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Connection graphs
by

Piotr Bartlomiejczyk (Gdansk)

Abstract. We introduce connection graphs for both continuous and discrete dynam-
ical systems. We prove the existence of connection graphs for Morse decompositions of
isolated invariant sets.

Introduction. In [4] Conley and Zehnder presented some generaliza-
tion of the classical Morse theory to flows. Using the Conley index theory
they proved the existence of periodic solutions of some Hamiltonian systems.
Their main idea is to study isolated invariant sets by decomposing them
into invariant subsets (Morse sets) and connecting orbits between them.
This structure is called a Morse decomposition of an isolated invariant set.
A filtration of index pairs associated with a Morse decomposition can be
used to find connections between different Morse sets. The principal tools
for this purpose are connection matrices and graphs. In [1, 2, 6-9] the con-
nection matrix theory was developed for flows and homeomorphisms. In [5]
Fiedler and Mischaikow introduced connection graphs for flows. The con-
nection graph is a simplified version of the connection matrix. The vertices
of these graphs correspond to the homological Conley indices of the Morse
sets. The connection graphs provide some information on the structure of the
Morse decomposition. For example, the edges of the graphs give a condition
for the existence of connecting orbits between different Morse sets. Further-
more, the homological Conley index for the total invariant set is given by
the vertices with no edges.

In this paper we prove the existence of connection graphs for both con-
tinuous and discrete dynamical systems. The existence of such a graph in
the case of a flow was proved in [5|. Fiedler and Mischaikow deduced the
existence of connection graphs from the existence of connection matrices.
Our purpose is to present a direct construction of the connection graph. For
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that reason our proof makes no appeal to the connection matrix theory. It is
based only on some simple ideas from linear algebra and algebraic topology.

The organization of the paper is as follows. Section 1 contains some pre-
liminaries. In Sections 2 and 3 we study the properties of attractor-repeller
pairs, Morse decompositions and index filtrations. In Section 4 our main re-
sult, the theorem on the existence of connection graphs is stated. Sections 5
and 6 contain the material from linear algebra and algebraic topology needed
in Section 7, in which our main result is proved. Section 8 contains exam-
ples, which illustrate how connection graphs can be computed and used to
detect connecting orbits. We admit that our examples are not convincing
applications of the theory, as one of the referees rightly observed. Our goal
was just to present the form of the connection graph for some well known
and quite simple dynamical systems.

Besides [3] and [5], the works of of Mischaikow [13]|, Mrozek [14, 15],
Reineck [16, 17] and Robbin and Salamon [18| are important references for
the index theory presented here.

1. Preliminaries. Let (X, d) be a locally compact metric space and let
TxX — X:(tz)— fi(x)

be a dynamical system on X with discrete time (T = Z) or continuous time
(T = R). Let f := f! denote the time-one map. Since we consider only one
fixed dynamical system, we will use the convenient notation xt := f!(x) for
reXandteT.If AC X and A C T then AA := {zt|zx € Aandt € A}.
For a given subset N C X the set Inv(N) :={z € X |2T C N} is called the
invariant part of N. We say that S C X is invariant if Inv(S) = S.

Recall that given a set Y C X the omega limit set of Y is

w(Y) = ﬂ cl(Yt, 00))
>0
and the alpha limit set of Y is
a(Y) =) (Y (—o0,t]).
<0

Let S be a compact invariant set. A subset A C S is called an attractor
in S if there exists a neighbourhood U of A in S such that w(U) = A.
A repeller is an attractor for the time-reversed dynamical system. For given
subsets A, B of S we define the connecting orbit set by

C(A,B;S) :={z €S |alx) C A w(x)C B}

A compact set N C X is called an isolating neighbourhood if Inv(N) C
int(N). A set S is called an isolated invariant set if S = Inv(N) for some
isolating neighbourhood N. A subset A C L is said to be positively invariant
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in L if given z € A and z[0,t] C L, we have z[0,t] C A. A subset A of L
is called an ezit set for L if given = € L such that z[0,00) ¢ L, there exists
t > 0 such that z[0,¢] C L and zt € A.

Let S be an isolated invariant set. A pair (N', N°) of compact sets is
called an index pair for S if:

(i) S =TInv(cl(N'\ N?)) C int(N!\ NY),
(ii) NV is positively invariant in N1,
(iii) N© is an exit set for N1

In the case of a flow the homological Conley index is defined by
CH*(S) = H*(Nl/N07 [NO]) ~ H*(N17 NO)7

where (N', N°) is any index pair for S and H, stands for the singular homol-
ogy with field coefficients. Unfortunately, it is not true that for any index
pair H,(N'/N° [N°]) ~ H.(N', NY). Therefore, we need either an extra
assumption on the (co)homology or an extra condition (regularity) on the
index pair. In the first case, it is convenient to use the Alexander—Spanier
cohomology functor with its strong excision property. We are convinced that
all results of this paper concerning connection graphs can be reformulated
in terms of the cohomological Conley index. The cohomological approach
suffers only one disadvantage. Namely, since the cohomology functor is con-
travariant, the arrow of time in the phase portrait and the arrow (directed
edge) in the connection graph point in opposite directions, which may be, in
our opinion, misleading. Hence we prefer to assume that we are working with
regular index pairs and index filtrations. In the discrete case the definition
of the index is a little more complicated.

First we recall the notion of the Leray functor introduced by Mrozek
(see [14, 15]). Let £ be the category of graded vector spaces and linear
maps of degree zero. The full subcategory of £ consisting of all objects with
finite-dimensional components and their morphisms will be denoted by &.
We define a new category Endo(€) as follows. Its objects are pairs (4, a),
where A € £ and a € £(A, A). Morphisms from (A, a) to (B,b) are all maps
¢ € E(A, B) such that pa = bp. Auto(€) is the full subcategory of Endo(&)
consisting of graded vector spaces with a distinguished isomorphism. For
(A, a) € Endo(€) we define the generalized kernel of a as

gker(a) := | J{ker(a") | n > 1}.
Note that the quotient map
a: A >z]— [a(x)] € A, where A := A/gker(a),
is a well defined monomorphism. Then we restrict a’ to the subspace

A" =glm(d) := ﬂ{lm (@) |n>0}
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called the generalized image of a’. Since a'(A”) C A”, the restriction o’ :=
a'|an : A” — A" is a well defined automorphism of A”. Assume ¢ : (A,a) —
(B,b) is a morphism in Endo(&). Let ¢ : A/gker(a) > [z] — [p(z)] €
B/gker(b) denote the induced morphism and ¢” = ¢'|4n : A” — B’ its
restriction to A”. We put L(A,a) = (L(A),L(a)) := (A”,a") and L(p) :=
¢". Thus we have defined a covariant functor L : Endo(£) — Auto(€) called
the Leray functor. If N = (N', N%) is an index pair, then the map fy :
N'/NO — N1/NO defined by

x if x T 1 0
fzv([xnz{[f( )] if @, f(z) € NTAN,

[N°]  otherwise,

is continuous (see e.g. [21, Lemma 4.3]). Just as in the case of flows (see
remarks above) we have to assume that H,(N'/N° [N°]) is isomorphic to
H.(N', N%. Once more an extra assumption on the index pair or
the (co)homology guarantees that this isomorphism holds and hence fy
induces an endomorphism fy, : H.(N',N°) — H,(N' N°). Therefore
(H.(N',N%), fns) € Endo(€) and consequently

L(H.(N',N%), fx.) = (LH.(N', N%), L(fn+)) € Auto(E).
We now define the homological Conley index of an isolated invariant set S as
CH.(S):=LH.(N),
where N is any index pair for S. It is proved in [12] that this definition is

independent of the choice of an index pair N. It turns out that if f comes
from a flow then fy is homotopic to the identity on N'/N? and therefore

L(H.(N), fn+) = (H(N),id| g, (n))-

This is why we will write CH,(S) = LH.(N) also in the case of a flow.

Since in our paper we want to use methods of finite-dimensional linear al-
gebra, we will need the following assumption throughout the paper: for every
isolated invariant set in the phase space X there exist index pairs (N1, N?)
such that LH,(N', N°) is a finite dimensional graded vector space. This
assumption is in particular satisfied if X is a compact ANR (see [14, 15]).
Consequently, denoting by Autog(€) the full subcategory of Auto(€) con-
sisting of objects with finite-dimensional components and their morphisms
we have

L(H,(NY, NY), fns) = (LH.(N', N, L(fn+)) € Autog(&)

for any index pair N in X.
The next result will not be needed until Section 7.

PROPOSITION 1.1. Let f be a dynamical system. Assume that N C P
are index pairs for an isolated invariant set S. Then the inclusion of pairs
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1: N — P induces an isomorphism
L(iy): LH.(N) — LH.(P).

The proof is straightforward.

Recall that a pair (V, E) is called a directed graph (graph for short) if
V is a finite set and E C {(u,v) € V x V|u # v}. Elements of V are
called vertices and elements of E edges. We say that a graph G’ = (V', E')
is a subgraph of G = (V,E) if V! C V and E' C E. A filtered graph is a
collection G = {G,}"_; of graphs such that Gy is a subgraph of Gs41 and
E;=FE,N (Vg xVs) foreach s=1,...,n— 1.

2. Attractor-repeller pairs. If A is an attractor in S, then the set
A* :={z € S|w(z)N A =0} is a repeller in S. It is called the repeller dual
to A in S. We call such a pair (A, A*) an attractor-repeller pair in S. It is
easy to check that if S is an isolated invariant set then so are A and A*.

THEOREM 2.1. Let S be an isolated invariant set and (A, A*) be an
attractor-repeller pair in S. Then there exists a triple N° ¢ N' C N? of
compact sets such that:

(a) (N?%,N°) is an inder pair for S,
(b) (N',N®) is an index pair for A,
(c) (N2,NV) is an index pair for A*.

The detailed proof in the case of a flow can be found in [19] and in the
case of a homeomorphism in [15, 2].

If (A, A*) is an attractor-repeller pair in S such that CH,(S), CH.(A),
CH,(A*) are graded vector spaces with finite-dimensional components, then
we can construct a long exact sequence relating the homology indices of .S,
A and A*. Namely, there is a long exact sequence

- Hy(N',N%) 5 Hy(N%,N%) L Hy(N%, NY) & Hy (N, NO) — -

where i, j are induced by inclusions and (N2, N, N) is the triple given by
Theorem 2.1. Applying the Leray functor we obtain an exact sequence of
homological Conley indices

= CHy(A) — CHy(S) — CHy(A*) % CHy_1(A) — -

This sequence, called the homology index sequence of the attractor-repeller
pair, provides an algebraic condition for the existence of connecting orbits.
The map 0 : CH,(A*) — CH,(A) is called the connection map.

THEOREM 2.2. If the connection map O is nontrivial, then C(A*, A;S) # 0.

Proof. 1f C(A*, A;S) = () then S = AUA*. From additivity of the Conley
index CH,(S) ~ CH.(A) ® CH.(A*) and so 0 =0. m
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3. Morse decompositions and index filtrations. Let (P, <) be a
finite partially ordered set. A subset I C P is called an interval if p,q € I
and p < r < g implies 7 € I. The set of intervals will be denoted by Z(<).
An interval I C P is called an attracting interval if p € I and ¢ < p implies
that ¢ € I. The set of attracting intervals is written as A(<). A(<) is easily
seen to be a lattice of sets. Two elements p,q € P are called adjacent if
{p,q} € Z(<). Similarly, a pair (I, J) of disjoint intervals is called adjacent if

(i) TUJ e I(<),

(ii) p € I, q € J implies q £ p.
We write IJ instead of I U J. The collection of adjacent pairs of intervals is
denoted by Zo(<).

DEFINITION 3.1. A finite collection
M ={M(p)|p € P}
of mutually disjoint compact invariant subsets of an isolated invariant set S
is called a Morse decomposition if there is a partial order < on the indexing
set P such that for every z € S\ UpepM(p) there are p,q € P with p < ¢
such that w(x) C M(p) and a(zx) C M(q).

The sets M (p) are called Morse sets. Observe that we do not assume that
the above order on P is unique. Any such ordering on P is called admissible.
Of all the admissible orderings for a Morse decomposition, there is a unique
minimal order (one with the fewest relations) called the dynamical system
defined order and denoted by <p. This order is the transitive closure of the
relation p <p q if C(M(q), M(p); S) # (0. All other admissible orderings are
extensions of <p. For each I € Z(<) we define

M) = (M) u( U o). m@:9)
pel p,q€el
One can show

PROPOSITION 3.2.

(i) M(I) is an isolated invariant set,
(ii) of (L,J) € Za(<), then (M(I), M(J)) is an attractor-repeller pair in
M(LJ).
DEFINITION 3.3. An indez filtration for the admissible ordering of the
Morse decomposition M(<) = {M(p) |p € (P, <)} is a collection of compact
sets N(<) = {N(a) | a € A(<)} such that:

(1) for each a € A(<), (N(a), N(0)) is an index pair for the attractor
M(a),

(2) for each o, 3 € A(<), N(anp) = N(a) N N(B) and N(a U ) =
N(a)UN(p).



Connection graphs 99

Let I € Z(<). Then there are «, 3 € A(<) such that (o, ) € Z3(<) and
aUI = .1t is easy to check that this implies that (N (3), N(«)) is an index
pair for M (I). Thus the index filtration defines an index pair for each M (1)
where [ € 7(<).

The following theorem proved by Salamon [19] for flows and by Richeson
[6] for homeomorphisms gives the existence of index filtrations.

THEOREM 3.4. For any given admissible ordering of the Morse decom-
position there exists an index filtration.

4. Connection graphs. We are now ready to introduce the notion of
a connection graph, following [5]. Let M = {M(i)|i € P} be a Morse
decomposition of an isolated invariant set S.

DEFINITION 4.1. A finite directed graph G is called a connection graph
for the Morse decomposition M if:

(1) the set of vertices of G has the form

o
U U basisg (7),
i€P k=0
where basisy (i) is a basis for CHy(M (7)) (elements of this basis will
be denoted by €}),

(2) each vertex has 1 edge or 0 edges (a vertex with no edges is called
free),

(3) any edge has the form e} — ei_l, where i # 7,

(4) the set of vertices with no edges determines a basis for CH,(95), i.e.
there is a monomorphism ¢ : CH.(S) — @, p CH.(M (i)) such that
Im ¢ is spanned by the set of free vertices of G,

(5) the relation < defined as the transitive closure of i < j iff there
exists an edge in G of the form CH.(M(j)) 2 e — € € CH.(M(7)),
is a partial order on P (this partial order is called the connection
graph defined order),

(6) <p extends <g.

Observe that the vertices with no edges and the ones with edges pro-
vide complementary information about the Morse decomposition. Namely,
the free vertices form the Conley index of the total invariant set, while the
vertices with edges yield the existence of connecting orbits between different
Morse sets in the decomposition.

We can now formulate the main result of this paper, which will be proved
in Section 7.

THEOREM 4.2. For any Morse decomposition of an isolated invariant set
there exists a connection graph.
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The significance of the above result comes from the fact that it allows one
to detect connecting orbits by combining the general properties of connection
graphs with information about the Conley indices of Morse sets.

5. Algebraic lemma. Most of this section will be devoted to the proof
of Lemma 5.1. This result may be viewed as a generalization of Theorem 2
in Kostrikin and Manin [11, Ch. 1, Sec. 8]. Roughly speaking, our lemma
enables us to choose bases best fitting the structure of linear maps. More
precisely, in matrix language, our result ensures the existence of bases for
vector spaces in a sequence of linear maps such that all matrices of these
maps are diagonal with entries in {0,1}. So it is not surprising that our
proof is similar in spirit to one of the proofs of the Jordan decomposition
theorem (see for instance [10, 11, 20]).

But first we have to introduce the following simple notion. Let A, B, C
be vector spaces and let A = B @ C. We say that a basis b(A) of A agrees
with the decomposition B @ C' if for every e € b(A), either e € Bore € C.
We can now formulate the main result of this section.

LEMMA 5.1. Let
AIL—1>A2£2>-- AP anlAn
be a sequence of linear maps of finite-dimensional vector spaces. Then for

each 1 < p < n there exist subspaces V7P, % of AP and a basis b(AP) such
that:

LnZ

(1 AP 1P VP,

AP = ker Lp @ Vp

b(Ap) agrees with both of the above decompositions of AP,

if (a fj) is the matriz of L, with respect to the bases b(AP) and
b(

AP, then af, =1 for 1 <i <r(p) and afj =0 for otheri,j.

REMARK 5.2. By part (iv) of the above lemma, L,(e) € b(APT!) or
Ly(e) = 0 for any e € b(AP) and p = 1,...,n — 1. Consequently, for every
e € b(AP) there exists a unique element a such that a € b(A%)\ Im Ls_; and
e = (Lp—10---0Lg)(a) for some s < p. The element a is called the origin
of e. In particular, if e ¢ Im L,_1, then the origin of e is e itself.

Proof. For convenience of notation, we write
Eg = Im(Lp,1 O--:0 Lqul 9] Lq)
for 1 < ¢ < p < n. Observe that for each p = 2,...,n we have the filtration
/4 P P

The basic idea of the proof is to find bases for AP best fitting the above
filtrations and consistent with each other for different p. Using them we will
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define the subspaces VP and V?. For clarity, the proof will be divided into
four steps. The first step is based on the proof of Jordan’s theorem given
in [10].
STEP 1. We choose any basis for E and denote by af (k) its elements.

Since af (k) € Ef, we have

al(k) = (Lp_10---0Lyo Ly)(ai(k))
for some al(k) € A'. We define

af(k) = (Ly-1 0+ 0 Ly o L1)(aj(k))
for each p = 2,...,n. Next we extend the vectors af' (k) to a basis for E3 by
adding vectors af (k). We write a(k) = (Lp—1 0 -+ o La)(a3(k)) and define
ab(k) = (Lp—10---0 Ly)(a3(k)) for p=3,...,n. Once again we extend the
vectors af (k), a5 (k) to a basis for E¥ by adding vectors a5 (k). A schematic
view of this whole procedure is presented in Figure 1.

ay (k)
!
ai(k)  aj(k)
! !
ai(k)  aj(k)  a3(k)
! ! !
! ! !
ay (k) ay~ (k) afT' (k) an 1 (k)
! ! ! !
af(k)  az(k)  a3(k) a1 (k) ag(k)

Fig. 1. Step 1 in the proof of Lemma 5.1

It is easy to check that the pth row in Figure 1 (we write it af_ (k) for
short) can be treated as a basis of AP/ker L, for p = 1,...,n — 1. Con-
sequently, the pth row represents a linearly independent set of vectors in
AP. Moreover, the set {af(k),ab(k),...,ab_,(k)} (we denote it briefly by
{afq)(k:)}) can be seen as a basis of ImL,_;/ImL, 1 NkerL, for p =
2,...,n — 1. Similarly, the vectors a}., (k) form a basis for Im L, and
the vectors a'(k) extend this basis to a basis for A™.

STEP 2. For fixed p = 2,...,n—11et bP(k) be a basis for Im L,_1Nker L.
This basis can be extended to a basis for ker L, by adding vectors cP(k).
Similarly, for p = 1 let ¢!(k) form any basis for ker L.
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STEP 3. Finally, for p =2,...,n—1 we define b(AP) to consist of all the

vectors afgp(k:), bP(k), cP(k), and we set

VP = span{c’(k),ab(k)}, VP = span{afgp(k‘)}

as shown in Figure 2.

ImL,—q VP

Ve { al_,(k) | ab(k)

ker L,, { bP (k) cP (k)

Fig. 2. Step 3 in the proof of Lemma 5.1

Since there is no image in A' and no kernel in A™, the above definitions
have to be changed slightly for p = 1 and p = n. Namely, let b(A') con-
sist of the vectors a(k), c'(k) and let b(A™) consist of the vectors al%, (k).
Moreover, set B

V' :=span{al(k)}, V" :=span{a’(k)}

We see at once that the bases b(AP) and the subspaces V7P, % satisfy the
assertion of the lemma. m

6. Topological filtrations and graphs. In this section we introduce
filtered graphs for topological filtrations and present a general result on such
graphs. These graphs are not directly connected to the Conley index theory.
In fact, it is possible to give the definition of the filtered graph for the topo-
logical filtration even in the absence of any dynamical system. However, the
material of this section will be needed in the next one devoted to connection
graphs. For this reason, it seems preferable to take the presence of a flow
or a homeomorphism into consideration when formulating the results of this
section. That explains why we use the Leray functor instead of the usual
homology.

Consider a topological filtration N' = {N*}", i.e. a filtration N° C
N C ... C N" of topological spaces. Let us introduce the following notation
fori=1,...,nand k=0,1,2,...

A" := LH,(N*,N°), B':=LH,(N' N1,
Al = LHL(N', N°), Bi:=LH(N' N1
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From now on we assume that all A* and B are finite-dimensional linear
spaces. The filtration N determines the following exact sequences:

As+1

A3 d
10
w SN A
Bs+1

fors=1,...,n—1.

DEFINITION 6.1. We say that G = {Gs}"_, is a filtered graph for the
topological filtration N' = {N,}"_, if for every s =1,...,n:

(1) the set of vertices of G has the form

S o0
U U e,
i=1 k=0
where b(B}) is a basis for B}, (elements of this basis will be denoted
by b.),
(2) each vertex has 1 edge or 0 edges (a vertex with no edges is called
free),
(3) there is in G an edge of the form b} — b iff the following conditions
are satisfied:

(3.1) 1<p<q<s,
(32) Il=Fk—1,
(3.3) there exists an element a € AP such that ja = b} and 9b] =
9P lq £ 0,
(4) the set of vertices of G5 with no edges determines a basis of A®,
i.e. there is a monomorphism ¢ : AS — @;_, B’ such that Im ¢ is
spanned by the set of free edges of Gs.

The following diagram explains the idea behind condition (3.3) of the
above definition.

P J P
Ay, —— B 30
i

p+1
Ak—l

i
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We can formulate the main result of this section.

- THEOREM 6.2. Let N = {N*}7_ be a topological filtration such that all
A" and B" are finite-dimensional. Then there exists a filtered graph for N .

Proof. The proof will be divided into three steps.

STEP 1: Construction of vertices of Gs. Consider the following sequence
of homomorphisms:

AILAZLL)An—li)An
9y
where the 7 are induced by inclusions. By Lemma 5.1, there exist subspaces
V5, V* and bases b(A®) that agree with the decompositions

AS:keri@VS:ImB@vs, A =TImi®pV*® =kerjp V?®
Let W* denote any subspace complementary to Imj = kerd in B?, i.e.

B =Imj® W = ker0 @ W* for s = 2,...,n. Observe that we have
already chosen a basis in B! = A!. Under the above notations, the maps

Glystr : VT S Imj =kerd, Olpasr : W — Im 9 = keri,

which are isomorphisms for s = 1,...,n — 1, and the bases b(A®) uniquely
define for s = 2,...,n bases b(B®) that agree with the decompositions B* =
Im j @ W*. Finally, we define the vertices of G to be (J;_, b(B").

STEP 2: Construction of edges of Gs. Let each vertex in b(W?) C b(B1)
(g =2,...,s) be the initial vertex of some edge. We will show how to find
the end of this edge. All other vertices will be free. Let b € b(W?) C b(B9?),
and so e = 9b € b(A?1). If @ € AP for p < q is the origin of e, as in
Remark 5.2, then ¢ = ja is the end of the edge that begins at . This ends
the construction of a filtered graph G. The above procedure shows that G
satisfies conditions (1)—(3) of the definition. What is left is to prove (4).

STEP 3: Construction of . We define a linear map

S
p: A° H@BS
i=1

by a procedure complementary to determining the edges of G,,. Let b(AY),
b(B") be the bases chosen in Step 1. It is enough to define ¢ on the elements
of b(A®). Let a € b(A®). Set

pa = jc,
where ¢ € b(A°7!) is the origin of a, as in Remark 5.2. By definition, ¢
provides the desired monomorphism. =

7. Proof of the main result. We recall that our main result states the
existence of connection graphs for both continuous and discrete dynamical
systems. Let M = {M (i) |i € P} be a Morse decomposition of an isolated
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invariant set S. Consider the dynamical-system-defined ordering of the Morse
decomposition M, i.e.

M(<p) ={M(i) | i€ (P,<p)}.
By Theorem 3.4, there exists an index filtration
N(<p) ={N({) | I € A(<p)}

for M(<p). Let M(<y) be any admissible linear ordering of the Morse
decomposition M. Observe that <; always exists and <y, extends <p. Fur-
thermore, we will write elements of P as 1,2,...,n according to <. Define
I :={1,2,...,i—1,i} for i = 0,1,...,n. In particular, Iy = . It follows
that A(<r) = {L;}"_, C A(<p). Now we define the following topological
filtration:

N :={N{I)eN(<p)|IeAl<pr)}.

Writing N? := N(I;) we obtain A" = {N*}"_,. Observe that \ is an index fil-
tration for M(<r), but since N comes from N(<p), N has some additional
properties, which are not included in the definition of an index filtration for
M(<p). Applying Theorem 6.2 we get a filtered graph G = {G;}""_; for N.
Finally, we claim that GG, is a connection graph for M. By the definition
of the filtered graph, G,, satisfies conditions (1)-(5) of the definition of the
connection graph. It remains to prove that <p extends <g. We start with
the observation that the last assertion is nothing but the statement that for
any edge ei — 62-—1 we have ¢ <p j. To obtain a contradiction, suppose

that there exists an edge €], — el _, with (i <p j). By the definition of the
filtered graph, this implies i <, j. Set
J:={pePlp<pij}, J :=J\{j}

By definition, i ¢ J and J,J’ € A(<p). From this we conclude that for
Ae{l;,I;_1} Cc A(<p) C A(<p) and B € {J,J'} we have AU B € A(<p).
Consider a commutative diagram (x) of Figure 3, in which every row cor-
responds to some exact sequence of a triple from the filtration A'(<p) and

LHk(N(IrL,1 @] J), N(szl)) — Lkal(N(Iifl), N(@))

) l

LH,(N(I;UJ),N(@)) - LH (N(I;UJ),N(I;)) — LH, 1(N(I;),N(0))
| | l
) l

LH(N(I;),N(Ij-1)) — LHg_1(N(Ij-1),N(0))

Fig. 3. Diagram ()
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the vertical homomorphisms are induced by inclusions of pairs. Moreover,
the maps denoted by | are isomorphisms since they correspond to inclu-
sions of index pairs of the same isolated invariant sets (M (i) and M (J — I;)
respectively).

From the diagram (x) and the definition of the filtered graph, we obtain a
new commutative diagram (x*) (see Figure 4), in which the elements a’, /1
are defined as in (3.3) of the above mentioned definition. The notation z — y
means that = is mapped onto y in the diagram (x).

4] - [
!

!
h — [c] - a
I | !
ho— [a — [b]
1
j

j—1
e, — a

Fig. 4. Diagram (k)

The following reasoning shows that e € LH.(N(I;_1), N(0)) is nonzero.
Since the vertical arrow over e; corresponds to an isomorphism, a # 0. By
the commutativity of the bottom square in (x), we get b # 0. If ¢ were zero,
there would be h such that h — ¢, which contradicts the commutativity of
the second and third rows of (x). Therefore ¢ # 0. The vertical arrow over ¢
corresponds to an isomorphism, and consequently, d # 0. Finally, by the
commutativity of the top square in (x), e # 0.

It remains to consider two cases. If i = 1, then LHy,_1(N([;—1), N(0)) =
LHy_1(N(0),N(®)) = {0}, a contradiction. If ¢ > 1, we get the exact se-
quence

LH,_(N"! N% — LH,_(N*, N°) — LH;,_;(N*,N""1)

with three nonzero elements such that e — a’ — 62—17 which contradicts the
exactness of the above sequence and completes the proof.

8. Examples. Let D? be the closed unit ball in R? and let ¢ be a flow
on the plane with the dynamics as in Figure 5.

Assume that S = D? is an isolated invariant set and that M (0) = (0,0),
M(1%) = (£1,0), M(2%) = (0,+1) form a Morse decomposition M of S
with the flow-defined order 0 < 1* < 2%. Moreover, a simple verification
shows that the local Conley indices of the Morse sets are
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2+

Fig. 5. The dynamics of ¢

Q ifk=0,
0 otherwise,

Q ifk=p,
0 otherwise,

CH(M(0)) = {

CHp(M(p*)) = {

and the total Conley index of the whole set is
Q ifk=2,

0 otherwise.

CHy(M(S)) = {

62_ ° ° e;_ - - le_‘/;e_l _2_

€] o e __level 1
. _level O
€o

Fig. 6. Vertices of any connection graph for ¢

Let ep,ei,ef be any basis vectors for CHy(M(0)), CHi(M(1%)),
CHy(M(2%)) respectively. Consequently, each connection graph for the
Morse decompositions M has five vertices as in Figure 6. Three levels in
Figure 6 correspond to the natural gradation in homology. Theorem 4.2
states that the set of connection graphs for M is nonempty, but we see
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at once that in this special case we have exactly four different connection
graphs as in Figure 7.

I P RN

e K X,

Fig. 7. All connection graphs for ¢

Note that each of them contains the same information about the total
Conley index (the set of free vertices consists of one element of homologi-
cal level two) but completely different information about connecting orbits.
For instance, the edges of the first connection graph imply the existence of
connecting orbits from M (27) to M(17) and from M(1") to M(0), while
the edges of the third one yield the existence of connections from M (27)
to M(1%) and from M(17) to M(0). Consequently, each connection graph
provides only partial information about the structure of the Morse decom-
position. On the other hand, the set of all connection graphs gives the full
knowledge of connecting orbits in the Morse decomposition.

The second example is adapted from [15]. Let D C R? be a square and
let fo : D — D be a continuous map as indicated in Figure 8. Extend fj to
a homeomorphism f : S? — S? with a repelling point r outside D.

Fig. 8. The dynamics of f

Take M(0) = Inv(D7 U Dg), M(1
easy to check that M = {M(0), M(1
S = S? with admissible ordering 0 <

) = Inv(Dy U Dg), M(2) = {r}. It is
), M(2)} is a Morse decomposition of
1< 2and NOZQ), N1:D7UD8UP
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(P is the union of dotted areas), N2 = D U Dy U D7 U Dg is an index triple
for M. Moreover, an easy computation shows that

Q? if k=0,

0  otherwise,

CHW(M(0)) = {

CH,(M(p)) =
k(M (p)) 0 otherwise,

{@ if k= p,

for p = 1,2. We will denote by {eo, ey}, {e1}, {e2} bases of the vector
spaces CHy(M(0)), CHy(M(1)) and CHy(M(2)) respectively. Each con-
nection graph for M has four vertices as in Figure 9.

level 2

€y e <-------=

level 1

el e - eeaa

, level O

60 o ° eO «---=-=-=-=--

Fig. 9. Vertices of any connection graph for f

It is obvious that in this case we have two different connection graphs as
in Figure 10.

/ N

Fig. 10. All connection graphs for f

Both of them contain identical information:

e the set of free vertices forms the global Conley index of S = S2,
e there are connecting orbits from M (1) to M(0).

Observe that none of them provides any information about connections from
M(2) to M(1).
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