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Conne
tion graphsbyPiotr Bartªomiej
zyk (Gda«sk)
Abstra
t. We introdu
e 
onne
tion graphs for both 
ontinuous and dis
rete dynam-i
al systems. We prove the existen
e of 
onne
tion graphs for Morse de
ompositions ofisolated invariant sets.Introdu
tion. In [4℄ Conley and Zehnder presented some generaliza-tion of the 
lassi
al Morse theory to �ows. Using the Conley index theorythey proved the existen
e of periodi
 solutions of some Hamiltonian systems.Their main idea is to study isolated invariant sets by de
omposing theminto invariant subsets (Morse sets) and 
onne
ting orbits between them.This stru
ture is 
alled a Morse de
omposition of an isolated invariant set.A �ltration of index pairs asso
iated with a Morse de
omposition 
an beused to �nd 
onne
tions between di�erent Morse sets. The prin
ipal toolsfor this purpose are 
onne
tion matri
es and graphs. In [1, 2, 6�9℄ the 
on-ne
tion matrix theory was developed for �ows and homeomorphisms. In [5℄Fiedler and Mis
haikow introdu
ed 
onne
tion graphs for �ows. The 
on-ne
tion graph is a simpli�ed version of the 
onne
tion matrix. The verti
esof these graphs 
orrespond to the homologi
al Conley indi
es of the Morsesets. The 
onne
tion graphs provide some information on the stru
ture of theMorse de
omposition. For example, the edges of the graphs give a 
onditionfor the existen
e of 
onne
ting orbits between di�erent Morse sets. Further-more, the homologi
al Conley index for the total invariant set is given bythe verti
es with no edges.In this paper we prove the existen
e of 
onne
tion graphs for both 
on-tinuous and dis
rete dynami
al systems. The existen
e of su
h a graph inthe 
ase of a �ow was proved in [5℄. Fiedler and Mis
haikow dedu
ed theexisten
e of 
onne
tion graphs from the existen
e of 
onne
tion matri
es.Our purpose is to present a dire
t 
onstru
tion of the 
onne
tion graph. For2000 Mathemati
s Subje
t Classi�
ation: Primary 37B30; Se
ondary 37B35, 37B25.Key words and phrases: Conley index, Morse de
omposition, 
onne
tion graph.[93℄



94 P. Bartªomiej
zykthat reason our proof makes no appeal to the 
onne
tion matrix theory. It isbased only on some simple ideas from linear algebra and algebrai
 topology.The organization of the paper is as follows. Se
tion 1 
ontains some pre-liminaries. In Se
tions 2 and 3 we study the properties of attra
tor-repellerpairs, Morse de
ompositions and index �ltrations. In Se
tion 4 our main re-sult, the theorem on the existen
e of 
onne
tion graphs is stated. Se
tions 5and 6 
ontain the material from linear algebra and algebrai
 topology neededin Se
tion 7, in whi
h our main result is proved. Se
tion 8 
ontains exam-ples, whi
h illustrate how 
onne
tion graphs 
an be 
omputed and used todete
t 
onne
ting orbits. We admit that our examples are not 
onvin
ingappli
ations of the theory, as one of the referees rightly observed. Our goalwas just to present the form of the 
onne
tion graph for some well knownand quite simple dynami
al systems.Besides [3℄ and [5℄, the works of of Mis
haikow [13℄, Mrozek [14, 15℄,Reine
k [16, 17℄ and Robbin and Salamon [18℄ are important referen
es forthe index theory presented here.1. Preliminaries. Let (X, d) be a lo
ally 
ompa
t metri
 spa
e and let
T × X → X : (t, x) 7→ f t(x)be a dynami
al system on X with dis
rete time (T = Z) or 
ontinuous time

(T = R). Let f := f1 denote the time-one map. Sin
e we 
onsider only one�xed dynami
al system, we will use the 
onvenient notation xt := f t(x) for
x ∈ X and t ∈ T. If A ⊂ X and ∆ ⊂ T then A∆ := {xt |x ∈ A and t ∈ ∆}.For a given subset N ⊂ X the set Inv(N) := {x ∈ X |xT ⊂ N} is 
alled theinvariant part of N . We say that S ⊂ X is invariant if Inv(S) = S.Re
all that given a set Y ⊂ X the omega limit set of Y is

ω(Y ) :=
⋂

t>0

cl(Y [t,∞))and the alpha limit set of Y is
α(Y ) :=

⋂

t<0

cl(Y (−∞, t]).Let S be a 
ompa
t invariant set. A subset A ⊂ S is 
alled an attra
torin S if there exists a neighbourhood U of A in S su
h that ω(U) = A.A repeller is an attra
tor for the time-reversed dynami
al system. For givensubsets A, B of S we de�ne the 
onne
ting orbit set by
C(A, B; S) := {x ∈ S | α(x) ⊂ A, ω(x) ⊂ B}.A 
ompa
t set N ⊂ X is 
alled an isolating neighbourhood if Inv(N) ⊂

int(N). A set S is 
alled an isolated invariant set if S = Inv(N) for someisolating neighbourhood N. A subset A ⊂ L is said to be positively invariant



Conne
tion graphs 95in L if given x ∈ A and x[0, t] ⊂ L, we have x[0, t] ⊂ A. A subset A of Lis 
alled an exit set for L if given x ∈ L su
h that x[0,∞) 6⊂ L, there exists
t ≥ 0 su
h that x[0, t] ⊂ L and xt ∈ A.Let S be an isolated invariant set. A pair (N1, N0) of 
ompa
t sets is
alled an index pair for S if:(i) S = Inv(cl(N1 \ N0)) ⊂ int(N1 \ N0),(ii) N0 is positively invariant in N1,(iii) N0 is an exit set for N1.In the 
ase of a �ow the homologi
al Conley index is de�ned by

CH∗(S) := H∗(N
1/N0, [N0]) ≈ H∗(N

1, N0),where (N1, N0) is any index pair for S and H∗ stands for the singular homol-ogy with �eld 
oe�
ients. Unfortunately, it is not true that for any indexpair H∗(N
1/N0, [N0]) ≈ H∗(N

1, N0). Therefore, we need either an extraassumption on the (
o)homology or an extra 
ondition (regularity) on theindex pair. In the �rst 
ase, it is 
onvenient to use the Alexander�Spanier
ohomology fun
tor with its strong ex
ision property. We are 
onvin
ed thatall results of this paper 
on
erning 
onne
tion graphs 
an be reformulatedin terms of the 
ohomologi
al Conley index. The 
ohomologi
al approa
hsu�ers only one disadvantage. Namely, sin
e the 
ohomology fun
tor is 
on-travariant, the arrow of time in the phase portrait and the arrow (dire
tededge) in the 
onne
tion graph point in opposite dire
tions, whi
h may be, inour opinion, misleading. Hen
e we prefer to assume that we are working withregular index pairs and index �ltrations. In the dis
rete 
ase the de�nitionof the index is a little more 
ompli
ated.First we re
all the notion of the Leray fun
tor introdu
ed by Mrozek(see [14, 15℄). Let E be the 
ategory of graded ve
tor spa
es and linearmaps of degree zero. The full sub
ategory of E 
onsisting of all obje
ts with�nite-dimensional 
omponents and their morphisms will be denoted by E0.We de�ne a new 
ategory Endo(E) as follows. Its obje
ts are pairs (A, a),where A ∈ E and a ∈ E(A, A). Morphisms from (A, a) to (B, b) are all maps
ϕ ∈ E(A, B) su
h that ϕa = bϕ. Auto(E) is the full sub
ategory of Endo(E)
onsisting of graded ve
tor spa
es with a distinguished isomorphism. For
(A, a) ∈ Endo(E) we de�ne the generalized kernel of a as

gker(a) :=
⋃

{ker(an) | n ≥ 1}.Note that the quotient map
a′ : A′ ∋ [x] 7→ [a(x)] ∈ A′, where A′ := A/gker(a),is a well de�ned monomorphism. Then we restri
t a′ to the subspa
e

A′′ = gIm(a′) :=
⋂

{Im (a′)n | n ≥ 0}
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zyk
alled the generalized image of a′. Sin
e a′(A′′) ⊂ A′′, the restri
tion a′′ :=
a′|A′′ : A′′ → A′′ is a well de�ned automorphism of A′′. Assume ϕ : (A, a) →
(B, b) is a morphism in Endo(E). Let ϕ′ : A/gker(a) ∋ [x] 7→ [ϕ(x)] ∈
B/gker(b) denote the indu
ed morphism and ϕ′′ = ϕ′|A′′ : A′′ → B′′ itsrestri
tion to A′′. We put L(A, a) = (L(A), L(a)) := (A′′, a′′) and L(ϕ) :=
ϕ′′. Thus we have de�ned a 
ovariant fun
tor L : Endo(E) → Auto(E) 
alledthe Leray fun
tor. If N = (N1, N0) is an index pair, then the map fN :
N1/N0 → N1/N0 de�ned by

fN ([x]) =

{
[f(x)] if x, f(x) ∈ N1 \ N0,

[N0] otherwise,is 
ontinuous (see e.g. [21, Lemma 4.3℄). Just as in the 
ase of �ows (seeremarks above) we have to assume that H∗(N
1/N0, [N0]) is isomorphi
 to

H∗(N
1, N0). On
e more an extra assumption on the index pair orthe (
o)homology guarantees that this isomorphism holds and hen
e fNindu
es an endomorphism fN∗ : H∗(N

1, N0) → H∗(N
1, N0). Therefore

(H∗(N
1, N0), fN∗) ∈ Endo(E) and 
onsequently

L(H∗(N
1, N0), fN∗) = (LH∗(N

1, N0), L(fN∗)) ∈ Auto(E).We now de�ne the homologi
al Conley index of an isolated invariant set S as
CH∗(S) := LH∗(N),where N is any index pair for S. It is proved in [12℄ that this de�nition isindependent of the 
hoi
e of an index pair N. It turns out that if f 
omesfrom a �ow then fN is homotopi
 to the identity on N1/N0 and therefore

L(H∗(N), fN∗) = (H∗(N), id|H∗(N)).This is why we will write CH∗(S) = LH∗(N) also in the 
ase of a �ow.Sin
e in our paper we want to use methods of �nite-dimensional linear al-gebra, we will need the following assumption throughout the paper: for everyisolated invariant set in the phase spa
e X there exist index pairs (N1, N0)su
h that LH∗(N
1, N0) is a �nite dimensional graded ve
tor spa
e. Thisassumption is in parti
ular satis�ed if X is a 
ompa
t ANR (see [14, 15℄).Consequently, denoting by Auto0(E) the full sub
ategory of Auto(E) 
on-sisting of obje
ts with �nite-dimensional 
omponents and their morphismswe have

L(H∗(N
1, N0), fN∗) = (LH∗(N

1, N0), L(fN∗)) ∈ Auto0(E)for any index pair N in X.The next result will not be needed until Se
tion 7.Proposition 1.1. Let f be a dynami
al system. Assume that N ⊂ Pare index pairs for an isolated invariant set S. Then the in
lusion of pairs
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i : N → P indu
es an isomorphism

L(i∗) : LH∗(N) → LH∗(P ).The proof is straightforward.Re
all that a pair (V, E) is 
alled a dire
ted graph (graph for short) if
V is a �nite set and E ⊂ {(u, v) ∈ V × V |u 6= v}. Elements of V are
alled verti
es and elements of E edges. We say that a graph G′ = (V ′, E′)is a subgraph of G = (V, E) if V ′ ⊂ V and E′ ⊂ E. A �ltered graph is a
olle
tion G = {Gs}n

s=1 of graphs su
h that Gs is a subgraph of Gs+1 and
Es = En ∩ (Vs × Vs) for ea
h s = 1, . . . , n − 1.2. Attra
tor-repeller pairs. If A is an attra
tor in S, then the set
A∗ := {x ∈ S |ω(x) ∩ A = ∅} is a repeller in S. It is 
alled the repeller dualto A in S. We 
all su
h a pair (A, A∗) an attra
tor-repeller pair in S. It iseasy to 
he
k that if S is an isolated invariant set then so are A and A∗.Theorem 2.1. Let S be an isolated invariant set and (A, A∗) be anattra
tor-repeller pair in S. Then there exists a triple N0 ⊂ N1 ⊂ N2 of
ompa
t sets su
h that :(a) (N2, N0) is an index pair for S,(b) (N1, N0) is an index pair for A,(
) (N2, N1) is an index pair for A∗.The detailed proof in the 
ase of a �ow 
an be found in [19℄ and in the
ase of a homeomorphism in [15, 2℄.If (A, A∗) is an attra
tor-repeller pair in S su
h that CH∗(S), CH∗(A),
CH∗(A

∗) are graded ve
tor spa
es with �nite-dimensional 
omponents, thenwe 
an 
onstru
t a long exa
t sequen
e relating the homology indi
es of S,
A and A∗. Namely, there is a long exa
t sequen
e
· · · → Hq(N

1, N0)
i
→ Hq(N

2, N0)
j
→ Hq(N

2, N1)
∂
→ Hq−1(N

1, N0) → · · ·where i, j are indu
ed by in
lusions and (N2, N1, N0) is the triple given byTheorem 2.1. Applying the Leray fun
tor we obtain an exa
t sequen
e ofhomologi
al Conley indi
es
· · · → CHq(A) → CHq(S) → CHq(A

∗)
∂
→ CHq−1(A) → · · · .This sequen
e, 
alled the homology index sequen
e of the attra
tor-repellerpair , provides an algebrai
 
ondition for the existen
e of 
onne
ting orbits.The map ∂ : CH∗(A

∗) → CH∗(A) is 
alled the 
onne
tion map.Theorem 2.2. If the 
onne
tion map ∂ is nontrivial , then C(A∗, A;S) 6= ∅.Proof. If C(A∗, A; S) = ∅ then S = A∪A∗. From additivity of the Conleyindex CH∗(S) ≃ CH∗(A) ⊕ CH∗(A
∗) and so ∂ = 0.
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zyk3. Morse de
ompositions and index �ltrations. Let (P, <) be a�nite partially ordered set. A subset I ⊂ P is 
alled an interval if p, q ∈ Iand p < r < q implies r ∈ I. The set of intervals will be denoted by I(<).An interval I ⊂ P is 
alled an attra
ting interval if p ∈ I and q < p impliesthat q ∈ I. The set of attra
ting intervals is written as A(<). A(<) is easilyseen to be a latti
e of sets. Two elements p, q ∈ P are 
alled adja
ent if
{p, q} ∈ I(<). Similarly, a pair (I, J) of disjoint intervals is 
alled adja
ent if(i) I ∪ J ∈ I(<),(ii) p ∈ I, q ∈ J implies q 6< p.We write IJ instead of I ∪ J. The 
olle
tion of adja
ent pairs of intervals isdenoted by I2(<).Definition 3.1. A �nite 
olle
tion

M = {M(p) | p ∈ P}of mutually disjoint 
ompa
t invariant subsets of an isolated invariant set Sis 
alled a Morse de
omposition if there is a partial order < on the indexingset P su
h that for every x ∈ S \
⋃

p∈P M(p) there are p, q ∈ P with p < qsu
h that ω(x) ⊂ M(p) and α(x) ⊂ M(q).The sets M(p) are 
alled Morse sets. Observe that we do not assume thatthe above order on P is unique. Any su
h ordering on P is 
alled admissible.Of all the admissible orderings for a Morse de
omposition, there is a uniqueminimal order (one with the fewest relations) 
alled the dynami
al systemde�ned order and denoted by <D. This order is the transitive 
losure of therelation p <D q if C(M(q), M(p); S) 6= ∅. All other admissible orderings areextensions of <D. For ea
h I ∈ I(<) we de�ne
M(I) :=

( ⋃

p∈I

M(p)
)
∪

( ⋃

p,q∈I

C(M(p), M(q); S)
)

One 
an showProposition 3.2.(i) M(I) is an isolated invariant set ,(ii) if (I, J) ∈ I2(<), then (M(I), M(J)) is an attra
tor-repeller pair in
M(IJ).Definition 3.3. An index �ltration for the admissible ordering of theMorse de
omposition M(<) = {M(p) | p ∈ (P, <)} is a 
olle
tion of 
ompa
tsets N (<) = {N(α) |α ∈ A(<)} su
h that:(1) for ea
h α ∈ A(<), (N(α), N(∅)) is an index pair for the attra
tor
M(α),(2) for ea
h α, β ∈ A(<), N(α ∩ β) = N(α) ∩ N(β) and N(α ∪ β) =
N(α) ∪ N(β).
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tion graphs 99Let I ∈ I(<). Then there are α, β ∈ A(<) su
h that (α, I) ∈ I2(<) and
α∪ I = β. It is easy to 
he
k that this implies that (N(β), N(α)) is an indexpair for M(I). Thus the index �ltration de�nes an index pair for ea
h M(I)where I ∈ I(<).The following theorem proved by Salamon [19℄ for �ows and by Ri
heson[6℄ for homeomorphisms gives the existen
e of index �ltrations.Theorem 3.4. For any given admissible ordering of the Morse de
om-position there exists an index �ltration.4. Conne
tion graphs. We are now ready to introdu
e the notion ofa 
onne
tion graph, following [5℄. Let M = {M(i) | i ∈ P} be a Morsede
omposition of an isolated invariant set S.Definition 4.1. A �nite dire
ted graph G is 
alled a 
onne
tion graphfor the Morse de
omposition M if:(1) the set of verti
es of G has the form

⋃

i∈P

∞⋃

k=0

basisk(i),where basisk(i) is a basis for CHk(M(i)) (elements of this basis willbe denoted by ei
k),(2) ea
h vertex has 1 edge or 0 edges (a vertex with no edges is 
alledfree),(3) any edge has the form ei

k → ej
k−1, where i 6= j,(4) the set of verti
es with no edges determines a basis for CH∗(S), i.e.there is a monomorphism ϕ : CH∗(S) →

⊕
i∈P CH∗(M(i)) su
h that

Im ϕ is spanned by the set of free verti
es of G,(5) the relation <G de�ned as the transitive 
losure of i <G j iff thereexists an edge in G of the form CH∗(M(j)) ∋ e → e′ ∈ CH∗(M(i)),is a partial order on P (this partial order is 
alled the 
onne
tiongraph de�ned order),(6) <D extends <G.Observe that the verti
es with no edges and the ones with edges pro-vide 
omplementary information about the Morse de
omposition. Namely,the free verti
es form the Conley index of the total invariant set, while theverti
es with edges yield the existen
e of 
onne
ting orbits between di�erentMorse sets in the de
omposition.We 
an now formulate the main result of this paper, whi
h will be provedin Se
tion 7.Theorem 4.2. For any Morse de
omposition of an isolated invariant setthere exists a 
onne
tion graph.
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zykThe signi�
an
e of the above result 
omes from the fa
t that it allows oneto dete
t 
onne
ting orbits by 
ombining the general properties of 
onne
tiongraphs with information about the Conley indi
es of Morse sets.5. Algebrai
 lemma. Most of this se
tion will be devoted to the proofof Lemma 5.1. This result may be viewed as a generalization of Theorem 2in Kostrikin and Manin [11, Ch. 1, Se
. 8℄. Roughly speaking, our lemmaenables us to 
hoose bases best �tting the stru
ture of linear maps. Morepre
isely, in matrix language, our result ensures the existen
e of bases forve
tor spa
es in a sequen
e of linear maps su
h that all matri
es of thesemaps are diagonal with entries in {0, 1}. So it is not surprising that ourproof is similar in spirit to one of the proofs of the Jordan de
ompositiontheorem (see for instan
e [10, 11, 20℄).But �rst we have to introdu
e the following simple notion. Let A, B, Cbe ve
tor spa
es and let A = B ⊕ C. We say that a basis b(A) of A agreeswith the de
omposition B ⊕ C if for every e ∈ b(A), either e ∈ B or e ∈ C.We 
an now formulate the main result of this se
tion.Lemma 5.1. Let
A1 L1→ A2 L2→ · · ·

Ln−2

−→ An−1 Ln−1

−→ Anbe a sequen
e of linear maps of �nite-dimensional ve
tor spa
es. Then forea
h 1 ≤ p ≤ n there exist subspa
es V p, Ṽ p of Ap and a basis b(Ap) su
hthat :(i) Ap = ImLp−1 ⊕ V p,(ii) Ap = kerLp ⊕ Ṽ p,(iii) b(Ap) agrees with both of the above de
ompositions of Ap,(iv) if (ap
ij) is the matrix of Lp with respe
t to the bases b(Ap) and

b(Ap+1), then ap
ii = 1 for 1 ≤ i ≤ r(p) and ap

ij = 0 for other i, j.Remark 5.2. By part (iv) of the above lemma, Lp(e) ∈ b(Ap+1) or
Lp(e) = 0 for any e ∈ b(Ap) and p = 1, . . . , n − 1. Consequently, for every
e ∈ b(Ap) there exists a unique element a su
h that a ∈ b(As) \ ImLs−1 and
e = (Lp−1 ◦ · · · ◦ Ls)(a) for some s ≤ p. The element a is 
alled the originof e. In parti
ular, if e /∈ ImLp−1, then the origin of e is e itself.Proof. For 
onvenien
e of notation, we write

Ep
q := Im(Lp−1 ◦ · · · ◦ Lq+1 ◦ Lq)for 1 ≤ q < p ≤ n. Observe that for ea
h p = 2, . . . , n we have the �ltration
Ep

1 ⊂ Ep
2 ⊂ · · · ⊂ Ep

p−1 ⊂ Ap.The basi
 idea of the proof is to �nd bases for Ap best �tting the above�ltrations and 
onsistent with ea
h other for di�erent p. Using them we will
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tion graphs 101de�ne the subspa
es V p and Ṽ p. For 
larity, the proof will be divided intofour steps. The �rst step is based on the proof of Jordan's theorem givenin [10℄.
Step 1. We 
hoose any basis for En

1 and denote by an
1 (k) its elements.Sin
e an

1 (k) ∈ En
1 , we have

an
1 (k) = (Ln−1 ◦ · · · ◦ L2 ◦ L1)(a

1
1(k))for some a1

1(k) ∈ A1. We de�ne
ap

1(k) = (Lp−1 ◦ · · · ◦ L2 ◦ L1)(a
1
1(k))for ea
h p = 2, . . . , n. Next we extend the ve
tors an
1 (k) to a basis for En

2 byadding ve
tors an
2 (k). We write an

2 (k) = (Ln−1 ◦ · · · ◦ L2)(a
2
2(k)) and de�ne

ap
2(k) = (Lp−1 ◦ · · · ◦ L2)(a

2
2(k)) for p = 3, . . . , n. On
e again we extend theve
tors an

1 (k), an
2 (k) to a basis for En

3 by adding ve
tors an
3 (k). A s
hemati
view of this whole pro
edure is presented in Figure 1.

a1
1(k)

↓

a2
1(k) a2

2(k)

↓ ↓

a3
1(k) a3

2(k) a3
3(k)

↓ ↓ ↓... ... ...
↓ ↓ ↓

an−1
1 (k) an−1

2 (k) an−1
3 (k) · · · an−1

n−1(k)

↓ ↓ ↓ · · · ↓

an
1 (k) an

2 (k) an
3 (k) · · · an

n−1(k) an
n(k)Fig. 1. Step 1 in the proof of Lemma 5.1It is easy to 
he
k that the pth row in Figure 1 (we write it ap

i≤p(k) forshort) 
an be treated as a basis of Ap/kerLp for p = 1, . . . , n − 1. Con-sequently, the pth row represents a linearly independent set of ve
tors in
Ap. Moreover, the set {ap

1(k), ap
2(k), . . . , ap

p−1(k)} (we denote it brie�y by
{ap

i<p(k)}) 
an be seen as a basis of ImLp−1/ImLp−1 ∩ kerLp for p =
2, . . . , n − 1. Similarly, the ve
tors an

i<n(k) form a basis for Im Ln−1 andthe ve
tors an
n(k) extend this basis to a basis for An.

Step 2. For �xed p = 2, . . . , n−1 let bp(k) be a basis for ImLp−1∩kerLp.This basis 
an be extended to a basis for ker Lp by adding ve
tors cp(k).Similarly, for p = 1 let c1(k) form any basis for kerL1.
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Step 3. Finally, for p = 2, . . . , n−1 we de�ne b(Ap) to 
onsist of all theve
tors ap

i≤p(k), bp(k), cp(k), and we set
V p := span{cp(k), ap

p(k)}, Ṽ p := span{ap
i≤p(k)}as shown in Figure 2.

ImLp−1
︷ ︸︸ ︷

V p

︷ ︸︸ ︷

Ṽ p

{
ap

i<p(k) ap
p(k)

kerLp

{
bp(k) cp(k)

Fig. 2. Step 3 in the proof of Lemma 5.1Sin
e there is no image in A1 and no kernel in An, the above de�nitionshave to be 
hanged slightly for p = 1 and p = n. Namely, let b(A1) 
on-sist of the ve
tors a1
1(k), c1(k) and let b(An) 
onsist of the ve
tors an

i≤n(k).Moreover, set
Ṽ 1 := span{a1

1(k)}, V n := span{an
n(k)}.We see at on
e that the bases b(Ap) and the subspa
es V p, Ṽ p satisfy theassertion of the lemma.

6. Topologi
al �ltrations and graphs. In this se
tion we introdu
e�ltered graphs for topologi
al �ltrations and present a general result on su
hgraphs. These graphs are not dire
tly 
onne
ted to the Conley index theory.In fa
t, it is possible to give the de�nition of the �ltered graph for the topo-logi
al �ltration even in the absen
e of any dynami
al system. However, thematerial of this se
tion will be needed in the next one devoted to 
onne
tiongraphs. For this reason, it seems preferable to take the presen
e of a �owor a homeomorphism into 
onsideration when formulating the results of thisse
tion. That explains why we use the Leray fun
tor instead of the usualhomology.Consider a topologi
al �ltration N = {N i}n
i=0, i.e. a �ltration N0 ⊂

N1 ⊂ · · · ⊂ Nn of topologi
al spa
es. Let us introdu
e the following notationfor i = 1, . . . , n and k = 0, 1, 2, . . .:
Ai := LH∗(N

i, N0), Bi := LH∗(N
i, N i−1),

Ai
k := LHk(N

i, N0), Bi
k := LHk(N

i, N i−1).
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tion graphs 103From now on we assume that all Ai and Bi are �nite-dimensional linearspa
es. The �ltration N determines the following exa
t sequen
es:
(10)

As i
// As+1

j
{{vv

vv
vv

vv
v

Bs+1

∂

bbEEE
EE

EEE

for s = 1, . . . , n − 1.Definition 6.1. We say that G = {Gs}n
s=1 is a �ltered graph for thetopologi
al �ltration N = {Ns}n

s=0 if for every s = 1, . . . , n:(1) the set of verti
es of Gs has the form
s⋃

i=1

∞⋃

k=0

b(Bi
k),where b(Bi

k) is a basis for Bi
k (elements of this basis will be denotedby bi

k),(2) ea
h vertex has 1 edge or 0 edges (a vertex with no edges is 
alledfree),(3) there is in Gs an edge of the form bq
k → bp

l iff the following 
onditionsare satis�ed:(3.1) 1 ≤ p < q ≤ s,(3.2) l = k − 1,(3.3) there exists an element a ∈ Ap su
h that ja = bp
l and ∂bq

k =
iq−p−1a 6= 0,(4) the set of verti
es of Gs with no edges determines a basis of As,i.e. there is a monomorphism ϕ : As →

⊕s
i=1 Bi su
h that Im ϕ isspanned by the set of free edges of Gs.The following diagram explains the idea behind 
ondition (3.3) of theabove de�nition.

Ap
k−1

j
−−−−→ Bp

k−1 ∋ bp
lyi

Ap+1
k−1yi...
yi

bq
k ∈ Bq

k

∂
−−−−→ Aq−1

k−1
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zykWe 
an formulate the main result of this se
tion.Theorem 6.2. Let N = {N s}n
s=0 be a topologi
al �ltration su
h that all

Ai and Bi are �nite-dimensional. Then there exists a �ltered graph for N .Proof. The proof will be divided into three steps.
Step 1: Constru
tion of verti
es of Gs. Consider the following sequen
eof homomorphisms:

A1 i
→ A2 i

→ · · ·
i
→ An−1 i

→ An,where the i are indu
ed by in
lusions. By Lemma 5.1, there exist subspa
es
V s, Ṽ s and bases b(As) that agree with the de
ompositions

As = ker i ⊕ Ṽ s = Im ∂ ⊕ Ṽ s, As = Im i ⊕ V s = ker j ⊕ V s.Let W s denote any subspa
e 
omplementary to Im j = ker ∂ in Bs, i.e.
Bs = Im j ⊕ W s = ker ∂ ⊕ W s for s = 2, . . . , n. Observe that we havealready 
hosen a basis in B1 = A1. Under the above notations, the maps

j|V s+1 : V s+1 → Im j = ker ∂, ∂|W s+1 : W s+1 → Im ∂ = ker i,whi
h are isomorphisms for s = 1, . . . , n − 1, and the bases b(As) uniquelyde�ne for s = 2, . . . , n bases b(Bs) that agree with the de
ompositions Bs =
Im j ⊕ W s. Finally, we de�ne the verti
es of Gs to be ⋃s

i=1 b(Bi).

Step 2: Constru
tion of edges of Gs. Let ea
h vertex in b(W q) ⊂ b(Bq)
(q = 2, . . . , s) be the initial vertex of some edge. We will show how to �ndthe end of this edge. All other verti
es will be free. Let b ∈ b(W q) ⊂ b(Bq),and so e = ∂b ∈ b(Aq−1). If a ∈ Ap for p < q is the origin of e, as inRemark 5.2, then c = ja is the end of the edge that begins at b. This endsthe 
onstru
tion of a �ltered graph G. The above pro
edure shows that Gsatis�es 
onditions (1)�(3) of the de�nition. What is left is to prove (4).
Step 3: Constru
tion of ϕ. We de�ne a linear map

ϕ : As →
s⊕

i=1

Bs

by a pro
edure 
omplementary to determining the edges of Gn. Let b(Ai),
b(Bi) be the bases 
hosen in Step 1. It is enough to de�ne ϕ on the elementsof b(As). Let a ∈ b(As). Set

ϕa = jc,where c ∈ b(As−l) is the origin of a, as in Remark 5.2. By de�nition, ϕprovides the desired monomorphism.7. Proof of the main result. We re
all that our main result states theexisten
e of 
onne
tion graphs for both 
ontinuous and dis
rete dynami
alsystems. Let M = {M(i) | i ∈ P} be a Morse de
omposition of an isolated
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tion graphs 105invariant set S. Consider the dynami
al-system-de�ned ordering of the Morsede
omposition M, i.e.
M(<D) = {M(i) | i ∈ (P, <D)}.By Theorem 3.4, there exists an index �ltration
N (<D) = {N(I) | I ∈ A(<D)}for M(<D). Let M(<L) be any admissible linear ordering of the Morsede
omposition M. Observe that <L always exists and <L extends <D. Fur-thermore, we will write elements of P as 1, 2, . . . , n a

ording to <L. De�ne

Ii := {1, 2, . . . , i − 1, i} for i = 0, 1, . . . , n. In parti
ular, I0 = ∅. It followsthat A(<L) = {Ii}n
i=0 ⊂ A(<D). Now we de�ne the following topologi
al�ltration:
N := {N(I) ∈ N (<D) | I ∈ A(<L)}.Writing N i := N(Ii) we obtain N = {N i}n

i=0. Observe that N is an index �l-tration for M(<L), but sin
e N 
omes from N (<D), N has some additionalproperties, whi
h are not in
luded in the de�nition of an index �ltration for
M(<L). Applying Theorem 6.2 we get a �ltered graph G = {Gi}n

i=1 for N .Finally, we 
laim that Gn is a 
onne
tion graph for M. By the de�nitionof the �ltered graph, Gn satis�es 
onditions (1)�(5) of the de�nition of the
onne
tion graph. It remains to prove that <D extends <G. We start withthe observation that the last assertion is nothing but the statement that forany edge ej
k → ei

k−1 we have i <D j. To obtain a 
ontradi
tion, supposethat there exists an edge ej
k → ei

k−1 with ¬(i <D j). By the de�nition of the�ltered graph, this implies i <L j. Set
J := {p ∈ P | p ≤D j}, J ′ := J \ {j}.By de�nition, i /∈ J and J, J ′ ∈ A(<D). From this we 
on
lude that for

A ∈ {Ii, Ii−1} ⊂ A(<L) ⊂ A(<D) and B ∈ {J, J ′} we have A ∪ B ∈ A(<D).Consider a 
ommutative diagram (∗) of Figure 3, in whi
h every row 
or-responds to some exa
t sequen
e of a triple from the �ltration N (<D) and
LHk(N(Ii−1 ∪ J), N(Ii−1)) → LHk−1(N(Ii−1), N(∅))

l ↓

LHk(N(Ii ∪ J), N(∅)) → LHk(N(Ii ∪ J), N(Ii)) → LHk−1(N(Ii), N(∅))

|| ↓ ↓

LHk(N(Ii ∪ J), N(∅)) → LHk(N(Ii ∪ J), N(Ii ∪ J ′)) → LHk−1(N(Ii ∪ J ′), N(∅))

l ↓

LHk(N(Ij), N(Ij−1)) → LHk−1(N(Ij−1), N(∅))Fig. 3. Diagram (∗)
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zykthe verti
al homomorphisms are indu
ed by in
lusions of pairs. Moreover,the maps denoted by l are isomorphisms sin
e they 
orrespond to in
lu-sions of index pairs of the same isolated invariant sets (M(i) and M(J − Ii)respe
tively).From the diagram (∗) and the de�nition of the �ltered graph, we obtain anew 
ommutative diagram (∗∗) (see Figure 4), in whi
h the elements ai, aj−1are de�ned as in (3.3) of the above mentioned de�nition. The notation x → ymeans that x is mapped onto y in the diagram (∗).
d → e

l ↓

h → c → ai

|| ↓ ↓

h → a → b

l ↓

ej
k → aj−1Fig. 4. Diagram (∗∗)The following reasoning shows that e ∈ LH∗(N(Ii−1), N(∅)) is nonzero.Sin
e the verti
al arrow over ej

k 
orresponds to an isomorphism, a 6= 0. Bythe 
ommutativity of the bottom square in (∗), we get b 6= 0. If c were zero,there would be h su
h that h → c, whi
h 
ontradi
ts the 
ommutativity ofthe se
ond and third rows of (∗). Therefore c 6= 0. The verti
al arrow over c
orresponds to an isomorphism, and 
onsequently, d 6= 0. Finally, by the
ommutativity of the top square in (∗), e 6= 0.It remains to 
onsider two 
ases. If i = 1, then LHk−1(N(Ii−1), N(∅)) =
LHk−1(N(∅), N(∅)) = {0}, a 
ontradi
tion. If i > 1, we get the exa
t se-quen
e

LHk−1(N
i−1, N0) → LHk−1(N

i, N0) → LHk−1(N
i, N i−1)with three nonzero elements su
h that e → ai → ei

k−1, whi
h 
ontradi
ts theexa
tness of the above sequen
e and 
ompletes the proof.8. Examples. Let D2 be the 
losed unit ball in R2 and let ϕ be a �owon the plane with the dynami
s as in Figure 5.Assume that S = D2 is an isolated invariant set and that M(0) = (0, 0),
M(1±) = (±1, 0), M(2±) = (0,±1) form a Morse de
omposition M of Swith the �ow-de�ned order 0 < 1± < 2±. Moreover, a simple veri�
ationshows that the lo
al Conley indi
es of the Morse sets are
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Fig. 5. The dynami
s of ϕ

CHk(M(0)) =

{
Q if k = 0,

0 otherwise,

CHk(M(p±)) =

{
Q if k = p,

0 otherwise,and the total Conley index of the whole set is
CHk(M(S)) =

{
Q if k = 2,

0 otherwise.

r r

r r

r

e−2

e−1

e0

e+
2

e+
1

� level 0

� level 2

� level 1

Fig. 6. Verti
es of any 
onne
tion graph for ϕLet e0, e
±
1 , e±2 be any basis ve
tors for CH0(M(0)), CH1(M(1±)),

CH2(M(2±)) respe
tively. Consequently, ea
h 
onne
tion graph for theMorse de
ompositions M has �ve verti
es as in Figure 6. Three levels inFigure 6 
orrespond to the natural gradation in homology. Theorem 4.2states that the set of 
onne
tion graphs for M is nonempty, but we see
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zykat on
e that in this spe
ial 
ase we have exa
tly four di�erent 
onne
tiongraphs as in Figure 7.
q q

q q

q

?
��	

q q

q q

q

��	

�
�

��	

q q

q q

q

?
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q q

q q

q

@@R

@
@

@@R

Fig. 7. All 
onne
tion graphs for ϕNote that ea
h of them 
ontains the same information about the totalConley index (the set of free verti
es 
onsists of one element of homologi-
al level two) but 
ompletely di�erent information about 
onne
ting orbits.For instan
e, the edges of the �rst 
onne
tion graph imply the existen
e of
onne
ting orbits from M(2−) to M(1−) and from M(1+) to M(0), whilethe edges of the third one yield the existen
e of 
onne
tions from M(2+)to M(1+) and from M(1−) to M(0). Consequently, ea
h 
onne
tion graphprovides only partial information about the stru
ture of the Morse de
om-position. On the other hand, the set of all 
onne
tion graphs gives the fullknowledge of 
onne
ting orbits in the Morse de
omposition.The se
ond example is adapted from [15℄. Let D ⊂ R2 be a square andlet f0 : D → D be a 
ontinuous map as indi
ated in Figure 8. Extend f0 toa homeomorphism f : S2 → S2 with a repelling point r outside D.

D7

D5

D8

D6

D1 D2 D4D3

' $

& %

'$# � ���

� �
 	� 
� �
f(D8)

f(D6)

f(D7) f(D1)

f(D2)

f(D5)

f(D3)

f(D4)-

q
W

*

9

)

i
-

p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p

Fig. 8. The dynami
s of fTake M(0) = Inv(D7 ∪ D8), M(1) = Inv(D1 ∪ D2), M(2) = {r}. It iseasy to 
he
k that M = {M(0), M(1), M(2)} is a Morse de
omposition of
S = S2 with admissible ordering 0 < 1 < 2 and N0 = ∅, N1 = D7 ∪ D8 ∪ P
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tion graphs 109(P is the union of dotted areas), N2 = D1 ∪D2 ∪D7 ∪D8 is an index triplefor M. Moreover, an easy 
omputation shows that
CHk(M(0)) =

{
Q2 if k = 0,

0 otherwise,

CHk(M(p)) =

{
Q if k = p,

0 otherwise,for p = 1, 2. We will denote by {e0, e
′
0}, {e1}, {e2} bases of the ve
torspa
es CH0(M(0)), CH1(M(1)) and CH2(M(2)) respe
tively. Ea
h 
on-ne
tion graph for M has four verti
es as in Figure 9.

e2

e1

e0 e′0

r � level 2

r � level 1

r r
level 0�

Fig. 9. Verti
es of any 
onne
tion graph for fIt is obvious that in this 
ase we have two di�erent 
onne
tion graphs asin Figure 10.
r

r

r r

�
��	

r

r

r r

@
@@R

Fig. 10. All 
onne
tion graphs for fBoth of them 
ontain identi
al information:
• the set of free verti
es forms the global Conley index of S = S2,
• there are 
onne
ting orbits from M(1) to M(0).Observe that none of them provides any information about 
onne
tions from

M(2) to M(1).A
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