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A set of moves for Johansson representation of 3-manifolds

by

Rub�en Vigara (Madrid)

Abstract. A Dehn sphere � in a closed 3-manifold M is a 2-sphere immersed in
M with only double curve and triple point singularities. The D ehn sphere� �lls M if it
de�nes a cell decomposition of M . The inverse image in S2 of the double curves of � is the
Johansson diagram of� and if � �lls M it is possible to reconstruct M from the diagram.
A Johansson representation of M is the Johansson diagram of a �lling Dehn sphere of M .
Montesinos proved that every closed 3-manifold has a Johansson representation coming
from a nullhomotopic �lling Dehn sphere. In this paper a set o f moves for Johansson
representations of 3-manifolds is given. This set of moves su�ces for relating di�erent
Johansson representations of the same 3-manifold coming from nullhomotopic �lling Dehn
spheres. The proof of this result is outlined here.

1. Introduction. Throughout the paper all 3-manifolds are assumed
to be closed, that is, compact, connected and without boundary, and all
surfaces are assumed to be compact and without boundary. A surface may
have more than one connected component. We will denote a 3-manifold by
M and a surface byS.

Let M be a 3-manifold.
A subset � � M is a Dehn surface in M (see [P]) if there exists a

surfaceS and a transverse immersionf : S ! M such that � = f (S). In
this situation we say that f parametrizes � . If S is a 2-sphere then� is a
Dehn sphere. For a Dehn surface� � M , its singularities are divided into
double points (Figure 1(a)), and triple points (Figure 1(b)), and they are
arranged alongdouble curves(see Section 2 below for de�nitions). A Dehn
surface � � M �lls M [Mo2] if it de�nes a cell decomposition of M in
which the 0-skeleton is the set of triple points of� ; the 1-skeleton is the set
of double and triple points of � ; and the 2-skeleton is� itself. Filling Dehn
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(a) (b)

Fig. 1

spheres of 3-manifolds are de�ned in [Mo2] following ideas of W. Haken (see
[Ha]). In [F-R] it is proved that every closed orientable 3-manifold has a
Dehn sphere whose complement is a union of open 3-balls. In [Mo2] the
following theorem is proved (see also [V1]):

Theorem 1 ([Mo2]). Every closed orientable3-manifold has a nullho-
motopic �lling Dehn sphere.

A �lling Dehn sphere is nullhomotopic if one (and hence any) of its
parametrizations is nullhomotopic, that is, homotopic to a constant map.

Let � � M be a �lling Dehn sphere and f : S2 ! M a transverse
immersion parametrizing � . In this case we say thatf is a �lling immersion .
The inverse image byf in S2 of the set of double and triple points of � is
the singular set of f . The singular set of f , together with the information
on how its points are identi�ed by f in M , is the Johansson diagramof �
in the terminology of [Mo2]. As stated in [Mo2], for a given diagram in S2

it is possible to �nd if it is the Johansson diagram for a �llin g Dehn sphere
� in some 3-manifoldM . If this is the case, it is also possible to reconstruct
such anM from the diagram. Thus, Johansson diagrams are a suitable way
for representing all closed, orientable 3-manifolds and itis interesting to
further study them. For a 3-manifold M , we say that a Johansson diagram
of a �lling Dehn sphere of M is a Johansson representationof M (see [Mo2]).
In [Mo2] an algorithm is given for obtaining a Johansson representation of a
closed orientable 3-manifoldM from any Heegaard diagram ofM . A simpler
algorithm is given in [V1]. In both papers, the Johansson representations
obtained come from nullhomotopic �lling Dehn spheres ofM .

We will deal here with the problem of deciding how di�erent Johans-
son representations of the same 3-manifold are related to each other. With
this problem in mind, we study how di�erent �lling Dehn spher es of the
same 3-manifold are related to each other. In [V2], the following theorem is
proved.

Theorem 2. Let M be a closed3-manifold. Let f; g : S2 ! M be two
nullhomotopic �lling immersions. Then there is a �nite sequence of �lling
immersions f = f 0; f 1; : : : ; f n = g such that for eachi = 0 ; : : : ; n � 1 the
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immersions f i and f i +1 di�er by an ambient isotopy of S2, or by an ambient
isotopy of M , or by one of the moves depicted in Figure2.

(a)

(b)

(c)

Fig. 2

This theorem gives a complete set of moves for relating Johansson rep-
resentations of the same 3-manifold coming from nullhomotopic �lling Dehn
spheres (see Corollary 39).

The detailed proof of Theorem 2 is quite long, and it uses bothsmooth
and combinatorial techniques. In this paper we will give an outline of this
proof. The paper is organized as follows.

In Section 2, we give some preliminary de�nitions about Dehnsurfaces
and cell complexes. Most of Section 3 and Sections 4 to 10 introduce some
partial results needed to sketch the proof of Theorem 2. Thissketch is given
in Section 11. A reader wishing to skip the details can jump directly from
Section 3 to Section 12.

The proof of Theorem 2 in [V2] relies on three Key Lemmas that we
will state here without proof. In Section 3 we present some results about
regular homotopies of immersions of surfaces in 3-manifolds, and we intro-
duce the concept of�lling-preserving moves and �lling homotopy for �lling
immersions. Key Lemma 1 is stated in Section 4, where we de�nethe mod-
i�cations of immersions of surfaces in 3-manifolds bypushing disks. This
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kind of modi�cation was de�ned in [H-N1], and Key Lemma 1 asserts that
certain regular homotopies can be decomposed into pushing disks with some
nice properties.

In Section 5 we introduce a surgery method for modifying Dehnsurfaces
that will be useful later, and in Section 6 we present three examples of
modi�cations of �lling Dehn surfaces that can be done using only the �lling-
preserving moves de�ned in Section 3.

In Section 7 we introduce some combinatorial tools that will be essen-
tial in Key Lemmas 2 and 3: the concept ofshelling of a cell complex and
the concept ofsimplicial collapsing for a simplicial complex. These concepts
will appear almost everywhere in Sections 8 to 11. In the sameSection 7
we introduce smooth triangulations of manifolds, which gives us a theoret-
ical basis for applying the previously de�ned combinatorial concepts to our
case.

We explain in Section 8 how any smooth triangulationT of a 3-manifold
M can be \in
ated" to obtain a �lling Dehn sphere of M . This in
ated
sphere is transverse to any Dehn sphere ofM that lies in the 2-skeleton
of T. When the triangulation T of M is \su�ciently good" with respect
to a �lling Dehn surface � of M we can use it to obtain from � other
�lling surfaces \as complicated as we want" using only �llin g-preserving
moves. These constructions are used in Key Lemma 2, which is also stated
in Section 8. Every pushing disk transformation (as de�ned in Section 4) of
a Dehn surface can be performed by regular homotopy. For a given pushing
disk transformation, Key Lemma 2 proposes a new scenario in which the
pushing disk transformation can be performed by �lling homotopy.

In Section 9 we discuss brie
y how two �lling Dehn spheres of the same
3-manifold can intersect each other, and this discussion isused in Section
10, where we state Key Lemma 3. It ensures that when two �lling Dehn
surfaces intersect in a \su�ciently good" way, the in
ating constructions
introduced in Section 8 can be made simultaneously for one ofthem and for
the union of both.

All the constructions that we have quali�ed above as \su�cie ntly good"
are intimately related to the concept of shelling.

In Section 12 we translate Theorem 2 into Johansson representations
of 3-manifolds and we give some examples, and in Section 13 weexplain
brie
y how we can obtain a nullhomotopic Johansson representation of a
3-manifold M from any Johansson representation ofM .

In the �nal Section 14 we give a brief discussion of some related problems.
This paper is part of the Ph.D. thesis [V2] of the author, which has

been written under the supervision of Prof. J. M. Montesinos. I am very
grateful to him for all his valuable advice, specially for his suggestions and
comments during the writing of this paper and his careful reading of the
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previous versions of this manuscript. I would also like to thank the referee
for his suggestions and the editor for pointing out some misprints in the
�nal version of this paper.

2. Preliminaries. Because our starting point is Theorem 4 below, we
will work in the smooth category. Nevertheless, if one couldcheck that the
analogue of Theorem 4 in the PL category is true (we do not knowof any
reference), all our constructions have their translation to the PL case and
so Theorem 2 would also be true in the PL case.

Thus, all the manifolds are assumed to be equipped with a smooth struc-
ture and maps between two manifolds are assumed to be smooth.

For the standard de�nitions of di�erential topology (immer sions, trans-
versality, etc.), see [Hi] or [G-P], for example. For a general treatment of PL
topology we refer to [Hu], for example.

For a subsetX of a manifold, we denote the interior, closure and bound-
ary of X by int( X ), cl(X ) and @Xrespectively.

Let A and B be two sets. For a mapf : A ! B the singular values
or singularities of f are the points x 2 B with # f f � 1(x)g > 1, and the
singular points of f are the inverse image points underf of the singularities
of f . The singular set S(f ) of f is the set of singular points off in A, and
the singularity set S(f ) of f is the set of singularities of f in B . Of course
f (S(f )) = S(f ). This notation is similar to but slightly di�erent from tha t
of [Sh].

From now on, M will denote a 3-manifold as at the beginning of Section 1.

Let � be a Dehn surface inM . Let S be a surface andf : S ! M
a transverse immersion parametrizing� . In this case we say thatS is the
domain of � . For any x 2 M we have #f f � 1(x)g � 3 (see [He]). The
singularities of f are divided into double points of f , with # f f � 1(x)g = 2,
and triple points of f , with # f f � 1(x)g = 3. A small neighbourhood of a
double or a triple point looks as in Figures 1(a) and 1(b) respectively. The
singularity set S(f ) of f , the set of triple points of f , and the domain S (up
to homeomorphism) do not depend upon the parametrizationf of � . We
de�ne the singularity set of � , denoted by S(� ), to be the singularity set of
any parametrization of � . A double curveof � is the image of an immersion

 : S1 ! M contained in the singularity set of � (see [Sh]). The singularity
set of � is the union of the double curves of� . BecauseS is compact, �
has a �nite number of double curves. Following [Sh], we denote by T(� ) the
set of triple points of � . The Dehn surface� is embeddedif its singularity
set is empty. A standardly embedded2-spherein M is a 2-sphere embedded
in M that bounds a 3-ball in M .
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A component of � is the image under f of a connected component of
the domain S. Note that the components of � may not coincide with the
connected components of� .

A Dehn surface � in M �lls M if it de�nes a cell decomposition of M
as indicated in Section 1. This de�nition generalizes to general surfaces a
de�nition given in [Mo2] for Dehn spheres.

The following trivial proposition gives an equivalent de�n ition of �lling
Dehn surface.

Proposition 3. � �lls M if and only if

(1) M � � is a disjoint union of open 3-balls,
(2) � � S(� ) is a disjoint union of open 2-disks,
(3) S(� ) � T(� ) is a disjoint union of open intervals.

The following statements and de�nitions for cell complexesare also valid
for simplicial complexes. We consider the cells of a cell complex asopencells.
If K is a cell complex, and"; " 0 are two cells ofK , we write " < " 0 when "
is a face of"0, that is, when cl(" ) � cl("0). The cells " and "0 are incident
if " < " 0 or "0 < " , and adjacent if cl( " ) \ cl("0) 6= ; . For a cell " of K , we
de�ne the (open) star of " as the union of all cells"0 of K with " < " 0. The
star of " is denoted by star(" ).

If " is a cell of the cell complexK , and P is a vertex (0-cell) of " , we say
that " is self-adjacentat P if a regular neighbourhood ofP in K intersects "
in more than one connected component. Otherwise we say that" is regular
at P. We say that " is regular if it is regular at every vertex of " . The complex
K is regular at P if every cell of K incident with P is regular at P, and K
is regular if every cell of K is regular (cf. [Ma]). A �lling Dehn surface � of
M is regular (regular at a triple point ) if the cell decomposition of M that
de�nes � is regular (at this triple point).

If � is a �lling Dehn surface, then a connected component ofM � �
is called a region of M � � , and a connected component of� � S(� ) is
sometimes called aface of � .

3. Filling homotopy. An ambient isotopy of a manifold N is a map
&: N � [0; 1] ! N such that &t = &(�; t) is a di�eomorphism for each t 2 [0; 1]
and &0 = id N . Two immersions f; g : S ! M are ambient isotopic in M if
there is an ambient isotopy&of M with &1 � f = g. The same immersions are
ambient isotopic in S if there is an ambient isotopy &of S with f � &1 = g.
We generally say that f and g are ambient isotopic if they are related by
ambient isotopies ofS and ambient isotopies ofM .

Two immersions f; g : S ! M from a surfaceS into the 3-manifold M
are regularly homotopic if there is a homotopy H : S � [0; 1] ! M with
H (�; 0) = f and H (�; 1) = g such that H (�; t) is an immersion for each
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t 2 [0; 1]. The homotopy H de�nes a smooth path of immersions fromS
into M having f and g as its endpoints. If f and g are regularly homotopic,
they are indeed homotopic. The converse is not true in general. Nevertheless,
an immediate corollary of Theorem 1.1 in [H-H] or Theorem 6 in[L] is:

Theorem 4. Two immersions from S2 into a 3-manifold are regularly
homotopic if and only if they are homotopic.

In particular, two parametrizations of nullhomotopic �lli ng Dehn spheres
of M must be regularly homotopic.

In [H-N1] a set of elementary deformations for immersions of surfaces
in 3-manifolds is introduced. This set of moves is composed by the saddle
move(called anelementary deformation of type VI in [H-N1]) of Figure 2(a),
together with the moves depicted in Figure 3. We will call these elementary
deformations the Homma{Nagase moves. In [H-N2] the following is proved:

Theorem 5. Two transverse immersions from a closed surfaceS into
a 3-manifold M are regularly homotopic if and only if we can deform them
into each other by a �nite sequence of Homma{Nagase moves, together with
ambient isotopies ofM .

The proof of this theorem in [H-N2] is in the PL category. A proof of
the smooth version is indicated in [R]. An equivalent result, also in the
di�erentiable case, is Theorem 3.1 of [H-H].

We will propose another set of moves (Haken moves), which is the result
of substituting in the Homma{Nagase set of moves the moves ofFigures
3(b) and 3(c) by the �nger moves 1 and 2 depicted in Figures 2(b) and 2(c)
respectively. The following lemma can be easily proved:

Lemma 6. The Homma{Nagase set of moves and the Haken set of moves
are equivalent.

To prove this lemma it must be shown that each Homma{Nagase move
can be obtained using Haken moves (and ambient isotopies) and vice versa.
Thus, in Theorem 5 we can substitute the Homma{Nagase moves by the
Haken moves.

The Haken moves are more suitable than the Homma{Nagase moves
when dealing with �lling Dehn surfaces. In the Haken set of moves, the move
of Figure 3(a) is called a�nger move 0. For i = 0 ; 1; 2 a �nger move i is a
�nger move + i when it happens from left to right in the �gure, and a �nger
move � i if it happens in the opposite sense. A saddle move is equivalent
(symmetric) in both senses.

Lemma 7. Let f; g : S ! M be two immersions. Then:

(1) if f and g are related by a �nger move0, then one of them is not a
�lling immersion ;
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(a)

(b)

(c)

Fig. 3

(2) if g is obtained from f by applying a �nger move+1 or � 2 and f is
a �lling immersion , then g is a �lling immersion ;

(3) if g is obtained from f by applying a �nger move � 1 or a saddle
move andf is a �lling immersion , then g is not necessarily a �lling
immersion.

This lemma can be proved by inspection, using the characterization of
�lling immersions given by Proposition 3.

Lemma 7 inspired the following de�nition. If f : S ! M is a �lling im-
mersion and we modifyf by a Haken move, we say that the move is�lling-
preservingif the immersion g we get after the move is again a �lling immer-
sion. In this terminology, Lemma 7 states that a �nger move 0 cannot be
�lling-preserving; that �nger moves +1 and � 2 are always �lling-preserving;
and that �nger moves � 1 and saddle moves are sometimes �lling-preserving
and sometimes not. The next step is the following de�nition:

Definition 8. Let f; g : S ! M be two �lling immersions. We say that
f and g are �lling homotopic if there is a �nite sequencef = f 0; f 1; : : : ; f n = g
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of immersions such that for eachi = 0 ; : : : ; n � 1 the immersionsf i and f i +1

are ambient isotopic or related by a �lling-preserving move.

Note that in the above de�nition, all f 0; : : : ; f n are �lling immersions. In
these terms, Theorem 2 can be restated as follows:

Theorem 9. If f; g : S2 ! M are nullhomotopic �lling immersions ,
then they are �lling homotopic.

This gives a partial answer to the following conjecture:

Conjecture 10. Regularly homotopic �lling immersions of arbitrary
surfaces are �lling homotopic.

The proof of Theorem 2 given in [V2] and sketched here can perhaps be
adapted to a more general case but we still do not know how to dothis.

4. Pushing disks. Let f; g : S ! M be two immersions. Assume that
there is a closed diskD � S such that:

(1) f and g agree inS � D ;
(2) f jD and gjD are both embeddings;
(3) f (D ) and g(D) intersect only in f (@D) = g(@D);
(4) f (D ) [ g(D ) bounds a 3-ball B in M (Figure 4).

Then we say that g is obtained from f by pushing the disk D through B
or along B (see Figure 4). The pair (D; B ) is a pushing disk(see [H-N1]). In
the pushing disk (D; B ), the disk D is the pushed disk, B is the pushing ball
and we also say thatf (@D) = g(@D) is the equatorof B , denoted by eq(B ).
If both f and g are transverse immersions, we say that the pushing disk
(D; B ) is transverse. In the pushing disk (D; B ), the \rest" of the immersed
surface, f (S � D ), may intersect B in any manner (Figure 4(b)). If we are
given the immersion f and the pushing disk (D; B ), then the immersion g
is well de�ned up to an ambient isotopy of S.

(a) (b)

Fig. 4

We will say that two (transverse) immersions f; g : S ! M are regularly
homotopic by (transverse) pushing disksif there is a �nite sequence f =
f 0; f 1; : : : ; f n = g of (transverse) immersions such thatf i is obtained from
f i � 1 by a pushing disk for i = 1 ; : : : ; n.
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The �rst step in the proof of Theorem 2 is the following lemma, whose
proof is in [V2].

Lemma 11 (Key Lemma 1). Let f; g : S2 ! M be two nullhomotopic
immersions such that f is transverse andg(S2) is a standardly embedded
2-sphere in M . Assume that there exists a closed diskD � S2 such that f
and g agree overD . Then f and g are regularly homotopic by transverse
pushing disks keepingD �xed.

Note that the Homma{Nagase moves and the Haken moves are special
kinds of transverse pushing disks. However, Theorem 5 decomposes a reg-
ular homotopy into transverse pushing disks andambient isotopies of M .
Disposing of this ambient isotopy is the hardest part in the proof of Key
Lemma 1 in [V2]. Just as an immersion behaves locally as an embedding, a
regular homotopy behaves locally as an isotopy. Using this,the proof of Key
Lemma 1 will be obtained after a detailed study of isotopies of embedded
surfaces in 3-manifolds, and it is mainly inspired by [H-Z].

5. Spiral piping. In [Ba] it is explained how to modify Dehn surfaces by
surgery, also calledpiping (see [R-S, p. 67]). We now introduce a special kind
of piping that will be useful later. Let � be a Dehn surface inM , and let P be
a triple point of � . If P is the triple point depicted in Figure 5(a), consider
the surface� 0 that is exactly identical with � except in a neighbourhood of
P that can be as small as necessary. In this neighbourhood ofP, the Dehn
surface� 0 looks like Figure 5(b), and we say that � 0 is obtained from � by
a spiral piping around P.

(a) (b)

Fig. 5

Proposition 12. In this situation , if � is a (regular) �lling Dehn sur-
face of M , then � 0 is a (regular) �lling Dehn surface of M .

See [V2] for more details.
If the two sheets of � that become connected by the piping (the two

vertical sheets in Figure 5) belong to di�erent components� 1 and � 2 of � ,
then after performing the spiral piping these two components of � become
a unique component� 1 # � 2 of � 0.
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If S is the domain of � , and S0 is the domain of � 0, it is easy to check
that S0 is the result of removing the interior of two small closed disks � 1; � 2

from S and identifying their boundaries in an appropriate way. If � 1 and � 2

belong to di�erent connected componentsS1; S2 of S respectively, thenS0 is
the result of replacing the union S1 [ S2 in S by the connected sumS1 # S2.

The following de�nition and theorem appear in [V1].

Definition 13. A Dehn surface � � M that �lls M is called a �lling
collection of spheresin M if its domain is a disjoint union of a �nite number
of 2-spheres.

Theorem 14. If M has a �lling collection of spheres � , then M has
a �lling Dehn sphere � 0. If each component of� is nullhomotopic, we can
choose� 0 to be nullhomotopic.

Proof. Let � be a �lling collection of spheres in M , and let � 1; : : : ; � m

be the di�erent components of � .
The 2-skeleton of any cell decomposition ofM is connected becauseM is

connected. Therefore,� is connected. Thus, we can assume that� 1; : : : ; � m

are ordered in such a way that � 1 [ � � � [ � k is connected for everyk 2
f 1; : : : ; mg. In particular, � k intersects� 1 [� � �[ � k� 1 for all k 2 f 2; : : : ; mg.

Because� 1 \ � 2 is nonempty, it contains a double curve of � , and
because� �lls M , this double curve contains at least one triple point P
of � . Connecting � 1 and � 2 near P by a spiral piping, we obtain a new
Dehn sphere� 1 # � 2 such that (� 1 # � 2) [ � 3 [ � � � [ � m still �lls M .

Because� 3 intersects � 1 [ � 2, it intersects � 1 # � 2. Where � 1 # � 2

and � 3 intersect transversely there is a triple point of � (and therefore of
(� 1 # � 2) [ � � � [ � m ). We can perform another piping operation (as before)
obtaining a new Dehn sphere� 1 # � 2 # � 3 such that the new Dehn surface
(� 1 # � 2 # � 3) [ � 4 [ � � � [ � m still �lls M .

Inductively, for k > 3, we obtain a Dehn sphere� 1 # � � � # � k piping
� 1 # � � � # � k� 1 with � k around a triple point of � lying in the intersection
of � 1 # � � � # � k� 1 and � k , with the property that ( � 1 # � � � # � k ) [ � k+1 [
� � � [ � m still �lls M .

Repeating this operation we �nally obtain a Dehn sphere � 0 = � 1 #
� � � # � m that �lls M .

If all components of� are nullhomotopic, this implies that we can deform
the Dehn sphere� m continuously to a point. If gm : S2 ! M is an immersion
parametrizing � 0, we can use this deformation to construct a homotopy
betweengm and an immersiongm� 1 parametrizing � 1 # � � � # � m� 1. In the
same way, we can construct a homotopy betweengm� 1 and an immersion
gm� 2 parametrizing � 1 # � � � # � m� 2. Repeating this process, we �nally
conclude that gm is homotopic to an immersiong1 parametrizing � 1 and so
gm is nullhomotopic.
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(a) (b)

Fig. 6

Another property of spiral pipings is that they do not disturb �lling
homotopies, as stated in the following lemma, which we give without proof:

Lemma 15. Let f; g : S ! M be two �lling immersions such that g is
obtained from f after a �nger move +2 through the triple point P of f . Let
S0; f 0; g0 be the surface and immersions that come fromS; f; g respectively
after performing a spiral piping around P. Assume that this spiral piping
is as small as necessary, in comparison with the �nger move (Figure 6(b)) .
Then f 0 and g0 are �lling homotopic.

In the situation of this lemma we say that the immersions f 0; g0 are
related by a piping passing movethrough P.

6. What can be done using �lling-preserving moves. We will
give two examples of operations in a �lling Dehn surface using only �lling-
preserving moves.

Let � be a �lling Dehn surface of the 3-manifold M .

6.1. In
ating a double point. Let P be a double point of � . Consider a
standardly embedded 2-sphere� P in M as in Figure 7(b). It contains P,

(a) (b)

Fig. 7

and its intersection with � is the union of two circles. The circles intersect
at P and at another point Q; these are the unique double points of� lying
in � P . Note that � [ � P is a �lling Dehn surface of M . Consider a �lling
Dehn surface � # � P obtained by modifying � [ � P by a spiral piping
around P (see Section 5).

Proposition 16. We can choose the piping such that� is �lling ho-
motopic to � # � P .
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Proof. We consider the �lling Dehn surface � # � P as in Figure 8(a).
This surface is identical with � [ � P except in a small neighbourhood ofP,
where it looks like Figure 8(b).

(a) (b)

(c) (d)

(e) (f)

Fig. 8

We can unin
ate � P through P by an ambient isotopy of M , until we
reach the situation depicted in Figure 8(c).

We \open the entrance of the tunnel" using two �lling-preser ving saddle
moves, over and under the sheet of� containing the spiral piping (Figure
8(c)), and we get the situation of Figure 8(d). Now, after three consecutive
�nger moves � 1 we make� P disappear completely (Figures 8(e) and 8(f)).

In the above proposition, the statement could be \every parametrization
of � is �lling homotopic to a parametrization of � # � P ", which is a little
stronger, but we use the above language for simplicity.

We say that the Dehn surface� # � P as in the proposition is obtained
from � by in
ating P.

6.2. Passing over 3-cells.Let R be a regular region ofM � � such that
each cell of@Ris also regular. In this case, we say thatR is @-regular. Let
� be a face ofR. The @-regularity of R implies that cl( � ) is a closed disk
and cl(R) is a closed 3-ball. Take a parametrizationf : S ! M of � , and
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take the immersion g : S ! M obtained from f by a pushing disk (D; B ) as
indicated in Figure 9. There is an open disk e� in S such that the restriction

Fig. 9

of f to e� is an embedding andf ( e� ) = � . The pushed diskD in S contains
cl( e� ) in its interior and it is as close to e� as necessary, so thatf jD is an
embedding. The pushing ballB contains R, and cl(R) \ @B= cl( � ). The
disk g(D ) is a closed disk outside cl(R) running in parallel to @R� � . In
[V2] the following is proved:

Lemma 17. If g is a �lling immersion , then it is �lling homotopic to f .

7. Shellability. Smooth triangulations. In the proof of Theorem 2
we make an exhaustive use of the concept ofshelling.

Definition 18. Let N be ann-manifold with boundary, and let C � N
be a closedn-ball in N . We say that C is free in N if C \ @Nis a closed
(n � 1)-ball.

Let B be a closedn-ball, and let K be a regular cell decomposition ofB .

Definition 19. K is shellableif there exists an ordering C1; : : : ; Ck of
its n-cells such that cl(Ci ) is free in the closure of

S
j � i Cj . If this is the case,

we say that the ordering C1; : : : ; Ck is a shelling of K .

While cell decompositions of 2-disks are always shellable (see Lemma 1 of
[S]), nonshellable cell decompositions ofn-balls exist for n > 2. In [B-M] it is
proved that every cell decomposition of ann-ball has a shellable subdivision
(a cell decomposition�K of B is a subdivision of the cell decompositionK
of B if every cell of �K is contained in a cell ofK ).

For the proof of Theorem 2, we will work with triangulations o f a 3-
manifold M and we will require that a set of not necessarily disjoint 3-balls
in M (endowed with the induced cell decomposition) are all shellable at
once, and with some special properties. For this, we will usethe work of
Whitehead about simplicial collapsings (see [Wh1] or [Gl]).

A simplicial complex whose underlying polyhedron is a ball induces in a
natural way a cell decomposition of the ball. Thus, we can consider simplicial
complexes also as particular cell complexes.
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If K is a simplicial complex, a simplex ofK is maximal if it is not a
proper face of another simplex ofK . If " i is a maximal i -simplex of K , an
(i � 1)-face " i � 1 of " i is free in K if it is not a face of another i -simplex of
K di�erent from " i . If " i is maximal in K and " i � 1 is free in K , then the
result of removing (" i ; " i � 1) from K is another simplicial complex K 0, said
to be obtained from K by a simplicial collapsing. The complex K collapses
simplicially into a subcomplex K 0 if K 0 is obtained from K after a �nite
sequence of simplicial collapsings. In particular,K is collapsibleif it collapses
simplicially into a point. If �K is a subdivision ofK and K 0 is a subcomplex
of K , then �K 0 will denote the corresponding subcomplex of�K .

Theorem 20 ([Wh1]). If K is any �nite simplicial complex , there is
a (stellar) subdivision �K of K such that �B n collapses simplicially into
�B n� 1, whereB n is any subcomplex ofK which is a closedn-ball and B n� 1

is any subcomplex of@Bn which is a closed(n � 1)-ball.

For triangulations of an n-ball, shellability obviously implies collapsibil-
ity. Note that the converse is not obvious because in shellability we require
that the space after each step remains a ball, while in \collapsings" it might
not even be a manifold. (The example given in [Ru] is not shellable, but it
is simplicially collapsible, cf. [Ch].) However, the converse is almost true in
our case according to the following observation that arisesfrom the proof of
Theorem 6 in [Bi]:

Lemma 21. If K is a collapsible triangulation of the 3-ball, then the
second derived subdivision ofK is shellable.

Smooth triangulations of manifolds are introduced in [Wh2] to relate
the smooth and PL categories in manifold theory. A triangulation of an
n-manifold N is a homeomorphismh : K ! N , where K is a rectilinear
simplicial complex of some euclidean space. IfN has a smooth structure, the
triangulation h is smooth (with respect to this structure) if the restriction
of h to each simplex of K is a smooth map. We identify the manifold N
with the simplicial complex K . In [Wh2] (see also [Mu]) it is proved that:
(i) any n-manifold with a smooth structure admits smooth triangulat ions;
and (ii) two smooth triangulations of the same smooth manifold have a
common smooth subdivision (!). If f : S ! M is a transverse immersion
of a surface into the 3-manifold M , then there are smooth triangulations
K and T of S and M respectively such that f is simplicial with respect to
them (for more general results of this kind, see [Ve]).

If f : S ! M is a �lling immersion and K; T are triangulations of S; M
respectively such that f is simplicial with respect to them, then the trian-
gulation T also triangulates the closure of each region ofM � f (S). If R is
a regular region ofM � f (S), we say that T shellsR if it induces a shellable
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triangulation on cl( R). If R is not regular, we �rst cut cl( R) along its self-

adjacencies to obtain a closed 3-ball]cl(R). The triangulation T on cl(R) lifts

naturally to ]cl(R), and we say that T shellsR if the induced triangulation

on ]cl(R) is shellable. The triangulation T shellsthe �lling immersion f (or
the �lling Dehn surface f (S)) if T shells each region ofM � f (S).

All these results imply the following

Theorem 22. Let S1; : : : ; Sk be a �nite collection of surfaces, and for
each i = 1 ; : : : ; k let f i : Si ! M be a transverse immersion. Then there is
a smooth triangulation T of M such that:

(1) the Dehn surfacesf 1(S1); : : : ; f k (Sk ) are contained in the 2-skeleton
of T;

(2) if f i is a �lling immersion for some i = 1 ; : : : ; k, then the triangula-
tion T shells f i ;

(3) if f i and f j di�er by a pushing disk (D; B ) for somei; j 2 f 1; : : : ; kg,
then the triangulation T restricted to B collapses simplicially into
f j (D ).

Proof. First of all, we have seen that for eachi = 1 ; : : : ; k there are
smooth triangulations K i ; Ti such that f i is simplicial with respect to them.
According to [Wh2], the smooth triangulations T1; : : : ; Tk have a common
smooth subdivision T0. Then all the Dehn surfacesf 1(S1); : : : ; f k (Sk ) are
contained in the 2-skeleton ofT0. Take a subdivisionT0

0 of T0 as in Theorem
20, and let T be the second derived subdivision ofT0

0.
If f i and f j di�er by a pushing disk ( D; B ), then T0 triangulates B and

f j (D ), and so becauseT0
0 has been chosen following Theorem 20, the tri-

angulation T0
0 restricted to B collapses simplicially into f j (D ). Simplicial

collapsing is preserved by stellar subdivisions [Wh1] and so it is also pre-
served by derived subdivisions. Thus,T restricted to B collapses simplicially
into f j (D ).

If f i is a �lling immersion and R is a regular region ofM � f i (Si ), then T0

triangulates cl(R). By the choice of T0
0, it induces a collapsible triangulation

of cl(R), and by Lemma 21, T induces a shellable triangulation of cl(R). If
R is not regular, perhaps we need to do more stellar subdivisions on cl(R)

to have the required shelling property on ]cl(R), but this does not alter the
previous construction because stellar subdivisions preserve shellability [B-M]
and collapsibility.

Definition 23. Under the hypothesis of the previous theorem, we say
that T is a good triangulation of M with respect to f 1; : : : ; f k .

With these results, we have prepared the ground for the following sec-
tions.



Johansson representation of 3-manifolds 261

8. In
ating triangulations. Now we will explain how we can associate
to any triangulation of the 3-manifold M a �lling collection of spheres of M .

(a) (b)

Fig. 10

Let B1; B2 be two closed 3-balls inM . We say that B1; B2 intersect
normally if they intersect as in Figure 10(a). The 2-spheres@B1; @B2 must
intersect transversely in a unique simple closed curve. IfB1; B2 intersect
normally, then B1 \ B2, cl(B1 � B2) and cl(B2 � B1) are 3-balls. If B1; B2; B3

are 3-balls inM , they intersect normally if they intersect as in Figure 10(b).
Each pair B i ; B j with i 6= j intersect normally and @B1; @B2 and @B3
intersect transversely at two triple points.

Let T be a smooth triangulation of M . (We refer to the 0-simplexes,
1-simplexes, 2-simplexes and 3-simplexes ofT as vertices, edges, triangles
and tetrahedra of M , respectively.) We can construct a �lling collection of
spheres ofM by \in
ating" T assigning to each simplex" of the 2-skeleton
T2 of T a 2-sphereS" embedded in M in such a way that their union
T =

S
"2 T 2 S" �lls M . We will do this as follows.

(a) (b)

(c) (d)

Fig. 11

First, if v1; : : : ; vm0 are the vertices ofM , for i = 1 ; : : : ; m0 the 2-sphere
Svi � M bounds a closed 3-ballBv i in M contained in the open star star(vi )
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and with vi in its interior. The 2-spheresSv1; : : : ; Svm0 are pairwise disjoint
(Figure 11(b)) and the triangulation T of M induces a triangulation of Bv i

as a cone from vi over Svi for each i = 1 ; : : : ; m0 (see Figure 11(d)). The
2-sphereSvi intersects transversely eachi -simplex " i 2 star(vi ) � T in a
(i � 1)-simplex of this induced triangulation of Svi .

(a) (b)

(c) (d)

Fig. 12

If e1; : : : ; em1 are the edges ofM , for j = 1 ; : : : ; m1 the 2-sphereSej � M
bounds a closed 3-ballBej in M as in Figure 12(a). The 3-ball Bej is
contained in the open star star(ej ) and it intersects ej in a closed subarc
eej � ej . The 2-sphereSej and ej intersect transversely at the endpoints
of the arc eej . We take Be1; : : : ; Bem1 pairwise disjoint, and for each i 2
f 1; : : : ; m0g and j 2 f 1; : : : ; m1g the 3-balls Bv i and Bej are also disjoint
unlessvi and ej are incident. In this case,Bv i and Bej intersect normally
(Figure 12(c)) and Bv i \ Bej intersects ej in another closed subarc ofej .
Considering the two points of the intersection Sej \ ej as the \poles" of
Sej , each triangle t of M incident with ej intersects Sej transversely in an
open arc which is the interior of a \meridian" a with its endpoints at the
poles (Figure 12(b)). The intersection cl(t) \ Bej is a closed disk bounded
by a [ eej .

Finally, if t1; : : : ; tm2 are the triangles of M , for k = 1 ; : : : ; m2 the 2-
sphereStk bounds a 3-ballBt k as in Figure 13. The 3-ballBt k is contained
in the (open) star star(tk) and it intersects tk in a closed disketk � tk , and
the intersection of Stk with tk is transverse. The 3-ballBt k is disjoint from
B" for every " 2 T2 di�erent from tk unless " is incident with tk . In this
case,Bt k and B" intersect normally. Moreover, if vi < e j < t k , then the
3-balls Bv i ; Bej ; Bt k intersect normally (Figure 13) and there is one of the
two triple points of Svi \ Sej \ Stk in each of the two tetrahedra of star(tk).



Johansson representation of 3-manifolds 263

(a) (b)

(c) (d)

Fig. 13

If T is a cell decomposition ofM instead of a triangulation, the previous
construction can easily be generalized.

It is easy to check that the Dehn surfaceT =
S

"2 T 2 S" so constructed is
a �lling collection of spheres in M . Moreover,T is regular and it is transverse
to the (smooth) simplexes of the triangulation T of M .

In particular, as a corollary of Theorem 14 this construction implies the
main theorem of [Mo2]:

Theorem 24. M has a nullhomotopic �lling Dehn sphere.

Note that in this case, in contradistinction to [Mo2] or [V1] , we have not
made any assumption about the orientability of M .

The following result follows directly from the construction.

Proposition 25. Let S be a surface andf : S ! M a transverse im-
mersion. Let K; T be triangulations of S; M respectively such thatf is sim-
plicial with respect to them. Then f (S) [ T is a regular �lling surface of M .

In this proposition the immersion f can be any transverse immersion,
�lling or not. Assume now that f : S ! M is a �lling immersion and put
� := f (S). Let K; T be triangulations of S and M respectively such that
f is simplicial with respect to them. By Proposition 25, � [ T �lls M , and
by the methods of proof of Theorem 14, we can obtain from� [ T a unique
�lling Dehn surface of M . If we look at the proof of Theorem 14, this can
be done in many di�erent ways because there are many possibilities for
performing the spiral pipings. We say that each �lling Dehn surface � 0 of
M that is obtained from � in this way is a T-in
ating of � . Let � 0 be
a T-in
ating of � . By Propositions 25 and 12,� 0 is regular because spiral
pipings preserve regularity. There is an immersionf 0 : S ! M parametrizing
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� 0 that comes fromf in a natural way, that is, f 0 agrees with f in most of
S except in the small disks where we perform the pipings. We also say that
f 0 is a T-in
ating of f . The �rst application of shellability is the next result
proved in [V2].

Proposition 26. If T shells f , then there is a T-in
ating f 0 of f �ll-
ing homotopic to f . Moreover, we can choosef 0 such that there are only
two spiral pipings connecting� with components of T and the other spiral
pipings are performed around triple points of T.

By Theorem 22, passing to suitable subdivisions we can assume that T
shells f , and thus we have:

Corollary 27. If f : S ! M is a �lling immersion , then f is �lling
homotopic to a regular �lling immersion.

The proof of Proposition 26 is made by repeated application of the con-
struction of Section 6.1, using the fact that each region ofM � � has a
shellable triangulation and that each triangulation of a 2-disk is shellable [S].
As an example, we will illustrate the starting point of this c onstruction in
which we \in
ate" a triangle of T.

Example 28 (In
ating a triangle) . Let f , � and T be as in Propo-
sition 26. Imagine that there exists a triangle t of T intersecting � as in
Figure 14. We label the edges and vertices oft as in the �gure.

Fig. 14

Let Q0 be the intersection point of the 2-sphereSv1 with e1 (Figure
15(b)). We in
ate Q0 to obtain a 2-sphere � Q0 connected with � by a
spiral piping as in Figure 15(a). Then, after ambient isotopy, we obtain the
�lling Dehn surface � # � Q0 , which is obtained from � [ � Q0 by a spiral
piping around Q0.

Let Q1 be the intersection point of Se1 with e1 that lies inside Bv1

(Figure 15(c)). We in
ate it (Figure 15(d)). After a piping p assing move
(Figure 15(e)), we obtain a �lling Dehn surface ambient isotopic to that of
Figure 15(f).

Let P1 be one of the two points ofSv1 \ Se1 \ St (Figure 16(a)). This
point is a double point of the �lling Dehn surface of Figure 15(f), and thus we
can in
ate it using �lling-preserving moves until we obtain the �lling Dehn
surface of Figure 16(b) (with a spiral piping around P1). After a �nger move
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(a) (b)

(c) (d)

(e) (f)

Fig. 15

+1 through the triple point A of the same Figure 16(b), we get the �lling
Dehn surface of Figure 16(c), which is the same as that of Figure 16(d). The
surfaces of Figures 16(a) and 16(d) are ambient isotopic.

At this moment, from the picture of Figure 14 we have obtained the
2-spheresSv1, Se1 and St, with three spiral pipings, using only �lling-
preserving moves. Using similar methods, we can also obtainthe 2-spheres
Sv2 (Figure 16), Se2, Sv3 and Se3 (Figure 17).

In the previous example, we see that the way of constructing the �lling
Dehn surface� 0 from the �lling Dehn surface � in Proposition 26 is in some
sense to make� grow inductively following a path given by the triangula-
tion T. The growing path we follow to prove Proposition 26 in [V2] is not
exactly as in Example 28. There (in [V2]) we in
ate �rst from � all the
2-spheres ofT corresponding to the simplexes ofT contained in � starting
in a similar way to Example 28. Then the shellability conditi ons imposed on
T will give us the growing path of � on the regions ofM � � using again
similar methods to those of Example 28.

We will say that the T-in
ating � 0 of � (f 0 of f ) as in the previous
proposition is a T-growth of the �lling Dehn sphere � (of the �lling immer-
sion f ). Note that to be a T-growth is stronger than to be a T-in
ating.

The next (but not last) application of the constructions of Section 7 is
the following.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 16

Let f; g : S ! M be transverse immersions that di�er by the pushing
disk (D; B ), and assume that f is a �lling immersion. In this situation, the
immersion g will not necessarily be a �lling immersion. Consider triangula-
tions K; T of S and M respectively such that f and g are simplicial with
respect to them. Take aT-in
ating f 0 of f such that f 0 agree with f over
D (becausef 0 agrees with f in most of S except in some small disks ofS,
we require that these small disks do not intersectD ), and consider the im-
mersion g0 that is obtained from f 0 after the pushing disk (D; B ). We can
assume that g0 agrees with g except in the disks ofS where f 0 \disagrees"
with f . The Dehn surfaceg0(S) is obtained from g(S) [ T by spiral pipings,
and becauseg is also simplicial (with respect to K; T ), g0 is aT-in
ating of g.

Because bothf; g are simplicial (with respect to K; T ), the triangulation
T induces a triangulation of the pushing ball B .

Lemma 29 (Key Lemma 2). If the (induced) triangulation of B collapses
simplicially into g(D ), then f 0 is �lling homotopic to g0.
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 17

(a) (b)

(c)

Fig. 18

Sketch of proof. BecauseB is triangulated by T, it can be easily shown
that f (S) [ g(S) [ T induces a cell decomposition ofB . If B collapses sim-
plicially into g(D ), then we can de�ne a special shelling of this cell decom-
position. This special shelling will allow us to apply Lemma 17 repeatedly
(Figure 18(b)) to the �lling Dehn sphere f (S) [ T until we get g(S) [ T.
Substituting �nger moves 2 by piping passing moves where required, this
deformation of f (S) [ T into g(S) [ T also de�nes a deformation off 0 into
g0 by �lling-preserving moves.
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9. Filling pairs. Let � 1 and � 2 be two �lling Dehn surfaces of M .
Assume by simplicity that both are regular.

If we are not given more information about � 1 and � 2, we do not know
how they are related to each other. The only thing we can say, if M is not
S3, is that they must have nonempty intersection.

Definition 30. We say that � 1 and � 2 form a �lling pair in M if their
union � 1 [ � 2 is also a regular �lling Dehn surface ofM .

In particular, if � 1 and � 2 form a �lling pair in M , they intersect trans-
versely.

If � 1 and � 2 are a �lling pair in M , then � 2 induces a cell decomposition
on the closure of each region ofM � � 1 and vice versa. Because both� 1

and � 2 are regular, all these induced cell decompositions are alsoregular.
If R1 is a region ofM � � 1, then we say that � 2 shellsR1 if � 2 induces a
shellable cell decomposition of the 3-ball cl(R1). We say that � 2 shells � 1

if � 2 shells each region ofM � � 1.

Definition 31. Let � 1 and � 2 form a �lling pair in M . We say that
� 1 and � 2 are mutually shellableif � 1 shells � 2 and � 2 shells � 1.

The following result is proved in detail in [V2].

Proposition 32. Let � 1; � 2 be regular �lling Dehn surfaces ofM which
intersect transversely. If f 1 : S1 ! M parametrizes � 1, then f 1 is �lling
homotopic to an immersion f 0

1 : S1 ! M such that � 0
1 := f 0(S1) and � 2

form a mutually shellable �lling pair in M .

Sketch of proof. Let f 2 : S2 ! M be a parametrization of � 2, and let
T be a good triangulation of M with respect to f 1 and f 2 (De�nition 23).
Then T shells every region ofM � � 1 and every region ofM � � 2. The
union � 1 [ � 2 [ T is a regular �lling Dehn surface of M by Proposition 25.
Take a T-growth f 0

1 of f 1, and put � 0
1 = f 0

1(S1). We make the spiral pipings
that transform � 1 [ T into � 0

1 small enough not to intersect � 2. Because
regularity is preserved by spiral pipings, it is not di�cult to see that � 0

1 [ � 2

is a regular �lling Dehn surface of M . It is also easy to see that� 2 induces
a shellable cell decomposition on every region ofM � � 0

1 using the fact that
� 2 is a subcomplex ofT and the construction of T. The nontrivial part is
to check that � 0

1 induces a shellable cell decomposition on every region of
M � � 2. This is done in detail in [V2], and it is parallel to the proof of Key
Lemma 2 above. IfR2 is a region ofM � � 2, the �rst thing to check is that
T induces a shellable cell decomposition on cl(R2). This is done following
the proof of Lemma 21 in [Bi], using the fact that the restrict ion to cl(R2) of
the triangulation T is simplicially collapsible. After this, it is seen that the
presence of� 1 does not alter this shellability property. Finally, the pre sence
of the spiral pipings might a�ect the shelling in some cases.In [V2] it is
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explained how this can occur, and how we can choosef 0
1 to ensure that it

satis�es the statement of Proposition 32.

10. Simultaneous growings. The last application of shellability will
be the following. Assume that � 1; � 2 are two regular �lling Dehn surfaces of
M and that there are two points P; Q where� 1 and � 2 intersect as in Figure
19(a). We denote by � 1 # � 2 the Dehn surface ofM that arises by piping
� 1 with � 2 near P; Q as in Figure 19(b). We also assume that the points

(a) (b)

Fig. 19

P; Q have the property that � 1 # � 2 is another �lling Dehn surface of M .
Let f : S1 ! M; g : S2 ! M be parametrizations of � 1; � 2 respectively.
Consider the two small disks� 1; � 2 of S1 and S2 respectively whose respective
images underf and g disappear after the piping. In this situation we can
construct a parametrization f # g : S1 # S2 ! M of � 1 # � 2 \coming" from
f; g , where the surfaceS1 # S2 is the result of identifying S1 � � 1 and S2 � � 2

along the boundary of � 1 and � 2. We can also assume that the immersion
f # g agrees with f on S1 � � 1 and that f # g agrees withg on S2 � � 2.

Let K 1; K 2; T be triangulations of S1; S2; M that make f; g and f # g
simplicial, and assume that T shells every region ofM � � 1. Consider a
T-growth f 0 of f as in Proposition 26, such that f 0 agrees with f in all of
S1 except in two small disks. We can assume that the images underf of
the two disks are far away from a su�ciently large regular neighbourhood
of the arca of Figure 19(a) (that is, they do not a�ect the piping between
� 1 and � 2). In this situation, we can also consider the \piped immersion"
f 0# g : S1 # S2 ! M that agrees with f 0 in S1 � � 1 and with g in S2 � � 2,
as the result of pastingf 0 and g by means of the piping in exactly the same
way as f was pasted with g in f # g.

Remark 33. If � 1; � 2 are the surfaces� 0
1; � 2 that result from the proof

of Proposition 32, then there always exists a pair of pointsP; Q as above.

We know that f 0 is �lling homotopic to f because it is aT-growth of f ,
but we also have:

Lemma 34 (Key Lemma 3). If � 2 shells� 1, then we can choosef 0 such
that f 0# g is a T-growth of f # g.
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In particular, if � 2 shells � 1, then we can choosef 0 such that f 0# g is
�lling homotopic to f 0.

This lemma is also proved in detail in [V2]. The required property that
� 2 shells� 1 implies that the growing of f into f 0 in the proof of Proposition
26 can be adapted to� 2 in such a way that the growing fromf into f 0de�nes
simultaneously a growing fromf # g into f 0# g when we introduce� 2.

11. Proof of Theorem 2. With these tools we can sketch the proof of
Theorem 2.

Sketch of proof of Theorem 2.We are given a pair � 1; � 2 of nullho-
motopic �lling Dehn spheres of M and two parametrizations f; g of them
respectively. We introduce the following notation: we take two di�erent 2-
spheresS1; S2 and we will consider that Si is the domain of � 1 for i = 1 ; 2.
In particular, � 1 = f (S1) and � 2 = g(S2).

Modifying f if necessary by an ambient isotopy ofM we can assume
that � 1 and � 2 have nonempty transverse intersection.

By Proposition 32 and Remark 33, we can assume that� 1; � 2 form a
mutually shellable �lling pair of spheres of M and that there are two points
P; Q of � 1 [ � 2 where � 1 and � 2 intersect as in Figure 19(a) of Section 10.

Consider the �lling Dehn surface � 1 # � 2 and the parametrization f # g
as in Section 10. We also consider the disks� 1 � S1 and � 2 � S2 as in
Section 10. We denotef # g by h for simplicity.

h is �lling homotopic to f .

Consider a small standardly embedded 2-sphere� �
2 and a parametriza-

tion g� : S2 ! M of � �
2 as in Figure 20(b). This sphere shares with� 2 a

2-disk D containing g(� 2) in its interior, and the immersions g and g� agree
over eD := g� 1

� (D ).

(a) (b)

Fig. 20

By Key Lemma 1, we can deformg into g� by a �nite sequence of trans-
verse pushing disks leavingeD �xed. Let ( D1; B1); : : : ; (Dk ; Bk ) be this se-
quence of pushing disks, and letg = g0; g1; : : : ; gk = g� : S2 ! M be the
sequence of transverse immersions such thatgi is obtained from gi � 1 by the
pushing disk (D i ; B i ).
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Modifying slightly � 1 and the piping between � 1 and � 2 by an ambi-
ent isotopy of M if necessary, we can assume that all these pushing disks
are also transverse to� 1 and � 1 # � 2. Because the pushing disks (D i ; B i )
leave eD �xed, we can think of them as acting on the immersion h = f # g
instead of on g, and we can consider the sequence of transverse immer-
sions h = h0; h1; : : : ; hk : S1 # S2 ! M such that hi is obtained from hi � 1

by the pushing disk (D i ; B i ). Note that hk (S1 # S2) = � 1 # � �
2, where

� 1 # � �
2 is obtained by piping � 1 with � �

2 exactly in the same way as� 1

is piped with � 2, and then a �nal transverse pushing disk (Dk+1 ; Bk+1 )
transforms hk into f . Thus, we can assume thatthere is a �nite sequence
of transverse pushing disks leavingS1 � � 1 �xed that transform h = f # g
into f .

Take a good triangulation T of M with respect to f; g; g1; : : : ; gk ; h;
h1; : : : ; hk (see Theorem 22 and De�nition 23).

The triangulation T shellsf becausef is a �lling immersion, so consider
a T-growth f 0 of f such that the pipings of � 1 with the components of T do
not a�ect � 2 nor the piping between� 1 and � 2. Because� 1 and � 2 form a
mutually shellable �lling pair, in particular � 2 shells� 1. By Key Lemma 3,
we can takef 0 which also de�nes aT-growth h0 := f 0# g of h = f # g.

Consider now the sequence of immersionsh0 = h0
0; h0

1; : : : ; h0
k ; h0

k+1 = f 0

such that h0
i is obtained from h0

i � 1 by the pushing disk (D i ; B i ) for i =
1; : : : ; k + 1.

Note that by construction, each h0
i is a T-in
ating of hi . Because of the

choice ofT, for each i = 1 ; : : : ; k + 1 the triangulation T restricted to the
pushing ball B i collapses simplicially into g(D i ) = h0(D i ). By Key Lemma
2 this implies that h0

i is �lling homotopic to h0
i � 1 for each i = 1 ; : : : ; k + 1.

To sum up, h is �lling homotopic to h0 becauseh0 is a T-growth of h, h0

is �lling homotopic to f 0 = h0
k+1 by repeated application of Key Lemma 2

to the pushing disks (D i ; B i ) for i = 1 ; : : : ; k + 1, and f 0 is �lling homotopic

(a) (b)

Fig. 21
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(a) (b)

Fig. 22

(a) (b)

Fig. 23

to f becausef 0 is a T-growth of f . Therefore, h is �lling homotopic to f
(Figures 21{23).

By the same arguments,h is �lling homotopic to g and thus f and g are
�lling homotopic.

12. Diagrams. Let � � M be a Dehn surface inM , and let f : S ! M
be a parametrization of � . As pointed out in Section 1, the singular setS(f ),
together with the information about how its points are ident i�ed by f , is
what we call the Johansson diagram of� . We now give a more detailed
de�nition of the Johansson diagram. This new de�nition is equivalent to the
de�nition given in [P]. We now assume for simplicity that bot h S and M
are orientable.

Let 
 : S1 ! M be a parametrization of a double curve of� . Because
both S and M are orientable, the inverse image underf of 
 (S1) is the
union of two di�erent closed curves in S(f ). There are exactly two di�erent
immersions 
 1; 
 2 : S1 ! S such that f � 
 1 = f � 
 2 = 
 . In this situation,
we say that 
 1 and 
 2 are lifted curvesof 
 under f and that they are sisters
under f .
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A complete parametrization of the singularity set S(� ) of � is a set
D = f � 1; : : : ; � m g of immersions from S1 into M such that: (i) each � i

parametrizes a double curve of� ; (ii) � i (S1) 6= � j (S1) if i 6= j ; and (iii)
S(� ) =

S m
i =1 � i (S1). If D is a complete parametrization of S(� ) and we

denote by D the set of all lifted curves of the curves ofD, the map � :
D ! D that assigns to each curve ofD its sister curve under f de�nes
a free involution of D. The pair (D; � ) contains all the information about
the singular set S(f ) and about how the points of S(f ) are identi�ed by
the map f : two di�erent points A; B 2 S satisfy f (A) = f (B ) if and only
if there is a parametrized curve � 2 D and a z 2 S1 with A = � (z) and
B = � � (z).

The pair (D; � ) of the previous paragraph is the model we will presently
use to de�ne an (abstract) diagram. We have seen that every Dehn surface
has an associated Johansson diagram. Thus, we can de�ne anabstract di-
agram in a surfaceS as a collectionD of closed curves inS together with
a free involution � : D ! D such that the curves of D can be coherently
identi�ed by � . Now we want to know if this diagram (D; � ) is the Johansson
diagram coming from a transverse immersionf : S ! M of S into some
orientable 3-manifold M . If this occurs, we say that the (abstract) diagram
(D; � ) in the surfaceS is realizable(cf. [P]) and that the immersion f realizes
the diagram (D; � ).

Fig. 24

The �rst condition that must be satis�ed by the curves of D is that they
intersect transversely as in Figure 24 at some points ofS which are double
points of the diagram (D; � ). We de�ne two di�erent points A; B 2 S to
be related by the diagram (D; � ) if there is a curve � 2 D and a z 2 S1

with A = � (z) and B = � � (z). With this terminology, each double point
A of the diagram will be related to two points B; C of the surface S. If
(D; � ) is realizable,B; C must be di�erent and they must also be related by
the diagram (see Figure 24). Thus, the double points of the diagram must
be arranged in triplets of pairwise related points (the diagram is riveted in
the terminology of [C]). If f : S ! M realizes the diagram, each of these
triplets is the inverse image underf of a triple point of f . In Figure 25 we
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(a) (b)

Fig. 25

have labelled the double points of each diagram in such a way that related
points have the same label. We consider two diagrams onS to be equivalent
if they are related by a homeomorphism ofS or by reparametrization of the
curves of the diagram.

We now recall the main result of [J2] about the realizability of diagrams.
We will denote the diagram (D; � ) simply by D.

Assume that we are given an abstract diagramD on the surfaceS (Fig-
ure 25). For each � 2 D , we consider two neighbouring curves�; � 0 that
run parallel to � and lie on di�erent sides of � (Figure 25). We say that
the two neighbouring curves of the same curve of the diagram are opposite.
The neighbouring curves of the diagram can be taken such thatthey only
intersect near the double points of the diagram and exactly as depicted in
Figures 25 and 26. We letneighbouring pointsof the diagram be the inter-
section points of the neighbouring curves with the curves ofthe diagram.
With these assumptions, there appear four neighbouring points around each
double point of the diagram (Figure 26). Consider two related double points
A; B of the diagram. Because they are related, there is a curve� 2 D and
a z 2 S1 with A = � (z) and B = � � (z). If we orient the curves �; � � using
the standard orientation of S1, then near A the curve � passes through the
points A1; A; A 2 in this order, where A1; A2 are neighbouring points of the
diagram. In the same way, nearB the curve � � passes through the points
B1; B; B 2 in this order, where B1; B2 are neighbouring points of the dia-
gram. We assume that the neighbouring curves are so chosen that in this
situation A i is related by the diagram to B i for i = 1 ; 2 (see Figure 26).

Once we have drawn the neighbouring curves of the diagram as in the
previous paragraph, we give some de�nitions. If two neighbouring curves�; �
pass through related neighbouring points, as the curves� and � of Figure
26, we say that�; � are elementarily related. If we orient all the curves of the
diagram using the standard orientation of S1 and if we consider the surface
S oriented, for a curve � 2 D we say that the neighbouring curve of� lying
on the left-hand side of � is elementarily G-related to the neighbouring
curve of � � lying on the right-hand side of � � , and equivalently, that the
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Fig. 26

neighbouring curve of � lying on the right-hand side of � is elementarily
G-related to the neighbouring curve of� � lying on the left-hand side of � � .

Definition 35 ([J2]). Two neighbouring curves�; � of the diagram D
are in the same G-classif there exists a �nite sequence� = � 0; � 1; : : : ; � k = �
of neighbouring curves of the diagram such that� i � 1 is elementarily related
or elementarily G-related to � i for i = 1 ; : : : ; k.

In the diagrams of Figures 25(a) and 25(b) we have drawn in thesame
way the neighbouring curves in the same G-class. From the construction of
G-classes the following can be checked without di�culty:

Lemma 36. If D is a diagram in S and f : S ! M realizesD, then the
number of G-classes ofD is twice the number of connected components of
the singularity set S(f ).

The following theorem appears in [J2].

Theorem 37 ([J2]). A diagram D in the orientable surface S is re-
alizable by a transverse immersionf : S ! M of S into an orientable
3-manifold M if and only if there are no opposite neighbouring curves of the
diagram in the same G-class.

This theorem gives an easy method for checking realizability on a wide
class of diagrams. An analogous result is given in [C] for diagrams with no
closed components in surfaces with boundary.

Though Theorem 37 was stated in [J2] for diagrams in the 2-disk without
singular boundary points, as pointed out in [P] the proof canbe extended
directly to the case stated here. More exactly, Theorem 37 isalso true if we
remove from S a �nite number of open disks not touching the diagram.

The key to proving Theorem 37 is 2-sidedness. Every immersion f : S !
M with both S and M orientable is 2-sided, and this 2-sidedness is re
ected
in the neighbouring curves of the diagram. An immersionf : S ! M is 2-
sided if there exists an immersionF : S� [� 1; 1] ! M with F (X; 0) = f (X )
for every X 2 S. Put � = f (S). If f is 2-sided and transverse, we can choose
F as close tof as we want, such that in a neighbourhood of a double curve
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Fig. 27

of � the image of F looks like Figure 27. In that �gure, we can see that
the lower sheet� � = F (S � f� 1g) and the upper sheet� + = F (S � f 1g)
intersect � in some curves that behave exactly as the images underf of
the neighbouring curves of the Johansson diagramD of f . We can assume
without loss of generality that in this case, the neighbouring curves of the
diagram form exactly the inverse imagef � 1(� � [ � + ). In [J2] the following
proposition is proved.

Proposition 38. If two neighbouring curves ofD are in the same G-
class, then their images underf must be contained in the same sheet� �

or � + .

This implies that if D is realizable by a 2-sided immersion, there cannot
be two opposite neighbouring curves in the same G-class.

On the other hand, if there are not two opposite neighbouringcurves of
the abstract diagram D on S in the same G-class, we can make an identi�-
cation � on the thickened surfaceS � [� 1; 1] compatible with the diagram
so that neighbourhoods of sister curves are identi�ed as in Figure 27. The
quotient cM (D) = S � [� 1; 1]=� is a 3-manifold with boundary and it sat-
is�es: (i) the canonical projection � : S � [� 1; 1] ! cM (D) is an immersion;
(ii) if we take the inclusion j : S ! S � [� 1; 1] given by j (X ) = ( X; 0), then
� � j is a transverse immersion realizingD; and (iii) cM (D) is orientable. See
[J1] and [J2] for more details.

Going back to the immersion f , if it is a �lling immersion, the singu-
larity set S(f ) must be connected and by Lemma 36 this implies that the
Johansson diagramD of f has only two G-classes of neighbouring curves.
In this case, the manifold with boundary cM (D) constructed from D as in
the previous paragraphis uniquely determined byD and it is homeomorphic
to a regular neighbourhood of the �lling Dehn surface � � M . Becausef
is a �lling immersion the boundary of cM (D) must be a union of 2-spheres.
Pasting a 3-ball to cM (D) along each boundary component we obtain a
closed 3-manifoldM (D) homeomorphic to M . In this way one reconstructs
a 3-manifold M from a Johansson representation ofM .
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Now assume that we are given a realizable diagramD in an orientable
surface S and that we want to know if it is the Johansson diagram of a
�lling Dehn sphere of some 3-manifold. First of all, the diagram D must
�ll the surfaceS (that is, S � D must be a disjoint union of open 2-disks,
and D � f double points of Dg must be a disjoint union of open intervals),
and in particular the curves of D must compose a connected graph onS.
By Lemma 36 this implies that D has exactly two opposite G-classes of
neighbouring curves (becauseD is realizable). As in the previous paragraph,
the construction of cM (D) is uniquely determined by the diagram, and D is
the Johansson diagram of a �lling Dehn sphere of some 3-manifold M if
and only if @cM (D) is a collection of 2-spheres. If this occurs, we say that
D is a �lling diagram , and pasting a 3-ball to cM (D) along each boundary
component of cM (D) we obtain the required closed 3-manifoldM (D) that is
also uniquely determined by the diagramD. The construction of cM (D) can
be made in an algorithmic way. The diagrams of Figures 25(a),25(b) and
28(a) are all examples of (realizable) �lling diagrams. Thediagram of Figure
25(a) appears in the original paper [J1] and it is a Johanssonrepresentation
of the 3-sphere. Its corresponding �lling Dehn sphere isJohansson's sphere
(see Fig. 8 of [Sh]). The diagram of Figure 25(b) representsS2 � S1. The

(a) (b)

Fig. 28

diagram of Figure 28(a) is a diagram of a �lling Dehn torus � 0 with only one
triple point in a Euclidean 3-manifold M . This Euclidean manifold coincides
with the Seifert manifold M (S333) = ( Oo0 j � 1; (3; 1); (3; 1); (3; 1)) (see
[Mo1, p. 155]), and it is the result of identifying the faces of a solid cube in
pairs as in Figure 28(b). The �lling Dehn torus � 0 is the image in M of the
boundary of the cube under this identi�cation.

Figure 29 shows how the Haken moves (except for �nger move 0) for
immersions are re
ected in the Johansson diagrams. These are the diagram
moves, and we label them as the corresponding moves of immersions.If we
perform a diagram move in a �lling diagram, the move is �lling-preserving
if the resulting diagram is again a �lling diagram.
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(a) (b)

(c) (d)

(e) (f)

Fig. 29

Let D be a �lling diagram on the surface S, and let i : cM (D) ,! M (D)
be the inclusion map. Denote simply byf the immersion i � � � j : S ! M (D)
that realizes D, and put � = f (S).

If we perform a �lling-preserving diagram move in D, this move will
come from a �lling-preserving move of f and thus the new diagram D0 we
obtain satis�es M (D0) = M (D). As it happened with Haken moves, a �nger
move +1 or � 2 in the �lling diagram D will always be �lling-preserving,
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and a �nger move � 1 or a saddle move onD may or may not be �lling-
preserving.

The neighbouring curves of the diagram help us to perform thesaddle
move and the �nger move 1.

A saddle move can be performed in the diagramD every time we have
two arcs connecting related points of the diagram as in Figure 29(a). The
two neighbouring curves ofD that intersect any of the two arcs must belong
to the same G-class. If we have such a pair of arcs, becauseD is a �lling
diagram, (the images underf of) these arcs must bound a 2-gonw in M (D)�
� as in Figure 29(b), and we can perform a saddle move onf by pushing
along w any of the two sheets of� that bound w. This saddle move onf is
re
ected in the saddle move of the diagramD as depicted in Figure 29(a).

If we perform a �nger move +1 on the diagram D there appear a new
pair �; � � of sister curves of the diagram. The diagramD tells us how we
must identify the new double points (labelled 1 and 2 in Figure 29(c)) that
appear in the new diagramD0, but there is some ambiguity (that does not
occur for �nger moves 2) because there are two ways of identifying � with
� � (for a given orientation of � there are two possible orientations of� � ).
This ambiguity disappears when we draw the neighbouring curves of the
diagram D0, using the fact that related neighbouring points of the diagram
must lie on neighbouring curves of the same G-class.

We say that a �lling diagram D on a surfaceS is nullhomotopic if the
immersionf = i � � � j as above is nullhomotopic. The diagram of Figure 25(a)
is nullhomotopic (every diagram representingS3 must be nullhomotopic),
while the diagram of Figure 25(b) is not nullhomotopic.

The following result is a corollary of Theorem 2.

Corollary 39. Two nullhomotopic �lling diagrams on S2 represent
the same3-manifold if and only if they are related by a �nite sequence of
�lling-preserving moves.

13. Duplication. It is possible to obtain algorithmically a nullhomo-
topic Johansson representation ofM from any, nullhomotopic or not, Jo-
hansson representationD of M . We will call this process duplication of
diagrams and it can be made using Johansson's construction of cM (D) as
follows.

Let f : S2 ! M be a �lling immersion, and put � = f (S). Take a
thickening F : S2 � [� 1; 1] ! M of f as in the previous section, such
that near a double curve of � the image of F intersects itself as in Figure
27, and consider the upper sheet� + = F (S2 � f 1g) and the lower sheet
� � = F (S2 � f� 1g), which are two �lling Dehn spheres of M parallel to
� on both sides of� . The Johansson diagramD of f has two G-classes of
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neighbouring curves. We can take the neighbouring curves ofD such that
their images under f form the intersection of � with � � [ � + . We let the
upper (resp. lower) G-classbe the G-class of neighbouring curves ofD whose
image underf is contained in the upper (resp. lower) sheet� + (resp. � � ).

(a) (b)

Fig. 30

The Dehn spheres�; � + form a �lling pair of spheres in M . Near a
triple point P of � there will be eight triple points of the union � [ � +

as in Figure 30(a). In some situations the Dehn sphere� # � + that we
obtain by piping � with � + near P as in Figure 30(b) is a �lling Dehn
sphere ofM . Assume that this is the case. This �lling Dehn sphere� # � +

is the image underF of the boundary of S2 � [0; 1] with a small cylinder
connecting S2 � f 0g with S2 � f 1g removed, and thus it is nullhomotopic.

(a)

(b)

Fig. 31
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The Johansson diagram of� # � + can be obtained algorithmically from
the Johansson diagramD of � . Let f + : S2 ! M be the parametrization
of � + given by f + (X ) = F (X; 1).

First, remember that the upper G-class of neighbouring curves of D
forms the inverse image underf of � \ � + . A second observation is that
the Johansson diagram off + is a copy D+ of D. The third observation is
the following

Remark 40. The relative position of � with respect to � + is exactly
the same as that of� � with respect to � .

This remark implies that if we give the G-classes ofD+ the same name
as their respective copies inD, the lower G-class ofD+ forms the inverse
image of � \ � + under f + .

The Johansson diagramD # D+ of � # � + is what we call a duplicate
of D, and it can be obtained from D and D+ as indicated in Figure 31. In
Figure 31(a) we depict how the cube of Figure 30(a) is seen in the Johans-

(a)

(b)

(c)

Fig. 32
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son diagrams of� (grey) and � + (white). In both diagrams we draw the
lower G-class and the upper G-class similarly. As an examplewe apply this
construction to the diagram of Figure 25(b) in Figure 32.

It is not always possible to obtain a triple point of � such that if we pipe
� with � + near P as in Figure 30(b) the resulting Dehn sphere� # � +

�lls M , but we can always deform� by �lling-preserving movesto obtain an-
other �lling Dehn sphere � 0with a triple point where the (�lling-preserving)
duplication is possible. This deformation can be made very easily: for ex-
ample, if P is one of the two triple points that appear after a �nger move
+1, then duplication is possible at P.

Duplication allows us to give a more general version of Corollary 39:

Theorem 41. Two �lling diagrams on S2 represent the same3-manifold
if and only if their duplicates are related by a �nite sequence of �lling-
preserving moves.

14. Miscellany

14.1. Invariants of 3-manifolds. The �rst immediate application of Co-
rollary 39 is to the search of invariants of 3-manifolds. If we could assign to
each nullhomotopic diagram onS2 an object which remains invariant un-
der �lling-preserving diagram moves, then this object de�nes a 3-manifold
invariant. If ' denotes such an invariant, for computing' for a given man-
ifold M we would need a nullhomotopic Johansson representation ofM . If
we have an arbitrary Johansson representationD of M and we do not know
if it is nullhomotopic, duplicating D we will be able to compute ' from D.
However, duplication produces very complicated diagrams (the number of
triple points of a duplication of D is eight times the number of triple points
of D minus 2), and for this reason it should be interesting to knowhow to
decide if a given �lling diagram in S2 is nullhomotopic or not. This is an
open problem. In [Mo2] an algorithm is indicated to obtain a nullhomotopic
Johansson representation ofM from any Heegaard diagram ofM . A simpler
algorithm is studied in detail in [V1].

14.2. The diagram group. Let D be a realizable diagram onS2, and let
f : S2 ! M be a transverse immersion parametrizingD. There is an easy
way to obtain a presentation of the fundamental group of � := f (S2) in
terms of the diagram D. If D = f � 1; : : : ; � ng, then we de�ne the diagram
group

� (D) = j� 1; : : : ; � n : � 1 � � � 1 = � � � = � n � � � n = r1 = � � � = r k = 1 j;

where the relators r1; : : : ; r k are given by the triplets of pairwise related
double points of D. If P1; : : : ; Pk are the triple points of � , and Pj is the
triple point P of Figure 24, which is re
ected in the triplet of D of the same
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Figure 24, then the associated relator is

r j = ��
:

It can be proved that � 1(� ) is isomorphic to the diagram group [V2] and
thus, if � �lls M the diagram group gives a presentation of the fundamental
group of M . This presentation is due to W. Haken (see Problem 3.98 of [K]),
and we have not seen it in printed form.

With this presentation, the following (unpublished) theor em of W. Haken
can be proved (see also [Ha]). IfD is a connected realizable diagram in
S2 with only two double curves �; � � , then both are simple or both are
nonsimple.

Theorem 42. If � and � � are simple, then � (D) ' Z3, and if both are
nonsimple, then � (D) ' 1.

14.3. Checking �llingness. As we have said, to test if a realizable dia-
gram D is a �lling diagram is to check if @cM (D) is a collection of 2-spheres.
Though the complete construction of the manifold with boundary cM (D)
from the diagram D can be made in an algorithmic way using Johansson's
construction, it is interesting to have faster methods for checking �llingness.
The following result will give us a method for saving time in this process. It
can be proved easily using Euler characteristic techniques.

Lemma 43. A realizable diagramD on the genusg surface S is a �lling
diagram if and only if it �lls S and @cM (D) has p + � (S) connected compo-
nents, where p is the number of triplets (of pairwise related double points)
of D.

The diagram group can help us also in checking �llingness. InLemma 4.9
of [He], it is proved that if a 3-manifold with boundary cM has a boundary
component which is not a 2-sphere, thencM has a double cover. Thus,

Lemma 44. If D is a realizable connected diagram inS2 and the diagram
group � (D) has no subgroup of index2, then D is a �lling diagram.

This lemma together with Theorem 42 gives the following.

Corollary 45. If D is a realizable connected diagram inS2 with only
two curves, then it is a �lling diagram.

14.4. Filling eversion. Theorem 2 applies not only to �lling Dehn spher-
es but to their parametrizations. Let f : S2 ! M be a �lling immersion, and
consider also the immersiong : S2 ! M given by g = f � a, where a now
denotes the antipodal map ofS2. In this situation, the fact that f (S2) is
�lling homotopic to g(S2) is trivial because they are the same Dehn sphere
of M . Theorem 2 asserts that f is �lling homotopic to g, which is now
a nontrivial fact. This is a �lling version of the problem of e version of the
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2-sphere (see [M-P]). In [M-B] it is proved that every eversion of the 2-sphere
in S3 has at least one quadruple point (compare also [No]). Using this, it
can be seen that any parametrizationf of the Johansson sphere and its
antipodal parametrization g cannot be turned into each other by using only
�nger moves 1 and �lling-preserving saddle moves. This means that �nger
move 2 cannot be dispensed with in the statement of Theorem 2.

14.5. The nonorientable case. In our discussion about diagrams in Sec-
tion 12 we have assumed that surfaces and 3-manifolds are orientable. If
f : S ! M is a transverse immersion andS or M (or both) are nonori-
entable, then the inverse image underf of a double curve� of f may be a
unique closed curve� in S such that � is a 2-fold covering of� (see [J1]).
For this reason, in this general case we need a more general de�nition of ab-
stract diagram. The one given in Section 12 can be adapted to this general
case by allowing anonfree involution � and requiring that the curves � of
the diagram with � � = � commute with the antipodal map of S1. Another
fact is that in the general case, the immersionf might be 1-sided, and thus
the proof of Theorem 37 breaks down.

Johansson proves in [J1] a theorem characterizing diagramsin S2 which
are realizable in 3-manifolds (orientable or not). It is an interesting prob-
lem to generalize this last theorem of Johansson to cover diagrams in any
surface and immersions in general 3-manifolds (orientableor not). This is
certainly not very di�cult but it is an intermediate step to g eneralize our
theory of �lling immersions to cover general Dehn surfaces (orientable or
not) immersed in general 3-manifolds (orientable or not). This is an open
program.

14.6. A question of R. Fenn. The following question was asked to us by
R. Fenn (see also [F-R]):

Do �lling Dehn surfaces in M lift to embeddings in M � [0; 1]?

We do not know the complete answer to this question.
In [Gi] an algorithm is given for deciding if a Dehn surface� in R3 lifts

to an embedding inR4 in terms of the Johansson diagram of� . In the same
paper there is an example of a Dehn sphere� 1 (that we will call Giller's
sphere) in R3 that does not lift to an embedding in R4. The Johansson
diagram of � 1 has only two nonsimple curves, and by Corollary 45,� 1 will
be a �lling Dehn sphere of S3. On the other hand, Johansson's example of
Figure 25(a) represents a liftable (to an embedding inR4) �lling Dehn sphere
of S3. Thus in S3 there are liftable and nonliftable �lling Dehn spheres.

A cleaner version of Giller's algorithm is Theorem 3.2 of [C-S]. This
theorem can be easily adapted to the general case (see [V2]),giving a the-
orem that determines when a Dehn surface inM lifts to an embedding in
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M � [0; 1]. If we apply this result to the �lling Dehn spheres that ari se from
the algorithm given in [V1], it can be seen that every 3-manifold M has a
nullhomotopic �lling Dehn sphere that lifts to an embedding in M � [0; 1].

It remains to investigate if every 3-manifold has a nonliftable �lling Dehn
sphere. Giller's sphere� 1 is a Dehn sphere inR3. It is clear that we can
choose a closed 3-ballB1 in R3 such that � 1 � B1. If M is an arbitrary
3-manifold, taking an embedding from B1 into M we will obtain a copy
� 0

1 of � 1 living inside M . By Giller's algorithm, \liftability" depends on the
Johansson diagram, and the Johansson diagrams of� 0

1 and � 1 are identical.
Thus, � 0

1 is a nonliftable Dehn sphere inM , but � 0
1 does not �ll M unless

M = S3. When M is not S3, we can perform a piping connecting� 0
1 with a

nullhomotopic �lling Dehn sphere of M . We conjecture that this can be done
in such a way that the resulting Dehn sphere is a nonliftable nullhomotopic
�lling Dehn sphere of M .

14.7. The triple point spectrum. The minimal number of triple points of
�lling Dehn surfaces of a 3-manifold M satisfying some particular property
can be in some cases a topological invariant ofM . We de�ne the triple point
number t(M ) of a closed orientable 3-manifoldM as the minimal number
of triple points of all its �lling Dehn surfaces, and the genusg triple point
number tg(M ) of M as the minimal number of triple points of all its genusg
�lling Dehn surfaces. The ordered collection (t0(M ); t1(M ); t2(M ); : : : ) of all
the genusg triple point numbers of the 3-manifold M for all g � 0 is what we
call the triple point spectrum T(M ) of M . We can make similar de�nitions
imposing topological restrictions on the �lling Dehn surfaces considered.
For example, we can de�ne thenullhomotopic triple point number of M as
the minimal number of triple points of all its nullhomotopic �lling Dehn
surfaces; in a similar way thenullhomotopic genusg triple point number
or the nullhomotopic triple point spectrum can be de�ned. All of them are
topological invariants of the 3-manifold and give a measureof the complexity
of the manifold in the same way as the Heegaard genus, for example. If we
have a �lling Dehn surface � in a 3-manifold, using pipings as in Figure
19(b), we can perhaps reduce the number of triple points of� , but increasing
the genus of the �lling Dehn surface. So there is some relation between the
di�erent genus g triple point numbers that would be interesting to clarify.

Any Dehn sphere in a closed orientable 3-manifold has an evennumber
of triple points ([Ha, p. 105]). This is not the case for genusg > 0 Dehn
surfaces, as can be seen in the example given by Figure 28(a).This means
that if we want a set of moves to relateall Dehn surfaces (of any genus) of
any 3-manifold, the Homma{Nagase moves introduced here, together with
pipings, do not su�ce because all of them are operations thatpreserve the
parity of the number of triple points.
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We say that a genusg �lling Dehn surface � of a 3-manifoldM is minimal
if there is no other genusg �lling Dehn surface of M with fewer triple points
than � has. Minimal �lling Dehn surfaces, in particular minimal �l ling Dehn
spheres, should have interesting properties, and their classi�cation is another
interesting problem. The classi�cation of minimal Dehn spheres has been
solved for S3 in [Sh]. In that work, A. Shima gives in a di�erent context six
examples of Dehn spheres inS3 with only two triple points. Three of these
six examples �ll S3 (one of them is Johansson's sphere of Figure 25(a)) and
they are minimal because, as we have said, any �lling Dehn sphere must
have at least two triple points. It can be deduced from the main theorem of
[Sh] that these three examples are the unique possible minimal �lling Dehn
spheres inS3.

Finally, we want to introduce a last de�nition. We say that a � lling
Dehn surface� in a 3-manifold M is irreducible if the only allowable �lling-
preserving moves on� are �nger moves +1 or +2. That is, � is irreducible
if any Dehn surface � 0 which can be obtained by performing a �lling-
preserving move on� has more triple points than � . Johansson's sphere
is not irreducible, while Example 1.3 of [Sh] is irreducible. This means that
minimality does not imply irreducibility. We are also inter ested in the con-
verse question: are there examples of nonminimal irreducible �lling Dehn
surfaces?
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