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Kato decomposition of linear pencils
by

DoOMINIQUE GAGNAGE (Lille)

Abstract. T. Kato [5] found an important property of semi-Fredholm pencils, now
called the Kato decomposition. M. A. Kaashoek [3] introduced operators having the prop-
erty P(S : k) as a generalization of semi-Fredholm operators. In this work, we study this
class of operators. We show that it is characterized by a Kato-type decomposition. Other
properties are also proved.

1. Introduction. Throughout this paper, we shall denote by X, Y two
Banach spaces. Let B(X,Y) be the set of all bounded linear operators from
X to Y. For an operator A in B(X,Y), we denote by N(A) and R(A) its
kernel and range, respectively.

We will write N={0,1,2,...}.

Let T, S € B(X,Y). The operator T is said to be semi-Fredholm if R(T)
is closed and min{dim N(7'),codim R(T")} is finite. M. A. Kaashoek intro-
duced the P(S : k) property (see [3] and Section 2 below) as a generalization
of semi-Fredholm operators.

1.1. DEFINITION. The couple (7, S) is said to have a Kato decomposition
of finite type (KDF) if there exist closed subspaces X1, X2 of X and Y7, Y5
of Y such that:

(1) X=X10oXsand Y =Y; ®Y5,

(2) dim X7 < o0,

(3) SX;CY,and TX; C Y}, fori=1,2,

(4) T|x, has the property P(S|x, : 0), whose definition is recalled in
Section 2,

(5) S: X7 — Y1 is bijective,

(6) S7!T|x, is nilpotent.
In that case, we will say that (Xo, X1,Ys,Y7) is a KDF associated to the
couple (T, S).
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100 D. Gagnage

In [5, Theorem 4], T. Kato proved that if T" is semi-Fredholm and S
arbitrary, then (7', S) has a Kato decomposition of finite type.

The aim of this paper is to characterize couples of operators having a
KDF. In particular, we show that (7, S) has a Kato decomposition of finite
type if and only if T" has the property P(S : k) for some integer k. In the
particular case of X =Y and S = I, we recover known results (see [7], [8])
about s-regular and essentially s-regular operators (also [1], [3]-[5], [6], [9])-

2. Characterization of the class P(S). Throughout this paper, we
will consider 7', S in B(X,Y") such that R(T) is closed.

T. Kato introduced sequences of subspaces of X, (D, (T : S)),>0 and
(Np(T : S))n>0- They play an important role in perturbation theory (see
[5]). A few years later, M. A. Kaashoek added other sequences of subspaces
of Y, (Ro(T : S))n>0 and (M, (T : S))n>0 (see [3]). Let us recall their
definition:

DO(T : S) = X, Ro(T : S) = ij

Ryi1(T: S)=TD,(T:S), Dpr(T:8)=S"Ry1(T:S) forn>0,
NO(T : S) = {0}7 MO(T : S) = {0}7

Npi1(T:8) =T M, (T :S), My 1(T:S)= SN, 1(T:S) for n > 0.

If it is not ambiguous, we will write D,,, N,,, R,, and M,, for the correspond-
ing subspaces. Clearly, we have D,, .1 = S~™'TD,,, Nyy1 = T 1SN, R, 11 =
TS 'R, M, +1 = ST~'M,,. Moreover, the sequences (D,,)n>0 and (Ry,)n>0
are decreasing, and the sequences (Ny,),>0 and (M), >0 are increasing. Let

D(T:S)= ﬁDn(T:S), N(T:S)= GNn(T:S),

R(T:S)=()Ra(T:8), M(T:S)=|]M(T:9).
n=0 n=0

We can easily see that TD(T : S) C R(T : S),S™'R(T : S) = D(T : S) and
for every complex number A # 0, N(T'+ \S) C D(T : 5).

We notice that in the particular case when X =Y and S = I, we have
D, =R, =R(T") and N,, = M,, = N(T").

Before giving the definition of the operators we will study in this paper,
let us recall a notation. For two subspaces M and N of X, we write M C. N
if there exists a finite-dimensional subspace F' of X such that M C N + F,
i.e. dim[M/(M N N)] < co. Notice that we can assume that F' is a subset
of M. Now, we can introduce the notion we are interested in. Let k£ be a
positive integer. The operator T is said to have the property P(S : k) if

dim[N(T)/(D(T : S) N N(T))] = k
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and R(T) is closed. We will write T' € P(S) if R(T) is closed and N(T') Ce
D(T : S), i.e. if there exists k such that T has the property P(S : k).

In this section, we will find other ways to characterize the property
P(S : k). First, let us give a condition (necessary and sufficient) for the
operator T to belong to P(.5).

2.1. PROPOSITION. (1) If T has the property P(S : k), then there exists
a subspace M of X such that S™'TM = M and the map T : X/M — Y/TM
defined by T(x + M) = Tx + TM is such that n(T) := dim N(T) = k.

(2) If there exists a subspace M of X such that S~'TM = M and
n(T) = k, with T the map defined in (1), then T has the property P(S : k')
for some k' < k.

Proof. (1) Let M = D(T : S). Then, by [3, Theorem 3.1], M = S~1TM
and M, TM are closed. Let T : X/M — Y/TM be as in the statement.
Then N(T) = { + M; Tx € TM} = N(T) + M. Define ¢ : N(T) — N(T)
by ¢(x) = x + M. Clearly, ¢ is surjective. Further, N(¢) = N(T') N M, so
¢ : N(T)/[N(T) N M] — N(T) is bijective. Hence n(T) = k.

(2) As S~YTM = M, we have M C D(T : S). Let ¢ : N(T) — N(T)

~

be as above. Again, ¢ : N(T')/[N(T) N M] — N(T) is bijective. Therefore
dim[N(T)/(N(T)NM)] = dim N(T) = k. Since M C D(T : S), it follows
that dim[N(T")/(N(T) N D(T : S))] < k. Thus T has the property P(S : k')

for some k' < k, as R(T) is supposed to be closed.

__ REMARK. In both parts of Proposition 2.1, M and T'M are closed and
T has closed range.

Proof. As N(T) = N(T)+M is finite-dimensional, it is closed. Moreover,
T has closed range. So, by [5, Lemma 331], TN(T) = TM is closed. As
M = S7TM, the subspace M is also closed. Let IT : Y — Y/TM be
the canonical projection. Since N(II) = TM C R(T) and R(T) is closed,
R(T) = IIR(T) is closed, by [5, Lemma 331].

2.2. COROLLARY. T € P(S) if and only if there exists a closed subspace
M of X such that STYTM = M and the map T : X/M — Y/TM defined
by T(x+ M) =Tz +TM is upper semi-Fredholm.

The main result of this work is the following theorem which allows us to

characterize operators having the property P(S) in terms of a Kato decom-
position of finite type.

2.3. THEOREM. Let T,S € B(X,Y) be such that R(T) is closed. The
following are equivalent:

(1) T € P(S5).

(2) N(T:S) Ce STIR(T).
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(3) N(T:S)Ce D(T:S).
(4) The couple (T, S) has a Kato decomposition of finite type.

The following lemmas will allow us to prove Theorem 2.3.
2.4. LEMMA. Let U, V,W be subspaces of X and M, N be subspaces of Y .

(1) TIUNV] CTUNTV, with equality if N(T) C U.

(2) ST'M + S7IN C STYM + N, with equality if N C R(S).

(3) Let A € B(X,Y) be a closed range operator. If U + N(A) is closed,
then AU is closed.

4) If UCW, then [U+VINW =U+[VNW].

Proof. (1) The inclusion is clear. Assume that N(T) C U and let y €
TU NTV. There exist w € U and v € V such that y = Tw = Tv. Then
v—ueN(T)CU,andsoveUNV. Thusy e T[UNV].

(2) Let z € S™'M + S™!N. Then there exist m € S™'M and n € SN
such that z = m +n. Thus Sz € M + N, and so x € S~'[M + NJ.

Now, assume that N C R(S) and let € S™![M + N]. Then there exist
a € M and b € N C R(S) such that Sx = a + b. Moreover, there exists
¢ € X such that b = Se, and so ¢ € ST!N. Thus S(z —¢) = a € M, and
r—c€S M. Hence x € SN + S~ M.

(3) [5, Lemma 331].

(4) [2, Lemma 2.1].

2.5. LEMMA. The following are equivalent:

(1) For alln € N, N,,(T : S) C ST'R(T), i.e. N(T': S) C S~'R(T).

(2) N(T) C D(T' : S), i.e. T has the property P(S :0).

(3) For all (n,k)eN?, N,,(T : S)CDy(T : S), i.e. N(T: S)CD(T : S).

Proof. (3)=(1): As D(T : S) C Dy(T : S) = S7'R(T), we obtain
N(T:8S)c ST'R(T).

(1)=(3): We argue by induction on k € N. As the cases k = 0,1 are

true, assume that the property holds for some k > 1. Let n € N. We have
Nyi1(T:S)CD(T:8S). As N1 (T:S)=T"1SN,(T:S), it follows that

SN (T :8) N R(T) C TD(T : S).

Then [N, (T : S) + N(S)|NSTIR(T) C STITDy(T : S) = Dy41(T : S). By
Lemma 2.4, as N(S) C S7'R(T), we have
No(T:S)NS™'R(T) + N(S) C Dy4+1(T : S).
Since N,,(T : S) € S~'R(T), we obtain the result.
(3)=(2): As N(T')=N1(T : S)CN(T : S), we obtain N(T)C D(T : S).
(2)=-(3): We reason by induction on n € N. As the cases n = 0,1 are
true, assume that the property holds for some n > 1. Let £ € N. We have
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N (T:S)C Dy1(T:8). As Dy 1(T:S)=S"1TD(T:S), it follows that
SN, (T : S) C TDy(T : S) N R(S) C TD(T : S).

Then Ny (T: S) = T-LSNL(T : S) € Dp(T : S) + N(T) = Di(T : ), as

N(T) C Du(T : S).

2.6. LEMMA. Consider the following properties:

(a) N(T) Ce D(T' : S), i.e. T € P(S5).

(b) N(T : S) Co STLR(T).

(¢) For all (n,p) € N2, N, (T : S) Co Dp(T : S).

We have the following implications: (a)=(c) and (b)=(c).

Proof. (a)=(c): Assuming (a), we show (c) by induction on n. Since
D(T :S) C Dy(T : S) for every p € N, the cases n = 0,1 are clear. Let n > 1
and assume that for all m < n and all p € N, there exists a finite-dimensional
subspace Fy, , C Ny, (T 1 S) such that Ny, (T :S) C Dp(T : S) + Fin p-

Let p € N. Then

Nyt (T:8) =T 'SN,(T:S) CT 'S[Dps1(T : S) + Frpiil
= T_l[SDerl(T 0 5) 4+ SEp pa]
=T ' Rpir(T: S)NR(S) + SF, pi1]
C Tﬁl[Rp—H(T 0 S) + SFnpt]
=T ' TDy(T : S) + SFp p+1]
=Dy(T:8)+N(T)+T 'SF, 41 by Lemma 2.4.
As SF,, pr1 N R(T) is finite-dimensional, we can find F},; , C X such that

TFTILJrl,p = SFn,p-f—l N R(T)7

dim F, ; , = dim[SF}, 11 N R(T)].
Thus Ny11(T : S) C Dp(T : S) + Fiyy,, + N(T). Further N(T) C F1, +
Dy(T : S). Defining Fy, 11, = F1, + Fy 1, a finite-dimensional subspace,
we have N,y 1(T:S) C Dp(T : S) + Frg1p-

(b)=(c): Assuming (b), we show (c) by induction on p. As N,,(T : S) C
N(T : S) for all n € N, the cases p = 0,1 are clear. Let p > 1 and assume
that for all ¢ < p and all n € N, there exists a finite-dimensional subspace
F, 4 C Nu(T :S) such that N, (T : S) C Dy(T : S) + F, 4.

Let n € N. We have

TNpsr (T2 S) C T[Dp(T : S) + Fparp) = TDH(T : ) + TFi1,
=Rp1(T:5) + TFup1p.
As Fri1p C Npta (T 2 S), we obtain

TF,41p CTNp1(T:8)C My(T:S)=SN,(T:S) C R(S).
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Thus
SN, 1 (T:S8) C S'Ryy1(T:S)+ S 'TF,11, byLemma 2.4
= Dpi1(T: 8) + S 'TFy11,.
Since TNy, 1(T : S) = SN, (T : S) N R(T), we have
STITN, (T :8) =[N,(T:S)+N(S) NS 'R(T)
= [No(T:S)NS™'R(T)]+ N(S) by Lemma 2.4
DNL(T:8)NDy(T:9).
Moreover, Ny, (T : S) C D1(T : S) + F,,1 with Fj, 1 C N,(T : S). So
Nu(T:8) CDi(T:S)NNu(T:8)+ Fn1 CS TNyt (T:S) + Fa
CDp1(T:8)+ S ' TFyi1p+ Fox.
Notice that T'F, 11, N R(S) is finite-dimensional. Let Fy ., , be such that
SFrllJrl,p =TFni1p NR(S),
{ dim F}, ; , = dim(T'F, 11, N R(S)).

Thus N (T : S) C Dpi(T : S) + Fuy + Fy g, as N(S) C Dpya(T 2 5).
Setting I, py1 = F1 + F;LJFLP, a finite-dimensional subspace, we obtain

Nn(T : S) C Dp+1(T : S) + Fn,p+1-
2.7. LEMMA. For all (m,d) € N2,
(ST'T) Nyt a(T : S) = Ny (T = S) N Dg(T : S) + Na(S : T).

Notice that in the last term, the roles of T" and S are reversed. This will
happen at some other places as well.

Proof. We prove by induction on d € N that the stated equality holds
for all integers m. As the case d = 0 is clear, assume that the equality holds
for some d > 0 and let m € N. Thanks to Lemma 2.4, we have

(ST Nypgrara (T ) = (ST'T)[(ST T N1y 1a(T : 9)]
= (ST'T)[Npir (T - S)NDy(T : S) + Ng(S : T)]
= STUM,, (T : S) N Rgy1 (T : S) + My(S : T)]
= STHSN, (T : S) N Ry 1 (T : S) + My(S: T)]
= [No(T:S) + N(S)] NS Ry 1 (T :S) + S My(S:T)
= Nip(T': S) N Daya (T = §) + N(S) + Naga (5 : T)
= Np(T:S)N Dgy1(T: S) + Nyi1(S:T).

2.8. LEMMA. Assume that Ni(T : S) C D1(T : S) for all k € {0,...,p}.
Then Np_;(T : S) C Dj11(T : S) for each j € {0,...,p}.

)
(
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Proof. We prove this by induction on j. The result is clear for j = 0.
Assume that the property is true for some j € {0,...,p —1}. As
T 'SNy_(j+1)(T : 8) = Np—j(T : S) C D1 (T : S),
we have SN,_;_1(T : S)NR(T) CTDj41(T :S). So
[Np,jfl(T : S) + N(S)] N S_lR(T) C Dj+2(T : S)
Since Np_;—1(T : S) and N(S) are included in D1(T : S) = ST'R(T), we
obtain

Np,(j+1)(T : S) C Np—j—l(T : S) + N(S) C Dj_;,_g(T : S)

2.9. LEMMA. Assume that N(T) Ce Di(T : S) for all k € N. Then, for
each j € N,D;(T : S) and R;(T : S) are closed.

Proof. As Do(T : S) and Ro(T : S) are closed, assume that the property
is true for some j € N. As dim[N(T")/(N(T) N D;(T" : S))] < oo, there exists
a finite-dimensional subspace N of N(T') such that N®D;(T : S) = N(T)+
D;(T:S)and NND;(T:S)={0}.

Let M =D;(T:S)® N =D;(T:S)+ N(T). The subspace M is closed
and TM = Rj (T : S). Since N(T') C M and R(T) and M are closed,
R;+1(T : S) is closed, by Lemma 2.4. As S is continuous, S™'R; 1 (T : S) =
D 1(T :S) is also closed.

2.10. LEMMA. Assume that there exists n € N\ {0} such that N, (T : S)
¢ ST'R(T) and Np_1(T : S) C ST'R(T). Let y € N,(T : S)\ ST'R(T).
Then y, (S™1T)y,...,(S7IT)" 1y are independent modulo D, (T : S).

Proof. First, we prove that
(1) (S™'TYy C Ny j(T:S)+N;j(S:T) forj=0,...,n.

This is clear for j = 0. Assume that it is true for some j € {0,...,n — 1}.
Then (S7'T)y C Npj(T : S)+ N;j(S : T) = T"'SN,—;1(T : S) +
N](S : T) So
T(S™'TYyC SN,_; 1(T:S)NR(T) +TN;(S:T)
C SNn_j_l(T : S) + TN](S : T)
Thus, by Lemma 2.4, we have
(STIT) ™y € N1 (T2 S) + N(S) + Njpa (S : T)
= n,jfl(TZS)+Nj+1(S:T).

We now prove that

(2) (ST'TYyN D1 (T:8) =0 forj=0,...,n—1.

The case j = 0 is clear. Assume that the property is true for some j €
{0,...,n — 2} and that there exists z in (S™1T)/ 1y N D;o(T : S). Then
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Sz = Tz for some z in (S7!T)y. We have z € T~' Sz C T7'SD;1o(T : 5).
As Djyo(T :S)=S"'TD;1(T : 9), it follows that

SD]'+2(T : S) = TDj+1(T . S) N R(S) C TDj+1(T : S),
and T71SD;o(T : S) C Djs1(T : S)+ N(T). By Lemma 2.8, as Ni(T : S)
C Dy(T:8)forall k € {0,...,7+1} (j+1 < n—1), we have N(T) C
Dj+1(T : S) So T_lSDj+2(T : S) C Dj+1(T : S) Thus z € Dj+1(T : S) N
(S71T)7y, a contradiction.

Now, we can prove that y, (S™'T)y,...,(S71T)" !y are independent
modulo D,,(T : S). Let z; € (S7'T)/y and j € C for j = 0,...,n — 1.
Assume that apzo +. ..+ ap—12,—1 belongs to D, (T : S). Then, by Lemma
2.4, applying (S71T)"~ !, we obtain

ao(STIT) " g4 a1 (STIT) 2 € (ST TID,L (T : S)

= Dgnfl(T . S)
For every k € N, N(S) C Di(T : S), so Nj11(S : T) = (ST'T)'N(S) C
Dy (T : S) for all (k,j) € N2. Since the sequence (Dg(T : S))k>o0 is
decreasing, we have
(3) N;(S:T)C Di(T:S) for each couple (k,j) € N2
For j € {0,...,n — 1}, we have
z; € (ST y C N, j(T:S)+ N;j(S:T) by (1)

CD;(T:8)4+ N;(S:T) by Lemma 2.8

C D;(T:S) by (3).
So (S‘lT)"_lzj C (S_lT)n_le(T : S):Dn+j_1(T : S) for j=1,...,n—1
As the sequence (D (T : S))r>0 is decreasing, we obtain

Oél(SilT)nilzl —+ ...+ Oén_l(SilT)nilzn_l C Dn(T : S)

Hence ao(S™IT)" 129 = ao(S™IT)" "ty C D, (T : S).

If ag # 0, we have found an element belonging to D, (T : S) and to
(S~1T)"~1y, which contradicts (2).

So ag=0. Thus a1 21+. ..+ 12,1 €D, (T : S). Applying (S~1T)"~2,
we show that a; = 0. Step by step, we conclude that a; = 0 for i =
0,...,n—1.

Proof of Theorem 2.3. The implications (3)=-(1) and (3)=(2) are clear
since N(T) = N1(T : S) C N(T : S)and D(T : S) C D{(T : S) = ST1R(T).

(4)=(3): Let (X2, X1,Y5,Y7) be a KDF associated to the couple (T, 5).
We have
N(TS) :N(T2 : SQ)@N(Tl : Sl) CN(T2 : Sg)+X1 CD(TQ : SQ)—FXl,

by Lemma 2.5, since T'|x, has the property P(S|x, : 0). As S71T|x, is
nilpotent of index d, D,,(T : S) = D,,(T1 : S1) ® Dy, (T : S3) = Dy, (T3 : Sa)
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for all n > d. Therefore D(T : S) = D(Ty : S2). Moreover X, is finite-
dimensional, so we have N(T': S) C. D(T : 5).

We now prove that (1) or (2) implies (4). In these two cases, (c) of
Lemma 2.6 is satisfied. Thus, for all positive integers n, we have N,, (T : S) Ce
Dy(T:8)=S"'R(T).

If No(T : S) € STYR(T) for all n > 0, then by Lemma 2.5, T has the
property P(S : 0), and (X, {0},Y,{0}) is a Kato decomposition of finite
type associated to (7', 5).

Assume that there exists n > 1 such that N, (T : S) ¢ S~'R(T) and
Np—1(T :S) € ST'R(T). Let y € Npo(T : S)\ ST'R(T). By Lemma 2.10,
y,(S7IT)y,...,(STIT)" 1y are independent modulo D, (T : S). As y €
N, (T : S), there exist xg,...,x, such that Sz;;; = Tx; fori =0,...,n—1,
xg = y and z, = 0. Let z; = Sx; for ¢ = 0,...,n — 1. We prove that
20,--.,2n—1 are independent. If agzg + ... + an_12n—1 = 0, then agxg +
coit @y 1Zn_1 € N(S) C Dy(T = S). As y, (S™T)y,...,(S7IT)" "1y are
independent modulo D, (T : S),a; = 0 for i = 0,...,n — 1. Notice that
xg,...,Tn_1 are also independent.

Step 1. We will define two projections P and ) which will allow us to
find a Kato decomposition. To do so, we first define a functional f € X*
which will be useful in the construction of P and Q.

As (c) of Lemma 2.6 holds, by Lemma 2.9, D;(T : S) is closed for all
positive integers j. In particular, D, (T : S) is closed. So, by the Hahn—
Banach Theorem, there exists f € D, (T : S)* such that f(z,_1) = 1 and
f(z;)=0forj=0,...,n—2.

Let us prove that

flis—1ryiy =6jn-1 forj=0,...,n—1

This is clear for j = 0. Let j € {1,...,n—1} and a; € (S7'T)7y. There exist
Ug, - - ., Uj, Vo, . . .,vj such that ug = x;,v9 = aj,u; = v; = y,Su; = Tui4
and Sv; = Twvi41. Then uj_y —v;j—; € N(S). Step by step, we obtain
ug —vg € Nj(S : T) C Du(T : S). As f € D,(T : S)*, we find that
f(uo) = f(vo), ie. f(x;) = f(ay).

Let us show some properties of f. Set K; ; = (S71T) (S~1T)"~7~1y for
0<j<n—1.

We prove that

f

If i = j, then K;; = (S7'T)" 1y, so flk,, = 1.
If i > j, then K;; = (S7'T)"*+(=i—Vy  (S7IT)"+(—i—VUN, (T : S).
Moreover, by Lemma 2.7, for all positive integers k, we have

Ki,jzéi]— fOI“OS’L',jSTL—l.
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(STIT)PN(T : S)
[ Nep(T:S)NDy(T:S)+ N,(S:T) ifpe{0,... .k}
T\IN,(S:T) if p > k.
Thus K;; C Nyyi—j—1(S :T) C Dyp(T : S), so K; j; C Dp(T : S). Hence
flx,, =0,as f € Dy(T: S)*.

If i < j, then 0 < (n—1) — (j —i) < n—2, hence also f|k, , = 0.

We now prove that

Vo€ X, Vj€{0,...,n—1}, fis constant on H;(z) = (s 'T)’z.

Let x € X, j €{0,...,n—1} and consider 21, 2 in H;(x). For ¢ = 1, 2, there
exist h?,..., b’ such that h) = zi,hf =z and Shffl =Th! for 1 <p <.
We can easily show that h]™? — h} ™" € N,(S : T) for p € {0,...,j}. So
21 —22 € Nj(S:T) C D,(T:5), hence f(z1) = f(22). This will allow us to
define the projection P.

Next, we show that

VzeY, Vje{0,...,n—1}, fis constant on H;(S 'z),
which will allow us to construct Q. Let z € Y, j € {0,...,n—1} and z1, 23 be
in H;(S7'2). For i = 1,2, there exist h?,...,h} such that hY = 2;, Sh! = z
and Sh?~' = Th? for 1 < p < j. We can easily show that k] 7 — b} ¢
Npi1(S:T) for pe {0,...,5} So 21 — 20 € Nj41(S:T) C D,(T : S), and
hence f(z1) = f(22).

Now we can define the two projections P and Q. For (z,2) € X x Y, set

n—1 n—1

P(z) =" f(Hj(@)azn—jo1,  Qz) =D f(H;(S2))zn—j-1.

§=0 §=0
We prove that
P?=P and Q’=Q.

For z € X,

P(a) = )  f(H;(P(x)))zn—j1-
5=0
We show that f(H;(P(x))) = f(H;(z)). Indeed,

n—

Hy(P(2)) = (ST | 3 J(H(x))an—i

D Z f(Hi(z))Hj(zp—i—1) by Lemma 2.4.
i=0
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Let w € Z?;ol f(Hi(z))Hj(xp—i—1). As f is constant on each H;(x,—;—1)
(i€{0,...,n—1}), we have

Fw) = S FOH)) F(H (i),
1=0

(87"~ ly and flk,, = dij, we have f(Hj(xp—i—1)) =
i (w) = f(Hj;(x)). As f is constant on H;(P(x)), it follows that
f(H;(P(z))) = f(w) = f(H;(z)). Therefore P = P.
ForzeVY,

n—1

Q) = 3 FUH,(S1Q()) 21

0
We show that f(H;(S™'Q(z))) = f(H;(S™'z)). We have
n—1
H;j(S7'Q(2)) D > f(Hi(S™'2))H;(S 2p—i—1) by Lemma 2.4,
i=0
Notice that z,—;—1 € S z,—;i—1. So f[H;(S™ 2n_i—1)] = f[H;(Tn—i—1)]-
Let w € Z?;OI F(H;(S7'2))H;(zy—i—1). As before, we find that f(w) =
f(H;(S™12)). Hence f(H;(S™'Q(2))) = f(H;(S™12)).
Step 2. We study different properties of the two projections. Set
X1 =R(P), X2=N(P), Yi=R(Q), Y>=N(Q).
We have dim X; = dimY; < oo, the equality following from the fact that
P(xy) =z and Q(zx) = 2 for all k € {0,...,n — 1}.
We want to prove that

QS=SP and QT =TP.

Let z € X. As x € S7'Sz and f is constant on each H;(S™'z), it follows
that f(H;S~'Sz) = f(H;x). Thus, we have

QS(x) = S_ F(H ()2 st = S F(H;())Sz 1 = SP(2),
j=0 Jj=0
QT (z) = i F(H;S ' Tx)zpj1 = i f(Hj1(@))zn—j-1
=0 =0
n—1
=2 fHj(@)zn—j  as fF(STIT)"e) =0
=TP(z) asxp_1€ N(T).

Hence TX; C Y; and SX; C Y, for ¢« = 1,2. Denote by S; and T; the
restrictions of S and T to X;, considered as operators from X; to Y;.
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Let us prove that
N(T)NX; =Cxp_y.

Let x € N(T)N X;. As © = P(z), we have

0="Tz=> f(H,) Ta:njl—Zf anJ_Zf ))Zn—j-

As zp,...,2,—1 are independent, f( H;(z)) =0 for each j € {1,...,n —1}.
Thus z = f(x)x,—1, and so N(T)NX; C Cx,,_1. Conversely, let x = Az, _1.
Then f(x) = Af(zn-1) = A, so z = f(x)x,—1. Moreover, f(z)x,—1 = P(x),
so z € R(P) = X;. Further, Tx = f(x)Tx,—1 = 0.
We now prove that
N(S)n X, ={0}.

Let z € N(S) N X;. Then x = P(z) = Z?__Ol f(Hj(z))xp—;—1. We have

0=Sz=SP(x Zf ))SZn_j— 1—Zf )21

So f(H;(x)) =0 for j € {0, ...,n— 1}, since 2y, ..., z,—1 are independent.
Hence x = 0.

Thus 57 : X7 — Y; is injective. Moreover, dim X; = dimY; < oco. So
Si : X; — Y] is bijective. Thus, we can consider S~!T from X; to X;.

We now prove that

S™IT: X, — X is nilpotent.
Let z € X;. We have

TP(I‘):Zf(H( Txn —j— 1—Zf an -7

and ST Px = Z;zll f(Hj(z))x,—j, as S1 : X1 — Y is injective, as well as
(S7IT)2Px = Z;L;; f(H;(x))Zy—j41. Step by step, we obtain (S™1T)" Pz
=0.
We now prove that
N(S) C Xs.

Let x € X = X1 & Xo,2x = 21 + 22 with 1 € X7 and 25 € X5. Assume
that Sz = 0, i.e. Sty = —Sws. As Sz; € Y7 and Sxs € Y5, it follows that
Sx1 = Sxe = 0. We thus have z; € N(S) N X; = {0}, hence z; = 0.
Therefore we can consider ST : Xo — X5. As X = Xo @ Xy, N(T) =
N(Tg) ) (Cl’nfl.
Step 3. Now we finish the proof. We have to separate two cases. First,
assume that (1) is true, i.e. N(T') Ce D(T' : S). We have N(T) = N(1Tz) &
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Cxy—1 and D(T : S) = D(Ty : S3), as S™!T|x, is nilpotent. So
N(T)/[IN(T)ND(T : S)] = N(Tz)/[N(T2) N D(Ty : S3)] x Cxyp_1.
Hence
dim(N(T3)/[N(T2) N D(T3 : S2)]) = dim(N(T")/[N(T) N D(T : S)]) —

If dim(N(T')/[N(T)ND(T : S)]) = 1, we stop. Otherwise, we reiterate the
operation with X replaced by N(P) and Y by N(Q). We obtain two new
projections P; and Q1. Thus, in a finite number of steps, we will obtain

X = (’HN(P») ® @R@)),
v (N ~@) e (Dr@).

| 7> has the property P(S : 0).

,

Now, assume that (2) is true, i.e. N(T : S) C. ST'R(T). We have
Ni(T : S) = Ni(T1 : S1) ® Ni(Ty : So) for each k € N. As S71T|x, is
nilpotent of index < n, we get

Nig(Ty : S1) = X1 for every k > n.

In fact, Ny (T3 : S1) is clearly a subset of X;. Conversely, let z € X;. We want
to prove that z € N, (T3 : S1), i.e. we want to find ay, ..., a, such that ag =
x,a, = 0and Ta; = Sa;+1. We have z = P(z) = Z;L;Ol f(Hj(x))Tn—j—1, so

Tr = Zf(H( Tﬂ?ng1—2f x))STy—j.

Hence we can put a; = 27;11 f(Hj(z))xy—;. Then
Ta1 Zf SIEn —j+1,

and we can put ag = 27;:—21 f(Hj(z))xn—jt1. Step by step, we find the
desired a;, and we prove that = € N, (71 : S1).

So N(T:S)=X;®N(Ty : S3). Moreover, D1(T : S) = D1(Ty : S1) ®
D1 (Ty: S3). We have already shown that Dq (T3 :51)=S"1TPX = (xzﬁ 11
Thus

X X1/<$i>?§11~
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As X, /(x;)'= = Cxo, we get
dlm(N(TQ : SQ)/[N(TQ : SQ) N D1<TQ : SQ)])
= dim(N(T : S)/[N(T : )N Dy(T : S)]) — 1.

By Lemma 2.5, T has the property P(S3 : 0) if and only if N(T% : S) C
Dy (T3 : S2). Thus, we can complete the proof in the same way as in the first
case.

2.9. REMARKS. (1) In the particular case where X =Y and S = I, we
recover the result on the essentially s-regular operators proved by V. Miiller
and V. Rakocevi¢ (see [8, Theorem 3.1] and [9]).

(2) Under condition (4) of Theorem 2.3, as S;'T; is nilpotent and
S; : X7 — Y7 is bijective, we have (T} : S1) = {\ € C; Ty — \S; is
not invertible} = {0}.
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