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A set of moves for Johansson representation of 3-manifolds

by

Rubén Vigara (Madrid)

Abstract. A Dehn sphere Σ in a closed 3-manifold M is a 2-sphere immersed in
M with only double curve and triple point singularities. The Dehn sphere Σ fills M if it
defines a cell decomposition of M . The inverse image in S

2 of the double curves of Σ is the
Johansson diagram of Σ and if Σ fills M it is possible to reconstruct M from the diagram.
A Johansson representation of M is the Johansson diagram of a filling Dehn sphere of M .
Montesinos proved that every closed 3-manifold has a Johansson representation coming
from a nullhomotopic filling Dehn sphere. In this paper a set of moves for Johansson
representations of 3-manifolds is given. This set of moves suffices for relating different
Johansson representations of the same 3-manifold coming from nullhomotopic filling Dehn
spheres. The proof of this result is outlined here.

1. Introduction. Throughout the paper all 3-manifolds are assumed
to be closed, that is, compact, connected and without boundary, and all
surfaces are assumed to be compact and without boundary. A surface may
have more than one connected component. We will denote a 3-manifold by
M and a surface by S.

Let M be a 3-manifold.

A subset Σ ⊂ M is a Dehn surface in M (see [P]) if there exists a
surface S and a transverse immersion f : S → M such that Σ = f(S). In
this situation we say that f parametrizes Σ. If S is a 2-sphere then Σ is a
Dehn sphere. For a Dehn surface Σ ⊂ M , its singularities are divided into
double points (Figure 1(a)), and triple points (Figure 1(b)), and they are
arranged along double curves (see Section 2 below for definitions). A Dehn
surface Σ ⊂ M fills M [Mo2] if it defines a cell decomposition of M in
which the 0-skeleton is the set of triple points of Σ; the 1-skeleton is the set
of double and triple points of Σ; and the 2-skeleton is Σ itself. Filling Dehn
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(a) (b)

Fig. 1

spheres of 3-manifolds are defined in [Mo2] following ideas of W. Haken (see
[Ha]). In [F-R] it is proved that every closed orientable 3-manifold has a
Dehn sphere whose complement is a union of open 3-balls. In [Mo2] the
following theorem is proved (see also [V1]):

Theorem 1 ([Mo2]). Every closed orientable 3-manifold has a nullho-

motopic filling Dehn sphere.

A filling Dehn sphere is nullhomotopic if one (and hence any) of its
parametrizations is nullhomotopic, that is, homotopic to a constant map.

Let Σ ⊂ M be a filling Dehn sphere and f : S2 → M a transverse
immersion parametrizing Σ. In this case we say that f is a filling immersion.
The inverse image by f in S2 of the set of double and triple points of Σ is
the singular set of f . The singular set of f , together with the information
on how its points are identified by f in M , is the Johansson diagram of Σ
in the terminology of [Mo2]. As stated in [Mo2], for a given diagram in S2

it is possible to find if it is the Johansson diagram for a filling Dehn sphere
Σ in some 3-manifold M . If this is the case, it is also possible to reconstruct
such an M from the diagram. Thus, Johansson diagrams are a suitable way
for representing all closed, orientable 3-manifolds and it is interesting to
further study them. For a 3-manifold M , we say that a Johansson diagram
of a filling Dehn sphere of M is a Johansson representation of M (see [Mo2]).
In [Mo2] an algorithm is given for obtaining a Johansson representation of a
closed orientable 3-manifold M from any Heegaard diagram of M . A simpler
algorithm is given in [V1]. In both papers, the Johansson representations
obtained come from nullhomotopic filling Dehn spheres of M .

We will deal here with the problem of deciding how different Johans-
son representations of the same 3-manifold are related to each other. With
this problem in mind, we study how different filling Dehn spheres of the
same 3-manifold are related to each other. In [V2], the following theorem is
proved.

Theorem 2. Let M be a closed 3-manifold. Let f, g : S2 → M be two

nullhomotopic filling immersions. Then there is a finite sequence of filling

immersions f = f0, f1, . . . , fn = g such that for each i = 0, . . . , n − 1 the
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immersions fi and fi+1 differ by an ambient isotopy of S2, or by an ambient

isotopy of M , or by one of the moves depicted in Figure 2.

(a)

(b)

(c)

Fig. 2

This theorem gives a complete set of moves for relating Johansson rep-
resentations of the same 3-manifold coming from nullhomotopic filling Dehn
spheres (see Corollary 39).

The detailed proof of Theorem 2 is quite long, and it uses both smooth
and combinatorial techniques. In this paper we will give an outline of this
proof. The paper is organized as follows.

In Section 2, we give some preliminary definitions about Dehn surfaces
and cell complexes. Most of Section 3 and Sections 4 to 10 introduce some
partial results needed to sketch the proof of Theorem 2. This sketch is given
in Section 11. A reader wishing to skip the details can jump directly from
Section 3 to Section 12.

The proof of Theorem 2 in [V2] relies on three Key Lemmas that we
will state here without proof. In Section 3 we present some results about
regular homotopies of immersions of surfaces in 3-manifolds, and we intro-
duce the concept of filling-preserving moves and filling homotopy for filling
immersions. Key Lemma 1 is stated in Section 4, where we define the mod-
ifications of immersions of surfaces in 3-manifolds by pushing disks. This
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kind of modification was defined in [H-N1], and Key Lemma 1 asserts that
certain regular homotopies can be decomposed into pushing disks with some
nice properties.

In Section 5 we introduce a surgery method for modifying Dehn surfaces
that will be useful later, and in Section 6 we present three examples of
modifications of filling Dehn surfaces that can be done using only the filling-
preserving moves defined in Section 3.

In Section 7 we introduce some combinatorial tools that will be essen-
tial in Key Lemmas 2 and 3: the concept of shelling of a cell complex and
the concept of simplicial collapsing for a simplicial complex. These concepts
will appear almost everywhere in Sections 8 to 11. In the same Section 7
we introduce smooth triangulations of manifolds, which gives us a theoret-
ical basis for applying the previously defined combinatorial concepts to our
case.

We explain in Section 8 how any smooth triangulation T of a 3-manifold
M can be “inflated” to obtain a filling Dehn sphere of M . This inflated
sphere is transverse to any Dehn sphere of M that lies in the 2-skeleton
of T . When the triangulation T of M is “sufficiently good” with respect
to a filling Dehn surface Σ of M we can use it to obtain from Σ other
filling surfaces “as complicated as we want” using only filling-preserving
moves. These constructions are used in Key Lemma 2, which is also stated
in Section 8. Every pushing disk transformation (as defined in Section 4) of
a Dehn surface can be performed by regular homotopy. For a given pushing
disk transformation, Key Lemma 2 proposes a new scenario in which the
pushing disk transformation can be performed by filling homotopy.

In Section 9 we discuss briefly how two filling Dehn spheres of the same
3-manifold can intersect each other, and this discussion is used in Section
10, where we state Key Lemma 3. It ensures that when two filling Dehn
surfaces intersect in a “sufficiently good” way, the inflating constructions
introduced in Section 8 can be made simultaneously for one of them and for
the union of both.

All the constructions that we have qualified above as “sufficiently good”
are intimately related to the concept of shelling.

In Section 12 we translate Theorem 2 into Johansson representations
of 3-manifolds and we give some examples, and in Section 13 we explain
briefly how we can obtain a nullhomotopic Johansson representation of a
3-manifold M from any Johansson representation of M .

In the final Section 14 we give a brief discussion of some related problems.
This paper is part of the Ph.D. thesis [V2] of the author, which has

been written under the supervision of Prof. J. M. Montesinos. I am very
grateful to him for all his valuable advice, specially for his suggestions and
comments during the writing of this paper and his careful reading of the
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previous versions of this manuscript. I would also like to thank the referee
for his suggestions and the editor for pointing out some misprints in the
final version of this paper.

2. Preliminaries. Because our starting point is Theorem 4 below, we
will work in the smooth category. Nevertheless, if one could check that the
analogue of Theorem 4 in the PL category is true (we do not know of any
reference), all our constructions have their translation to the PL case and
so Theorem 2 would also be true in the PL case.

Thus, all the manifolds are assumed to be equipped with a smooth struc-
ture and maps between two manifolds are assumed to be smooth.

For the standard definitions of differential topology (immersions, trans-
versality, etc.), see [Hi] or [G-P], for example. For a general treatment of PL
topology we refer to [Hu], for example.

For a subset X of a manifold, we denote the interior, closure and bound-
ary of X by int(X), cl(X) and ∂X respectively.

Let A and B be two sets. For a map f : A → B the singular values

or singularities of f are the points x ∈ B with #{f−1(x)} > 1, and the
singular points of f are the inverse image points under f of the singularities
of f . The singular set S(f) of f is the set of singular points of f in A, and
the singularity set S(f) of f is the set of singularities of f in B. Of course
f(S(f)) = S(f). This notation is similar to but slightly different from that
of [Sh].

From now on, M will denote a 3-manifold as at the beginning of Section 1.

Let Σ be a Dehn surface in M . Let S be a surface and f : S → M
a transverse immersion parametrizing Σ. In this case we say that S is the
domain of Σ. For any x ∈ M we have #{f−1(x)} ≤ 3 (see [He]). The
singularities of f are divided into double points of f , with #{f−1(x)} = 2,
and triple points of f , with #{f−1(x)} = 3. A small neighbourhood of a
double or a triple point looks as in Figures 1(a) and 1(b) respectively. The
singularity set S(f) of f , the set of triple points of f , and the domain S (up
to homeomorphism) do not depend upon the parametrization f of Σ. We
define the singularity set of Σ, denoted by S(Σ), to be the singularity set of
any parametrization of Σ. A double curve of Σ is the image of an immersion
γ : S1 → M contained in the singularity set of Σ (see [Sh]). The singularity
set of Σ is the union of the double curves of Σ. Because S is compact, Σ
has a finite number of double curves. Following [Sh], we denote by T (Σ) the
set of triple points of Σ. The Dehn surface Σ is embedded if its singularity
set is empty. A standardly embedded 2-sphere in M is a 2-sphere embedded
in M that bounds a 3-ball in M .
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A component of Σ is the image under f of a connected component of
the domain S. Note that the components of Σ may not coincide with the
connected components of Σ.

A Dehn surface Σ in M fills M if it defines a cell decomposition of M
as indicated in Section 1. This definition generalizes to general surfaces a
definition given in [Mo2] for Dehn spheres.

The following trivial proposition gives an equivalent definition of filling
Dehn surface.

Proposition 3. Σ fills M if and only if

(1) M − Σ is a disjoint union of open 3-balls,
(2) Σ − S(Σ) is a disjoint union of open 2-disks,
(3) S(Σ) − T (Σ) is a disjoint union of open intervals.

The following statements and definitions for cell complexes are also valid
for simplicial complexes. We consider the cells of a cell complex as open cells.
If K is a cell complex, and ε, ε′ are two cells of K, we write ε < ε′ when ε
is a face of ε′, that is, when cl(ε) ⊂ cl(ε′). The cells ε and ε′ are incident

if ε < ε′ or ε′ < ε, and adjacent if cl(ε) ∩ cl(ε′) 6= ∅. For a cell ε of K, we
define the (open) star of ε as the union of all cells ε′ of K with ε < ε′. The
star of ε is denoted by star(ε).

If ε is a cell of the cell complex K, and P is a vertex (0-cell) of ε, we say
that ε is self-adjacent at P if a regular neighbourhood of P in K intersects ε
in more than one connected component. Otherwise we say that ε is regular

at P . We say that ε is regular if it is regular at every vertex of ε. The complex
K is regular at P if every cell of K incident with P is regular at P , and K
is regular if every cell of K is regular (cf. [Ma]). A filling Dehn surface Σ of
M is regular (regular at a triple point) if the cell decomposition of M that
defines Σ is regular (at this triple point).

If Σ is a filling Dehn surface, then a connected component of M − Σ
is called a region of M − Σ, and a connected component of Σ − S(Σ) is
sometimes called a face of Σ.

3. Filling homotopy. An ambient isotopy of a manifold N is a map
ς : N × [0, 1] → N such that ςt = ς(·, t) is a diffeomorphism for each t ∈ [0, 1]
and ς0 = idN . Two immersions f, g : S → M are ambient isotopic in M if
there is an ambient isotopy ς of M with ς1 ◦f = g. The same immersions are
ambient isotopic in S if there is an ambient isotopy ς of S with f ◦ ς1 = g.
We generally say that f and g are ambient isotopic if they are related by
ambient isotopies of S and ambient isotopies of M .

Two immersions f, g : S → M from a surface S into the 3-manifold M
are regularly homotopic if there is a homotopy H : S × [0, 1] → M with
H(·, 0) = f and H(·, 1) = g such that H(·, t) is an immersion for each
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t ∈ [0, 1]. The homotopy H defines a smooth path of immersions from S
into M having f and g as its endpoints. If f and g are regularly homotopic,
they are indeed homotopic. The converse is not true in general. Nevertheless,
an immediate corollary of Theorem 1.1 in [H-H] or Theorem 6 in [L] is:

Theorem 4. Two immersions from S2 into a 3-manifold are regularly

homotopic if and only if they are homotopic.

In particular, two parametrizations of nullhomotopic filling Dehn spheres
of M must be regularly homotopic.

In [H-N1] a set of elementary deformations for immersions of surfaces
in 3-manifolds is introduced. This set of moves is composed by the saddle

move (called an elementary deformation of type VI in [H-N1]) of Figure 2(a),
together with the moves depicted in Figure 3. We will call these elementary
deformations the Homma–Nagase moves. In [H-N2] the following is proved:

Theorem 5. Two transverse immersions from a closed surface S into

a 3-manifold M are regularly homotopic if and only if we can deform them

into each other by a finite sequence of Homma–Nagase moves, together with

ambient isotopies of M .

The proof of this theorem in [H-N2] is in the PL category. A proof of
the smooth version is indicated in [R]. An equivalent result, also in the
differentiable case, is Theorem 3.1 of [H-H].

We will propose another set of moves (Haken moves), which is the result
of substituting in the Homma–Nagase set of moves the moves of Figures
3(b) and 3(c) by the finger moves 1 and 2 depicted in Figures 2(b) and 2(c)
respectively. The following lemma can be easily proved:

Lemma 6. The Homma–Nagase set of moves and the Haken set of moves

are equivalent.

To prove this lemma it must be shown that each Homma–Nagase move
can be obtained using Haken moves (and ambient isotopies) and vice versa.
Thus, in Theorem 5 we can substitute the Homma–Nagase moves by the
Haken moves.

The Haken moves are more suitable than the Homma–Nagase moves
when dealing with filling Dehn surfaces. In the Haken set of moves, the move
of Figure 3(a) is called a finger move 0. For i = 0, 1, 2 a finger move i is a
finger move +i when it happens from left to right in the figure, and a finger
move −i if it happens in the opposite sense. A saddle move is equivalent
(symmetric) in both senses.

Lemma 7. Let f, g : S → M be two immersions. Then:

(1) if f and g are related by a finger move 0, then one of them is not a

filling immersion;
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(a)

(b)

(c)

Fig. 3

(2) if g is obtained from f by applying a finger move +1 or ±2 and f is

a filling immersion, then g is a filling immersion;
(3) if g is obtained from f by applying a finger move −1 or a saddle

move and f is a filling immersion, then g is not necessarily a filling

immersion.

This lemma can be proved by inspection, using the characterization of
filling immersions given by Proposition 3.

Lemma 7 inspired the following definition. If f : S → M is a filling im-
mersion and we modify f by a Haken move, we say that the move is filling-

preserving if the immersion g we get after the move is again a filling immer-
sion. In this terminology, Lemma 7 states that a finger move 0 cannot be
filling-preserving; that finger moves +1 and ±2 are always filling-preserving;
and that finger moves −1 and saddle moves are sometimes filling-preserving
and sometimes not. The next step is the following definition:

Definition 8. Let f, g : S → M be two filling immersions. We say that
f and g are filling homotopic if there is a finite sequence f =f0, f1, . . . , fn =g
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of immersions such that for each i = 0, . . . , n−1 the immersions fi and fi+1

are ambient isotopic or related by a filling-preserving move.

Note that in the above definition, all f0, . . . , fn are filling immersions. In
these terms, Theorem 2 can be restated as follows:

Theorem 9. If f, g : S2 → M are nullhomotopic filling immersions,
then they are filling homotopic.

This gives a partial answer to the following conjecture:

Conjecture 10. Regularly homotopic filling immersions of arbitrary

surfaces are filling homotopic.

The proof of Theorem 2 given in [V2] and sketched here can perhaps be
adapted to a more general case but we still do not know how to do this.

4. Pushing disks. Let f, g : S → M be two immersions. Assume that
there is a closed disk D ⊂ S such that:

(1) f and g agree in S − D;
(2) f |D and g|D are both embeddings;
(3) f(D) and g(D) intersect only in f(∂D) = g(∂D);
(4) f(D) ∪ g(D) bounds a 3-ball B in M (Figure 4).

Then we say that g is obtained from f by pushing the disk D through B
or along B (see Figure 4). The pair (D, B) is a pushing disk (see [H-N1]). In
the pushing disk (D, B), the disk D is the pushed disk, B is the pushing ball

and we also say that f(∂D) = g(∂D) is the equator of B, denoted by eq(B).
If both f and g are transverse immersions, we say that the pushing disk
(D, B) is transverse. In the pushing disk (D, B), the “rest” of the immersed
surface, f(S − D), may intersect B in any manner (Figure 4(b)). If we are
given the immersion f and the pushing disk (D, B), then the immersion g
is well defined up to an ambient isotopy of S.

(a) (b)

Fig. 4

We will say that two (transverse) immersions f, g : S → M are regularly

homotopic by (transverse) pushing disks if there is a finite sequence f =
f0, f1, . . . , fn = g of (transverse) immersions such that fi is obtained from
fi−1 by a pushing disk for i = 1, . . . , n.
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The first step in the proof of Theorem 2 is the following lemma, whose
proof is in [V2].

Lemma 11 (Key Lemma 1). Let f, g : S2 → M be two nullhomotopic

immersions such that f is transverse and g(S2) is a standardly embedded

2-sphere in M . Assume that there exists a closed disk D ⊂ S2 such that f
and g agree over D. Then f and g are regularly homotopic by transverse

pushing disks keeping D fixed.

Note that the Homma–Nagase moves and the Haken moves are special
kinds of transverse pushing disks. However, Theorem 5 decomposes a reg-
ular homotopy into transverse pushing disks and ambient isotopies of M .
Disposing of this ambient isotopy is the hardest part in the proof of Key
Lemma 1 in [V2]. Just as an immersion behaves locally as an embedding, a
regular homotopy behaves locally as an isotopy. Using this, the proof of Key
Lemma 1 will be obtained after a detailed study of isotopies of embedded
surfaces in 3-manifolds, and it is mainly inspired by [H-Z].

5. Spiral piping. In [Ba] it is explained how to modify Dehn surfaces by
surgery, also called piping (see [R-S, p. 67]). We now introduce a special kind
of piping that will be useful later. Let Σ be a Dehn surface in M , and let P be
a triple point of Σ. If P is the triple point depicted in Figure 5(a), consider
the surface Σ′ that is exactly identical with Σ except in a neighbourhood of
P that can be as small as necessary. In this neighbourhood of P , the Dehn
surface Σ′ looks like Figure 5(b), and we say that Σ′ is obtained from Σ by
a spiral piping around P .

(a) (b)

Fig. 5

Proposition 12. In this situation, if Σ is a (regular) filling Dehn sur-

face of M , then Σ′ is a (regular) filling Dehn surface of M .

See [V2] for more details.
If the two sheets of Σ that become connected by the piping (the two

vertical sheets in Figure 5) belong to different components Σ1 and Σ2 of Σ,
then after performing the spiral piping these two components of Σ become
a unique component Σ1 # Σ2 of Σ′.
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If S is the domain of Σ, and S′ is the domain of Σ′, it is easy to check
that S′ is the result of removing the interior of two small closed disks δ1, δ2

from S and identifying their boundaries in an appropriate way. If δ1 and δ2

belong to different connected components S1, S2 of S respectively, then S′ is
the result of replacing the union S1∪S2 in S by the connected sum S1 #S2.

The following definition and theorem appear in [V1].

Definition 13. A Dehn surface Σ ⊂ M that fills M is called a filling

collection of spheres in M if its domain is a disjoint union of a finite number
of 2-spheres.

Theorem 14. If M has a filling collection of spheres Σ, then M has

a filling Dehn sphere Σ′. If each component of Σ is nullhomotopic, we can

choose Σ′ to be nullhomotopic.

Proof. Let Σ be a filling collection of spheres in M , and let Σ1, . . . , Σm

be the different components of Σ.
The 2-skeleton of any cell decomposition of M is connected because M is

connected. Therefore, Σ is connected. Thus, we can assume that Σ1, . . . , Σm

are ordered in such a way that Σ1 ∪ · · · ∪ Σk is connected for every k ∈
{1, . . . , m}. In particular, Σk intersects Σ1∪· · ·∪Σk−1 for all k ∈ {2, . . . , m}.

Because Σ1 ∩ Σ2 is nonempty, it contains a double curve of Σ, and
because Σ fills M , this double curve contains at least one triple point P
of Σ. Connecting Σ1 and Σ2 near P by a spiral piping, we obtain a new
Dehn sphere Σ1 # Σ2 such that (Σ1 # Σ2) ∪ Σ3 ∪ · · · ∪ Σm still fills M .

Because Σ3 intersects Σ1 ∪ Σ2, it intersects Σ1 # Σ2. Where Σ1 # Σ2

and Σ3 intersect transversely there is a triple point of Σ (and therefore of
(Σ1 #Σ2)∪ · · ·∪Σm). We can perform another piping operation (as before)
obtaining a new Dehn sphere Σ1 #Σ2 #Σ3 such that the new Dehn surface
(Σ1 # Σ2 # Σ3) ∪ Σ4 ∪ · · · ∪ Σm still fills M .

Inductively, for k > 3, we obtain a Dehn sphere Σ1 # · · · # Σk piping
Σ1 # · · ·#Σk−1 with Σk around a triple point of Σ lying in the intersection
of Σ1 # · · ·#Σk−1 and Σk, with the property that (Σ1 # · · ·#Σk)∪Σk+1 ∪
· · · ∪ Σm still fills M .

Repeating this operation we finally obtain a Dehn sphere Σ′ = Σ1 #
· · · # Σm that fills M .

If all components of Σ are nullhomotopic, this implies that we can deform
the Dehn sphere Σm continuously to a point. If gm : S2 → M is an immersion
parametrizing Σ′, we can use this deformation to construct a homotopy
between gm and an immersion gm−1 parametrizing Σ1 # · · ·# Σm−1. In the
same way, we can construct a homotopy between gm−1 and an immersion
gm−2 parametrizing Σ1 # · · · # Σm−2. Repeating this process, we finally
conclude that gm is homotopic to an immersion g1 parametrizing Σ1 and so
gm is nullhomotopic.
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(a) (b)

Fig. 6

Another property of spiral pipings is that they do not disturb filling

homotopies, as stated in the following lemma, which we give without proof:

Lemma 15. Let f, g : S → M be two filling immersions such that g is

obtained from f after a finger move +2 through the triple point P of f . Let

S′, f ′, g′ be the surface and immersions that come from S, f, g respectively

after performing a spiral piping around P . Assume that this spiral piping

is as small as necessary , in comparison with the finger move (Figure 6(b)).
Then f ′ and g′ are filling homotopic.

In the situation of this lemma we say that the immersions f ′, g′ are
related by a piping passing move through P .

6. What can be done using filling-preserving moves. We will
give two examples of operations in a filling Dehn surface using only filling-
preserving moves.

Let Σ be a filling Dehn surface of the 3-manifold M .

6.1. Inflating a double point. Let P be a double point of Σ. Consider a
standardly embedded 2-sphere ΣP in M as in Figure 7(b). It contains P ,

(a) (b)

Fig. 7

and its intersection with Σ is the union of two circles. The circles intersect
at P and at another point Q; these are the unique double points of Σ lying
in ΣP . Note that Σ ∪ ΣP is a filling Dehn surface of M . Consider a filling
Dehn surface Σ # ΣP obtained by modifying Σ ∪ ΣP by a spiral piping
around P (see Section 5).

Proposition 16. We can choose the piping such that Σ is filling ho-

motopic to Σ # ΣP .
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Proof. We consider the filling Dehn surface Σ # ΣP as in Figure 8(a).
This surface is identical with Σ ∪ΣP except in a small neighbourhood of P ,
where it looks like Figure 8(b).

(a) (b)

(c) (d)

(e) (f)

Fig. 8

We can uninflate ΣP through P by an ambient isotopy of M , until we
reach the situation depicted in Figure 8(c).

We “open the entrance of the tunnel” using two filling-preserving saddle
moves, over and under the sheet of Σ containing the spiral piping (Figure
8(c)), and we get the situation of Figure 8(d). Now, after three consecutive
finger moves −1 we make ΣP disappear completely (Figures 8(e) and 8(f)).

In the above proposition, the statement could be “every parametrization
of Σ is filling homotopic to a parametrization of Σ # ΣP ”, which is a little
stronger, but we use the above language for simplicity.

We say that the Dehn surface Σ # ΣP as in the proposition is obtained
from Σ by inflating P .

6.2. Passing over 3-cells. Let R be a regular region of M −Σ such that
each cell of ∂R is also regular. In this case, we say that R is ∂-regular. Let
∆ be a face of R. The ∂-regularity of R implies that cl(∆) is a closed disk
and cl(R) is a closed 3-ball. Take a parametrization f : S → M of Σ, and
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take the immersion g : S → M obtained from f by a pushing disk (D, B) as

indicated in Figure 9. There is an open disk ∆̃ in S such that the restriction

Fig. 9

of f to ∆̃ is an embedding and f(∆̃) = ∆. The pushed disk D in S contains

cl(∆̃) in its interior and it is as close to ∆̃ as necessary, so that f |D is an
embedding. The pushing ball B contains R, and cl(R) ∩ ∂B = cl(∆). The
disk g(D) is a closed disk outside cl(R) running in parallel to ∂R − ∆. In
[V2] the following is proved:

Lemma 17. If g is a filling immersion, then it is filling homotopic to f .

7. Shellability. Smooth triangulations. In the proof of Theorem 2
we make an exhaustive use of the concept of shelling.

Definition 18. Let N be an n-manifold with boundary, and let C ⊂ N
be a closed n-ball in N . We say that C is free in N if C ∩ ∂N is a closed
(n − 1)-ball.

Let B be a closed n-ball, and let K be a regular cell decomposition of B.

Definition 19. K is shellable if there exists an ordering C1, . . . , Ck of
its n-cells such that cl(Ci) is free in the closure of

⋃
j≥i Cj . If this is the case,

we say that the ordering C1, . . . , Ck is a shelling of K.

While cell decompositions of 2-disks are always shellable (see Lemma 1 of
[S]), nonshellable cell decompositions of n-balls exist for n > 2. In [B-M] it is
proved that every cell decomposition of an n-ball has a shellable subdivision
(a cell decomposition σK of B is a subdivision of the cell decomposition K
of B if every cell of σK is contained in a cell of K).

For the proof of Theorem 2, we will work with triangulations of a 3-
manifold M and we will require that a set of not necessarily disjoint 3-balls
in M (endowed with the induced cell decomposition) are all shellable at
once, and with some special properties. For this, we will use the work of
Whitehead about simplicial collapsings (see [Wh1] or [Gl]).

A simplicial complex whose underlying polyhedron is a ball induces in a
natural way a cell decomposition of the ball. Thus, we can consider simplicial
complexes also as particular cell complexes.
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If K is a simplicial complex, a simplex of K is maximal if it is not a
proper face of another simplex of K. If εi is a maximal i-simplex of K, an
(i − 1)-face εi−1 of εi is free in K if it is not a face of another i-simplex of
K different from εi. If εi is maximal in K and εi−1 is free in K, then the
result of removing (εi, εi−1) from K is another simplicial complex K ′, said
to be obtained from K by a simplicial collapsing. The complex K collapses

simplicially into a subcomplex K ′ if K ′ is obtained from K after a finite
sequence of simplicial collapsings. In particular, K is collapsible if it collapses
simplicially into a point. If σK is a subdivision of K and K ′ is a subcomplex
of K, then σK ′ will denote the corresponding subcomplex of σK.

Theorem 20 ([Wh1]). If K is any finite simplicial complex , there is

a (stellar) subdivision σK of K such that σBn collapses simplicially into

σBn−1, where Bn is any subcomplex of K which is a closed n-ball and Bn−1

is any subcomplex of ∂Bn which is a closed (n − 1)-ball.

For triangulations of an n-ball, shellability obviously implies collapsibil-
ity. Note that the converse is not obvious because in shellability we require
that the space after each step remains a ball, while in “collapsings” it might
not even be a manifold. (The example given in [Ru] is not shellable, but it
is simplicially collapsible, cf. [Ch].) However, the converse is almost true in
our case according to the following observation that arises from the proof of
Theorem 6 in [Bi]:

Lemma 21. If K is a collapsible triangulation of the 3-ball , then the

second derived subdivision of K is shellable.

Smooth triangulations of manifolds are introduced in [Wh2] to relate
the smooth and PL categories in manifold theory. A triangulation of an
n-manifold N is a homeomorphism h : K → N , where K is a rectilinear
simplicial complex of some euclidean space. If N has a smooth structure, the
triangulation h is smooth (with respect to this structure) if the restriction
of h to each simplex of K is a smooth map. We identify the manifold N
with the simplicial complex K. In [Wh2] (see also [Mu]) it is proved that:
(i) any n-manifold with a smooth structure admits smooth triangulations;
and (ii) two smooth triangulations of the same smooth manifold have a
common smooth subdivision (!). If f : S → M is a transverse immersion
of a surface into the 3-manifold M , then there are smooth triangulations
K and T of S and M respectively such that f is simplicial with respect to
them (for more general results of this kind, see [Ve]).

If f : S → M is a filling immersion and K, T are triangulations of S, M
respectively such that f is simplicial with respect to them, then the trian-
gulation T also triangulates the closure of each region of M − f(S). If R is
a regular region of M −f(S), we say that T shells R if it induces a shellable



260 R. Vigara

triangulation on cl(R). If R is not regular, we first cut cl(R) along its self-

adjacencies to obtain a closed 3-ball c̃l(R). The triangulation T on cl(R) lifts

naturally to c̃l(R), and we say that T shells R if the induced triangulation

on c̃l(R) is shellable. The triangulation T shells the filling immersion f (or
the filling Dehn surface f(S)) if T shells each region of M − f(S).

All these results imply the following

Theorem 22. Let S1, . . . , Sk be a finite collection of surfaces, and for

each i = 1, . . . , k let fi : Si → M be a transverse immersion. Then there is

a smooth triangulation T of M such that :

(1) the Dehn surfaces f1(S1), . . . , fk(Sk) are contained in the 2-skeleton
of T ;

(2) if fi is a filling immersion for some i = 1, . . . , k, then the triangula-

tion T shells fi;
(3) if fi and fj differ by a pushing disk (D, B) for some i, j ∈ {1, . . . , k},

then the triangulation T restricted to B collapses simplicially into

fj(D).

Proof. First of all, we have seen that for each i = 1, . . . , k there are
smooth triangulations Ki, Ti such that fi is simplicial with respect to them.
According to [Wh2], the smooth triangulations T1, . . . , Tk have a common
smooth subdivision T0. Then all the Dehn surfaces f1(S1), . . . , fk(Sk) are
contained in the 2-skeleton of T0. Take a subdivision T ′

0 of T0 as in Theorem
20, and let T be the second derived subdivision of T ′

0.

If fi and fj differ by a pushing disk (D, B), then T0 triangulates B and
fj(D), and so because T ′

0 has been chosen following Theorem 20, the tri-
angulation T ′

0 restricted to B collapses simplicially into fj(D). Simplicial
collapsing is preserved by stellar subdivisions [Wh1] and so it is also pre-
served by derived subdivisions. Thus, T restricted to B collapses simplicially
into fj(D).

If fi is a filling immersion and R is a regular region of M−fi(Si), then T0

triangulates cl(R). By the choice of T ′
0, it induces a collapsible triangulation

of cl(R), and by Lemma 21, T induces a shellable triangulation of cl(R). If
R is not regular, perhaps we need to do more stellar subdivisions on cl(R)

to have the required shelling property on c̃l(R), but this does not alter the
previous construction because stellar subdivisions preserve shellability [B-M]
and collapsibility.

Definition 23. Under the hypothesis of the previous theorem, we say
that T is a good triangulation of M with respect to f1, . . . , fk.

With these results, we have prepared the ground for the following sec-
tions.
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8. Inflating triangulations. Now we will explain how we can associate
to any triangulation of the 3-manifold M a filling collection of spheres of M .

(a) (b)

Fig. 10

Let B1, B2 be two closed 3-balls in M . We say that B1, B2 intersect

normally if they intersect as in Figure 10(a). The 2-spheres ∂B1, ∂B2 must
intersect transversely in a unique simple closed curve. If B1, B2 intersect
normally, then B1∩B2, cl(B1−B2) and cl(B2−B1) are 3-balls. If B1, B2, B3

are 3-balls in M , they intersect normally if they intersect as in Figure 10(b).
Each pair Bi, Bj with i 6= j intersect normally and ∂B1, ∂B2 and ∂B3

intersect transversely at two triple points.
Let T be a smooth triangulation of M . (We refer to the 0-simplexes,

1-simplexes, 2-simplexes and 3-simplexes of T as vertices, edges, triangles
and tetrahedra of M , respectively.) We can construct a filling collection of
spheres of M by “inflating” T assigning to each simplex ε of the 2-skeleton
T 2 of T a 2-sphere Sε embedded in M in such a way that their union
T =

⋃
ε∈T 2 Sε fills M . We will do this as follows.

(a) (b)

(c) (d)

Fig. 11

First, if v1, . . . , vm0
are the vertices of M , for i = 1, . . . , m0 the 2-sphere

Svi ⊂ M bounds a closed 3-ball Bvi in M contained in the open star star(vi)
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and with vi in its interior. The 2-spheres Sv1, . . . , Svm0
are pairwise disjoint

(Figure 11(b)) and the triangulation T of M induces a triangulation of Bvi

as a cone from vi over Svi for each i = 1, . . . , m0 (see Figure 11(d)). The
2-sphere Svi intersects transversely each i-simplex εi ∈ star(vi) ⊂ T in a
(i − 1)-simplex of this induced triangulation of Svi.

(a) (b)

(c) (d)

Fig. 12

If e1, . . . , em1
are the edges of M , for j = 1, . . . , m1 the 2-sphere Sej ⊂ M

bounds a closed 3-ball Bej in M as in Figure 12(a). The 3-ball Bej is
contained in the open star star(ej) and it intersects ej in a closed subarc
ẽj ⊂ ej. The 2-sphere Sej and ej intersect transversely at the endpoints
of the arc ẽj . We take Be1, . . . , Bem1

pairwise disjoint, and for each i ∈
{1, . . . , m0} and j ∈ {1, . . . , m1} the 3-balls Bvi and Bej are also disjoint
unless vi and ej are incident. In this case, Bvi and Bej intersect normally
(Figure 12(c)) and Bvi ∩ Bej intersects ej in another closed subarc of ej.
Considering the two points of the intersection Sej ∩ ej as the “poles” of
Sej , each triangle t of M incident with ej intersects Sej transversely in an
open arc which is the interior of a “meridian” a with its endpoints at the
poles (Figure 12(b)). The intersection cl(t) ∩ Bej is a closed disk bounded
by a ∪ ẽj.

Finally, if t1, . . . , tm2
are the triangles of M , for k = 1, . . . , m2 the 2-

sphere Stk bounds a 3-ball Btk as in Figure 13. The 3-ball Btk is contained
in the (open) star star(tk) and it intersects tk in a closed disk t̃k ⊂ tk, and
the intersection of Stk with tk is transverse. The 3-ball Btk is disjoint from
Bε for every ε ∈ T 2 different from tk unless ε is incident with tk. In this
case, Btk and Bε intersect normally. Moreover, if vi < ej < tk, then the
3-balls Bvi, Bej, Btk intersect normally (Figure 13) and there is one of the
two triple points of Svi ∩Sej ∩Stk in each of the two tetrahedra of star(tk).
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(a) (b)

(c) (d)

Fig. 13

If T is a cell decomposition of M instead of a triangulation, the previous
construction can easily be generalized.

It is easy to check that the Dehn surface T =
⋃

ε∈T 2 Sε so constructed is
a filling collection of spheres in M . Moreover, T is regular and it is transverse
to the (smooth) simplexes of the triangulation T of M .

In particular, as a corollary of Theorem 14 this construction implies the
main theorem of [Mo2]:

Theorem 24. M has a nullhomotopic filling Dehn sphere.

Note that in this case, in contradistinction to [Mo2] or [V1], we have not
made any assumption about the orientability of M .

The following result follows directly from the construction.

Proposition 25. Let S be a surface and f : S → M a transverse im-

mersion. Let K, T be triangulations of S, M respectively such that f is sim-

plicial with respect to them. Then f(S)∪T is a regular filling surface of M .

In this proposition the immersion f can be any transverse immersion,
filling or not. Assume now that f : S → M is a filling immersion and put
Σ := f(S). Let K, T be triangulations of S and M respectively such that
f is simplicial with respect to them. By Proposition 25, Σ ∪ T fills M , and
by the methods of proof of Theorem 14, we can obtain from Σ ∪T a unique
filling Dehn surface of M . If we look at the proof of Theorem 14, this can
be done in many different ways because there are many possibilities for
performing the spiral pipings. We say that each filling Dehn surface Σ′ of
M that is obtained from Σ in this way is a T -inflating of Σ. Let Σ′ be
a T -inflating of Σ. By Propositions 25 and 12, Σ′ is regular because spiral
pipings preserve regularity. There is an immersion f ′ : S → M parametrizing
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Σ′ that comes from f in a natural way, that is, f ′ agrees with f in most of
S except in the small disks where we perform the pipings. We also say that
f ′ is a T -inflating of f . The first application of shellability is the next result
proved in [V2].

Proposition 26. If T shells f , then there is a T -inflating f ′ of f fill-

ing homotopic to f . Moreover , we can choose f ′ such that there are only

two spiral pipings connecting Σ with components of T and the other spiral

pipings are performed around triple points of T.

By Theorem 22, passing to suitable subdivisions we can assume that T
shells f , and thus we have:

Corollary 27. If f : S → M is a filling immersion, then f is filling

homotopic to a regular filling immersion.

The proof of Proposition 26 is made by repeated application of the con-
struction of Section 6.1, using the fact that each region of M − Σ has a
shellable triangulation and that each triangulation of a 2-disk is shellable [S].
As an example, we will illustrate the starting point of this construction in
which we “inflate” a triangle of T .

Example 28 (Inflating a triangle). Let f , Σ and T be as in Propo-
sition 26. Imagine that there exists a triangle t of T intersecting Σ as in
Figure 14. We label the edges and vertices of t as in the figure.

Fig. 14

Let Q0 be the intersection point of the 2-sphere Sv1 with e1 (Figure
15(b)). We inflate Q0 to obtain a 2-sphere ΣQ0

connected with Σ by a
spiral piping as in Figure 15(a). Then, after ambient isotopy, we obtain the
filling Dehn surface Σ # ΣQ0

, which is obtained from Σ ∪ ΣQ0
by a spiral

piping around Q0.
Let Q1 be the intersection point of Se1 with e1 that lies inside Bv1

(Figure 15(c)). We inflate it (Figure 15(d)). After a piping passing move
(Figure 15(e)), we obtain a filling Dehn surface ambient isotopic to that of
Figure 15(f).

Let P1 be one of the two points of Sv1 ∩ Se1 ∩ St (Figure 16(a)). This
point is a double point of the filling Dehn surface of Figure 15(f), and thus we
can inflate it using filling-preserving moves until we obtain the filling Dehn
surface of Figure 16(b) (with a spiral piping around P1). After a finger move
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(a) (b)

(c) (d)

(e) (f)

Fig. 15

+1 through the triple point A of the same Figure 16(b), we get the filling
Dehn surface of Figure 16(c), which is the same as that of Figure 16(d). The
surfaces of Figures 16(a) and 16(d) are ambient isotopic.

At this moment, from the picture of Figure 14 we have obtained the
2-spheres Sv1, Se1 and St, with three spiral pipings, using only filling-
preserving moves. Using similar methods, we can also obtain the 2-spheres
Sv2 (Figure 16), Se2, Sv3 and Se3 (Figure 17).

In the previous example, we see that the way of constructing the filling
Dehn surface Σ′ from the filling Dehn surface Σ in Proposition 26 is in some
sense to make Σ grow inductively following a path given by the triangula-
tion T . The growing path we follow to prove Proposition 26 in [V2] is not
exactly as in Example 28. There (in [V2]) we inflate first from Σ all the
2-spheres of T corresponding to the simplexes of T contained in Σ starting
in a similar way to Example 28. Then the shellability conditions imposed on
T will give us the growing path of Σ on the regions of M − Σ using again
similar methods to those of Example 28.

We will say that the T -inflating Σ′ of Σ (f ′ of f) as in the previous
proposition is a T -growth of the filling Dehn sphere Σ (of the filling immer-
sion f). Note that to be a T -growth is stronger than to be a T -inflating.

The next (but not last) application of the constructions of Section 7 is
the following.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 16

Let f, g : S → M be transverse immersions that differ by the pushing
disk (D, B), and assume that f is a filling immersion. In this situation, the
immersion g will not necessarily be a filling immersion. Consider triangula-
tions K, T of S and M respectively such that f and g are simplicial with
respect to them. Take a T -inflating f ′ of f such that f ′ agree with f over
D (because f ′ agrees with f in most of S except in some small disks of S,
we require that these small disks do not intersect D), and consider the im-
mersion g′ that is obtained from f ′ after the pushing disk (D, B). We can
assume that g′ agrees with g except in the disks of S where f ′ “disagrees”
with f . The Dehn surface g′(S) is obtained from g(S)∪T by spiral pipings,
and because g is also simplicial (with respect to K, T ), g′ is a T -inflating of g.

Because both f, g are simplicial (with respect to K, T ), the triangulation
T induces a triangulation of the pushing ball B.

Lemma 29 (Key Lemma 2). If the (induced) triangulation of B collapses

simplicially into g(D), then f ′ is filling homotopic to g′.



Johansson representation of 3-manifolds 267

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 17

(a) (b)

(c)

Fig. 18

Sketch of proof. Because B is triangulated by T , it can be easily shown
that f(S) ∪ g(S) ∪ T induces a cell decomposition of B. If B collapses sim-
plicially into g(D), then we can define a special shelling of this cell decom-
position. This special shelling will allow us to apply Lemma 17 repeatedly
(Figure 18(b)) to the filling Dehn sphere f(S) ∪ T until we get g(S) ∪ T.
Substituting finger moves 2 by piping passing moves where required, this
deformation of f(S) ∪ T into g(S) ∪ T also defines a deformation of f ′ into
g′ by filling-preserving moves.
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9. Filling pairs. Let Σ1 and Σ2 be two filling Dehn surfaces of M .
Assume by simplicity that both are regular.

If we are not given more information about Σ1 and Σ2, we do not know
how they are related to each other. The only thing we can say, if M is not
S3, is that they must have nonempty intersection.

Definition 30. We say that Σ1 and Σ2 form a filling pair in M if their
union Σ1 ∪ Σ2 is also a regular filling Dehn surface of M .

In particular, if Σ1 and Σ2 form a filling pair in M , they intersect trans-
versely.

If Σ1 and Σ2 are a filling pair in M , then Σ2 induces a cell decomposition
on the closure of each region of M − Σ1 and vice versa. Because both Σ1

and Σ2 are regular, all these induced cell decompositions are also regular.
If R1 is a region of M − Σ1, then we say that Σ2 shells R1 if Σ2 induces a
shellable cell decomposition of the 3-ball cl(R1). We say that Σ2 shells Σ1

if Σ2 shells each region of M − Σ1.

Definition 31. Let Σ1 and Σ2 form a filling pair in M . We say that
Σ1 and Σ2 are mutually shellable if Σ1 shells Σ2 and Σ2 shells Σ1.

The following result is proved in detail in [V2].

Proposition 32. Let Σ1, Σ2 be regular filling Dehn surfaces of M which

intersect transversely. If f1 : S1 → M parametrizes Σ1, then f1 is filling

homotopic to an immersion f ′
1 : S1 → M such that Σ′

1 := f ′(S1) and Σ2

form a mutually shellable filling pair in M .

Sketch of proof. Let f2 : S2 → M be a parametrization of Σ2, and let
T be a good triangulation of M with respect to f1 and f2 (Definition 23).
Then T shells every region of M − Σ1 and every region of M − Σ2. The
union Σ1 ∪Σ2 ∪ T is a regular filling Dehn surface of M by Proposition 25.
Take a T -growth f ′

1 of f1, and put Σ′
1 = f ′

1(S1). We make the spiral pipings
that transform Σ1 ∪ T into Σ′

1 small enough not to intersect Σ2. Because
regularity is preserved by spiral pipings, it is not difficult to see that Σ′

1∪Σ2

is a regular filling Dehn surface of M . It is also easy to see that Σ2 induces
a shellable cell decomposition on every region of M −Σ′

1 using the fact that
Σ2 is a subcomplex of T and the construction of T. The nontrivial part is
to check that Σ′

1 induces a shellable cell decomposition on every region of
M −Σ2. This is done in detail in [V2], and it is parallel to the proof of Key
Lemma 2 above. If R2 is a region of M −Σ2, the first thing to check is that
T induces a shellable cell decomposition on cl(R2). This is done following
the proof of Lemma 21 in [Bi], using the fact that the restriction to cl(R2) of
the triangulation T is simplicially collapsible. After this, it is seen that the
presence of Σ1 does not alter this shellability property. Finally, the presence
of the spiral pipings might affect the shelling in some cases. In [V2] it is
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explained how this can occur, and how we can choose f ′
1 to ensure that it

satisfies the statement of Proposition 32.

10. Simultaneous growings. The last application of shellability will
be the following. Assume that Σ1, Σ2 are two regular filling Dehn surfaces of
M and that there are two points P, Q where Σ1 and Σ2 intersect as in Figure
19(a). We denote by Σ1 # Σ2 the Dehn surface of M that arises by piping
Σ1 with Σ2 near P, Q as in Figure 19(b). We also assume that the points

(a) (b)

Fig. 19

P, Q have the property that Σ1 # Σ2 is another filling Dehn surface of M .
Let f : S1 → M, g : S2 → M be parametrizations of Σ1, Σ2 respectively.
Consider the two small disks δ1, δ2 of S1 and S2 respectively whose respective
images under f and g disappear after the piping. In this situation we can
construct a parametrization f #g : S1 #S2 → M of Σ1 #Σ2 “coming” from
f, g, where the surface S1 #S2 is the result of identifying S1−δ1 and S2−δ2

along the boundary of δ1 and δ2. We can also assume that the immersion
f # g agrees with f on S1 − δ1 and that f # g agrees with g on S2 − δ2.

Let K1, K2, T be triangulations of S1, S2, M that make f, g and f # g
simplicial, and assume that T shells every region of M − Σ1. Consider a
T -growth f ′ of f as in Proposition 26, such that f ′ agrees with f in all of
S1 except in two small disks. We can assume that the images under f of
the two disks are far away from a sufficiently large regular neighbourhood
of the arc a of Figure 19(a) (that is, they do not affect the piping between
Σ1 and Σ2). In this situation, we can also consider the “piped immersion”
f ′ # g : S1 # S2 → M that agrees with f ′ in S1 − δ1 and with g in S2 − δ2,
as the result of pasting f ′ and g by means of the piping in exactly the same
way as f was pasted with g in f # g.

Remark 33. If Σ1, Σ2 are the surfaces Σ′
1, Σ2 that result from the proof

of Proposition 32, then there always exists a pair of points P, Q as above.

We know that f ′ is filling homotopic to f because it is a T -growth of f ,
but we also have:

Lemma 34 (Key Lemma 3). If Σ2 shells Σ1, then we can choose f ′ such

that f ′ # g is a T -growth of f # g.
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In particular, if Σ2 shells Σ1, then we can choose f ′ such that f ′ # g is
filling homotopic to f ′.

This lemma is also proved in detail in [V2]. The required property that
Σ2 shells Σ1 implies that the growing of f into f ′ in the proof of Proposition
26 can be adapted to Σ2 in such a way that the growing from f into f ′ defines

simultaneously a growing from f # g into f ′ # g when we introduce Σ2.

11. Proof of Theorem 2. With these tools we can sketch the proof of
Theorem 2.

Sketch of proof of Theorem 2. We are given a pair Σ1, Σ2 of nullho-
motopic filling Dehn spheres of M and two parametrizations f, g of them
respectively. We introduce the following notation: we take two different 2-
spheres S1, S2 and we will consider that Si is the domain of Σ1 for i = 1, 2.
In particular, Σ1 = f(S1) and Σ2 = g(S2).

Modifying f if necessary by an ambient isotopy of M we can assume
that Σ1 and Σ2 have nonempty transverse intersection.

By Proposition 32 and Remark 33, we can assume that Σ1, Σ2 form a
mutually shellable filling pair of spheres of M and that there are two points
P, Q of Σ1 ∪Σ2 where Σ1 and Σ2 intersect as in Figure 19(a) of Section 10.

Consider the filling Dehn surface Σ1 #Σ2 and the parametrization f #g
as in Section 10. We also consider the disks δ1 ⊂ S1 and δ2 ⊂ S2 as in
Section 10. We denote f # g by h for simplicity.

h is filling homotopic to f .

Consider a small standardly embedded 2-sphere Σ∗
2 and a parametriza-

tion g∗ : S2 → M of Σ∗
2 as in Figure 20(b). This sphere shares with Σ2 a

2-disk D containing g(δ2) in its interior, and the immersions g and g∗ agree

over D̃ := g−1
∗ (D).

(a) (b)

Fig. 20

By Key Lemma 1, we can deform g into g∗ by a finite sequence of trans-
verse pushing disks leaving D̃ fixed. Let (D1, B1), . . . , (Dk, Bk) be this se-
quence of pushing disks, and let g = g0, g1, . . . , gk = g∗ : S2 → M be the
sequence of transverse immersions such that gi is obtained from gi−1 by the
pushing disk (Di, Bi).
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Modifying slightly Σ1 and the piping between Σ1 and Σ2 by an ambi-
ent isotopy of M if necessary, we can assume that all these pushing disks
are also transverse to Σ1 and Σ1 # Σ2. Because the pushing disks (Di, Bi)

leave D̃ fixed, we can think of them as acting on the immersion h = f # g
instead of on g, and we can consider the sequence of transverse immer-
sions h = h0, h1, . . . , hk : S1 # S2 → M such that hi is obtained from hi−1

by the pushing disk (Di, Bi). Note that hk(S1 # S2) = Σ1 # Σ∗
2 , where

Σ1 # Σ∗
2 is obtained by piping Σ1 with Σ∗

2 exactly in the same way as Σ1

is piped with Σ2, and then a final transverse pushing disk (Dk+1, Bk+1)
transforms hk into f . Thus, we can assume that there is a finite sequence

of transverse pushing disks leaving S1 − δ1 fixed that transform h = f # g
into f .

Take a good triangulation T of M with respect to f, g, g1, . . . , gk, h,
h1, . . . , hk (see Theorem 22 and Definition 23).

The triangulation T shells f because f is a filling immersion, so consider
a T -growth f ′ of f such that the pipings of Σ1 with the components of T do
not affect Σ2 nor the piping between Σ1 and Σ2. Because Σ1 and Σ2 form a
mutually shellable filling pair, in particular Σ2 shells Σ1. By Key Lemma 3,
we can take f ′ which also defines a T -growth h′ := f ′ # g of h = f # g.

Consider now the sequence of immersions h′ = h′
0, h

′
1, . . . , h

′
k, h

′
k+1

= f ′

such that h′
i is obtained from h′

i−1 by the pushing disk (Di, Bi) for i =
1, . . . , k + 1.

Note that by construction, each h′
i is a T -inflating of hi. Because of the

choice of T , for each i = 1, . . . , k + 1 the triangulation T restricted to the
pushing ball Bi collapses simplicially into g(Di) = h′(Di). By Key Lemma
2 this implies that h′

i is filling homotopic to h′
i−1 for each i = 1, . . . , k + 1.

To sum up, h is filling homotopic to h′ because h′ is a T -growth of h, h′

is filling homotopic to f ′ = h′
k+1

by repeated application of Key Lemma 2
to the pushing disks (Di, Bi) for i = 1, . . . , k + 1, and f ′ is filling homotopic

(a) (b)

Fig. 21
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(a) (b)

Fig. 22

(a) (b)

Fig. 23

to f because f ′ is a T -growth of f . Therefore, h is filling homotopic to f
(Figures 21–23).

By the same arguments, h is filling homotopic to g and thus f and g are
filling homotopic.

12. Diagrams. Let Σ ⊂ M be a Dehn surface in M , and let f : S → M
be a parametrization of Σ. As pointed out in Section 1, the singular set S(f),
together with the information about how its points are identified by f , is
what we call the Johansson diagram of Σ. We now give a more detailed
definition of the Johansson diagram. This new definition is equivalent to the
definition given in [P]. We now assume for simplicity that both S and M
are orientable.

Let γ : S1 → M be a parametrization of a double curve of Σ. Because
both S and M are orientable, the inverse image under f of γ(S1) is the
union of two different closed curves in S(f). There are exactly two different
immersions γ1, γ2 : S1 → S such that f ◦ γ1 = f ◦ γ2 = γ. In this situation,
we say that γ1 and γ2 are lifted curves of γ under f and that they are sisters

under f .
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A complete parametrization of the singularity set S(Σ) of Σ is a set
D = {α1, . . . , αm} of immersions from S1 into M such that: (i) each αi

parametrizes a double curve of Σ; (ii) αi(S
1) 6= αj(S

1) if i 6= j; and (iii)
S(Σ) =

⋃m
i=1

αi(S
1). If D is a complete parametrization of S(Σ) and we

denote by D the set of all lifted curves of the curves of D, the map τ :
D → D that assigns to each curve of D its sister curve under f defines
a free involution of D. The pair (D, τ) contains all the information about
the singular set S(f) and about how the points of S(f) are identified by
the map f : two different points A, B ∈ S satisfy f(A) = f(B) if and only
if there is a parametrized curve α ∈ D and a z ∈ S1 with A = α(z) and
B = τα(z).

The pair (D, τ) of the previous paragraph is the model we will presently
use to define an (abstract) diagram. We have seen that every Dehn surface
has an associated Johansson diagram. Thus, we can define an abstract di-

agram in a surface S as a collection D of closed curves in S together with
a free involution τ : D → D such that the curves of D can be coherently
identified by τ . Now we want to know if this diagram (D, τ) is the Johansson
diagram coming from a transverse immersion f : S → M of S into some
orientable 3-manifold M . If this occurs, we say that the (abstract) diagram
(D, τ) in the surface S is realizable (cf. [P]) and that the immersion f realizes

the diagram (D, τ).

Fig. 24

The first condition that must be satisfied by the curves of D is that they
intersect transversely as in Figure 24 at some points of S which are double

points of the diagram (D, τ). We define two different points A, B ∈ S to
be related by the diagram (D, τ) if there is a curve α ∈ D and a z ∈ S1

with A = α(z) and B = τα(z). With this terminology, each double point
A of the diagram will be related to two points B, C of the surface S. If
(D, τ) is realizable, B, C must be different and they must also be related by
the diagram (see Figure 24). Thus, the double points of the diagram must
be arranged in triplets of pairwise related points (the diagram is riveted in
the terminology of [C]). If f : S → M realizes the diagram, each of these
triplets is the inverse image under f of a triple point of f . In Figure 25 we
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(a) (b)

Fig. 25

have labelled the double points of each diagram in such a way that related
points have the same label. We consider two diagrams on S to be equivalent
if they are related by a homeomorphism of S or by reparametrization of the
curves of the diagram.

We now recall the main result of [J2] about the realizability of diagrams.
We will denote the diagram (D, τ) simply by D.

Assume that we are given an abstract diagram D on the surface S (Fig-
ure 25). For each α ∈ D, we consider two neighbouring curves λ, λ′ that
run parallel to α and lie on different sides of α (Figure 25). We say that
the two neighbouring curves of the same curve of the diagram are opposite.
The neighbouring curves of the diagram can be taken such that they only
intersect near the double points of the diagram and exactly as depicted in
Figures 25 and 26. We let neighbouring points of the diagram be the inter-
section points of the neighbouring curves with the curves of the diagram.
With these assumptions, there appear four neighbouring points around each
double point of the diagram (Figure 26). Consider two related double points
A, B of the diagram. Because they are related, there is a curve α ∈ D and
a z ∈ S1 with A = α(z) and B = τα(z). If we orient the curves α, τα using
the standard orientation of S1, then near A the curve α passes through the
points A1, A, A2 in this order, where A1, A2 are neighbouring points of the
diagram. In the same way, near B the curve τα passes through the points
B1, B, B2 in this order, where B1, B2 are neighbouring points of the dia-
gram. We assume that the neighbouring curves are so chosen that in this
situation Ai is related by the diagram to Bi for i = 1, 2 (see Figure 26).

Once we have drawn the neighbouring curves of the diagram as in the
previous paragraph, we give some definitions. If two neighbouring curves λ, µ
pass through related neighbouring points, as the curves λ and µ of Figure
26, we say that λ, µ are elementarily related. If we orient all the curves of the
diagram using the standard orientation of S1 and if we consider the surface
S oriented, for a curve α ∈ D we say that the neighbouring curve of α lying
on the left-hand side of α is elementarily G-related to the neighbouring
curve of τα lying on the right-hand side of τα, and equivalently, that the
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Fig. 26

neighbouring curve of α lying on the right-hand side of α is elementarily
G-related to the neighbouring curve of τα lying on the left-hand side of τα.

Definition 35 ([J2]). Two neighbouring curves λ, µ of the diagram D
are in the same G-class if there exists a finite sequence λ = λ0, λ1, . . . , λk = µ
of neighbouring curves of the diagram such that λi−1 is elementarily related
or elementarily G-related to λi for i = 1, . . . , k.

In the diagrams of Figures 25(a) and 25(b) we have drawn in the same
way the neighbouring curves in the same G-class. From the construction of
G-classes the following can be checked without difficulty:

Lemma 36. If D is a diagram in S and f : S → M realizes D, then the

number of G-classes of D is twice the number of connected components of

the singularity set S(f).

The following theorem appears in [J2].

Theorem 37 ([J2]). A diagram D in the orientable surface S is re-

alizable by a transverse immersion f : S → M of S into an orientable

3-manifold M if and only if there are no opposite neighbouring curves of the

diagram in the same G-class.

This theorem gives an easy method for checking realizability on a wide
class of diagrams. An analogous result is given in [C] for diagrams with no
closed components in surfaces with boundary.

Though Theorem 37 was stated in [J2] for diagrams in the 2-disk without
singular boundary points, as pointed out in [P] the proof can be extended
directly to the case stated here. More exactly, Theorem 37 is also true if we
remove from S a finite number of open disks not touching the diagram.

The key to proving Theorem 37 is 2-sidedness. Every immersion f : S →
M with both S and M orientable is 2-sided, and this 2-sidedness is reflected
in the neighbouring curves of the diagram. An immersion f : S → M is 2-
sided if there exists an immersion F : S× [−1, 1] → M with F (X, 0) = f(X)
for every X ∈ S. Put Σ = f(S). If f is 2-sided and transverse, we can choose
F as close to f as we want, such that in a neighbourhood of a double curve
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Fig. 27

of Σ the image of F looks like Figure 27. In that figure, we can see that
the lower sheet Σ− = F (S × {−1}) and the upper sheet Σ+ = F (S × {1})
intersect Σ in some curves that behave exactly as the images under f of
the neighbouring curves of the Johansson diagram D of f . We can assume
without loss of generality that in this case, the neighbouring curves of the
diagram form exactly the inverse image f−1(Σ−∪Σ+). In [J2] the following
proposition is proved.

Proposition 38. If two neighbouring curves of D are in the same G-

class, then their images under f must be contained in the same sheet Σ−

or Σ+.

This implies that if D is realizable by a 2-sided immersion, there cannot
be two opposite neighbouring curves in the same G-class.

On the other hand, if there are not two opposite neighbouring curves of
the abstract diagram D on S in the same G-class, we can make an identifi-
cation ∼ on the thickened surface S × [−1, 1] compatible with the diagram
so that neighbourhoods of sister curves are identified as in Figure 27. The

quotient M̂(D) = S × [−1, 1]/∼ is a 3-manifold with boundary and it sat-

isfies: (i) the canonical projection π : S × [−1, 1] → M̂(D) is an immersion;
(ii) if we take the inclusion j : S → S × [−1, 1] given by j(X) = (X, 0), then

π ◦ j is a transverse immersion realizing D; and (iii) M̂(D) is orientable. See
[J1] and [J2] for more details.

Going back to the immersion f , if it is a filling immersion, the singu-
larity set S(f) must be connected and by Lemma 36 this implies that the
Johansson diagram D of f has only two G-classes of neighbouring curves.
In this case, the manifold with boundary M̂(D) constructed from D as in
the previous paragraph is uniquely determined by D and it is homeomorphic
to a regular neighbourhood of the filling Dehn surface Σ ⊂ M . Because f
is a filling immersion the boundary of M̂(D) must be a union of 2-spheres.

Pasting a 3-ball to M̂(D) along each boundary component we obtain a
closed 3-manifold M(D) homeomorphic to M . In this way one reconstructs
a 3-manifold M from a Johansson representation of M .
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Now assume that we are given a realizable diagram D in an orientable
surface S and that we want to know if it is the Johansson diagram of a
filling Dehn sphere of some 3-manifold. First of all, the diagram D must
fill the surface S (that is, S − D must be a disjoint union of open 2-disks,
and D − {double points of D} must be a disjoint union of open intervals),
and in particular the curves of D must compose a connected graph on S.
By Lemma 36 this implies that D has exactly two opposite G-classes of
neighbouring curves (because D is realizable). As in the previous paragraph,

the construction of M̂(D) is uniquely determined by the diagram, and D is
the Johansson diagram of a filling Dehn sphere of some 3-manifold M if
and only if ∂M̂(D) is a collection of 2-spheres. If this occurs, we say that

D is a filling diagram, and pasting a 3-ball to M̂(D) along each boundary

component of M̂(D) we obtain the required closed 3-manifold M(D) that is

also uniquely determined by the diagram D. The construction of M̂(D) can
be made in an algorithmic way. The diagrams of Figures 25(a), 25(b) and
28(a) are all examples of (realizable) filling diagrams. The diagram of Figure
25(a) appears in the original paper [J1] and it is a Johansson representation
of the 3-sphere. Its corresponding filling Dehn sphere is Johansson’s sphere

(see Fig. 8 of [Sh]). The diagram of Figure 25(b) represents S2 × S1. The

(a) (b)

Fig. 28

diagram of Figure 28(a) is a diagram of a filling Dehn torus Σ0 with only one
triple point in a Euclidean 3-manifold M . This Euclidean manifold coincides
with the Seifert manifold M(S333) = (Oo0 | −1; (3, 1), (3, 1), (3, 1)) (see
[Mo1, p. 155]), and it is the result of identifying the faces of a solid cube in
pairs as in Figure 28(b). The filling Dehn torus Σ0 is the image in M of the
boundary of the cube under this identification.

Figure 29 shows how the Haken moves (except for finger move 0) for
immersions are reflected in the Johansson diagrams. These are the diagram

moves, and we label them as the corresponding moves of immersions. If we
perform a diagram move in a filling diagram, the move is filling-preserving

if the resulting diagram is again a filling diagram.
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(a) (b)

(c) (d)

(e) (f)

Fig. 29

Let D be a filling diagram on the surface S, and let i : M̂(D) →֒ M(D)
be the inclusion map. Denote simply by f the immersion i◦π◦j : S → M(D)
that realizes D, and put Σ = f(S).

If we perform a filling-preserving diagram move in D, this move will
come from a filling-preserving move of f and thus the new diagram D′ we
obtain satisfies M(D′) = M(D). As it happened with Haken moves, a finger
move +1 or ±2 in the filling diagram D will always be filling-preserving,
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and a finger move −1 or a saddle move on D may or may not be filling-
preserving.

The neighbouring curves of the diagram help us to perform the saddle
move and the finger move 1.

A saddle move can be performed in the diagram D every time we have
two arcs connecting related points of the diagram as in Figure 29(a). The
two neighbouring curves of D that intersect any of the two arcs must belong
to the same G-class. If we have such a pair of arcs, because D is a filling
diagram, (the images under f of) these arcs must bound a 2-gon w in M(D)−
Σ as in Figure 29(b), and we can perform a saddle move on f by pushing
along w any of the two sheets of Σ that bound w. This saddle move on f is
reflected in the saddle move of the diagram D as depicted in Figure 29(a).

If we perform a finger move +1 on the diagram D there appear a new
pair ν, τν of sister curves of the diagram. The diagram D tells us how we
must identify the new double points (labelled 1 and 2 in Figure 29(c)) that
appear in the new diagram D′, but there is some ambiguity (that does not
occur for finger moves 2) because there are two ways of identifying ν with
τν (for a given orientation of ν there are two possible orientations of τν).
This ambiguity disappears when we draw the neighbouring curves of the
diagram D′, using the fact that related neighbouring points of the diagram
must lie on neighbouring curves of the same G-class.

We say that a filling diagram D on a surface S is nullhomotopic if the
immersion f = i◦π◦j as above is nullhomotopic. The diagram of Figure 25(a)
is nullhomotopic (every diagram representing S3 must be nullhomotopic),
while the diagram of Figure 25(b) is not nullhomotopic.

The following result is a corollary of Theorem 2.

Corollary 39. Two nullhomotopic filling diagrams on S2 represent

the same 3-manifold if and only if they are related by a finite sequence of

filling-preserving moves.

13. Duplication. It is possible to obtain algorithmically a nullhomo-
topic Johansson representation of M from any, nullhomotopic or not, Jo-
hansson representation D of M . We will call this process duplication of
diagrams and it can be made using Johansson’s construction of M̂(D) as
follows.

Let f : S2 → M be a filling immersion, and put Σ = f(S). Take a
thickening F : S2 × [−1, 1] → M of f as in the previous section, such
that near a double curve of Σ the image of F intersects itself as in Figure
27, and consider the upper sheet Σ+ = F (S2 × {1}) and the lower sheet
Σ− = F (S2 × {−1}), which are two filling Dehn spheres of M parallel to
Σ on both sides of Σ. The Johansson diagram D of f has two G-classes of
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neighbouring curves. We can take the neighbouring curves of D such that
their images under f form the intersection of Σ with Σ− ∪ Σ+. We let the
upper (resp. lower) G-class be the G-class of neighbouring curves of D whose
image under f is contained in the upper (resp. lower) sheet Σ+ (resp. Σ−).

(a) (b)

Fig. 30

The Dehn spheres Σ, Σ+ form a filling pair of spheres in M . Near a
triple point P of Σ there will be eight triple points of the union Σ ∪ Σ+

as in Figure 30(a). In some situations the Dehn sphere Σ # Σ+ that we
obtain by piping Σ with Σ+ near P as in Figure 30(b) is a filling Dehn
sphere of M . Assume that this is the case. This filling Dehn sphere Σ # Σ+

is the image under F of the boundary of S2 × [0, 1] with a small cylinder
connecting S2 × {0} with S2 × {1} removed, and thus it is nullhomotopic.

(a)

(b)

Fig. 31
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The Johansson diagram of Σ #Σ+ can be obtained algorithmically from
the Johansson diagram D of Σ. Let f+ : S2 → M be the parametrization
of Σ+ given by f+(X) = F (X, 1).

First, remember that the upper G-class of neighbouring curves of D
forms the inverse image under f of Σ ∩ Σ+. A second observation is that
the Johansson diagram of f+ is a copy D+ of D. The third observation is
the following

Remark 40. The relative position of Σ with respect to Σ+ is exactly
the same as that of Σ− with respect to Σ.

This remark implies that if we give the G-classes of D+ the same name
as their respective copies in D, the lower G-class of D+ forms the inverse

image of Σ ∩ Σ+ under f+.

The Johansson diagram D # D+ of Σ # Σ+ is what we call a duplicate

of D, and it can be obtained from D and D+ as indicated in Figure 31. In
Figure 31(a) we depict how the cube of Figure 30(a) is seen in the Johans-

(a)

(b)

(c)

Fig. 32
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son diagrams of Σ (grey) and Σ+ (white). In both diagrams we draw the
lower G-class and the upper G-class similarly. As an example we apply this
construction to the diagram of Figure 25(b) in Figure 32.

It is not always possible to obtain a triple point of Σ such that if we pipe
Σ with Σ+ near P as in Figure 30(b) the resulting Dehn sphere Σ # Σ+

fills M , but we can always deform Σ by filling-preserving moves to obtain an-
other filling Dehn sphere Σ′ with a triple point where the (filling-preserving)
duplication is possible. This deformation can be made very easily: for ex-
ample, if P is one of the two triple points that appear after a finger move
+1, then duplication is possible at P .

Duplication allows us to give a more general version of Corollary 39:

Theorem 41. Two filling diagrams on S2 represent the same 3-manifold

if and only if their duplicates are related by a finite sequence of filling-

preserving moves.

14. Miscellany

14.1. Invariants of 3-manifolds. The first immediate application of Co-
rollary 39 is to the search of invariants of 3-manifolds. If we could assign to
each nullhomotopic diagram on S2 an object which remains invariant un-
der filling-preserving diagram moves, then this object defines a 3-manifold
invariant. If ϕ denotes such an invariant, for computing ϕ for a given man-
ifold M we would need a nullhomotopic Johansson representation of M . If
we have an arbitrary Johansson representation D of M and we do not know
if it is nullhomotopic, duplicating D we will be able to compute ϕ from D.
However, duplication produces very complicated diagrams (the number of
triple points of a duplication of D is eight times the number of triple points
of D minus 2), and for this reason it should be interesting to know how to
decide if a given filling diagram in S2 is nullhomotopic or not. This is an
open problem. In [Mo2] an algorithm is indicated to obtain a nullhomotopic
Johansson representation of M from any Heegaard diagram of M . A simpler
algorithm is studied in detail in [V1].

14.2. The diagram group. Let D be a realizable diagram on S2, and let
f : S2 → M be a transverse immersion parametrizing D. There is an easy
way to obtain a presentation of the fundamental group of Σ := f(S2) in
terms of the diagram D. If D = {α1, . . . , αn}, then we define the diagram

group

π(D) = |α1, . . . , αn : α1 · τα1 = · · · = αn · ταn = r1 = · · · = rk = 1|,

where the relators r1, . . . , rk are given by the triplets of pairwise related
double points of D. If P1, . . . , Pk are the triple points of Σ, and Pj is the
triple point P of Figure 24, which is reflected in the triplet of D of the same
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Figure 24, then the associated relator is

rj = αβγ.

It can be proved that π1(Σ) is isomorphic to the diagram group [V2] and
thus, if Σ fills M the diagram group gives a presentation of the fundamental
group of M . This presentation is due to W. Haken (see Problem 3.98 of [K]),
and we have not seen it in printed form.

With this presentation, the following (unpublished) theorem of W. Haken
can be proved (see also [Ha]). If D is a connected realizable diagram in
S2 with only two double curves α, τα, then both are simple or both are
nonsimple.

Theorem 42. If α and τα are simple, then π(D) ≃ Z3, and if both are

nonsimple, then π(D) ≃ 1.

14.3. Checking fillingness. As we have said, to test if a realizable dia-
gram D is a filling diagram is to check if ∂M̂(D) is a collection of 2-spheres.

Though the complete construction of the manifold with boundary M̂(D)
from the diagram D can be made in an algorithmic way using Johansson’s
construction, it is interesting to have faster methods for checking fillingness.
The following result will give us a method for saving time in this process. It
can be proved easily using Euler characteristic techniques.

Lemma 43. A realizable diagram D on the genus g surface S is a filling

diagram if and only if it fills S and ∂M̂(D) has p + χ(S) connected compo-

nents, where p is the number of triplets (of pairwise related double points)
of D.

The diagram group can help us also in checking fillingness. In Lemma 4.9
of [He], it is proved that if a 3-manifold with boundary M̂ has a boundary

component which is not a 2-sphere, then M̂ has a double cover. Thus,

Lemma 44. If D is a realizable connected diagram in S2 and the diagram

group π(D) has no subgroup of index 2, then D is a filling diagram.

This lemma together with Theorem 42 gives the following.

Corollary 45. If D is a realizable connected diagram in S2 with only

two curves, then it is a filling diagram.

14.4. Filling eversion. Theorem 2 applies not only to filling Dehn spher-
es but to their parametrizations. Let f : S2 → M be a filling immersion, and
consider also the immersion g : S2 → M given by g = f ◦ a, where a now
denotes the antipodal map of S2. In this situation, the fact that f(S2) is
filling homotopic to g(S2) is trivial because they are the same Dehn sphere
of M . Theorem 2 asserts that f is filling homotopic to g, which is now
a nontrivial fact. This is a filling version of the problem of eversion of the
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2-sphere (see [M-P]). In [M-B] it is proved that every eversion of the 2-sphere
in S3 has at least one quadruple point (compare also [No]). Using this, it
can be seen that any parametrization f of the Johansson sphere and its
antipodal parametrization g cannot be turned into each other by using only
finger moves 1 and filling-preserving saddle moves. This means that finger
move 2 cannot be dispensed with in the statement of Theorem 2.

14.5. The nonorientable case. In our discussion about diagrams in Sec-
tion 12 we have assumed that surfaces and 3-manifolds are orientable. If
f : S → M is a transverse immersion and S or M (or both) are nonori-
entable, then the inverse image under f of a double curve α of f may be a
unique closed curve α in S such that α is a 2-fold covering of α (see [J1]).
For this reason, in this general case we need a more general definition of ab-
stract diagram. The one given in Section 12 can be adapted to this general
case by allowing a nonfree involution τ and requiring that the curves α of
the diagram with τα = α commute with the antipodal map of S1. Another
fact is that in the general case, the immersion f might be 1-sided, and thus
the proof of Theorem 37 breaks down.

Johansson proves in [J1] a theorem characterizing diagrams in S2 which
are realizable in 3-manifolds (orientable or not). It is an interesting prob-
lem to generalize this last theorem of Johansson to cover diagrams in any
surface and immersions in general 3-manifolds (orientable or not). This is
certainly not very difficult but it is an intermediate step to generalize our
theory of filling immersions to cover general Dehn surfaces (orientable or
not) immersed in general 3-manifolds (orientable or not). This is an open
program.

14.6. A question of R. Fenn. The following question was asked to us by
R. Fenn (see also [F-R]):

Do filling Dehn surfaces in M lift to embeddings in M × [0, 1]?

We do not know the complete answer to this question.

In [Gi] an algorithm is given for deciding if a Dehn surface Σ in R3 lifts
to an embedding in R4 in terms of the Johansson diagram of Σ. In the same
paper there is an example of a Dehn sphere Σ1 (that we will call Giller’s

sphere) in R3 that does not lift to an embedding in R4. The Johansson
diagram of Σ1 has only two nonsimple curves, and by Corollary 45, Σ1 will
be a filling Dehn sphere of S3. On the other hand, Johansson’s example of
Figure 25(a) represents a liftable (to an embedding in R4) filling Dehn sphere
of S3. Thus in S3 there are liftable and nonliftable filling Dehn spheres.

A cleaner version of Giller’s algorithm is Theorem 3.2 of [C-S]. This
theorem can be easily adapted to the general case (see [V2]), giving a the-
orem that determines when a Dehn surface in M lifts to an embedding in



Johansson representation of 3-manifolds 285

M × [0, 1]. If we apply this result to the filling Dehn spheres that arise from
the algorithm given in [V1], it can be seen that every 3-manifold M has a
nullhomotopic filling Dehn sphere that lifts to an embedding in M × [0, 1].

It remains to investigate if every 3-manifold has a nonliftable filling Dehn
sphere. Giller’s sphere Σ1 is a Dehn sphere in R3. It is clear that we can
choose a closed 3-ball B1 in R3 such that Σ1 ⊂ B1. If M is an arbitrary
3-manifold, taking an embedding from B1 into M we will obtain a copy
Σ′

1 of Σ1 living inside M . By Giller’s algorithm, “liftability” depends on the
Johansson diagram, and the Johansson diagrams of Σ′

1 and Σ1 are identical.
Thus, Σ′

1 is a nonliftable Dehn sphere in M , but Σ′
1 does not fill M unless

M = S3. When M is not S3, we can perform a piping connecting Σ′
1 with a

nullhomotopic filling Dehn sphere of M . We conjecture that this can be done
in such a way that the resulting Dehn sphere is a nonliftable nullhomotopic
filling Dehn sphere of M .

14.7. The triple point spectrum. The minimal number of triple points of
filling Dehn surfaces of a 3-manifold M satisfying some particular property
can be in some cases a topological invariant of M . We define the triple point

number t(M) of a closed orientable 3-manifold M as the minimal number
of triple points of all its filling Dehn surfaces, and the genus g triple point

number tg(M) of M as the minimal number of triple points of all its genus g
filling Dehn surfaces. The ordered collection (t0(M), t1(M), t2(M), . . . ) of all
the genus g triple point numbers of the 3-manifold M for all g ≥ 0 is what we
call the triple point spectrum T(M) of M . We can make similar definitions
imposing topological restrictions on the filling Dehn surfaces considered.
For example, we can define the nullhomotopic triple point number of M as
the minimal number of triple points of all its nullhomotopic filling Dehn
surfaces; in a similar way the nullhomotopic genus g triple point number

or the nullhomotopic triple point spectrum can be defined. All of them are
topological invariants of the 3-manifold and give a measure of the complexity

of the manifold in the same way as the Heegaard genus, for example. If we
have a filling Dehn surface Σ in a 3-manifold, using pipings as in Figure
19(b), we can perhaps reduce the number of triple points of Σ, but increasing
the genus of the filling Dehn surface. So there is some relation between the
different genus g triple point numbers that would be interesting to clarify.

Any Dehn sphere in a closed orientable 3-manifold has an even number
of triple points ([Ha, p. 105]). This is not the case for genus g > 0 Dehn
surfaces, as can be seen in the example given by Figure 28(a). This means
that if we want a set of moves to relate all Dehn surfaces (of any genus) of
any 3-manifold, the Homma–Nagase moves introduced here, together with
pipings, do not suffice because all of them are operations that preserve the
parity of the number of triple points.
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We say that a genus g filling Dehn surface Σ of a 3-manifold M is minimal

if there is no other genus g filling Dehn surface of M with fewer triple points
than Σ has. Minimal filling Dehn surfaces, in particular minimal filling Dehn
spheres, should have interesting properties, and their classification is another
interesting problem. The classification of minimal Dehn spheres has been
solved for S3 in [Sh]. In that work, A. Shima gives in a different context six
examples of Dehn spheres in S3 with only two triple points. Three of these
six examples fill S3 (one of them is Johansson’s sphere of Figure 25(a)) and
they are minimal because, as we have said, any filling Dehn sphere must
have at least two triple points. It can be deduced from the main theorem of
[Sh] that these three examples are the unique possible minimal filling Dehn
spheres in S3.

Finally, we want to introduce a last definition. We say that a filling
Dehn surface Σ in a 3-manifold M is irreducible if the only allowable filling-
preserving moves on Σ are finger moves +1 or +2. That is, Σ is irreducible
if any Dehn surface Σ′ which can be obtained by performing a filling-
preserving move on Σ has more triple points than Σ. Johansson’s sphere
is not irreducible, while Example 1.3 of [Sh] is irreducible. This means that
minimality does not imply irreducibility. We are also interested in the con-
verse question: are there examples of nonminimal irreducible filling Dehn
surfaces?
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