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A set of moves for Johansson representation of 3-manifolds
by

Ruken Vigara (Madrid)

Abstract. A Dehn sphere in a closed 3-manifold M is a 2-sphere immersed in
M with only double curve and triple point singularities. The D ehn sphere lls M ifit
de nes a cell decomposition of M . The inverse image in S? of the double curves of s the
Johansson diagram of andif lls M itis possible to reconstruct M from the diagram.
A Johansson representation of M is the Johansson diagram of a lling Dehn sphere of M .
Montesinos proved that every closed 3-manifold has a Johanson representation coming
from a nullhomotopic lling Dehn sphere. In this paper a set o f moves for Johansson
representations of 3-manifolds is given. This set of moves s ces for relating di erent
Johansson representations of the same 3-manifold coming fom nullhomotopic lling Dehn
spheres. The proof of this result is outlined here.

1. Introduction.  Throughout the paper all 3-manifolds are assumed
to be closed, that is, compact, connected and without boundey, and all
surfaces are assumed to be compact and without boundary. A stace may
have more than one connected component. We will denote a 3-mifold by
M and a surface byS.

Let M be a 3-manifold.

A subset M is a Dehn surfacein M (see [P]) if there exists a
surface S and a transverse immersionf : S! M such that = f(S). In
this situation we say that f parametrizes . If Sis a 2-sphere then is a
Dehn sphere For a Dehn surface M, its singularities are divided into
double points (Figure 1(a)), and triple points (Figure 1(b)), and they are
arranged alongdouble curves(see Section 2 below for de nitions). A Dehn
surface M lls M [Mo2] if it de nes a cell decomposition of M in
which the 0-skeleton is the set of triple points of ; the 1-skeleton is the set
of double and triple points of ; and the 2-skeleton is itself. Filling Dehn

2000 Mathematics Subject Classi cation : 57N10, 57N35, 57M99.

Key words and phrases representation of 3-manifolds, set of moves, immersed sufaces,
Dehn surfaces, Johansson diagram, double curves, triple pants.

This research has been partially supported by a predoctoral grant from the U.N.E.D.
(1999).

[245]



246 R. Vigara
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Fig. 1

spheres of 3-manifolds are de ned in [Mo2] following ideasfd/N. Haken (see
[Ha]). In [F-R] it is proved that every closed orientable 3-manifold has a
Dehn sphere whose complement is a union of open 3-balls. In 2] the
following theorem is proved (see also [V1]):

Theorem 1 ([Mo2]). Every closed orientable3-manifold has a nullho-
motopic lling Dehn sphere.

A lling Dehn sphere is nullhomotopic if one (and hence any) of its
parametrizations is nullhomotopic, that is, homotopic to a constant map.

Let M be a lling Dehn sphere andf : S2! M a transverse
immersion parametrizing . In this case we say thatf is a lling immersion .
The inverse image byf in S? of the set of double and triple points of is
the singular setof f. The singular set of f , together with the information
on how its points are identied by f in M, is the Johansson diagramof
in the terminology of [Mo2]. As stated in [Mo2], for a given diagram in S?
it is possible to nd if it is the Johansson diagram for a llin g Dehn sphere

in some 3-manifoldM . If this is the case, it is also possible to reconstruct
such anM from the diagram. Thus, Johansson diagrams are a suitable wa
for representing all closed, orientable 3-manifolds and itis interesting to
further study them. For a 3-manifold M, we say that a Johansson diagram
of a lling Dehn sphere of M is aJohansson representatiorof M (see [Mo02]).
In [Mo2] an algorithm is given for obtaining a Johansson repesentation of a
closed orientable 3-manifoldM from any Heegaard diagram ofM . A simpler
algorithm is given in [V1]. In both papers, the Johansson repesentations
obtained come from nullhomotopic lling Dehn spheres ofM .

We will deal here with the problem of deciding how di erent Johans-
son representations of the same 3-manifold are related to ek other. With
this problem in mind, we study how dierent lling Dehn spher es of the
same 3-manifold are related to each other. In [V2], the follwing theorem is
proved.

Theorem 2. Let M be a closed3-manifold. Let f;g : S21 M be two
nullhomotopic Iling immersions. Then there is a nite sequence of lling
immersions f = fg;fq;:::;f, = g such that for eachi = 0;:::;n 1 the
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immersions f; and f;+1 di er by an ambient isotopy of S2, or by an ambient
isotopy of M, or by one of the moves depicted in Figure.
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This theorem gives a complete set of moves for relating Johason rep-
resentations of the same 3-manifold coming from nullhomotpic lling Dehn
spheres (see Corollary 39).

The detailed proof of Theorem 2 is quite long, and it uses bottrsmooth
and combinatorial techniques. In this paper we will give an autline of this
proof. The paper is organized as follows.

In Section 2, we give some preliminary de nitions about Dehnsurfaces
and cell complexes. Most of Section 3 and Sections 4 to 10 idduce some
partial results needed to sketch the proof of Theorem 2. Thisketch is given
in Section 11. A reader wishing to skip the details can jump diectly from
Section 3 to Section 12.

The proof of Theorem 2 in [V2] relies on three Key Lemmas that v
will state here without proof. In Section 3 we present some rsults about
regular homotopies of immersions of surfaces in 3-manifoi] and we intro-
duce the concept of lling-preserving moves and lling homotopy for lIling
immersions. Key Lemma 1 is stated in Section 4, where we de néhe mod-
i cations of immersions of surfaces in 3-manifolds bypushing disks This
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kind of modi cation was de ned in [H-N1], and Key Lemma 1 assets that
certain regular homotopies can be decomposed into pushinggks with some
nice properties.

In Section 5 we introduce a surgery method for modifying Dehrsurfaces
that will be useful later, and in Section 6 we present three eamples of
modi cations of lling Dehn surfaces that can be done using aly the lling-
preserving moves de ned in Section 3.

In Section 7 we introduce some combinatorial tools that will be essen-
tial in Key Lemmas 2 and 3: the concept ofshelling of a cell complex and
the concept ofsimplicial collapsing for a simplicial complex. These concepts
will appear almost everywhere in Sections 8 to 11. In the sam&ection 7
we introduce smooth triangulations of manifolds, which giwes us a theoret-
ical basis for applying the previously de ned combinatorial concepts to our
case.

We explain in Section 8 how any smooth triangulationT of a 3-manifold
M can be \in ated" to obtain a lling Dehn sphere of M. This in ated
sphere is transverse to any Dehn sphere dfl that lies in the 2-skeleton
of T. When the triangulation T of M is \su ciently good" with respect
to a lling Dehn surface of M we can use it to obtain from  other
lling surfaces \as complicated as we want" using only Ilin g-preserving
moves. These constructions are used in Key Lemma 2, which ids® stated
in Section 8. Every pushing disk transformation (as de ned n Section 4) of
a Dehn surface can be performed by regular homotopy. For a gan pushing
disk transformation, Key Lemma 2 proposes a new scenario in kch the
pushing disk transformation can be performed by lling homotopy.

In Section 9 we discuss brie y how two lling Dehn spheres of he same
3-manifold can intersect each other, and this discussion isised in Section
10, where we state Key Lemma 3. It ensures that when two lling Dehn
surfaces intersect in a \su ciently good" way, the in ating constructions
introduced in Section 8 can be made simultaneously for one dhem and for
the union of both.

All the constructions that we have quali ed above as \su cie ntly good"
are intimately related to the concept of shelling.

In Section 12 we translate Theorem 2 into Johansson represttions
of 3-manifolds and we give some examples, and in Section 13 vexplain
briey how we can obtain a nullhomotopic Johansson represetation of a
3-manifold M from any Johansson representation oM .

Inthe nal Section 14 we give a brief discussion of some rel&d problems.

This paper is part of the Ph.D. thesis [V2] of the author, which has
been written under the supervision of Prof. J. M. Montesinos | am very
grateful to him for all his valuable advice, specially for his suggestions and
comments during the writing of this paper and his careful realing of the



Johansson representation of 3-manifolds 249

previous versions of this manuscript. | would also like to thank the referee
for his suggestions and the editor for pointing out some mispnts in the
nal version of this paper.

2. Preliminaries.  Because our starting point is Theorem 4 below, we
will work in the smooth category. Nevertheless, if one couldcheck that the
analogue of Theorem 4 in the PL category is true (we do not knowof any
reference), all our constructions have their translation © the PL case and
so Theorem 2 would also be true in the PL case.

Thus, all the manifolds are assumed to be equipped with a smdb struc-
ture and maps between two manifolds are assumed to be smooth.

For the standard de nitions of di erential topology (immer sions, trans-
versality, etc.), see [Hi] or [G-P], for example. For a geneaal treatment of PL
topology we refer to [Hu], for example.

For a subsetX of a manifold, we denote the interior, closure and bound-
ary of X by int( X), cl(X) and @ Xrespectively.

Let A and B be two sets. For a mapf : A ! B the singular values
or singularities of f are the points x 2 B with # ff 1(x)g > 1, and the
singular points of f are the inverse image points underf of the singularities
of f. The singular setS(f) of f is the set of singular points off in A, and
the singularity set S(f) of f is the set of singularities off in B. Of course
f (S(f)) = S(f). This notation is similar to but slightly di erent from tha t
of [Sh].

From now on, M will denote a 3-manifold as at the beginning of Section 1.

Let be a Dehn surface inM. Let S be a surface andf : S! M
a transverse immersion parametrizing . In this case we say thatS is the
domain of . For any x 2 M we have #ff (x)g 3 (see [He]). The
singularities of f are divided into double points of f , with # ff 1(x)g=2,
and triple points of f, with # ff 1(x)g = 3. A small neighbourhood of a
double or a triple point looks as in Figures 1(a) and 1(b) resgctively. The
singularity set S(f ) of f , the set of triple points of f , and the domain S (up
to homeomorphism) do not depend upon the parametrizationf of . We
de ne the singularity set of , denoted by S( ), to be the singularity set of
any parametrization of . A double curveof s the image of an immersion
~—:S'1 M contained in the singularity set of  (see [Sh]). The singularity
set of is the union of the double curves of . BecauseS is compact,
has a nite number of double curves. Following [Sh], we denat by T( ) the
set of triple points of . The Dehn surface is embeddedf its singularity
set is empty. A standardly embedde®-spherein M is a 2-sphere embedded
in M that bounds a 3-ball in M.
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A componentof is the image underf of a connected component of
the domain S. Note that the components of may not coincide with the
connected components of .

A Dehn surface in M lls M ifit de nes a cell decomposition of M
as indicated in Section 1. This de nition generalizes to geeral surfaces a
de nition given in [Mo2] for Dehn spheres.

The following trivial proposition gives an equivalent de nition of lling
Dehn surface.

Proposition 3. lls M if and only if
(1) M is a disjoint union of open 3-balls,
(2) S( ) is a disjoint union of open 2-disks,

(3) S( ) T( ) is a disjoint union of open intervals.

The following statements and de nitions for cell complexesare also valid
for simplicial complexes. We consider the cells of a cell coptex asopencells.
If K is a cell complex, and";" %are two cells ofK , we write " <" Ywhen"
is a face of"? that is, when cl(")  cl("9. The cells" and "° are incident
if "<"O%or"%<", and adjacentif cI(")\ cl(") 6 ;. For a cell" of K, we
de ne the (open) star of " as the union of all cells"®of K with "<" % The
star of " is denoted by star(").

If " is a cell of the cell complexK , and P is a vertex (0-cell) of", we say
that " is self-adjacentat P if a regular neighbourhood ofP in K intersects"
in more than one connected component. Otherwise we say thdt is regular
at P. We say that " is regular if it is regular at every vertex of ". The complex
K isregular at P if every cell of K incident with P is regular at P, and K
is regular if every cell of K is regular (cf. [Ma]). A lling Dehn surface  of
M is regular (regular at a triple point) if the cell decomposition of M that
de nes s regular (at this triple point).

If is a lling Dehn surface, then a connected component of\
is called aregion of M , and a connected component of S( )is
sometimes called aface of

3. Filling homotopy. An ambient isotopy of a manifold N is a map
&: N [0;1]! N suchthat & = & ;t)is a di eomorphism for eacht 2 [0; 1]
and & = id . Two immersionsf;g : S! M are ambient isotopic in M if
there is an ambient isotopy &of M with & f = g. The same immersions are
ambient isotopic in S if there is an ambient isotopy &of S with f & = g.
We generally say thatf and g are ambient isotopic if they are related by
ambient isotopies of S and ambient isotopies ofM .

Two immersionsf;g : S! M from a surfaceS into the 3-manifold M
are regularly homotopic if there is a homotopy H : S [0;1]! M with
H(;0) = f and H(;1) = g such that H( ;t) is an immersion for each
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t 2 [0;1]. The homotopy H de nes a smooth path of immersions fromS
into M having f and g as its endpoints. Iff and g are regularly homotopic,
they are indeed homotopic. The converse is not true in genetaNevertheless,
an immediate corollary of Theorem 1.1 in [H-H] or Theorem 6 in[L] is:

Theorem 4. Two immersions from S? into a 3-manifold are regularly
homotopic if and only if they are homotopic.

In particular, two parametrizations of nullhomotopic lli ng Dehn spheres
of M must be regularly homotopic.

In [H-N1] a set of elementary deformationsfor immersions of surfaces
in 3-manifolds is introduced. This set of moves is composedybthe saddle
move (called anelementary deformation of type VIin [H-N1]) of Figure 2(a),
together with the moves depicted in Figure 3. We will call these elementary
deformations the Homma{Nagase movesin [H-N2] the following is proved:

Theorem 5. Two transverse immersions from a closed surfacé into
a 3-manifold M are regularly homotopic if and only if we can deform them
into each other by a nite sequence of Homma{Nagase movesogether with
ambient isotopies ofM .

The proof of this theorem in [H-N2] is in the PL category. A proof of
the smooth version is indicated in [R]. An equivalent result also in the
di erentiable case, is Theorem 3.1 of [H-H].

We will propose another set of moves (Haken moves), which idhe result
of substituting in the Homma{Nagase set of moves the moves ofigures
3(b) and 3(c) by the nger moves 1 and 2 depicted in Figures 2(b) and 2(c)
respectively. The following lemma can be easily proved:

Lemma 6. The Homma{Nagase set of moves and the Haken set of moves
are equivalent.

To prove this lemma it must be shown that each Homma{Nagase muee
can be obtained using Haken moves (and ambient isotopies) ahvice versa.
Thus, in Theorem 5 we can substitute the Homma{Nagase moves\bthe
Haken moves.

The Haken moves are more suitable than the Homma{Nagase mosge
when dealing with lling Dehn surfaces. In the Haken set of maves, the move
of Figure 3(a) is called a nger move 0. Fori =0;1;2 a nger move i is a
nger move +i when it happens from left to right in the gure, and a nger
move i if it happens in the opposite sense. A saddle move is equivaie
(symmetric) in both senses.

Lemma 7. Let f;g :S! M be two immersions. Then

(1) if f and g are related by a nger moveO, then one of them is not a
[ling immersion ;
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(2) if gis obtained fromf by applying a nger move+1 or 2andf is
a lling immersion , then g is a lling immersion ;

(3) if g is obtained from f by applying a nger move 1 or a saddle
move andf is a lling immersion , then g is not necessarily a lling
immersion.

This lemma can be proved by inspection, using the characteration of
lling immersions given by Proposition 3.

Lemma 7 inspired the following de nition. If f : S! M is a lling im-
mersion and we modifyf by a Haken move, we say that the move islling-
preservingif the immersion g we get after the move is again a lling immer-
sion. In this terminology, Lemma 7 states that a nger move 0 annot be
lling-preserving; that nger moves +1 and 2 are always lling-preserving;
and that nger moves 1 and saddle moves are sometimes lling-preserving
and sometimes not. The next step is the following de nition:

Definition 8. Letf;g :S! M be two lling immersions. We say that
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of immersions such that foreach =0;:::;n 1 the immersionsf; and fi+1
are ambient isotopic or related by a lling-preserving move.

these terms, Theorem 2 can be restated as follows:

Theorem 9. If f;g : S21 M are nullhomotopic lling immersions,
then they are Iling homotopic.

This gives a partial answer to the following conjecture:

Conjecture  10. Regularly homotopic lling immersions of arbitrary
surfaces are Iling homotopic.

The proof of Theorem 2 given in [V2] and sketched here can pedps be
adapted to a more general case but we still do not know how to dahis.

4. Pushing disks. Letf;g :S! M be two immersions. Assume that
there is a closed diskD S such that:

(1) f and g agree inS D;

(2) fjp and gjp are both embeddings;

(3) f (D) and g(D) intersect only in f (@D = g(@D);
(4) f(D)[ 9(D) bounds a 3-ballB in M (Figure 4).

Then we say that g is obtained from f by pushing the disk D through B
or along B (see Figure 4). The pair ©; B ) is a pushing disk(see [H-N1]). In
the pushing disk (D; B ), the disk D is the pushed disk B is the pushing ball
and we also say thatf (@D = g(@D is the equatorof B, denoted by eqB).

If both f and g are transverse immersions, we say that the pushing disk
(D;B) is transverse In the pushing disk (D; B ), the \rest" of the immersed
surface,f (S D), may intersect B in any manner (Figure 4(b)). If we are
given the immersionf and the pushing disk (D; B ), then the immersion g
is well de ned up to an ambient isotopy of S.

/ LA fis-D) gD)
/ / Bg \ %ﬂD)
(b)

Fig. 4

We will say that two (transverse) immersionsf;g : S! M are regularly
homotopic by (transverse) pushing disksif there is a nite sequencef =
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The rst step in the proof of Theorem 2 is the following lemma, whose
proof is in [V2].

Lemma 11 (Key Lemma 1). Let f;g : S°! M be two nullhomotopic
immersions such thatf is transverse andg(S?) is a standardly embedded
2-sphere in M . Assume that there exists a closed dis®  S? such that f
and g agree overD. Then f and g are regularly homotopic by transverse
pushing disks keepind xed.

Note that the Homma{Nagase moves and the Haken moves are spiat
kinds of transverse pushing disks. However, Theorem 5 decqmses a reg-
ular homotopy into transverse pushing disks_andambient isotopies of M .
Disposing of this ambient isotopy is the hardest part in the proof of Key
Lemma 1 in [V2]. Just as an immersion behaves locally as an emsldding, a
regular homotopy behaves locally as an isotopy. Using thisthe proof of Key
Lemma 1 will be obtained after a detailed study of isotopies b embedded
surfaces in 3-manifolds, and it is mainly inspired by [H-Z].

5. Spiral piping.  In [Ba] it is explained how to modify Dehn surfaces by
surgery, also calledpiping (see [R-S, p. 67]). We now introduce a special kind
of piping that will be useful later. Let  be a Dehn surface irM , and let P be
a triple point of . If P is the triple point depicted in Figure 5(a), consider
the surface COthat is exactly identical with  except in a neighbourhood of
P that can be as small as necessary. In this neighbourhood &f, the Dehn
surface %looks like Figure 5(b), and we say that 9is obtained from by
a spiral piping around P.

z

P

@

Fig. 5

Proposition 12 In this situation , if  is a (regular) lling Dehn sur-
face of M, then Cis a (regular) lling Dehn surface of M.

See [V2] for more details.

If the two sheets of that become connected by the piping (the two
vertical sheets in Figure 5) belong to di erent components 1 and , of ,
then after performing the spiral piping these two componens of become
a unique component 1# , of 0
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If S is the domain of , and SCis the domain of O it is easy to check
that S%is the result of removing the interior of two small closed diks 1; »
from S and identifying their boundaries in an appropriate way. If 1 and »
belong to di erent connected componentsS;; S, of S respectively, then SCis
the result of replacing the unionS;[ S, in S by the connected sumS; # S,.

The following de nition and theorem appear in [V1].

Definition  13. A Dehn surface M that lls M is called a Iling
collection of spheresn M if its domain is a disjoint union of a nite number
of 2-spheres.

Theorem 14. If M has a lling collection of spheres , then M has
a lling Dehn sphere © If each component of is nullhomotopic, we can
choose °to be nullhomotopic.

Proof. Let be a lling collection of spheresinM, and let 1;:::; n
be the di erent components of

The 2-skeleton of any cell decomposition oM is connected becaus#! is
connected. Therefore, is connected. Thus, we can assumethat1;:::; m
are ordered in such a way that ;[ | k is connected for everyk 2
f1;:::;mg. In particular,  intersects [ | k 1forallk2f2:::;mg.

Because 1\  is nonempty, it contains a double curve of , and
because Ills M, this double curve contains at least one triple point P
of . Connecting 1 and , near P by a spiral piping, we obtain a new
Dehn sphere 1# ,suchthat( 1# 2)[ 3[ [ m Still lls M.

Because jintersects [ o, itintersects 1# 5. Where 1# »
and 3 intersect transversely there is a triple point of  (and therefore of
( 1# 2)[ [ m)- We can perform another piping operation (as before)
obtaining a new Dehn sphere 1# »# 3 such that the new Dehn surface
(1% 2# 3)[ 4l [ m Still lIs M.

Inductively, for k > 3, we obtain a Dehn sphere ; # # k piping

1#  #  1with | around a triple point of lying in the intersection
of 1# #  1and , withthe propertythat ( 1# # [ «+1l

[ mstlllls M.

Repeating this operation we nally obtain a Dehn sphere %= | #

# mthat lls M.

If all components of are nullhomotopic, this implies that we can deform
the Dehn sphere 1, continuously to a point. If g, : S?! M is animmersion
parametrizing © we can use this deformation to construct a homotopy
betweengn, and an immersiongy, 1 parametrizing 1# # 5 1.Inthe
same way, we can construct a homotopy betweeg, 1 and an immersion
On 2 parametrizing 1 # # = 2. Repeating this process, we nally
conclude that g, is homotopic to an immersiong; parametrizing 1 and so
Om IS nullhomotopic. =
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Fig. 6

Another property of spiral pipings is that they do not disturb lling
homotopies as stated in the following lemma, which we give without prod:

Lemma 15. Let f;g : S! M be two lling immersions such that g is
obtained fromf after a nger move +2 through the triple point P of f . Let
S% 8 g0 be the surface and immersions that come fronS;f; g respectively
after performing a spiral piping around P. Assume that this spiral piping
is as small as necessaryin comparison with the nger move (Figure 6(b)).
Then f %and g° are 1ling homotopic.

In the situation of this lemma we say that the immersions f ¢ g° are
related by a piping passing movethrough P.

6. What can be done using lling-preserving moves. We will
give two examples of operations in a Iling Dehn surface usig only lIling-
preserving moves.

Let be a lling Dehn surface of the 3-manifold M .

6.1. In ating a double point. Let P be a double point of . Consider a
standardly embedded 2-sphere p in M as in Figure 7(b). It contains P,

z

P

P

P
@) (b)
Fig. 7

and its intersection with  is the union of two circles. The circles intersect
at P and at another point Q; these are the unique double points of lying
in p.Notethat [ p is a lling Dehn surface of M. Consider a lling
Dehn surface # p obtained by modifying [ p by a spiral piping
around P (see Section 5).

Proposition  16. We can choose the piping such that is Iling ho-
motopic to  # p.
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Proof. We consider the lling Dehn surface # p as in Figure 8(a).
This surface is identical with [ p except in a small neighbourhood ofP,
where it looks like Figure 8(b).

(a) (b)

(© (d)

(e) ®
Fig. 8

We can uninate p through P by an ambient isotopy of M, until we
reach the situation depicted in Figure 8(c).

We \open the entrance of the tunnel” using two lling-preser ving saddle
moves, over and under the sheet of containing the spiral piping (Figure
8(c)), and we get the situation of Figure 8(d). Now, after three consecutive
nger moves 1we make p disappear completely (Figures 8(e) and 8(f)).=

In the above proposition, the statement could be \every paranetrization
of is lling homotopic to a parametrization of # p", which is a little
stronger, but we use the above language for simplicity.

We say that the Dehn surface # p as in the proposition is obtained
from by inating P.

6.2. Passing over 3-cells.Let R be a regular region ofM such that
each cell of @Ris also regular. In this case, we say thalR is @regular. Let
be a face ofR. The @regularity of R implies that cl( ) is a closed disk
and cl(R) is a closed 3-ball. Take a parametrizationf : S! M of , and
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take the immersiong: S! M obtained from f by a pushing disk (D;B) as
indicated in Figure 9. There is an open disk € in S such that the restriction

gD)

Fig. 9

of f to €is an embedding andf ( €)= . The pushed diskD in S contains
cl( ©) in its interior and it is as close to € as necessary, so thaf jp is an
embedding. The pushing ballB contains R, and cl(R)\ @B=cl( ). The
disk g(D) is a closed disk outside cIR) running in parallel to @R . In
[V2] the following is proved:

Lemma 17. If gis a lling immersion , then it is lling homotopic to f.

7. Shellability. Smooth triangulations. In the proof of Theorem 2
we make an exhaustive use of the concept afhelling

Definition 18, Let N be ann-manifold with boundary, andlet C N
be a closedn-ball in N. We say that C is free in N if C\ @Nis a closed
(n  1)-ball.

Let B be a closedh-ball, and let K be a regular cell decomposition oB.

Definition  19. K is shellableif there existssan orderingCyq;:::; Ck of

its n-cells such that cl(C;) is free in the closure of ; ; C;. If this is the case,

While cell decompositions of 2-disks are always shellables¢e Lemma 1 of
[S]), nonshellable cell decompositions afi-balls exist forn > 2. In [B-M] it is
proved that every cell decomposition of ann-ball has a shellable subdivision
(a cell decomposition K of B is a subdivision of the cell decompositionK
of B if every cell of K is contained in a cell ofK).

For the proof of Theorem 2, we will work with triangulations of a 3-
manifold M and we will require that a set of not necessarily disjoint 3-falls
in M (endowed with the induced cell decomposition) are all shetible at
once, and with some special properties. For this, we will usehe work of
Whitehead about simplicial collapsings (see [Wh1] or [GI])

A simplicial complex whose underlying polyhedron is a ball hduces in a
natural way a cell decomposition of the ball. Thus, we can cosider simplicial
complexes also as particular cell complexes.
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If K is a simplicial complex, a simplex ofK is maximal if it is not a
proper face of another simplex ofK . If " is a maximal i-simplex of K , an
(i 1)-face"! 1 of "l isfreein K if it is not a face of another i-simplex of
K dierent from "'. If "' is maximal in K and "' ! is free in K, then the
result of removing ("';"" 1) from K is another simplicial complexK © said
to be obtained from K by a simplicial collapsing. The complexK collapses
simplicially into a subcomplex K °if K 9is obtained from K after a nite
sequence of simplicial collapsings. In particularK is collapsibleif it collapses
simplicially into a point. If K is a subdivision ofK and K %is a subcomplex
of K, then K Owill denote the corresponding subcomplex ofK .

Theorem 20 ([Wh1]). If K is any nite simplicial complex, there is
a (stellar) subdivision K of K such that B " collapses simplicially into
B " ! whereB" is any subcomplex oK which is a closedn-ball andB" *
is any subcomplex of@B which is a closed(n 1)-ball.

For triangulations of an n-ball, shellability obviously implies collapsibil-
ity. Note that the converse is not obvious because in shellalbty we require
that the space after each step remains a ball, while in \collgsings" it might
not even be a manifold. (The example given in [Ru] is not shedlble, but it
is simplicially collapsible, cf. [Ch].) However, the convese is almost true in
our case according to the following observation that arise¢rom the proof of
Theorem 6 in [BI]:

Lemma 21. If K is a collapsible triangulation of the 3-ball, then the
second derived subdivision oK is shellable.

Smooth triangulations of manifolds are introduced in [Wh2] to relate
the smooth and PL categories in manifold theory. A triangulation of an
n-manifold N is a homeomorphismh : K ! N, where K is a rectilinear
simplicial complex of some euclidean space. N has a smooth structure, the
triangulation h is smooth (with respect to this structure) if the restriction
of h to each simplex ofK is a smooth map. We identify the manifold N
with the simplicial complex K. In [Wh2] (see also [Mu]) it is proved that:
(i) any n-manifold with a smooth structure admits smooth triangulat ions;
and (ii) two smooth triangulations of the same smooth manifdd have a
common smooth subdivision (). Iff : S! M is a transverse immersion
of a surface into the 3-manifold M, then there are smooth triangulations
K and T of S and M respectively such thatf is simplicial with respect to
them (for more general results of this kind, see [Ve]).

If f :S! M isa llingimmersion and K;T are triangulations of S; M
respectively such thatf is simplicial with respect to them, then the trian-
gulation T also triangulates the closure of each region ol f(S). If R is
a regular region ofM  f (S), we say that T shellsR if it induces a shellable
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triangulation on cl(R). If R is not regular, we rst cut cl( R) along its self-
adjacencies to obtain a closed 3-baﬂI(R). The triangulation T on cl(R) lifts
naturally to &I(R), and we say that T shellsR if the induced triangulation
on &I(R) is shellable. The triangulation T shellsthe lling immersion f (or
the lling Dehn surface f (S)) if T shells each region oM  f (S).

All these results imply the following

then the triangulation T restricted to B collapses simplicially into
f; (D).

contained in the 2-skeleton ofTy. Take a subdivision TS of Tp as in Theorem
20, and let T be the second derived subdivision off{.

If fi and f; dier by a pushing disk (D;B ), then Ty triangulates B and
f; (D), and so becauseT{ has been chosen following Theorem 20, the tri-
angulation TQ restricted to B collapses simplicially into f; (D). Simplicial
collapsing is preserved by stellar subdivisions [Wh1] andcit is also pre-
served by derived subdivisions. ThusT restricted to B collapses simplicially
into f; (D).

If f; isa lling immersion and R is a regular region ofM  f;(S;), then Tg
triangulates cl(R). By the choice of T§, it induces a collapsible triangulation
of cl(R), and by Lemma 21, T induces a shellable triangulation of clR). If
R is not regular, perhaps we need to do more stellar subdivisits on cl(R)
to have the required shelling property on&I(R), but this does not alter the
previous construction because stellar subdivisions presee shellability [B-M]
and collapsibility. =

Definition 23, Under the hypothesis of the previous theorem, we say

With these results, we have prepared the ground for the follving sec-
tions.
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8. In ating triangulations. Now we will explain how we can associate
to any triangulation of the 3-manifold M a lling collection of spheres of M .

«©

(a) (b)
Fig. 10

Let B1;B> be two closed 3-balls inM. We say that B1; B> intersect
normally if they intersect as in Figure 10(a). The 2-spheres@B; @B must
intersect transversely in a unigue simple closed curve. IB1; B, intersect
normally, then B1\ By, cl(By B»)andcl(B, Bj)are 3-balls. IfB1;B2;B3
are 3-balls inM , they intersect normally if they intersect as in Figure 10(b).
Each pair Bj;B; with i 6 j intersect normally and @B; @B and @B
intersect transversely at two triple points.

Let T be a smooth triangulation of M. (We refer to the O-simplexes,
1-simplexes, 2-simplexes and 3-simplexes df as vertices, edges, triangles
and tetrahedra of M, respectively.) We can construct a lling collection of
spheres ofM by \in ating" T assigning to each simpleX' of the 2-skeleton
T? oéT a 2-sphereS" embedded inM in such a way that their union
T= .,712S" lls M. We will do this as follows.

vertex
spheres

(b)

(¢ (d)
Fig. 11

Svi M bounds a closed 3-balBv; in M contained in the open star star(;)
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and with v; in its interior. The 2-spheresSvi;:::; Sviy, are pairwise disjoint
(Figure 11(b)) and the triangulation T of M induces a triangulation of Bv;
as acone from v; over Sv; for eachi = 1;:::;mg (see Figure 11(d)). The

2-sphereSy; intersects transversely eachi-simplex "' 2 star(vi) T in a
(i 1)-simplex of this induced triangulation of Sv;.

edge
spheres

Se

(b)

(d)

Fig. 12

If e;:::;em, arethe edges oM , forj =1;:::;my the 2-sphereSg M
bounds a closed 3-ballBe; in M as in Figure 12(a). The 3-ball Bej is
contained in the open star star(g ) and it intersects g in a closed subarc
g §. The 2-sphereSg and g intersect transversely at the endpoints

unlessv; and g are incident. In this case,Bv; and Be; intersect normally
(Figure 12(c)) and Bv; \ Bej intersects g in another closed subarc ofe; .
Considering the two points of the intersection Sg \ ¢ as the \poles" of
Sg, each trianglet of M incident with g intersects Sg transversely in an
open arc which is the interior of a \meridian" a with its endpoints at the
poles (Figure 12(b)). The intersection clt) \ Be; is a closed disk bounded

by a[ g.

sphereSty bounds a 3-ballBty as in Figure 13. The 3-ballBty is contained
in the (open) star star(tx) and it intersects tyx in a closed disk§,  ty, and
the intersection of Sty with ty is transverse. The 3-ballBty is disjoint from
B" for every " 2 T2 dierent from ty unless" is incident with ty. In this
case,Bty and B" intersect normally. Moreover, if vi < e; < ty, then the
3-balls Bvj; Bej; Bty intersect normally (Figure 13) and there is one of the
two triple points of Svi\ Sg \ Sty in each of the two tetrahedra of star(ty).
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St

(©

Fig. 13

If T is a cell decomposition ofM instead of a triangulation, the previous
construction can easily be generalized. s

It is easy to check that the Dehn surfaceT = .,;. S" so constructed is
a lling collection of spheres in M . Moreover, T is regular and it is transverse
to the (smooth) simplexes of the triangulation T of M .

In particular, as a corollary of Theorem 14 this construction implies the
main theorem of [Mo2]:

Theorem 24. M has a nullhomotopic lling Dehn sphere.

Note that in this case, in contradistinction to [Mo2] or [V1], we have not
made any assumption about the orientability of M .
The following result follows directly from the constructio n.

Proposition 25. Let S be a surface andf : S! M a transverse im-
mersion. Let K; T be triangulations of S; M respectively such thatf is sim-
plicial with respect to them. Thenf (S)[ T is a regular lling surface of M.

In this proposition the immersion f can be any transverse immersion,
lling or not. Assume now that f : S! M is a lling immersion and put

= f(S). Let K; T be triangulations of S and M respectively such that
f is simplicial with respect to them. By Proposition 25, [ T lls M, and
by the methods of proof of Theorem 14, we can obtain from [ T a unique
lling Dehn surface of M. If we look at the proof of Theorem 14, this can
be done in many di erent ways because there are many possiliiles for
performing the spiral pipings. We say that each lling Dehn surface © of
M that is obtained from in this way is a T-inating of . Let Obe
a T-inating of . By Propositions 25 and 12, Cis regular because spiral
pipings preserve regularity. There is an immersiorf °: S1 M parametrizing
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Othat comes fromf in a natural way, that is, f ©agrees withf in most of
S except in the small disks where we perform the pipings. We ats say that
fOisaT-inating of f. The rst application of shellability is the next result
proved in [V2].

Proposition  26. If T shellsf, then there is aT-inating f%of f II-
ing homotopic to f . Moreover, we can choosef © such that there are only
two spiral pipings connecting with components of T and the other spiral
pipings are performed around triple points of T.

By Theorem 22, passing to suitable subdivisions we can asswarthat T
shellsf , and thus we have:

Corollary 27. If f :S! M is a lling immersion , then f is lling
homotopic to a regular lling immersion.

The proof of Proposition 26 is made by repeated application bthe con-
struction of Section 6.1, using the fact that each region ofM has a
shellable triangulation and that each triangulation of a 2-disk is shellable [S].
As an example, we will illustrate the starting point of this c onstruction in
which we \in ate" a triangle of T.

Example 28 (Inating a triangle) . Let f, and T be as in Propo-
sition 26. Imagine that there exists a triangle t of T intersecting as in
Figure 14. We label the edges and vertices df as in the gure.

Fig. 14

Let Qo be the intersection point of the 2-sphereSvy with e; (Figure
15(b)). We inate Qo to obtain a 2-sphere ¢, connected with by a
spiral piping as in Figure 15(a). Then, after ambient isotopy, we obtain the
lling Dehn surface  # q,, which is obtained from [ o, by a spiral
piping around Qg.

Let Qi be the intersection point of Se; with e; that lies inside Bvi
(Figure 15(c)). We in ate it (Figure 15(d)). After a piping p assing move
(Figure 15(e)), we obtain a lling Dehn surface ambient isotopic to that of
Figure 15(f).

Let P; be one of the two points of Sv;\ Se;\ St (Figure 16(a)). This
point is a double point of the lling Dehn surface of Figure 15(f), and thus we
can in ate it using lling-preserving moves until we obtain the lling Dehn
surface of Figure 16(b) (with a spiral piping around P1). After a nger move
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(a) (b)

(© (d)

(e) (f)
Fig. 15

+1 through the triple point A of the same Figure 16(b), we get the lling
Dehn surface of Figure 16(c), which is the same as that of Fige 16(d). The
surfaces of Figures 16(a) and 16(d) are ambient isotopic.

At this moment, from the picture of Figure 14 we have obtained the
2-spheresSvy, Se; and St, with three spiral pipings, using only lling-
preserving moves. Using similar methods, we can also obtaithe 2-spheres
Sv, (Figure 16), Se,, Svz and Ses (Figure 17).

In the previous example, we see that the way of constructing te lling
Dehn surface °from the lling Dehn surface  in Proposition 26 is in some
sense to make grow inductively following a path given by the triangula-
tion T. The growing path we follow to prove Proposition 26 in [V2] is not
exactly as in Example 28. There (in [V2]) we in ate rst from all the
2-spheres ofT corresponding to the simplexes oflT contained in  starting
in a similar way to Example 28. Then the shellability conditions imposed on
T will give us the growing path of on the regions ofM using again
similar methods to those of Example 28.

We will say that the T-inating Cof (f%of f) as in the previous
proposition is a T-growth of the lling Dehn sphere  (of the lling immer-
sion f). Note that to be a T-growth is stronger than to be aT-in ating.

The next (but not last) application of the constructions of Section 7 is
the following.
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(@) (b)

(© (d)

(e) (f)

(9) (h)
Fig. 16

Let f;g : S! M be transverse immersions that di er by the pushing
disk (D;B), and assume thatf is a lling immersion. In this situation, the
immersion g will not necessarily be a lling immersion. Consider triangula-
tions K; T of S and M respectively such thatf and g are simplicial with
respect to them. Take aT-in ating f°of f such that f °agree with f over
D (becausef ? agrees withf in most of S except in some small disks o8,
we require that these small disks do not intersectD), and consider the im-
mersion g° that is obtained from f © after the pushing disk (D;B). We can
assume thatg® agrees with g except in the disks of S where f °\disagrees"
with f. The Dehn surfaceg{S) is obtained from g(S)[ T by spiral pipings,
and because is also simplicial (with respect toK; T ), glis a T-in ating of g.

Because bothf; g are simplicial (with respect to K; T ), the triangulation
T induces a triangulation of the pushing ball B.

Lemma 29 (Key Lemma 2). If the (induced) triangulation of B collapses
simplicially into g(D), then f %is lling homotopic to ¢°



Johansson representation of 3-manifolds 267

(@) (b) ()

(d) (e) ()

(9)
Fig. 17

(a) (b)

(©
Fig. 18

Sketch of proof. BecauseB is triangulated by T, it can be easily shown
that f(S)[ g(S)[ T induces a cell decomposition oB. If B collapses sim-
plicially into g(D), then we can de ne a special shelling of this cell decom-
position. This special shelling will allow us to apply Lemma17 repeatedly
(Figure 18(b)) to the lling Dehn sphere f(S)[ T until we get g(S)[ T.
Substituting nger moves 2 by piping passing moves where regired, this
deformation of f (S)[ T into g(S)[ T also de nes a deformation off ° into
g’by lling-preserving moves. =
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9. Filling pairs. Let 1 and 2 be two lling Dehn surfaces of M.
Assume by simplicity that both are regular.

If we are not given more information about ; and 5, we do not know
how they are related to each other. The only thing we can say,fiM is not
S8, is that they must have nonempty intersection.

Definition  30. We say that ; and , form a lling pair in M if their
union 1[ 2 is also a regular lling Dehn surface ofM .

In particular, if 1 and » form a lling pairin M, they intersect trans-
versely.

If pand »,area lling pairin M,then »induces a cell decomposition
on the closure of each region oM 1 and vice versa. Because both ;
and , are regular, all these induced cell decompositions are alsegular.
If Ry is a region ofM 1, then we say that ; shellsR; if 5 induces a
shellable cell decomposition of the 3-ball clR;). We say that » shells ;
if > shells each region oM 1.

Definition 31 Let 1 and > form a lling pair in M. We say that
1 and » are mutually shellableif 1 shells , and 5 shells ;.

The following result is proved in detail in [V2].

Proposition 32 Let ;; 2 beregular lling Dehn surfaces ofM which
intersect transversely. If f{ : S; ! M parametrizes 1, then f1 is lling
homotopic to an immersionf?:S; ! M such that 9 := f{S;) and
form a mutually shellable lling pair in M.

Sketch of proof. Let f, : S, ! M be a parametrization of 5, and let
T be a good triangulation of M with respect to f1 and f, (De nition 23).
Then T shells every region ofM 1 and every region ofM 2. The
union 1[ 2[ T is aregular lling Dehn surface of M by Proposition 25.
Take a T-growth f2of f1, and put 2= f(S;). We make the spiral pipings
that transform ;[ T into 9 small enough not to intersect ,. Because
regularity is preserved by spiral pipings, it is not di cult to see that [ >
is a regular lling Dehn surface of M. It is also easy to see that » induces
a shellable cell decomposition on every region d¥l 9 using the fact that
2 IS a subcomplex of T and the construction of T. The nontrivial part is
to check that { induces a shellable cell decomposition on every region of
M 2. This is done in detail in [V2], and it is parallel to the proof of Key
Lemma 2 above. IfR5 is a region ofM 2, the rst thing to check is that
T induces a shellable cell decomposition on dR3). This is done following
the proof of Lemma 21 in [Bi], using the fact that the restriction to cl(R2) of
the triangulation T is simplicially collapsible. After this, it is seen that the
presence of 1 does not alter this shellability property. Finally, the pre sence
of the spiral pipings might a ect the shelling in some cases.In [V2] it is



Johansson representation of 3-manifolds 269

explained how this can occur, and how we can choosg to ensure that it
satis es the statement of Proposition 32. =

10. Simultaneous growings. The last application of shellability will
be the following. Assume that 1; 2 are two regular lling Dehn surfaces of
M and that there are two points P; Q where 1 and »intersect as in Figure
19(a). We denote by 1# > the Dehn surface ofM that arises by piping

1 with 2 near P;Q as in Figure 19(b). We also assume that the points

(a) (b)
Fig. 19

P; Q have the property that 1# > is another lling Dehn surface of M.
Letf :S1 ! M;g:Sy! M be parametrizations of 1; > respectively.
Consider the two small disks 1; 2 of S; and S; respectively whose respective
images underf and g disappear after the piping. In this situation we can
construct a parametrizationf # g: S;1# S;! M of 1# »\coming” from
f; g, where the surfaceS; # S is the result of identifying S1 ;andS;
along the boundary of 1 and ». We can also assume that the immersion
f # g agrees withf onS; 1 and that f # g agrees withgon S,  ».

Let K1;K2; T be triangulations of S1;S,; M that make f;g andf # ¢
simplicial, and assume thatT shells every region ofM 1. Consider a
T-growth f%of f as in Proposition 26, such thatf © agrees withf in all of
S; except in two small disks. We can assume that the images undefr of
the two disks are far away from a su ciently large regular neighbourhood
of the arca of Figure 19(a) (that is, they do not a ect the piping between

1 and 7). In this situation, we can also consider the \piped immersbn”
fO# g:S1# S, ! M that agrees withf%in'S; jandwith gin'S, 5,
as the result of pastingf ®and g by means of the piping in exactly the same
way asf was pasted withgin f # g.

Remark 33. If 1; » arethe surfaces {’; 2 that result from the proof
of Proposition 32, then there always exists a pair of pointsP; Q as above.

We know that f %is lling homotopic to f because it is aT-growth of f,
but we also have:

Lemma 34 (Key Lemma 3). If 5 shells 1, then we can choosé °such
that f °# g is a T-growth of f # g.
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In particular, if , shells 1, then we can choosd °such that f °# g is
lling homotopic to f©
This lemma is also proved in detail in [V2]. The required property that
» shells 1 implies that the growing of f into f %in the proof of Proposition
26 can be adapted to , in such a way that the growing fromf into f °de nes
simultaneously a growing fromf # g into f %% g when we introduce ».

11. Proof of Theorem 2.  With these tools we can sketch the proof of
Theorem 2.

Sketch of proof of Theorem 2.We are given a pair 1; 2 of nullho-
motopic lling Dehn spheres of M and two parametrizations f;g of them
respectively. We introduce the following notation: we take two di erent 2-
spheresS;; S; and we will consider that S; is the domain of 1 fori =1;2.
In particular, 1= f(S1) and 2= g(Sy).

Modifying f if necessary by an ambient isotopy ofM we can assume
that 1 and » have nonempty transverse intersection.

By Proposition 32 and Remark 33, we can assume that ;; » form a
mutually shellable lling pair of spheres of M and that there are two points
P;Qof 1[ 2where ;and  intersectas in Figure 19(a) of Section 10.

Consider the lling Dehn surface 1# 5 and the parametrization f # g
as in Section 10. We also consider the disks; S; and » S, as in
Section 10. We denotef # g by h for simplicity.

h is lling homotopic to f.

Consider a small standardly embedded 2-sphere , and a parametriza-
tong :S;! M of , asin Figure 20(b). This sphere shares with , a
2-disk D containing g( 2) in its interior, and the immersions g and g agree
over® := g }(D).

CY (b)
Fig. 20

By Key Lemma 1, we can deformg into g by a nite sequence of trans-

quence of pushing disks, and leg = go;01;:::;0« = g : S2! M be the
sequence of transverse immersions such thaf is obtained from g; 1 by the
pushing disk (Dj; B;).
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Modifying slightly 1 and the piping between ;1 and > by an ambi-
ent isotopy of M if necessary, we can assume that all these pushing disks
are also transverse to ; and # 5. Because the pushing disks;;B;)
leave B xed, we can think of them as acting on the immersionh = f # ¢
instead of on g, and we can consider the sequence of transverse immer-
sionsh = hg;hy;:::;he : S1# S ! M such that h; is obtained from h; 4
by the pushing disk (Di;B;). Note that hy(S1# Sp) = 1# 5, where

1# , is obtained by piping 1 with , exactly in the same way as 1
is piped with ,, and then a nal transverse pushing disk Dk+1;Bk+1)
transforms hy into f. Thus, we can assume thatthere is a nite sequence
of transverse pushing disks leavings; 1 xed that transform h = f # g
into f .

The triangulation T shellsf becausef is a lling immersion, so consider
aT-growth f %of f such that the pipings of 1 with the components of T do
notaect » northe piping between ; and ,.Because ; and ;forma
mutually shellable lling pair, in particular  ; shells ;. By Key Lemma 3,
we can takef ®which also de nes aT-growth h:= % gofh=f # g.

1 k+ 1.

To sum up, h is lling homotopic to h®becausen®is a T-growth of h, h°
is lling homotopic to f°%= hE+1 by repeated application of Key Lemma 2

(@) (b)
Fig. 21
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(a) (b)
Fig. 22

(@) (b)
Fig. 23

to f becausef ®is a T-growth of f. Therefore, h is lling homotopic to f
(Figures 21{23).

By the same arguments,h is lling homotopic to g and thusf and g are
lling homotopic. =

12. Diagrams. Let M be a Dehn surface irM , and letf :S! M
be a parametrization of . As pointed out in Section 1, the singular setS(f ),
together with the information about how its points are identied by f, is
what we call the Johansson diagram of . We now give a more detailed
de nition of the Johansson diagram. This new de nition is equivalent to the
de nition given in [P]. We now assume for simplicity that bot h S and M
are orientable.

Let —:S!! M be a parametrization of a double curve of . Because
both S and M are orientable, the inverse image underf of ~(S?!) is the
union of two di erent closed curves in S(f ). There are exactly two di erent
immersions 1; »:S!! S such that f 1= f 2 = ~. In this situation,
we say that 1 and , arelifted curvesof ~underf and that they are sisters
under f .



Johansson representation of 3-manifolds 273

A complete parametrization of the singularity set S( ) of s a set

D = f1;:::; "mg of immersions from ST into M such that: (i) each
parametiizes a double curve of ; (i) ~i(S') 6 Tj(S')if i 6 j; and (i)
S( )= "1, 7i(SYH. If D is a complete parametrization of S( ) and we

denote by D the set of all lifted curves of the curves ofD, the map

D ! D that assigns to each curve ofD its sister curve underf de nes
a free involution of D. The pair (D; ) contains all the information about
the singular set S(f ) and about how the points of S(f) are identi ed by
the map f : two di erent points A;B 2 S satisfy f (A) = f(B) if and only
if there is a parametrized curve 2 D and az 2 S! with A = (z) and
B= (2.

The pair (D; ) of the previous paragraph is the model we will presently
use to de ne an (abstract) diagram. We have seen that every Dehn surface
has an associated Johansson diagram. Thus, we can de ne abstract di-
agram in a surfaceS as a collectionD of closed curves inS together with
a free involution : D ! D such that the curves of D can be coherently
identied by . Now we want to know if this diagram (D; ) is the Johansson
diagram coming from a transverse immersionf : S! M of S into some
orientable 3-manifold M . If this occurs, we say that the (abstract) diagram
(D; )inthe surfaceS is realizable(cf. [P]) and that the immersion f realizes
the diagram (D; ).

Fig. 24

The rst condition that must be satis ed by the curves of D is that they
intersect transversely as in Figure 24 at some points 0§ which are double
points of the diagram (D; ). We de ne two dierent points A;B 2 S to
be related by the diagram (D; ) if there isa curve 2 D and az 2 St
with A = (z) and B = (z). With this terminology, each double point
A of the diagram will be related to two points B;C of the surfaceS. If
(D; ) is realizable,B; C must be di erent and they must also be related by
the diagram (see Figure 24). Thus, the double points of the digram must
be arranged intriplets of pairwise related points (the diagram isriveted in
the terminology of [C]). If f : S! M realizes the diagram, each of these
triplets is the inverse image underf of a triple point of f. In Figure 25 we
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() (b)
Fig. 25

have labelled the double points of each diagram in such a wayhat related
points have the same label. We consider two diagrams 08 to be equivalent
if they are related by a homeomorphism ofS or by reparametrization of the
curves of the diagram.

We now recall the main result of [J2] about the realizability of diagrams.
We will denote the diagram (D; ) simply by D.

Assume that we are given an abstract diagramD on the surfaceS (Fig-
ure 25). For each 2 D, we consider two neighbouring curves; © that
run parallel to and lie on dierent sides of (Figure 25). We say that
the two neighbouring curves of the same curve of the diagramra opposite
The neighbouring curves of the diagram can be taken such thathey only
intersect near the double points of the diagram and exactly a& depicted in
Figures 25 and 26. We letneighbouring pointsof the diagram be the inter-
section points of the neighbouring curves with the curves ofthe diagram.
With these assumptions, there appear four neighbouring paits around each
double point of the diagram (Figure 26). Consider two related double points
A; B of the diagram. Because they are related, there is a curve 2 D and
az2S'with A= (z)and B = (2). If we orient the curves ; using
the standard orientation of S?, then near A the curve passes through the
points Aj; A; A, in this order, where A1; A, are neighbouring points of the
diagram. In the same way, nearB the curve passes through the points
B1;B;B> in this order, where B1;B, are neighbouring points of the dia-
gram. We assume that the neighbouring curves are so chosendhin this
situation A; is related by the diagram to B; for i = 1;2 (see Figure 26).

Once we have drawn the neighbouring curves of the diagram asithe
previous paragraph, we give some de nitions. If two neighbaring curves ;
pass through related neighbouring points, as the curves and of Figure
26, we say that ;  are elementarily related If we orient all the curves of the
diagram using the standard orientation of S* and if we consider the surface
S oriented, for a curve 2 D we say that the neighbouring curve of lying
on the left-hand side of is elementarily G-related to the neighbouring
curve of lying on the right-hand side of , and equivalently, that the
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Fig. 26

neighbouring curve of lying on the right-hand side of is elementarily
G-related to the neighbouring curve of  lying on the left-hand side of

Definition 35 ([J2]). Two neighbouring curves ;  of the diagram D

arein the same G-classf there exists a nite sequence = ¢; 1;:::; k=
of neighbouring curves of the diagram such that ; 1 is elementarily related
or elementarily G-relatedto ; fori =1;:::;k.

In the diagrams of Figures 25(a) and 25(b) we have drawn in thesame
way the neighbouring curves in the same G-class. From the catruction of
G-classes the following can be checked without di culty:

Lemma 36. If D isadiagramin Sandf : S! M realizesD, then the
number of G-classes oD is twice the number of connected components of
the singularity set S(f).

The following theorem appears in [J2].

Theorem 37 ([J2]). A diagram D in the orientable surface S is re-
alizable by a transverse immersionf : S ! M of S into an orientable
3-manifold M if and only if there are no opposite neighbouring curves of #
diagram in the same G-class.

This theorem gives an easy method for checking realizabilit on a wide
class of diagrams. An analogous result is given in [C] for dgrams with no
closed components in surfaces with boundary.

Though Theorem 37 was stated in [J2] for diagrams in the 2-dik without
singular boundary points, as pointed out in [P] the proof canbe extended
directly to the case stated here. More exactly, Theorem 37 islso true if we
remove fromS a nite number of open disks not touching the diagram.

The key to proving Theorem 37 is 2sidednessEvery immersionf : S'!

M with both S and M orientable is 2sided and this 2-sidedness is re ected
in the neighbouring curves of the diagram. An immersionf : S! M is 2-
sided if there exists an immersiorF : S [ 1;1]! M with F(X; 0) = f (X)
foreveryX 2 S.Put = f(S). If f is 2-sided and transverse, we can choose
F as close tof as we want, such that in a neighbourhood of a double curve



276 R. Vigara

Fig. 27

of the image of F looks like Figure 27. In that gure, we can see that
the lower sheet = F(S f 1g) and the upper sheet * = F(S f 1g)

intersect  in some curves that behave exactly as the images unddr of

the neighbouring curves of the Johansson diagrand of f . We can assume
without loss of generality that in this case, the neighbourng curves of the
diagram form exactly the inverse imagef ([ *).In [J2] the following

proposition is proved.

Proposition 38 If two neighbouring curves ofD are in the same G-
class then their images underf must be contained in the same sheet
or *.

This implies that if D is realizable by a 2-sided immersion, there cannot
be two opposite neighbouring curves in the same G-class.

On the other hand, if there are not two opposite neighbouringcurves of
the abstract diagram D on S in the same G-class, we can make an identi -
cation  on the thickened surfaceS [ 1;1] compatible with the diagram
so that neighbourhoods of sister curves are identi ed as in igure 27. The
quotient M(D)=S [ 1;1]= is a 3-manifold with boundary and it sat-
is es: (i) the canonical projection :S [ 1;1]! M (D) is an immersion;
(ii) if we take the inclusion j :S! S [ 1;1] given byj(X) = ( X; 0), then

j is a transverse immersion realizingD; and (iii) K1 (D) is orientable. See
[J1] and [J2] for more details.

Going back to the immersionf, if it is a lling immersion, the singu-
larity set S(f ) must be connected and by Lemma 36 this implies that the
Johansson diagramD of f has only two G-classes of neighbouring curves.
In this case, the manifold with boundary M (D) constructed from D as in
the previous paragraphis uniquely determined byD and it is homeomorphic
to a regular neighbourhood of the lling Dehn surface M . Becausef
is a lling immersion the boundary of € (D) must be a union of 2-spheres.
Pasting a 3-ball to M (D) along each boundary component we obtain a
closed 3-manifoldM (D) homeomorphic to M . In this way one reconstructs
a 3-manifold M from a Johansson representation oM .
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Now assume that we are given a realizable diagranD in an orientable
surface S and that we want to know if it is the Johansson diagram of a
lling Dehn sphere of some 3-manifold. First of all, the diagram D must
Il the surfaceS (thatis, S D must be a disjoint union of open 2-disks,
and D f double points of Dg must be a disjoint union of open intervals),
and in particular the curves of D must compose a connected graph or%.
By Lemma 36 this implies that D has exactly two opposite G-classes of
neighbouring curves (becaus® is realizable). As in the previous paragraph,
the construction of €1 (D) is uniquely determined by the diagram, andD is
the Johansson diagram of a lling Dehn sphere of some 3-marofd M if
and only if @ (D) is a collection of 2-spheres. If this occurs, we say that
D is a lling diagram , and pasting a 3-ball to ¥ (D) along each boundary
component of &1 (D) we obtain the required closed 3-manifoldM (D) that is
also uniquely determined by the diagramD. The construction of K (D) can
be made in an algorithmic way. The diagrams of Figures 25(a)25(b) and
28(a) are all examples of (realizable) lling diagrams. Thediagram of Figure
25(a) appears in the original paper [J1] and it is a Johanssomnepresentation
of the 3-sphere. Its corresponding lling Dehn sphere islohansson's sphere
(see Fig. 8 of [Sh]). The diagram of Figure 25(b) represent§? S!. The

(a) (b)
Fig. 28

diagram of Figure 28(a) is a diagram of a lling Dehn torus o with only one
triple point in a Euclidean 3-manifold M . This Euclidean manifold coincides
with the Seifert manifold M (Ss33) = (000 | 1;(3;1);(3;1);(3;1)) (see
[Mol, p. 155]), and it is the result of identifying the faces d a solid cube in
pairs as in Figure 28(b). The lling Dehn torus ¢ is the image inM of the
boundary of the cube under this identi cation.

Figure 29 shows how the Haken moves (except for nger move O)of
immersions are re ected in the Johansson diagrams. These arthe diagram
moves and we label them as the corresponding moves of immersions.we
perform a diagram move in a lling diagram, the move is lling-preserving
if the resulting diagram is again a lling diagram.
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(a) (b)

() (d)

(e) ®
Fig. 29

Let D be a lling diagram on the surface S, and leti : M (D) ! M (D)
be the inclusion map. Denote simply byf the immersioni j:S! M(D)
that realizes D, and put = f (S).

If we perform a lling-preserving diagram move in D, this move will
come from a lling-preserving move off and thus the new diagram D° we
obtain satis es M (DY = M (D). As it happened with Haken moves, a nger
move +1 or 2 in the lling diagram D will always be lling-preserving,
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and a nger move 1 or a saddle move onD may or may not be lling-
preserving.

The neighbouring curves of the diagram help us to perform thesaddle
move and the nger move 1.

A saddle move can be performed in the diagranD every time we have
two arcs connecting related points of the diagram as in Figue 29(a). The
two neighbouring curves ofD that intersect any of the two arcs must belong
to the same G-class. If we have such a pair of arcs, becaugeis a lling
diagram, (the images underf of) these arcs must bound a 2-gonv in M (D)

as in Figure 29(b), and we can perform a saddle move oh by pushing
along w any of the two sheets of that bound w. This saddle move onf is
re ected in the saddle move of the diagramD as depicted in Figure 29(a).

If we perform a nger move +1 on the diagram D there appear a new
pair ; of sister curves of the diagram. The diagramD tells us how we
must identify the new double points (labelled 1 and 2 in Figure 29(c)) that
appear in the new diagramD? but there is some ambiguity (that does not
occur for nger moves 2) because there are two ways of identfing  with

(for a given orientation of there are two possible orientations of ).
This ambiguity disappears when we draw the neighbouring cuwes of the
diagram D9 using the fact that related neighbouring points of the diagam
must lie on neighbouring curves of the same G-class.

We say that a lling diagram D on a surfaceS is nullhomotopic if the
immersionf =i j as above is nullhomotopic. The diagram of Figure 25(a)
is nullhomotopic (every diagram representingS® must be nullhomotopic),
while the diagram of Figure 25(b) is not nullhomotopic.

The following result is a corollary of Theorem 2.

Corollary 39. Two nullhomotopic lling diagrams on S? represent
the same3-manifold if and only if they are related by a nite sequence 6
lling-preserving moves.

13. Duplication. It is possible to obtain algorithmically a nullhomo-
topic Johansson representation ofM from any, nullhomotopic or not, Jo-
hansson representationD of M. We will call this process duplication of
diagrams and it can be made using Johansson's constructionfd? (D) as
follows.

Let f : S21 M be a lling immersion, and put = f(S). Take a
thickening F : S2 [ 1;1]! M of f as in the previous section, such
that near a double curve of the image of F intersects itself as in Figure
27, and consider the upper sheet * = F(S? f 1g) and the lower sheet

= F(S? f 1g), which are two lling Dehn spheres of M parallel to

on both sides of . The Johansson diagramD of f has two G-classes of
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neighbouring curves. We can take the neighbouring curves ob such that
their images underf form the intersection of  with [ *.We letthe
upper (resp. lower) G-classbe the G-class of neighbouring curves dd whose
image underf is contained in the upper (resp. lower) sheet * (resp. ).

(a) (b)
Fig. 30

The Dehn spheres; * form a lling pair of spheres in M. Near a
triple point P of  there will be eight triple points of the union [ *
as in Figure 30(a). In some situations the Dehn sphere # * that we
obtain by piping  with ¥ near P as in Figure 30(b) is a lling Dehn
sphere ofM . Assume that this is the case. This lling Dehn sphere # *
is the image underF of the boundary of S [0;1] with a small cylinder
connectingS? f Ogwith S? f 1g removed, and thus it is nullhomotopic.

(@)

(b)
Fig. 31
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The Johansson diagram of # * can be obtained algorithmically from
the Johansson diagramD of . Let f* : S2! M be the parametrization
of * givenbyf*(X)= F(X; 1).

First, remember that the upper G-class of neighbouring cures of D
forms the inverse image underf of \ *. A second observation is that
the Johansson diagram off * is a copyD* of D. The third observation is
the following

+

Remark 40. The relative position of  with respect to
the same as that of  with respect to

is exactly

This remark implies that if we give the G-classes oD* the same name
as their respective copies inD, the lower G-class ofD* forms the inverse
image of \ T underf*.

The Johansson diagramD # D* of # is what we call aduplicate
of D, and it can be obtained fromD and D" as indicated in Figure 31. In
Figure 31(a) we depict how the cube of Figure 30(a) is seen inhie Johans-

+

@)

(b)

(©
Fig. 32
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son diagrams of (grey) and * (white). In both diagrams we draw the
lower G-class and the upper G-class similarly. As an exampleve apply this
construction to the diagram of Figure 25(b) in Figure 32.

It is not always possible to obtain a triple point of  such that if we pipe

with * near P as in Figure 30(b) the resulting Dehn sphere # *
lIs M, but we can always deform by lling-preserving movesto obtain an-
other lling Dehn sphere  Owith a triple point where the (lling-preserving)
duplication is possible. This deformation can be made very asily: for ex-
ample, if P is one of the two triple points that appear after a nger move
+1, then duplication is possible at P.

Duplication allows us to give a more general version of Cordary 39:

Theorem 41 Two lling diagrams on S? represent the same3-manifold
if and only if their duplicates are related by a nite sequene of lling-
preserving moves.

14. Miscellany

14.1. Invariants of 3-manifolds. The rst immediate application of Co-
rollary 39 is to the search of invariants of 3-manifolds. If we could assign to
each nullhomotopic diagram onS? an object which remains invariant un-
der lling-preserving diagram moves, then this object de nes a 3-manifold
invariant. If ' denotes such an invariant, for computing' for a given man-
ifold M we would need a nullhomotopic Johansson representation d¥l . If
we have an arbitrary Johansson representatiorD of M and we do not know
if it is nullhomotopic, duplicating D we will be able to compute' from D.
However, duplication produces very complicated diagrams the number of
triple points of a duplication of D is eight times the number of triple points
of D minus 2), and for this reason it should be interesting to knowhow to
decide if a given lling diagram in S? is nullhomotopic or not. This is an
open problem. In [Mo2] an algorithm is indicated to obtain a nullhomotopic
Johansson representation oM from any Heegaard diagram ofM . A simpler
algorithm is studied in detail in [V1].

14.2. The diagram group. Let D be a realizable diagram onS?, and let
f :S21 M be a transverse immersion parametrizingD. There is an easy
way to obtain a presentation of the fundamental group of := f(S?) in

(D)=j 15y nt 1 1= = n  a=r1= =r=1j;

double points of D. If Py;:::; Py are the triple points of , and P; is the
triple point P of Figure 24, which is re ected in the triplet of D of the same
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Figure 24, then the associated relator is
r =

It can be proved that 1( ) is isomorphic to the diagram group [V2] and
thus, if  Ills M the diagram group gives a presentation of the fundamental
group of M . This presentation is due to W. Haken (see Problem 3.98 of [K]
and we have not seen it in printed form.

With this presentation, the following (unpublished) theor em of W. Haken
can be proved (see also [Ha]). IID is a connected realizable diagram in
S? with only two double curves ; , then both are simple or both are
nonsimple.

Theorem 42 If and are simple, then (D) ' Zsz, and if both are
nonsimple, then (D) ' 1.

14.3. Checking llingness. As we have said, to test if a realizable dia-
gram D is a lling diagram is to check if @ (D) is a collection of 2-spheres.
Though the complete construction of the manifold with boundary K1 (D)
from the diagram D can be made in an algorithmic way using Johansson's
construction, it is interesting to have faster methods for dhecking llingness.
The following result will give us a method for saving time in this process. It
can be proved easily using Euler characteristic techniques

Lemma 43. A realizable diagramD on the genusg surface S is a lling
diagram if and only if it lls S and @ (D) hasp+ (S) connected compo-
nents, where p is the number of triplets (of pairwise related double point3
of D.

The diagram group can help us also in checking llingness. In.emma 4.9
of [He], it is proved that if a 3-manifold with boundary M has a boundary

component which is not a 2-sphere, ther¥l has a double cover. Thus,

Lemma 44. If D is a realizable connected diagram ir8? and the diagram
group (D) has no subgroup of index, then D is a lling diagram.

This lemma together with Theorem 42 gives the following.

Corollary 45. If D is a realizable connected diagram inS? with only
two curves, then it is a lling diagram.

14.4. Filling eversion. Theorem 2 applies not only to lling Dehn spher-
es but to their parametrizations. Let f : S?! M be a lling immersion, and
consider also the immersiong : S?! M given by g= f a, where a now
denotes the antipodal map ofS2. In this situation, the fact that f (S?) is
lling homotopic to g(S?) is trivial because they are the same Dehn sphere
of M. Theorem 2 asserts thatf is lling homotopic to g, which is now
a nontrivial fact. This is a lling version of the problem of e version of the
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2-sphere (see [M-P)). In [M-B] it is proved that every everson of the 2-sphere
in S has at least one quadruple point (compare also [No]). UsingHtis, it
can be seen that any parametrizationf of the Johansson sphere and its
antipodal parametrization g cannot be turned into each other by using only
nger moves 1 and lling-preserving saddle moves. This meas that nger
move 2 cannot be dispensed with in the statement of Theorem 2.

14.5. The nonorientable case.In our discussion about diagrams in Sec-
tion 12 we have assumed that surfaces and 3-manifolds are ertable. If
f :S!1 M is a transverse immersion andS or M (or both) are nonori-
entable, then the inverse image underf of a double curve ~ of f may be a
unique closed curve in S such that is a 2-fold covering of ~ (see [J1]).
For this reason, in this general case we need a more general di¢gion of ab-
stract diagram. The one given in Section 12 can be adapted tohis general
case by allowing anonfree involution  and requiring that the curves of
the diagram with = commute with the antipodal map of St. Another
fact is that in the general case, the immersiorf might be 1-sided and thus
the proof of Theorem 37 breaks down.

Johansson proves in [J1] a theorem characterizing diagrams S? which
are realizable in 3-manifolds (orientable or not). It is an interesting prob-
lem to generalize this last theorem of Johansson to cover dggams in any
surface and immersions in general 3-manifolds (orientabler not). This is
certainly not very di cult but it is an intermediate step to g eneralize our
theory of lling immersions to cover general Dehn surfaces grientable or
not) immersed in general 3-manifolds (orientable or not). This is an open
program.

14.6. A question of R. Fenn. The following question was asked to us by
R. Fenn (see also [F-R]):

Do lling Dehn surfaces in M lift to embeddings inM  [0; 1]?

We do not know the complete answer to this question.

In [Gi] an algorithm is given for deciding if a Dehn surface in R? lifts
to an embedding inR* in terms of the Johansson diagram of . In the same
paper there is an example of a Dehn sphere ; (that we will call Giller's
spherd in R® that does not lift to an embedding in R*. The Johansson
diagram of 1 has only two nonsimple curves, and by Corollary 45, 1 will
be a lling Dehn sphere of S3. On the other hand, Johansson's example of
Figure 25(a) represents a liftable (to an embedding inR*) lling Dehn sphere
of S3. Thus in S® there are liftable and nonliftable lling Dehn spheres.

A cleaner version of Giller's algorithm is Theorem 3.2 of [CS]. This
theorem can be easily adapted to the general case (see [V2Yiving a the-
orem that determines when a Dehn surface irM lifts to an embedding in
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M [O; 1]. If we apply this result to the lling Dehn spheres that ari se from
the algorithm given in [V1], it can be seen that every 3-manibld M has a
nullhomotopic lling Dehn sphere that lifts to an embedding in M [0; 1].

It remains to investigate if every 3-manifold has a nonliftable Illing Dehn
sphere. Giller's sphere 1 is a Dehn sphere inR3. It is clear that we can
choose a closed 3-balB; in R® such that 1 Bji. If M is an arbitrary
3-manifold, taking an embedding from B; into M we will obtain a copy

9of 4 living inside M . By Giller's algorithm, \liftability" depends on the
Johansson diagram, and the Johansson diagrams of? and ; are identical.
Thus, ?is a nonliftable Dehn sphere inM, but  ? does not II M unless
M = S3. When M is not S, we can perform a piping connecting ? with a
nullhomotopic lling Dehn sphere of M . We conjecture that this can be done
in such a way that the resulting Dehn sphere is a nonliftable mllhomotopic
lling Dehn sphere of M.

14.7. The triple point spectrum. The minimal number of triple points of
lling Dehn surfaces of a 3-manifold M satisfying some particular property
can be in some cases a topological invariant d¥l . We de ne the triple point
number t(M) of a closed orientable 3-manifoldM as the minimal number
of triple points of all its lling Dehn surfaces, and the genusg triple point
numbertg(M) of M as the minimal number of triple points of all its genusg
lling Dehn surfaces. The ordered collection to(M );t1(M);t2(M);:::) of all
the genusg triple point numbers of the 3-manifold M forall g 0 is what we
call the triple point spectrum T(M) of M. We can make similar de nitions
imposing topological restrictions on the lling Dehn surfaces considered.
For example, we can de ne thenullhomotopic triple point number of M as
the minimal number of triple points of all its nullhomotopic lling Dehn
surfaces; in a similar way the nullhomotopic genusg triple point humber
or the nullhomotopic triple point spectrum can be de ned. All of them are
topological invariants of the 3-manifold and give a measuref the complexity
of the manifold in the same way as the Heegaard genus, for exate. If we
have a lling Dehn surface in a 3-manifold, using pipings as in Figure
19(b), we can perhaps reduce the number of triple points of , but increasing
the genus of the lling Dehn surface. So there is some relatio between the
di erent genus g triple point numbers that would be interesting to clarify.

Any Dehn sphere in a closed orientable 3-manifold has an evemumber
of triple points ([Ha, p. 105]). This is not the case for genusg > 0 Dehn
surfaces, as can be seen in the example given by Figure 28(a)his means
that if we want a set of moves to relateall Dehn surfaces (of any genus) of
any 3-manifold, the Homma{Nagase moves introduced here, tgether with
pipings, do not su ce because all of them are operations thatpreserve the
parity of the number of triple points.
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We say that a genusg lling Dehn surface  of a 3-manifoldM is minimal
if there is no other genusg lling Dehn surface of M with fewer triple points
than has. Minimal Iling Dehn surfaces, in particular minimal | ling Dehn
spheres, should have interesting properties, and their ckssi cation is another
interesting problem. The classi cation of minimal Dehn spheres has been
solved for S2 in [Sh]. In that work, A. Shima gives in a di erent context six
examples of Dehn spheres 52 with only two triple points. Three of these
six examples Il S2 (one of them is Johansson's sphere of Figure 25(a)) and
they are minimal because, as we have said, any lling Dehn spére must
have at least two triple points. It can be deduced from the man theorem of
[Sh] that these three examples are the unique possible miniad lling Dehn
spheres inS3.

Finally, we want to introduce a last de nition. We say that a lling
Dehn surface in a 3-manifold M is irreducible if the only allowable lling-
preserving moves on are nger moves +1 or +2. Thatis, is irreducible
if any Dehn surface © which can be obtained by performing a lling-
preserving move on has more triple points than . Johansson's sphere
is not irreducible, while Example 1.3 of [Sh] is irreducible This means that
minimality does not imply irreducibility. We are also inter ested in the con-
verse question: are there examples of nonminimal irreducle lling Dehn
surfaces?
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