 with Z3 oe�ients. Twisted quandle (o)homo-logy theory was introdued in [C-E-S℄. The authors desribed there a generalmethod of obtaining a new quandle from a given quandle X and Alexanderquandle A, using a twisted 2-oyle φ. Suh onstrutions, inluding the onewe are desribing, are alled Alexander extensions of X by (A, φ).An example of a funtion c satisfying all of the above onditions, is pre-sented below. In order to represent a oyle c as a matrix, let us order theelements of Z3

3 as follows:1. (0,0,0); 2. (0,0,1); 3. (0,0,2); 4. (0,1,0); 5. (0,1,1); 6. (0,1,2); 7. (0,2,0);8. (0,2,1); 9. (0,2,2); 10. (1,0,0); 11. (1,0,1); 12. (1,0,2); 13. (1,1,0); 14. (1,1,1);15. (1,1,2); 16. (1,2,0); 17. (1,2,1); 18. (1,2,2); 19. (2,0,0); 20. (2,0,1); 21. (2,0,2);22. (2,1,0); 23. (2,1,1); 24. (2,1,2); 25. (2,2,0); 26. (2,2,1); 27. (2,2,2).The entry mij of the matrix M given below equals the value c(i, j) of theoyle c on the ith and jth elements of Z3
3 .

M =




0 1 1 0 1 2 0 2 1 0 1 2 0 1 2 0 1 2 0 2 1 0 2 1 0 2 11 0 1 0 1 2 2 1 0 2 0 1 1 2 0 0 1 2 1 0 2 2 1 0 0 2 11 1 0 1 2 0 2 1 0 2 0 1 0 1 2 1 2 0 0 2 1 2 1 0 1 0 20 0 1 0 0 0 0 1 0 2 0 1 1 2 0 0 1 2 0 2 1 1 0 2 2 1 01 1 2 0 0 0 2 1 1 0 1 2 1 2 0 2 0 1 1 0 2 0 2 1 2 1 02 2 0 0 0 0 2 2 0 1 2 0 1 2 0 1 2 0 2 1 0 2 1 0 2 1 00 2 2 0 2 2 0 0 0 0 1 2 1 2 0 2 0 1 1 0 2 0 2 1 2 1 02 1 1 1 1 2 0 0 0 1 2 0 1 2 0 1 2 0 0 2 1 0 2 1 0 2 11 0 0 0 1 0 0 0 0 2 0 1 1 2 0 0 1 2 2 1 0 0 2 1 1 0 20 2 2 2 0 1 0 1 2 0 0 0 1 2 0 1 0 2 0 2 2 0 2 1 2 1 01 0 0 0 1 2 1 2 0 0 0 0 0 1 2 2 1 0 0 0 1 0 2 1 2 1 02 1 1 1 2 0 2 0 1 0 0 0 2 0 1 0 2 1 1 2 1 0 2 1 2 1 00 1 0 1 1 1 1 1 1 1 0 2 0 0 0 1 2 0 1 1 1 1 1 1 0 0 11 2 1 2 2 2 2 2 2 2 1 0 0 0 0 0 1 2 2 2 2 2 2 2 1 2 12 0 2 0 0 0 0 0 0 0 2 1 0 0 0 2 0 1 0 0 0 0 0 0 0 2 20 0 1 0 2 1 2 1 0 1 2 0 1 0 2 0 0 0 0 1 2 0 1 0 2 0 11 1 2 1 0 2 0 2 1 0 1 2 2 1 0 0 0 0 2 0 1 2 1 1 1 2 02 2 0 2 1 0 1 0 2 2 0 1 0 2 1 0 0 0 1 2 0 2 2 0 0 1 20 1 0 0 1 2 1 0 2 0 0 1 1 2 0 0 2 1 0 0 0 2 1 0 2 0 12 0 2 2 0 1 0 2 1 2 0 2 1 2 0 1 0 2 0 0 0 0 2 1 1 2 01 2 1 1 2 0 2 1 0 2 1 1 1 2 0 2 1 0 0 0 0 1 0 2 0 1 20 2 2 1 0 2 0 0 0 0 0 0 1 2 0 0 2 2 2 0 1 0 0 0 2 1 02 1 1 0 2 1 2 2 2 2 2 2 1 2 0 1 1 2 1 2 0 0 0 0 0 2 11 0 0 2 1 0 1 1 1 1 1 1 1 2 0 0 1 0 0 1 2 0 0 0 1 0 20 0 1 2 2 2 2 0 1 2 2 2 0 1 0 2 1 0 2 1 0 2 0 1 0 0 02 2 0 1 1 1 1 2 0 1 1 1 0 2 2 0 2 1 0 2 1 1 2 0 0 0 01 1 2 0 0 0 0 1 2 0 0 0 1 1 2 1 0 2 1 0 2 0 1 2 0 0 0






Burnside kei 223The existene of an isomorphism between Q(4, 3) and (Z3 × Z3
3 , ∗̂) followsfrom the following fats:(i) (Z3 × Z3

3 , ∗̂) satis�es the kei axioms and relation r3;(ii) (Z3 × Z3
3 , ∗̂) has 81 elements;(iii) (Z3 × Z3
3 , ∗̂) is generated by four elements: (1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 1, 0), (0, 0, 0, 1) (for example it annot be isomorphi to
Core(Z4

3 ), whih has �ve generators as a kei).
3. Q(3, 4) has 96 elements. The primary examples of keis satisfyingthe universal Burnside relation, x = x ∗ y ∗ x ∗ y, are the dihedral kei Z4, itsdiret sums, and the fourth Burnside groups and their quotients (with theore operation x ∗ y = yx−1y).To get a lower bound on the order of Q(3, 4), we an onsider the group

G
(4)
(a,b,c) with presentation

{a, b, c | a2 = b2 = c2 = 1, (xy)4 = 1},where x and y are any onjugates of the generators a, b, c. We obtain a �nitepresentation for G
(4)
(a,b,c) in a similar way to the one desribed on page 221.Using GAP we heked that this group has 8192 = 213 elements and the sizeof the union of the onjugay lasses of the generators is 96. The elementsof these onjugay lasses form a 3-generator quandle (with onjugationas operation ∗) satisfying the relation x = x ∗ y ∗ x ∗ y. Thus the orderof the free kei Q(3, 4) annot be less than 96. This time we annot useLemma 3 to obtain an upper bound on the size of Q(3, 4) (see the remarkafter the proof of Theorem 6), so instead we will build a Cayley diagramfor this quandle. This diagram has 96 verties, therefore Q(3, 4) has order

96. Below, we alulate some relations needed to build that diagram. Again,we use brakets [ ] to stress for whih parts of words we use properties of
Q(3, 4). None of these properties an replae the �rst letter in the left-normedrepresentatives of words in Q(3, 4). For example a left-normed word startingwith a never equals a word starting with b. It follows that the diagram willonsist of three disjoint parts that look the same when viewed as graphs (seeFigure 3). Here we prove the most di�ult relations in the Cayley graph,their numbers orrespond to the numbers in Figure 3. The verties of theCayley graph represent the elements of Q(3, 4). The solid ars representmultipliation from the right by the generator a; two kinds of dashed arsdenote multipliation by respetively b and c.(1) We need to prove the relation

a ∗ b ∗ c ∗ a ∗ b ∗ a = a ∗ b ∗ c ∗ a ∗ b
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a

a*b

a*b*c

a*b*c*b

a*b*c*b*c

a*c*b*c

a*c*b

a*c

a*b*c*a

a*b*c*a*c

a*b*c*a*c*b

a*b*c*a*c*b*c

a*b*c*a*b*c*b*c

a*b*c*a*b

a*b*c*a*b*c

a*b*c*a*b*c*b

a*c*b*a

a*c*b*a*c

a*c*b*a*c*b

a*c*b*a*c*b*c

a*c*b*a*b*c*b*c

a*c*b*a*b*c*b

a*c*b*a*b*c

a*c*b*a*b

a*b*c*b*c*a

a*b*c*b*c*a*b

a*b*c*b*c*a*b*c

a*b*c*b*c*a*b*c*b

a*b*c*b*c*a*b*c*b*c

a*b*c*b*c*a*c

a*b*c*b*c*a*c*b

a*b*c*b*c*a*c*b*c

a

b

c

(1) (2)(3) (4)

(5)

(6)(7)

(8) (9)(10) (11)

(12)(13)

(14)(15)

(16)

Fig. 3. A omponent of the Cayley diagram for Q(3, 4)

(orresponding to a loop at the vertex representing the element a∗b∗c∗a∗b):
[a ∗ b] ∗ c ∗ a ∗ b ∗ a = a ∗ [b ∗ a ∗ c ∗ a ∗ b] ∗ a = a ∗ (c ∗ a ∗ b) ∗ a

= a ∗ (c ∗ a ∗ b) = [a ∗ b ∗ a] ∗ c ∗ a ∗ b = a ∗ b ∗ c ∗ a ∗ bas desired.(2) We have
[a ∗ b] ∗ c ∗ a ∗ c ∗ a = a ∗ b ∗ [a ∗ c ∗ a ∗ c ∗ a] = a ∗ b ∗ [(a ∗ c ∗ a)]

= a ∗ b ∗ [(a ∗ c)] = a ∗ b ∗ c ∗ a ∗ c.(3) Similar to (2).(4) Similar to (1).



Burnside kei 225(5) We have to hek that a ∗ b ∗ c ∗ a ∗ b ∗ c ∗ a = a ∗ c ∗ b ∗ a ∗ c ∗ b orequivalently that a = a ∗ c ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b. Indeed,
[a ∗ c] ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b = a ∗ [c ∗ a ∗ b ∗ a ∗ c] ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= [a ∗ (b ∗ a ∗ c)] ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [(b ∗ a ∗ c)] ∗ a ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ b ∗ a ∗ c] ∗ b ∗ a ∗ c ∗ b

= a ∗ [(c ∗ (b ∗ a) ∗ c)] ∗ b ∗ a ∗ c ∗ b = a ∗ [(c ∗ (b ∗ a))] ∗ b ∗ a ∗ c ∗ b

= a ∗ a ∗ b ∗ a ∗ c ∗ a ∗ [∗b ∗ a ∗ b ∗ a] ∗ c ∗ b

= [a ∗ a] ∗ b ∗ a ∗ c ∗ [a ∗ a] ∗ b ∗ a ∗ b ∗ c ∗ b = [a ∗ b ∗ a] ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b

= a ∗ [b ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b] = a ∗ (a ∗ (c ∗ b)) = a.(6) We prove that a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ a = a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b. Indeed,
a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ a = a ∗ b ∗ c ∗ b ∗ c ∗ b ∗ [b ∗ a ∗ b ∗ a]

= a ∗ [b ∗ c ∗ b ∗ c ∗ b] ∗ a ∗ b ∗ a ∗ b

= [a ∗ c ∗ b ∗ c ∗ a] ∗ b ∗ a ∗ b

= a ∗ [c ∗ b ∗ c ∗ b] ∗ a ∗ b = a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b.(7) a ∗ [b ∗ c ∗ b ∗ c] ∗ a ∗ c ∗ a = a ∗ c ∗ b ∗ c ∗ b ∗ a ∗ c ∗ a and then as in (6)(the roles of b and c are exhanged).(8) We need a ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b = a ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b ∗ a or
a ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b = a. We ompute as follows:

[a ∗ b] ∗ c ∗ a ∗ b ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [b ∗ a ∗ c ∗ a ∗ b] ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= [a ∗ (c ∗ a ∗ b)] ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [(c ∗ a ∗ b)] ∗ a ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ b ∗ a ∗ c ∗ a ∗ b ∗ a ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ b ∗ a ∗ c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ [a ∗ b ∗ a ∗ b] ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [b ∗ a ∗ c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ b] ∗ a ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [(b ∗ (c ∗ a) ∗ b)] ∗ a ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [(b ∗ a ∗ c ∗ a)] ∗ a ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= [a ∗ a] ∗ c ∗ a ∗ b ∗ a ∗ c ∗ [a ∗ a] ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= [a ∗ c ∗ a] ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ c ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b
(5)
= a.



226 M. Niebrzydowski and J. H. Przytyki(9) a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c = a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a is equivalent to
a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b = a, whih is proved as follows:

[a ∗ b ∗ c ∗ a ∗ c ∗ b] ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ [a ∗ c ∗ a ∗ c] ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ [b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b] ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ [(b ∗ (a ∗ c) ∗ b)] ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b

= [a ∗ c ∗ a] ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ [c ∗ c] ∗ b ∗ c ∗ a ∗ c ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ [b ∗ c ∗ a ∗ c ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b]

= a ∗ (a ∗ b ∗ c ∗ a ∗ c ∗ b) = a ∗ (a ∗ (a ∗ c ∗ b)) = a.(10) As in (9) with b and c interhanged.(11) As in (8) with b and c interhanged.(12) a ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b ∗ c ∗ a = a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ c is equivalent to
a∗ b∗ c∗ b∗ c∗a∗ b∗ c∗a∗ c∗ b∗ c∗ b∗a∗ c∗ b = a, whih we prove as follows:
[a ∗ b] ∗ c ∗ b ∗ c ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [b ∗ a ∗ c ∗ b ∗ c ∗ a ∗ b] ∗ c ∗ a ∗ c ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= [a ∗ (b ∗ c ∗ a ∗ b)] ∗ c ∗ a ∗ c ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [(b ∗ c ∗ a ∗ b)] ∗ a ∗ c ∗ a ∗ c ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ b ∗ a ∗ c ∗ b ∗ c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ [c ∗ b ∗ c ∗ b] ∗ a ∗ c ∗ b

= [a ∗ b ∗ a] ∗ c ∗ b ∗ c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b

= [a ∗ b ∗ c ∗ b] ∗ c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ b ∗ c ∗ [b ∗ a ∗ c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ b] ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ b ∗ c ∗ [(b ∗ (c ∗ a) ∗ b)] ∗ c ∗ b ∗ c ∗ a ∗ c ∗ ba ∗ b ∗ c ∗ a ∗ c ∗ a ∗ b

∗ a ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ b ∗ c ∗ a ∗ c ∗ a ∗ b ∗ a ∗ b ∗ [b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b]

= [a ∗ b] ∗ c ∗ a ∗ c ∗ a ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c

= a ∗ b ∗ [a ∗ c ∗ a ∗ c ∗ a] ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c

= a ∗ [b ∗ c ∗ a ∗ c ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b] ∗ c ∗ a ∗ c

= a ∗ (a ∗ (a ∗ c ∗ b))c ∗ a ∗ c = a ∗ c ∗ a ∗ c = a.(13) Follows from (12).



Burnside kei 227(14) Instead of a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b ∗ a = a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ c ∗ bwe onsider a = a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b ∗ c ∗ b,proved as follows:
a ∗ b ∗ c ∗ b ∗ c ∗ [a ∗ b ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a] ∗ c ∗ b ∗ c ∗ b

= a ∗ [b ∗ c ∗ b ∗ c ∗ b ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ c ∗ b ∗ c ∗ b]

= a ∗ (a ∗ (c ∗ (c ∗ b))) = a.(15) Follows from (14), sine
a ∗ [b ∗ c ∗ b ∗ c] ∗ a ∗ c ∗ b ∗ c ∗ a = a ∗ c ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b ∗ c ∗ a.(16) Sine a ∗ b ∗ c ∗ a ∗ b ∗ c ∗ a

(5)
= a ∗ c ∗ b ∗ a ∗ c ∗ b, we have

a ∗ b ∗ [c ∗ b ∗ c] ∗ a ∗ b ∗ [c ∗ b ∗ c] ∗ a = a ∗ b ∗ (b ∗ c) ∗ a ∗ b ∗ (b ∗ c) ∗ a

= a ∗ [(b ∗ c)] ∗ b ∗ a ∗ [(b ∗ c)] ∗ b

= a ∗ [c ∗ b ∗ c ∗ b] ∗ a ∗ [c ∗ b ∗ c ∗ b]

= a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b ∗ c.The oldest open problem onerning n-moves is the Nakanishi 4-moveonjeture (see [Prz℄).Conjeture 9 (Nakanishi, 1979). Every knot is 4-move equivalent tothe trivial knot.Our hope was that the fourth Burnside kei of a knot ould be used todetet a potential ounterexample to this onjeture. However, the followingtheorem suggests this is not likely to be the ase.Theorem 10. Every algebraially onneted quotient of Q(3, 4) is a triv-ial quandle (a quandle with one element).Proof. Let Q̃ be the algebraially onneted quotient of Q(3, 4), f : Q(3, 4)

→ Q̃ be the quotient homomorphism, and S1, S2, S3 denote the algebraiallyonneted omponents of Q(3, 4). We laim that Q̃ is ontained in eah image
f(Si) for i = 1, 2, 3.Assume that there exists x ∈ Q̃ with f−1(x) ∩ Sj = ∅ for some j. Let
a ∈ Sj and y = f(a). Then from the algebrai onnetivity of Q̃ it followsthat x = y ∗ x1 ∗ · · · ∗ xk for some x1, . . . , xk ∈ Q̃. Now we hoose arbitrary
zi ∈ f−1(xi), i = 1, . . . , k. Let z = a ∗ z1 ∗ · · · ∗ zk. Then z ∈ Sj and
f(z) = f(a) ∗ f(z1) ∗ · · · ∗ f(zk) = y ∗x1 ∗ · · · ∗ xk = x, whih ontradits theassumption that f−1(x) ∩ Sj = ∅.Eah subquandle Si, when onsidered as a quandle itself, has eight 4-element omponents (orbits) T1, . . . , T8 and, just as before, we an provethat Q̃ is the image of eah Ti (and an have at most 4 elements). But every



228 M. Niebrzydowski and J. H. Przytykisuh Ti is a trivial quandle (x ∗ y = x for any x, y ∈ Ti) and Q̃ must be theimage of just one element.Sine knot quandles are algebraially onneted, we have the followingresult.Corollary 11. Let K be a knot suh that the minimal number of gen-erators of its fundamental quandle is less than or equal to 3. Then its fourthBurnside quandle, Q4(K), has only one element.For example, Q4(K) will not detet a potential ounterexample to theNakanishi 4-move onjeture among 3-bridge knots.It seems plausible that the order of Q4(K) is 1 for any knot K.Aknowledgements. We would like to thank Tomotada Ohtsuki forseveral very useful disussions in Deember 2004 and January 2005, espe-ially for informing us about his alulations regarding Q(4, 3). We wouldalso like to thank Mihael Kinyon for a very informative email [Kin℄. In par-tiular we thank him for pointing out to us that the relations rn have a longhistory in the theory of quasigroups (see [Sta℄ for bakground information).We are indebted to Seiihi Kamada for translating for us parts of Takasaki'spaper. We wish to thank the referee for the report that helped to improveour paper.
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