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Connetion graphsbyPiotr Bartªomiejzyk (Gda«sk)
Abstrat. We introdue onnetion graphs for both ontinuous and disrete dynam-ial systems. We prove the existene of onnetion graphs for Morse deompositions ofisolated invariant sets.Introdution. In [4℄ Conley and Zehnder presented some generaliza-tion of the lassial Morse theory to �ows. Using the Conley index theorythey proved the existene of periodi solutions of some Hamiltonian systems.Their main idea is to study isolated invariant sets by deomposing theminto invariant subsets (Morse sets) and onneting orbits between them.This struture is alled a Morse deomposition of an isolated invariant set.A �ltration of index pairs assoiated with a Morse deomposition an beused to �nd onnetions between di�erent Morse sets. The prinipal toolsfor this purpose are onnetion matries and graphs. In [1, 2, 6�9℄ the on-netion matrix theory was developed for �ows and homeomorphisms. In [5℄Fiedler and Mishaikow introdued onnetion graphs for �ows. The on-netion graph is a simpli�ed version of the onnetion matrix. The vertiesof these graphs orrespond to the homologial Conley indies of the Morsesets. The onnetion graphs provide some information on the struture of theMorse deomposition. For example, the edges of the graphs give a onditionfor the existene of onneting orbits between di�erent Morse sets. Further-more, the homologial Conley index for the total invariant set is given bythe verties with no edges.In this paper we prove the existene of onnetion graphs for both on-tinuous and disrete dynamial systems. The existene of suh a graph inthe ase of a �ow was proved in [5℄. Fiedler and Mishaikow dedued theexistene of onnetion graphs from the existene of onnetion matries.Our purpose is to present a diret onstrution of the onnetion graph. For2000 Mathematis Subjet Classi�ation: Primary 37B30; Seondary 37B35, 37B25.Key words and phrases: Conley index, Morse deomposition, onnetion graph.[93℄



94 P. Bartªomiejzykthat reason our proof makes no appeal to the onnetion matrix theory. It isbased only on some simple ideas from linear algebra and algebrai topology.The organization of the paper is as follows. Setion 1 ontains some pre-liminaries. In Setions 2 and 3 we study the properties of attrator-repellerpairs, Morse deompositions and index �ltrations. In Setion 4 our main re-sult, the theorem on the existene of onnetion graphs is stated. Setions 5and 6 ontain the material from linear algebra and algebrai topology neededin Setion 7, in whih our main result is proved. Setion 8 ontains exam-ples, whih illustrate how onnetion graphs an be omputed and used todetet onneting orbits. We admit that our examples are not onviningappliations of the theory, as one of the referees rightly observed. Our goalwas just to present the form of the onnetion graph for some well knownand quite simple dynamial systems.Besides [3℄ and [5℄, the works of of Mishaikow [13℄, Mrozek [14, 15℄,Reinek [16, 17℄ and Robbin and Salamon [18℄ are important referenes forthe index theory presented here.1. Preliminaries. Let (X, d) be a loally ompat metri spae and let
T × X → X : (t, x) 7→ f t(x)be a dynamial system on X with disrete time (T = Z) or ontinuous time

(T = R). Let f := f1 denote the time-one map. Sine we onsider only one�xed dynamial system, we will use the onvenient notation xt := f t(x) for
x ∈ X and t ∈ T. If A ⊂ X and ∆ ⊂ T then A∆ := {xt |x ∈ A and t ∈ ∆}.For a given subset N ⊂ X the set Inv(N) := {x ∈ X |xT ⊂ N} is alled theinvariant part of N . We say that S ⊂ X is invariant if Inv(S) = S.Reall that given a set Y ⊂ X the omega limit set of Y is

ω(Y ) :=
⋂

t>0

cl(Y [t,∞))and the alpha limit set of Y is
α(Y ) :=

⋂

t<0

cl(Y (−∞, t]).Let S be a ompat invariant set. A subset A ⊂ S is alled an attratorin S if there exists a neighbourhood U of A in S suh that ω(U) = A.A repeller is an attrator for the time-reversed dynamial system. For givensubsets A, B of S we de�ne the onneting orbit set by
C(A, B; S) := {x ∈ S | α(x) ⊂ A, ω(x) ⊂ B}.A ompat set N ⊂ X is alled an isolating neighbourhood if Inv(N) ⊂

int(N). A set S is alled an isolated invariant set if S = Inv(N) for someisolating neighbourhood N. A subset A ⊂ L is said to be positively invariant



Connetion graphs 95in L if given x ∈ A and x[0, t] ⊂ L, we have x[0, t] ⊂ A. A subset A of Lis alled an exit set for L if given x ∈ L suh that x[0,∞) 6⊂ L, there exists
t ≥ 0 suh that x[0, t] ⊂ L and xt ∈ A.Let S be an isolated invariant set. A pair (N1, N0) of ompat sets isalled an index pair for S if:(i) S = Inv(cl(N1 \ N0)) ⊂ int(N1 \ N0),(ii) N0 is positively invariant in N1,(iii) N0 is an exit set for N1.In the ase of a �ow the homologial Conley index is de�ned by

CH∗(S) := H∗(N
1/N0, [N0]) ≈ H∗(N

1, N0),where (N1, N0) is any index pair for S and H∗ stands for the singular homol-ogy with �eld oe�ients. Unfortunately, it is not true that for any indexpair H∗(N
1/N0, [N0]) ≈ H∗(N

1, N0). Therefore, we need either an extraassumption on the (o)homology or an extra ondition (regularity) on theindex pair. In the �rst ase, it is onvenient to use the Alexander�Spanierohomology funtor with its strong exision property. We are onvined thatall results of this paper onerning onnetion graphs an be reformulatedin terms of the ohomologial Conley index. The ohomologial approahsu�ers only one disadvantage. Namely, sine the ohomology funtor is on-travariant, the arrow of time in the phase portrait and the arrow (diretededge) in the onnetion graph point in opposite diretions, whih may be, inour opinion, misleading. Hene we prefer to assume that we are working withregular index pairs and index �ltrations. In the disrete ase the de�nitionof the index is a little more ompliated.First we reall the notion of the Leray funtor introdued by Mrozek(see [14, 15℄). Let E be the ategory of graded vetor spaes and linearmaps of degree zero. The full subategory of E onsisting of all objets with�nite-dimensional omponents and their morphisms will be denoted by E0.We de�ne a new ategory Endo(E) as follows. Its objets are pairs (A, a),where A ∈ E and a ∈ E(A, A). Morphisms from (A, a) to (B, b) are all maps
ϕ ∈ E(A, B) suh that ϕa = bϕ. Auto(E) is the full subategory of Endo(E)onsisting of graded vetor spaes with a distinguished isomorphism. For
(A, a) ∈ Endo(E) we de�ne the generalized kernel of a as

gker(a) :=
⋃

{ker(an) | n ≥ 1}.Note that the quotient map
a′ : A′ ∋ [x] 7→ [a(x)] ∈ A′, where A′ := A/gker(a),is a well de�ned monomorphism. Then we restrit a′ to the subspae

A′′ = gIm(a′) :=
⋂

{Im (a′)n | n ≥ 0}



96 P. Bartªomiejzykalled the generalized image of a′. Sine a′(A′′) ⊂ A′′, the restrition a′′ :=
a′|A′′ : A′′ → A′′ is a well de�ned automorphism of A′′. Assume ϕ : (A, a) →
(B, b) is a morphism in Endo(E). Let ϕ′ : A/gker(a) ∋ [x] 7→ [ϕ(x)] ∈
B/gker(b) denote the indued morphism and ϕ′′ = ϕ′|A′′ : A′′ → B′′ itsrestrition to A′′. We put L(A, a) = (L(A), L(a)) := (A′′, a′′) and L(ϕ) :=
ϕ′′. Thus we have de�ned a ovariant funtor L : Endo(E) → Auto(E) alledthe Leray funtor. If N = (N1, N0) is an index pair, then the map fN :
N1/N0 → N1/N0 de�ned by

fN ([x]) =

{
[f(x)] if x, f(x) ∈ N1 \ N0,

[N0] otherwise,is ontinuous (see e.g. [21, Lemma 4.3℄). Just as in the ase of �ows (seeremarks above) we have to assume that H∗(N
1/N0, [N0]) is isomorphi to

H∗(N
1, N0). One more an extra assumption on the index pair orthe (o)homology guarantees that this isomorphism holds and hene fNindues an endomorphism fN∗ : H∗(N

1, N0) → H∗(N
1, N0). Therefore

(H∗(N
1, N0), fN∗) ∈ Endo(E) and onsequently

L(H∗(N
1, N0), fN∗) = (LH∗(N

1, N0), L(fN∗)) ∈ Auto(E).We now de�ne the homologial Conley index of an isolated invariant set S as
CH∗(S) := LH∗(N),where N is any index pair for S. It is proved in [12℄ that this de�nition isindependent of the hoie of an index pair N. It turns out that if f omesfrom a �ow then fN is homotopi to the identity on N1/N0 and therefore

L(H∗(N), fN∗) = (H∗(N), id|H∗(N)).This is why we will write CH∗(S) = LH∗(N) also in the ase of a �ow.Sine in our paper we want to use methods of �nite-dimensional linear al-gebra, we will need the following assumption throughout the paper: for everyisolated invariant set in the phase spae X there exist index pairs (N1, N0)suh that LH∗(N
1, N0) is a �nite dimensional graded vetor spae. Thisassumption is in partiular satis�ed if X is a ompat ANR (see [14, 15℄).Consequently, denoting by Auto0(E) the full subategory of Auto(E) on-sisting of objets with �nite-dimensional omponents and their morphismswe have

L(H∗(N
1, N0), fN∗) = (LH∗(N

1, N0), L(fN∗)) ∈ Auto0(E)for any index pair N in X.The next result will not be needed until Setion 7.Proposition 1.1. Let f be a dynamial system. Assume that N ⊂ Pare index pairs for an isolated invariant set S. Then the inlusion of pairs
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i : N → P indues an isomorphism

L(i∗) : LH∗(N) → LH∗(P ).The proof is straightforward.Reall that a pair (V, E) is alled a direted graph (graph for short) if
V is a �nite set and E ⊂ {(u, v) ∈ V × V |u 6= v}. Elements of V arealled verties and elements of E edges. We say that a graph G′ = (V ′, E′)is a subgraph of G = (V, E) if V ′ ⊂ V and E′ ⊂ E. A �ltered graph is aolletion G = {Gs}n

s=1 of graphs suh that Gs is a subgraph of Gs+1 and
Es = En ∩ (Vs × Vs) for eah s = 1, . . . , n − 1.2. Attrator-repeller pairs. If A is an attrator in S, then the set
A∗ := {x ∈ S |ω(x) ∩ A = ∅} is a repeller in S. It is alled the repeller dualto A in S. We all suh a pair (A, A∗) an attrator-repeller pair in S. It iseasy to hek that if S is an isolated invariant set then so are A and A∗.Theorem 2.1. Let S be an isolated invariant set and (A, A∗) be anattrator-repeller pair in S. Then there exists a triple N0 ⊂ N1 ⊂ N2 ofompat sets suh that :(a) (N2, N0) is an index pair for S,(b) (N1, N0) is an index pair for A,() (N2, N1) is an index pair for A∗.The detailed proof in the ase of a �ow an be found in [19℄ and in thease of a homeomorphism in [15, 2℄.If (A, A∗) is an attrator-repeller pair in S suh that CH∗(S), CH∗(A),
CH∗(A

∗) are graded vetor spaes with �nite-dimensional omponents, thenwe an onstrut a long exat sequene relating the homology indies of S,
A and A∗. Namely, there is a long exat sequene
· · · → Hq(N

1, N0)
i
→ Hq(N

2, N0)
j
→ Hq(N

2, N1)
∂
→ Hq−1(N

1, N0) → · · ·where i, j are indued by inlusions and (N2, N1, N0) is the triple given byTheorem 2.1. Applying the Leray funtor we obtain an exat sequene ofhomologial Conley indies
· · · → CHq(A) → CHq(S) → CHq(A

∗)
∂
→ CHq−1(A) → · · · .This sequene, alled the homology index sequene of the attrator-repellerpair , provides an algebrai ondition for the existene of onneting orbits.The map ∂ : CH∗(A

∗) → CH∗(A) is alled the onnetion map.Theorem 2.2. If the onnetion map ∂ is nontrivial , then C(A∗, A;S) 6= ∅.Proof. If C(A∗, A; S) = ∅ then S = A∪A∗. From additivity of the Conleyindex CH∗(S) ≃ CH∗(A) ⊕ CH∗(A
∗) and so ∂ = 0.



98 P. Bartªomiejzyk3. Morse deompositions and index �ltrations. Let (P, <) be a�nite partially ordered set. A subset I ⊂ P is alled an interval if p, q ∈ Iand p < r < q implies r ∈ I. The set of intervals will be denoted by I(<).An interval I ⊂ P is alled an attrating interval if p ∈ I and q < p impliesthat q ∈ I. The set of attrating intervals is written as A(<). A(<) is easilyseen to be a lattie of sets. Two elements p, q ∈ P are alled adjaent if
{p, q} ∈ I(<). Similarly, a pair (I, J) of disjoint intervals is alled adjaent if(i) I ∪ J ∈ I(<),(ii) p ∈ I, q ∈ J implies q 6< p.We write IJ instead of I ∪ J. The olletion of adjaent pairs of intervals isdenoted by I2(<).Definition 3.1. A �nite olletion

M = {M(p) | p ∈ P}of mutually disjoint ompat invariant subsets of an isolated invariant set Sis alled a Morse deomposition if there is a partial order < on the indexingset P suh that for every x ∈ S \
⋃

p∈P M(p) there are p, q ∈ P with p < qsuh that ω(x) ⊂ M(p) and α(x) ⊂ M(q).The sets M(p) are alled Morse sets. Observe that we do not assume thatthe above order on P is unique. Any suh ordering on P is alled admissible.Of all the admissible orderings for a Morse deomposition, there is a uniqueminimal order (one with the fewest relations) alled the dynamial systemde�ned order and denoted by <D. This order is the transitive losure of therelation p <D q if C(M(q), M(p); S) 6= ∅. All other admissible orderings areextensions of <D. For eah I ∈ I(<) we de�ne
M(I) :=

( ⋃

p∈I

M(p)
)
∪

( ⋃

p,q∈I

C(M(p), M(q); S)
)

One an showProposition 3.2.(i) M(I) is an isolated invariant set ,(ii) if (I, J) ∈ I2(<), then (M(I), M(J)) is an attrator-repeller pair in
M(IJ).Definition 3.3. An index �ltration for the admissible ordering of theMorse deomposition M(<) = {M(p) | p ∈ (P, <)} is a olletion of ompatsets N (<) = {N(α) |α ∈ A(<)} suh that:(1) for eah α ∈ A(<), (N(α), N(∅)) is an index pair for the attrator
M(α),(2) for eah α, β ∈ A(<), N(α ∩ β) = N(α) ∩ N(β) and N(α ∪ β) =
N(α) ∪ N(β).



Connetion graphs 99Let I ∈ I(<). Then there are α, β ∈ A(<) suh that (α, I) ∈ I2(<) and
α∪ I = β. It is easy to hek that this implies that (N(β), N(α)) is an indexpair for M(I). Thus the index �ltration de�nes an index pair for eah M(I)where I ∈ I(<).The following theorem proved by Salamon [19℄ for �ows and by Riheson[6℄ for homeomorphisms gives the existene of index �ltrations.Theorem 3.4. For any given admissible ordering of the Morse deom-position there exists an index �ltration.4. Connetion graphs. We are now ready to introdue the notion ofa onnetion graph, following [5℄. Let M = {M(i) | i ∈ P} be a Morsedeomposition of an isolated invariant set S.Definition 4.1. A �nite direted graph G is alled a onnetion graphfor the Morse deomposition M if:(1) the set of verties of G has the form

⋃

i∈P

∞⋃

k=0

basisk(i),where basisk(i) is a basis for CHk(M(i)) (elements of this basis willbe denoted by ei
k),(2) eah vertex has 1 edge or 0 edges (a vertex with no edges is alledfree),(3) any edge has the form ei

k → ej
k−1, where i 6= j,(4) the set of verties with no edges determines a basis for CH∗(S), i.e.there is a monomorphism ϕ : CH∗(S) →

⊕
i∈P CH∗(M(i)) suh that

Im ϕ is spanned by the set of free verties of G,(5) the relation <G de�ned as the transitive losure of i <G j iff thereexists an edge in G of the form CH∗(M(j)) ∋ e → e′ ∈ CH∗(M(i)),is a partial order on P (this partial order is alled the onnetiongraph de�ned order),(6) <D extends <G.Observe that the verties with no edges and the ones with edges pro-vide omplementary information about the Morse deomposition. Namely,the free verties form the Conley index of the total invariant set, while theverties with edges yield the existene of onneting orbits between di�erentMorse sets in the deomposition.We an now formulate the main result of this paper, whih will be provedin Setion 7.Theorem 4.2. For any Morse deomposition of an isolated invariant setthere exists a onnetion graph.



100 P. BartªomiejzykThe signi�ane of the above result omes from the fat that it allows oneto detet onneting orbits by ombining the general properties of onnetiongraphs with information about the Conley indies of Morse sets.5. Algebrai lemma. Most of this setion will be devoted to the proofof Lemma 5.1. This result may be viewed as a generalization of Theorem 2in Kostrikin and Manin [11, Ch. 1, Se. 8℄. Roughly speaking, our lemmaenables us to hoose bases best �tting the struture of linear maps. Morepreisely, in matrix language, our result ensures the existene of bases forvetor spaes in a sequene of linear maps suh that all matries of thesemaps are diagonal with entries in {0, 1}. So it is not surprising that ourproof is similar in spirit to one of the proofs of the Jordan deompositiontheorem (see for instane [10, 11, 20℄).But �rst we have to introdue the following simple notion. Let A, B, Cbe vetor spaes and let A = B ⊕ C. We say that a basis b(A) of A agreeswith the deomposition B ⊕ C if for every e ∈ b(A), either e ∈ B or e ∈ C.We an now formulate the main result of this setion.Lemma 5.1. Let
A1 L1→ A2 L2→ · · ·

Ln−2

−→ An−1 Ln−1

−→ Anbe a sequene of linear maps of �nite-dimensional vetor spaes. Then foreah 1 ≤ p ≤ n there exist subspaes V p, Ṽ p of Ap and a basis b(Ap) suhthat :(i) Ap = ImLp−1 ⊕ V p,(ii) Ap = kerLp ⊕ Ṽ p,(iii) b(Ap) agrees with both of the above deompositions of Ap,(iv) if (ap
ij) is the matrix of Lp with respet to the bases b(Ap) and

b(Ap+1), then ap
ii = 1 for 1 ≤ i ≤ r(p) and ap

ij = 0 for other i, j.Remark 5.2. By part (iv) of the above lemma, Lp(e) ∈ b(Ap+1) or
Lp(e) = 0 for any e ∈ b(Ap) and p = 1, . . . , n − 1. Consequently, for every
e ∈ b(Ap) there exists a unique element a suh that a ∈ b(As) \ ImLs−1 and
e = (Lp−1 ◦ · · · ◦ Ls)(a) for some s ≤ p. The element a is alled the originof e. In partiular, if e /∈ ImLp−1, then the origin of e is e itself.Proof. For onveniene of notation, we write

Ep
q := Im(Lp−1 ◦ · · · ◦ Lq+1 ◦ Lq)for 1 ≤ q < p ≤ n. Observe that for eah p = 2, . . . , n we have the �ltration
Ep

1 ⊂ Ep
2 ⊂ · · · ⊂ Ep

p−1 ⊂ Ap.The basi idea of the proof is to �nd bases for Ap best �tting the above�ltrations and onsistent with eah other for di�erent p. Using them we will



Connetion graphs 101de�ne the subspaes V p and Ṽ p. For larity, the proof will be divided intofour steps. The �rst step is based on the proof of Jordan's theorem givenin [10℄.
Step 1. We hoose any basis for En

1 and denote by an
1 (k) its elements.Sine an

1 (k) ∈ En
1 , we have

an
1 (k) = (Ln−1 ◦ · · · ◦ L2 ◦ L1)(a

1
1(k))for some a1

1(k) ∈ A1. We de�ne
ap

1(k) = (Lp−1 ◦ · · · ◦ L2 ◦ L1)(a
1
1(k))for eah p = 2, . . . , n. Next we extend the vetors an
1 (k) to a basis for En

2 byadding vetors an
2 (k). We write an

2 (k) = (Ln−1 ◦ · · · ◦ L2)(a
2
2(k)) and de�ne

ap
2(k) = (Lp−1 ◦ · · · ◦ L2)(a

2
2(k)) for p = 3, . . . , n. One again we extend thevetors an

1 (k), an
2 (k) to a basis for En

3 by adding vetors an
3 (k). A shematiview of this whole proedure is presented in Figure 1.

a1
1(k)

↓

a2
1(k) a2

2(k)

↓ ↓

a3
1(k) a3

2(k) a3
3(k)

↓ ↓ ↓... ... ...
↓ ↓ ↓

an−1
1 (k) an−1

2 (k) an−1
3 (k) · · · an−1

n−1(k)

↓ ↓ ↓ · · · ↓

an
1 (k) an

2 (k) an
3 (k) · · · an

n−1(k) an
n(k)Fig. 1. Step 1 in the proof of Lemma 5.1It is easy to hek that the pth row in Figure 1 (we write it ap

i≤p(k) forshort) an be treated as a basis of Ap/kerLp for p = 1, . . . , n − 1. Con-sequently, the pth row represents a linearly independent set of vetors in
Ap. Moreover, the set {ap

1(k), ap
2(k), . . . , ap

p−1(k)} (we denote it brie�y by
{ap

i<p(k)}) an be seen as a basis of ImLp−1/ImLp−1 ∩ kerLp for p =
2, . . . , n − 1. Similarly, the vetors an

i<n(k) form a basis for Im Ln−1 andthe vetors an
n(k) extend this basis to a basis for An.

Step 2. For �xed p = 2, . . . , n−1 let bp(k) be a basis for ImLp−1∩kerLp.This basis an be extended to a basis for ker Lp by adding vetors cp(k).Similarly, for p = 1 let c1(k) form any basis for kerL1.



102 P. Bartªomiejzyk
Step 3. Finally, for p = 2, . . . , n−1 we de�ne b(Ap) to onsist of all thevetors ap

i≤p(k), bp(k), cp(k), and we set
V p := span{cp(k), ap

p(k)}, Ṽ p := span{ap
i≤p(k)}as shown in Figure 2.

ImLp−1
︷ ︸︸ ︷

V p

︷ ︸︸ ︷

Ṽ p

{
ap

i<p(k) ap
p(k)

kerLp

{
bp(k) cp(k)

Fig. 2. Step 3 in the proof of Lemma 5.1Sine there is no image in A1 and no kernel in An, the above de�nitionshave to be hanged slightly for p = 1 and p = n. Namely, let b(A1) on-sist of the vetors a1
1(k), c1(k) and let b(An) onsist of the vetors an

i≤n(k).Moreover, set
Ṽ 1 := span{a1

1(k)}, V n := span{an
n(k)}.We see at one that the bases b(Ap) and the subspaes V p, Ṽ p satisfy theassertion of the lemma.

6. Topologial �ltrations and graphs. In this setion we introdue�ltered graphs for topologial �ltrations and present a general result on suhgraphs. These graphs are not diretly onneted to the Conley index theory.In fat, it is possible to give the de�nition of the �ltered graph for the topo-logial �ltration even in the absene of any dynamial system. However, thematerial of this setion will be needed in the next one devoted to onnetiongraphs. For this reason, it seems preferable to take the presene of a �owor a homeomorphism into onsideration when formulating the results of thissetion. That explains why we use the Leray funtor instead of the usualhomology.Consider a topologial �ltration N = {N i}n
i=0, i.e. a �ltration N0 ⊂

N1 ⊂ · · · ⊂ Nn of topologial spaes. Let us introdue the following notationfor i = 1, . . . , n and k = 0, 1, 2, . . .:
Ai := LH∗(N

i, N0), Bi := LH∗(N
i, N i−1),

Ai
k := LHk(N

i, N0), Bi
k := LHk(N

i, N i−1).



Connetion graphs 103From now on we assume that all Ai and Bi are �nite-dimensional linearspaes. The �ltration N determines the following exat sequenes:
(10)

As i
// As+1

j
{{vv

vv
vv

vv
v

Bs+1

∂

bbEEE
EE

EEE

for s = 1, . . . , n − 1.Definition 6.1. We say that G = {Gs}n
s=1 is a �ltered graph for thetopologial �ltration N = {Ns}n

s=0 if for every s = 1, . . . , n:(1) the set of verties of Gs has the form
s⋃

i=1

∞⋃

k=0

b(Bi
k),where b(Bi

k) is a basis for Bi
k (elements of this basis will be denotedby bi

k),(2) eah vertex has 1 edge or 0 edges (a vertex with no edges is alledfree),(3) there is in Gs an edge of the form bq
k → bp

l iff the following onditionsare satis�ed:(3.1) 1 ≤ p < q ≤ s,(3.2) l = k − 1,(3.3) there exists an element a ∈ Ap suh that ja = bp
l and ∂bq

k =
iq−p−1a 6= 0,(4) the set of verties of Gs with no edges determines a basis of As,i.e. there is a monomorphism ϕ : As →

⊕s
i=1 Bi suh that Im ϕ isspanned by the set of free edges of Gs.The following diagram explains the idea behind ondition (3.3) of theabove de�nition.

Ap
k−1

j
−−−−→ Bp

k−1 ∋ bp
lyi

Ap+1
k−1yi...
yi

bq
k ∈ Bq

k

∂
−−−−→ Aq−1

k−1



104 P. BartªomiejzykWe an formulate the main result of this setion.Theorem 6.2. Let N = {N s}n
s=0 be a topologial �ltration suh that all

Ai and Bi are �nite-dimensional. Then there exists a �ltered graph for N .Proof. The proof will be divided into three steps.
Step 1: Constrution of verties of Gs. Consider the following sequeneof homomorphisms:

A1 i
→ A2 i

→ · · ·
i
→ An−1 i

→ An,where the i are indued by inlusions. By Lemma 5.1, there exist subspaes
V s, Ṽ s and bases b(As) that agree with the deompositions

As = ker i ⊕ Ṽ s = Im ∂ ⊕ Ṽ s, As = Im i ⊕ V s = ker j ⊕ V s.Let W s denote any subspae omplementary to Im j = ker ∂ in Bs, i.e.
Bs = Im j ⊕ W s = ker ∂ ⊕ W s for s = 2, . . . , n. Observe that we havealready hosen a basis in B1 = A1. Under the above notations, the maps

j|V s+1 : V s+1 → Im j = ker ∂, ∂|W s+1 : W s+1 → Im ∂ = ker i,whih are isomorphisms for s = 1, . . . , n − 1, and the bases b(As) uniquelyde�ne for s = 2, . . . , n bases b(Bs) that agree with the deompositions Bs =
Im j ⊕ W s. Finally, we de�ne the verties of Gs to be ⋃s

i=1 b(Bi).

Step 2: Constrution of edges of Gs. Let eah vertex in b(W q) ⊂ b(Bq)
(q = 2, . . . , s) be the initial vertex of some edge. We will show how to �ndthe end of this edge. All other verties will be free. Let b ∈ b(W q) ⊂ b(Bq),and so e = ∂b ∈ b(Aq−1). If a ∈ Ap for p < q is the origin of e, as inRemark 5.2, then c = ja is the end of the edge that begins at b. This endsthe onstrution of a �ltered graph G. The above proedure shows that Gsatis�es onditions (1)�(3) of the de�nition. What is left is to prove (4).
Step 3: Constrution of ϕ. We de�ne a linear map

ϕ : As →
s⊕

i=1

Bs

by a proedure omplementary to determining the edges of Gn. Let b(Ai),
b(Bi) be the bases hosen in Step 1. It is enough to de�ne ϕ on the elementsof b(As). Let a ∈ b(As). Set

ϕa = jc,where c ∈ b(As−l) is the origin of a, as in Remark 5.2. By de�nition, ϕprovides the desired monomorphism.7. Proof of the main result. We reall that our main result states theexistene of onnetion graphs for both ontinuous and disrete dynamialsystems. Let M = {M(i) | i ∈ P} be a Morse deomposition of an isolated



Connetion graphs 105invariant set S. Consider the dynamial-system-de�ned ordering of the Morsedeomposition M, i.e.
M(<D) = {M(i) | i ∈ (P, <D)}.By Theorem 3.4, there exists an index �ltration
N (<D) = {N(I) | I ∈ A(<D)}for M(<D). Let M(<L) be any admissible linear ordering of the Morsedeomposition M. Observe that <L always exists and <L extends <D. Fur-thermore, we will write elements of P as 1, 2, . . . , n aording to <L. De�ne

Ii := {1, 2, . . . , i − 1, i} for i = 0, 1, . . . , n. In partiular, I0 = ∅. It followsthat A(<L) = {Ii}n
i=0 ⊂ A(<D). Now we de�ne the following topologial�ltration:
N := {N(I) ∈ N (<D) | I ∈ A(<L)}.Writing N i := N(Ii) we obtain N = {N i}n

i=0. Observe that N is an index �l-tration for M(<L), but sine N omes from N (<D), N has some additionalproperties, whih are not inluded in the de�nition of an index �ltration for
M(<L). Applying Theorem 6.2 we get a �ltered graph G = {Gi}n

i=1 for N .Finally, we laim that Gn is a onnetion graph for M. By the de�nitionof the �ltered graph, Gn satis�es onditions (1)�(5) of the de�nition of theonnetion graph. It remains to prove that <D extends <G. We start withthe observation that the last assertion is nothing but the statement that forany edge ej
k → ei

k−1 we have i <D j. To obtain a ontradition, supposethat there exists an edge ej
k → ei

k−1 with ¬(i <D j). By the de�nition of the�ltered graph, this implies i <L j. Set
J := {p ∈ P | p ≤D j}, J ′ := J \ {j}.By de�nition, i /∈ J and J, J ′ ∈ A(<D). From this we onlude that for

A ∈ {Ii, Ii−1} ⊂ A(<L) ⊂ A(<D) and B ∈ {J, J ′} we have A ∪ B ∈ A(<D).Consider a ommutative diagram (∗) of Figure 3, in whih every row or-responds to some exat sequene of a triple from the �ltration N (<D) and
LHk(N(Ii−1 ∪ J), N(Ii−1)) → LHk−1(N(Ii−1), N(∅))

l ↓

LHk(N(Ii ∪ J), N(∅)) → LHk(N(Ii ∪ J), N(Ii)) → LHk−1(N(Ii), N(∅))

|| ↓ ↓

LHk(N(Ii ∪ J), N(∅)) → LHk(N(Ii ∪ J), N(Ii ∪ J ′)) → LHk−1(N(Ii ∪ J ′), N(∅))

l ↓

LHk(N(Ij), N(Ij−1)) → LHk−1(N(Ij−1), N(∅))Fig. 3. Diagram (∗)



106 P. Bartªomiejzykthe vertial homomorphisms are indued by inlusions of pairs. Moreover,the maps denoted by l are isomorphisms sine they orrespond to inlu-sions of index pairs of the same isolated invariant sets (M(i) and M(J − Ii)respetively).From the diagram (∗) and the de�nition of the �ltered graph, we obtain anew ommutative diagram (∗∗) (see Figure 4), in whih the elements ai, aj−1are de�ned as in (3.3) of the above mentioned de�nition. The notation x → ymeans that x is mapped onto y in the diagram (∗).
d → e

l ↓

h → c → ai

|| ↓ ↓

h → a → b

l ↓

ej
k → aj−1Fig. 4. Diagram (∗∗)The following reasoning shows that e ∈ LH∗(N(Ii−1), N(∅)) is nonzero.Sine the vertial arrow over ej

k orresponds to an isomorphism, a 6= 0. Bythe ommutativity of the bottom square in (∗), we get b 6= 0. If c were zero,there would be h suh that h → c, whih ontradits the ommutativity ofthe seond and third rows of (∗). Therefore c 6= 0. The vertial arrow over corresponds to an isomorphism, and onsequently, d 6= 0. Finally, by theommutativity of the top square in (∗), e 6= 0.It remains to onsider two ases. If i = 1, then LHk−1(N(Ii−1), N(∅)) =
LHk−1(N(∅), N(∅)) = {0}, a ontradition. If i > 1, we get the exat se-quene

LHk−1(N
i−1, N0) → LHk−1(N

i, N0) → LHk−1(N
i, N i−1)with three nonzero elements suh that e → ai → ei

k−1, whih ontradits theexatness of the above sequene and ompletes the proof.8. Examples. Let D2 be the losed unit ball in R2 and let ϕ be a �owon the plane with the dynamis as in Figure 5.Assume that S = D2 is an isolated invariant set and that M(0) = (0, 0),
M(1±) = (±1, 0), M(2±) = (0,±1) form a Morse deomposition M of Swith the �ow-de�ned order 0 < 1± < 2±. Moreover, a simple veri�ationshows that the loal Conley indies of the Morse sets are
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Fig. 5. The dynamis of ϕ

CHk(M(0)) =

{
Q if k = 0,

0 otherwise,

CHk(M(p±)) =

{
Q if k = p,

0 otherwise,and the total Conley index of the whole set is
CHk(M(S)) =

{
Q if k = 2,

0 otherwise.
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Fig. 6. Verties of any onnetion graph for ϕLet e0, e
±
1 , e±2 be any basis vetors for CH0(M(0)), CH1(M(1±)),

CH2(M(2±)) respetively. Consequently, eah onnetion graph for theMorse deompositions M has �ve verties as in Figure 6. Three levels inFigure 6 orrespond to the natural gradation in homology. Theorem 4.2states that the set of onnetion graphs for M is nonempty, but we see



108 P. Bartªomiejzykat one that in this speial ase we have exatly four di�erent onnetiongraphs as in Figure 7.
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Fig. 7. All onnetion graphs for ϕNote that eah of them ontains the same information about the totalConley index (the set of free verties onsists of one element of homologi-al level two) but ompletely di�erent information about onneting orbits.For instane, the edges of the �rst onnetion graph imply the existene ofonneting orbits from M(2−) to M(1−) and from M(1+) to M(0), whilethe edges of the third one yield the existene of onnetions from M(2+)to M(1+) and from M(1−) to M(0). Consequently, eah onnetion graphprovides only partial information about the struture of the Morse deom-position. On the other hand, the set of all onnetion graphs gives the fullknowledge of onneting orbits in the Morse deomposition.The seond example is adapted from [15℄. Let D ⊂ R2 be a square andlet f0 : D → D be a ontinuous map as indiated in Figure 8. Extend f0 toa homeomorphism f : S2 → S2 with a repelling point r outside D.
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Fig. 8. The dynamis of fTake M(0) = Inv(D7 ∪ D8), M(1) = Inv(D1 ∪ D2), M(2) = {r}. It iseasy to hek that M = {M(0), M(1), M(2)} is a Morse deomposition of
S = S2 with admissible ordering 0 < 1 < 2 and N0 = ∅, N1 = D7 ∪ D8 ∪ P



Connetion graphs 109(P is the union of dotted areas), N2 = D1 ∪D2 ∪D7 ∪D8 is an index triplefor M. Moreover, an easy omputation shows that
CHk(M(0)) =

{
Q2 if k = 0,

0 otherwise,

CHk(M(p)) =

{
Q if k = p,

0 otherwise,for p = 1, 2. We will denote by {e0, e
′
0}, {e1}, {e2} bases of the vetorspaes CH0(M(0)), CH1(M(1)) and CH2(M(2)) respetively. Eah on-netion graph for M has four verties as in Figure 9.
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Fig. 9. Verties of any onnetion graph for fIt is obvious that in this ase we have two di�erent onnetion graphs asin Figure 10.
r

r

r r

�
��	

r

r

r r

@
@@R

Fig. 10. All onnetion graphs for fBoth of them ontain idential information:
• the set of free verties forms the global Conley index of S = S2,
• there are onneting orbits from M(1) to M(0).Observe that none of them provides any information about onnetions from

M(2) to M(1).Aknowledgments. The author wishes to express his gratitude to bothanonymous referees for several helpful omments onerning the paper. I amalso greatly indebted to Professor Henryk Toru«zyk for his suggestion whihsigni�antly simpli�ed and shortened the original proof of Lemma 5.1.
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