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Kato decomposition of linear pencils

by

Dominique Gagnage (Lille)

Abstract. T. Kato [5] found an important property of semi-Fredholm pencils, now
called the Kato decomposition. M. A. Kaashoek [3] introduced operators having the prop-
erty P (S : k) as a generalization of semi-Fredholm operators. In this work, we study this
class of operators. We show that it is characterized by a Kato-type decomposition. Other
properties are also proved.

1. Introduction. Throughout this paper, we shall denote by X, Y two
Banach spaces. Let B(X,Y ) be the set of all bounded linear operators from
X to Y . For an operator A in B(X,Y ), we denote by N(A) and R(A) its
kernel and range, respectively.

We will write N = {0, 1, 2, . . .}.
Let T, S ∈ B(X,Y ). The operator T is said to be semi-Fredholm if R(T )

is closed and min{dimN(T ), codimR(T )} is finite. M. A. Kaashoek intro-
duced the P (S : k) property (see [3] and Section 2 below) as a generalization
of semi-Fredholm operators.

1.1. Definition. The couple (T, S) is said to have a Kato decomposition
of finite type (KDF) if there exist closed subspaces X1,X2 of X and Y1, Y2

of Y such that:

(1) X = X1 ⊕X2 and Y = Y1 ⊕ Y2,
(2) dim X1 <∞,
(3) SXi ⊂ Yi and TXi ⊂ Yi, for i = 1, 2,
(4) T |X2 has the property P (S|X2 : 0), whose definition is recalled in

Section 2,
(5) S : X1 → Y1 is bijective,
(6) S−1T |X1 is nilpotent.

In that case, we will say that (X2,X1, Y2, Y1) is a KDF associated to the
couple (T, S).
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In [5, Theorem 4], T. Kato proved that if T is semi-Fredholm and S
arbitrary, then (T, S) has a Kato decomposition of finite type.

The aim of this paper is to characterize couples of operators having a
KDF. In particular, we show that (T, S) has a Kato decomposition of finite
type if and only if T has the property P (S : k) for some integer k. In the
particular case of X = Y and S = I, we recover known results (see [7], [8])
about s-regular and essentially s-regular operators (also [1], [3]–[5], [6], [9]).

2. Characterization of the class P(S). Throughout this paper, we
will consider T , S in B(X,Y ) such that R(T ) is closed.

T. Kato introduced sequences of subspaces of X, (Dn(T : S))n≥0 and
(Nn(T : S))n≥0. They play an important role in perturbation theory (see
[5]). A few years later, M. A. Kaashoek added other sequences of subspaces
of Y , (Rn(T : S))n≥0 and (Mn(T : S))n≥0 (see [3]). Let us recall their
definition:



D0(T : S) = X, R0(T : S) = Y,

Rn+1(T : S)=TDn(T : S), Dn+1(T : S)=S−1Rn+1(T : S) for n ≥ 0,

N0(T : S) = {0}, M0(T : S) = {0},
Nn+1(T : S) = T−1Mn(T : S), Mn+1(T : S) = SNn+1(T : S) for n ≥ 0.

If it is not ambiguous, we will write Dn, Nn, Rn and Mn for the correspond-
ing subspaces. Clearly, we have Dn+1 = S−1TDn, Nn+1 = T−1SNn, Rn+1 =
TS−1Rn,Mn+1 = ST−1Mn. Moreover, the sequences (Dn)n≥0 and (Rn)n≥0

are decreasing, and the sequences (Nn)n≥0 and (Mn)n≥0 are increasing. Let

D(T : S) =
∞⋂

n=0

Dn(T : S), N(T : S) =
∞⋃

n=0

Nn(T : S),

R(T : S) =
∞⋂

n=0

Rn(T : S), M(T : S) =
∞⋃

n=0

Mn(T : S).

We can easily see that TD(T : S) ⊂ R(T : S), S−1R(T : S) = D(T : S) and
for every complex number λ 6= 0, N(T + λS) ⊂ D(T : S).

We notice that in the particular case when X = Y and S = I, we have
Dn = Rn = R(Tn) and Nn = Mn = N(Tn).

Before giving the definition of the operators we will study in this paper,
let us recall a notation. For two subspaces M and N of X, we write M ⊂e N
if there exists a finite-dimensional subspace F of X such that M ⊂ N + F ,
i.e. dim[M/(M ∩N)] < ∞. Notice that we can assume that F is a subset
of M . Now, we can introduce the notion we are interested in. Let k be a
positive integer. The operator T is said to have the property P (S : k) if

dim[N(T )/(D(T : S) ∩N(T ))] = k
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and R(T ) is closed. We will write T ∈ P(S) if R(T ) is closed and N(T ) ⊂e

D(T : S), i.e. if there exists k such that T has the property P (S : k).
In this section, we will find other ways to characterize the property

P (S : k). First, let us give a condition (necessary and sufficient) for the
operator T to belong to P(S).

2.1. Proposition. (1) If T has the property P (S : k), then there exists
a subspace M of X such that S−1TM = M and the map T̂ : X/M → Y/TM

defined by T̂ (x+M) = Tx+ TM is such that n(T̂ ) := dimN(T̂ ) = k.
(2) If there exists a subspace M of X such that S−1TM = M and

n(T̂ ) = k, with T̂ the map defined in (1), then T has the property P (S : k′)
for some k′ ≤ k.

Proof. (1) Let M = D(T : S). Then, by [3, Theorem 3.1], M = S−1TM

and M,TM are closed. Let T̂ : X/M → Y/TM be as in the statement.
Then N(T̂ ) = {x+M ; Tx ∈ TM} = N(T ) +M. Define ϕ : N(T )→ N(T̂ )
by ϕ(x) = x + M . Clearly, ϕ is surjective. Further, N(ϕ) = N(T ) ∩M, so
ϕ : N(T )/[N(T ) ∩M ]→ N(T̂ ) is bijective. Hence n(T̂ ) = k.

(2) As S−1TM = M , we have M ⊂ D(T : S). Let ϕ : N(T ) → N(T̂ )
be as above. Again, ϕ : N(T )/[N(T ) ∩M ] → N(T̂ ) is bijective. Therefore
dim[N(T )/(N(T ) ∩M)] = dimN(T̂ ) = k. Since M ⊂ D(T : S), it follows
that dim[N(T )/(N(T ) ∩D(T : S))] ≤ k. Thus T has the property P (S : k′)
for some k′ ≤ k, as R(T ) is supposed to be closed.

Remark. In both parts of Proposition 2.1, M and TM are closed and
T̂ has closed range.

Proof. As N(T̂ ) = N(T )+M is finite-dimensional, it is closed. Moreover,
T has closed range. So, by [5, Lemma 331], TN(T̂ ) = TM is closed. As
M = S−1TM , the subspace M is also closed. Let Π : Y → Y/TM be
the canonical projection. Since N(Π) = TM ⊂ R(T ) and R(T ) is closed,
R(T̂ ) = ΠR(T ) is closed, by [5, Lemma 331].

2.2. Corollary. T ∈ P(S) if and only if there exists a closed subspace
M of X such that S−1TM = M and the map T̂ : X/M → Y/TM defined
by T̂ (x+M) = Tx+ TM is upper semi-Fredholm.

The main result of this work is the following theorem which allows us to
characterize operators having the property P(S) in terms of a Kato decom-
position of finite type.

2.3. Theorem. Let T, S ∈ B(X,Y ) be such that R(T ) is closed. The
following are equivalent:

(1) T ∈ P(S).
(2) N(T : S) ⊂e S

−1R(T ).
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(3) N(T : S) ⊂e D(T : S).
(4) The couple (T, S) has a Kato decomposition of finite type.

The following lemmas will allow us to prove Theorem 2.3.

2.4. Lemma. Let U, V,W be subspaces of X and M,N be subspaces of Y .

(1) T [U ∩ V ] ⊂ TU ∩ TV , with equality if N(T ) ⊂ U .
(2) S−1M + S−1N ⊂ S−1[M +N ], with equality if N ⊂ R(S).
(3) Let A ∈ B(X,Y ) be a closed range operator. If U + N(A) is closed ,

then AU is closed.
(4) If U ⊂W , then [U + V ] ∩W = U + [V ∩W ].

Proof. (1) The inclusion is clear. Assume that N(T ) ⊂ U and let y ∈
TU ∩ TV . There exist u ∈ U and v ∈ V such that y = Tu = Tv. Then
v − u ∈ N(T ) ⊂ U , and so v ∈ U ∩ V . Thus y ∈ T [U ∩ V ].

(2) Let x ∈ S−1M +S−1N . Then there exist m ∈ S−1M and n ∈ S−1N
such that x = m+ n. Thus Sx ∈M +N , and so x ∈ S−1[M +N ].

Now, assume that N ⊂ R(S) and let x ∈ S−1[M +N ]. Then there exist
a ∈ M and b ∈ N ⊂ R(S) such that Sx = a + b. Moreover, there exists
c ∈ X such that b = Sc, and so c ∈ S−1N . Thus S(x − c) = a ∈ M , and
x− c ∈ S−1M . Hence x ∈ S−1N + S−1M .

(3) [5, Lemma 331].
(4) [2, Lemma 2.1].

2.5. Lemma. The following are equivalent:

(1) For all n ∈ N, Nn(T : S) ⊂ S−1R(T ), i.e. N(T : S) ⊂ S−1R(T ).
(2) N(T ) ⊂ D(T : S), i.e. T has the property P (S : 0).
(3) For all (n, k)∈N2, Nn(T : S)⊂Dk(T : S), i.e. N(T : S)⊂D(T : S).

Proof. (3)⇒(1): As D(T : S) ⊂ D1(T : S) = S−1R(T ), we obtain
N(T : S) ⊂ S−1R(T ).

(1)⇒(3): We argue by induction on k ∈ N. As the cases k = 0, 1 are
true, assume that the property holds for some k ≥ 1. Let n ∈N. We have
Nn+1(T :S)⊂Dk(T :S). As Nn+1(T :S)=T−1SNn(T :S), it follows that

SNn(T : S) ∩R(T ) ⊂ TDk(T : S).

Then [Nn(T : S) +N(S)] ∩ S−1R(T ) ⊂ S−1TDk(T : S) = Dk+1(T : S). By
Lemma 2.4, as N(S) ⊂ S−1R(T ), we have

Nn(T : S) ∩ S−1R(T ) +N(S) ⊂ Dk+1(T : S).

Since Nn(T : S) ⊂ S−1R(T ), we obtain the result.
(3)⇒(2): As N(T )=N1(T : S)⊂N(T : S), we obtain N(T )⊂D(T : S).
(2)⇒(3): We reason by induction on n ∈ N. As the cases n = 0, 1 are

true, assume that the property holds for some n ≥ 1. Let k ∈ N. We have
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Nn(T :S)⊂Dk+1(T :S). As Dk+1(T :S)=S−1TDk(T :S), it follows that

SNn(T : S) ⊂ TDk(T : S) ∩R(S) ⊂ TDk(T : S).

Then Nn+1(T : S) = T−1SNn(T : S) ⊂ Dk(T : S) +N(T ) = Dk(T : S), as
N(T ) ⊂ Dk(T : S).

2.6. Lemma. Consider the following properties:

(a) N(T ) ⊂e D(T : S), i.e. T ∈ P(S).
(b) N(T : S) ⊂e S

−1R(T ).
(c) For all (n, p) ∈ N2, Nn(T : S) ⊂e Dp(T : S).

We have the following implications: (a)⇒(c) and (b)⇒(c).

Proof. (a)⇒(c): Assuming (a), we show (c) by induction on n. Since
D(T : S) ⊂ Dp(T : S) for every p ∈ N, the cases n = 0, 1 are clear. Let n ≥ 1
and assume that for all m ≤ n and all p ∈ N, there exists a finite-dimensional
subspace Fm,p ⊂ Nm(T : S) such that Nm(T : S) ⊂ Dp(T : S) + Fm,p.

Let p ∈ N. Then

Nn+1(T : S) = T−1SNn(T : S) ⊂ T−1S[Dp+1(T : S) + Fn,p+1]

= T−1[SDp+1(T : S) + SFn,p+1]

= T−1[Rp+1(T : S) ∩R(S) + SFn,p+1]

⊂ T−1[Rp+1(T : S) + SFn,p+1]

= T−1[TDp(T : S) + SFn,p+1]

= Dp(T : S) +N(T ) + T−1SFn,p+1 by Lemma 2.4.

As SFn,p+1 ∩R(T ) is finite-dimensional, we can find F ′n+1,p ⊂ X such that
{
TF ′n+1,p = SFn,p+1 ∩R(T ),

dimF ′n+1,p = dim[SFn,p+1 ∩R(T )].

Thus Nn+1(T : S) ⊂ Dp(T : S) + F ′n+1,p + N(T ). Further N(T ) ⊂ F1,p +
Dp(T : S). Defining Fn+1,p = F1,p + F ′n+1,p, a finite-dimensional subspace,
we have Nn+1(T : S) ⊂ Dp(T : S) + Fn+1,p.

(b)⇒(c): Assuming (b), we show (c) by induction on p. As Nn(T : S) ⊂
N(T : S) for all n ∈ N, the cases p = 0, 1 are clear. Let p ≥ 1 and assume
that for all q ≤ p and all n ∈ N, there exists a finite-dimensional subspace
Fn,q ⊂ Nn(T : S) such that Nn(T : S) ⊂ Dq(T : S) + Fn,q.

Let n ∈ N. We have

TNn+1(T : S) ⊂ T [Dp(T : S) + Fn+1,p] = TDp(T : S) + TFn+1,p

= Rp+1(T : S) + TFn+1,p.

As Fn+1,p ⊂ Nn+1(T : S), we obtain

TFn+1,p ⊂ TNn+1(T : S) ⊂Mn(T : S) = SNn(T : S) ⊂ R(S).
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Thus

S−1TNn+1(T : S) ⊂ S−1Rp+1(T : S) + S−1TFn+1,p by Lemma 2.4

= Dp+1(T : S) + S−1TFn+1,p.

Since TNn+1(T : S) = SNn(T : S) ∩R(T ), we have

S−1TNn+1(T : S) = [Nn(T : S) +N(S)] ∩ S−1R(T )

= [Nn(T : S) ∩ S−1R(T )] +N(S) by Lemma 2.4

⊃ Nn(T : S) ∩D1(T : S).

Moreover, Nn(T : S) ⊂ D1(T : S) + Fn,1 with Fn,1 ⊂ Nn(T : S). So

Nn(T : S) ⊂ D1(T : S) ∩Nn(T : S) + Fn,1 ⊂ S−1TNn+1(T : S) + Fn,1

⊂ Dp+1(T : S) + S−1TFn+1,p + Fn,1.

Notice that TFn+1,p ∩R(S) is finite-dimensional. Let F ′n+1,p be such that
{
SF ′n+1,p = TFn+1,p ∩R(S),

dimF ′n+1,p = dim(TFn+1,p ∩R(S)).

Thus Nn(T : S) ⊂ Dp+1(T : S) + Fn,1 + F ′n+1,p, as N(S) ⊂ Dp+1(T : S).
Setting Fn,p+1 = Fn,1 + F ′n+1,p, a finite-dimensional subspace, we obtain

Nn(T : S) ⊂ Dp+1(T : S) + Fn,p+1.

2.7. Lemma. For all (m,d) ∈ N2,

(S−1T )dNm+d(T : S) = Nm(T : S) ∩Dd(T : S) +Nd(S : T ).

Notice that in the last term, the roles of T and S are reversed. This will
happen at some other places as well.

Proof. We prove by induction on d ∈ N that the stated equality holds
for all integers m. As the case d = 0 is clear, assume that the equality holds
for some d ≥ 0 and let m ∈ N. Thanks to Lemma 2.4, we have

(S−1T )d+1Nm+d+1(T : S) = (S−1T )[(S−1T )dN(m+1)+d(T : S)]

= (S−1T )[Nm+1(T : S) ∩Dd(T : S) +Nd(S : T )]

= S−1[Mm(T : S) ∩Rd+1(T : S) +Md(S : T )]

= S−1[SNm(T : S) ∩Rd+1(T : S) +Md(S : T )]

= [Nm(T : S) +N(S)] ∩ S−1Rd+1(T : S) + S−1Md(S : T )

= Nm(T : S) ∩Dd+1(T : S) +N(S) +Nd+1(S : T )

= Nm(T : S) ∩Dd+1(T : S) +Nd+1(S : T ).

2.8. Lemma. Assume that Nk(T : S) ⊂ D1(T : S) for all k ∈ {0, . . . , p}.
Then Np−j(T : S) ⊂ Dj+1(T : S) for each j ∈ {0, . . . , p}.
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Proof. We prove this by induction on j. The result is clear for j = 0.
Assume that the property is true for some j ∈ {0, . . . , p− 1}. As

T−1SNp−(j+1)(T : S) = Np−j(T : S) ⊂ Dj+1(T : S),

we have SNp−j−1(T : S) ∩R(T ) ⊂ TDj+1(T : S). So

[Np−j−1(T : S) +N(S)] ∩ S−1R(T ) ⊂ Dj+2(T : S).

Since Np−j−1(T : S) and N(S) are included in D1(T : S) = S−1R(T ), we
obtain

Np−(j+1)(T : S) ⊂ Np−j−1(T : S) +N(S) ⊂ Dj+2(T : S).

2.9. Lemma. Assume that N(T ) ⊂e Dk(T : S) for all k ∈ N. Then, for
each j ∈ N,Dj(T : S) and Rj(T : S) are closed.

Proof. As D0(T : S) and R0(T : S) are closed, assume that the property
is true for some j ∈ N. As dim[N(T )/(N(T ) ∩Dj(T : S))] <∞, there exists
a finite-dimensional subspace N of N(T ) such that N⊕Dj(T : S) = N(T )+
Dj(T : S) and N ∩Dj(T : S) = {0}.

Let M = Dj(T : S)⊕N = Dj(T : S) +N(T ). The subspace M is closed
and TM = Rj+1(T : S). Since N(T ) ⊂ M and R(T ) and M are closed,
Rj+1(T : S) is closed, by Lemma 2.4. As S is continuous, S−1Rj+1(T : S) =
Dj+1(T : S) is also closed.

2.10. Lemma. Assume that there exists n ∈ N \ {0} such that Nn(T : S)
* S−1R(T ) and Nn−1(T : S) ⊂ S−1R(T ). Let y ∈ Nn(T : S) \ S−1R(T ).
Then y, (S−1T )y, . . . , (S−1T )n−1y are independent modulo Dn(T : S).

Proof. First, we prove that

(1) (S−1T )jy ⊂ Nn−j(T : S) +Nj(S : T ) for j = 0, . . . , n.

This is clear for j = 0. Assume that it is true for some j ∈ {0, . . . , n − 1}.
Then (S−1T )jy ⊂ Nn−j(T : S) + Nj(S : T ) = T−1SNn−j−1(T : S) +
Nj(S : T ). So

T (S−1T )jy ⊂ SNn−j−1(T : S) ∩R(T ) + TNj(S : T )

⊂ SNn−j−1(T : S) + TNj(S : T ).

Thus, by Lemma 2.4, we have

(S−1T )j+1y ⊂ Nn−j−1(T : S) +N(S) +Nj+1(S : T )

= Nn−j−1(T : S) +Nj+1(S : T ).

We now prove that

(2) (S−1T )jy ∩Dj+1(T : S) = ∅ for j = 0, . . . , n− 1.

The case j = 0 is clear. Assume that the property is true for some j ∈
{0, . . . , n − 2} and that there exists x in (S−1T )j+1y ∩Dj+2(T : S). Then
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Sx = Tz for some z in (S−1T )jy. We have z ∈ T−1Sx ⊂ T−1SDj+2(T : S).
As Dj+2(T : S) = S−1TDj+1(T : S), it follows that

SDj+2(T : S) = TDj+1(T : S) ∩R(S) ⊂ TDj+1(T : S),

and T−1SDj+2(T : S) ⊂ Dj+1(T : S) +N(T ). By Lemma 2.8, as Nk(T : S)
⊂ D1(T : S) for all k ∈ {0, . . . , j + 1} (j + 1 ≤ n − 1), we have N(T ) ⊂
Dj+1(T : S). So T−1SDj+2(T : S) ⊂ Dj+1(T : S). Thus z ∈ Dj+1(T : S) ∩
(S−1T )jy, a contradiction.

Now, we can prove that y, (S−1T )y, . . . , (S−1T )n−1y are independent
modulo Dn(T : S). Let zj ∈ (S−1T )jy and αj ∈ C for j = 0, . . . , n − 1.
Assume that α0z0 + . . .+αn−1zn−1 belongs to Dn(T : S). Then, by Lemma
2.4, applying (S−1T )n−1, we obtain

α0(S−1T )n−1z0 + . . .+ αn−1(S−1T )n−1zn−1 ⊂ (S−1T )n−1Dn(T : S)

= D2n−1(T : S).

For every k ∈ N, N(S) ⊂ Dk(T : S), so Nj+1(S : T ) = (S−1T )jN(S) ⊂
Dk+j(T : S) for all (k, j) ∈ N2. Since the sequence (Dk(T : S))k≥0 is
decreasing, we have

(3) Nj(S : T ) ⊂ Dk(T : S) for each couple (k, j) ∈ N2.

For j ∈ {0, . . . , n− 1}, we have

zj ∈ (S−1T )jy ⊂ Nn−j(T : S) +Nj(S : T ) by (1)

⊂ Dj(T : S) +Nj(S : T ) by Lemma 2.8

⊂ Dj(T : S) by (3).

So (S−1T )n−1zj⊂(S−1T )n−1Dj(T : S)=Dn+j−1(T : S) for j=1, . . . , n−1.
As the sequence (Dk(T : S))k≥0 is decreasing, we obtain

α1(S−1T )n−1z1 + . . .+ αn−1(S−1T )n−1zn−1 ⊂ Dn(T : S).

Hence α0(S−1T )n−1z0 = α0(S−1T )n−1y ⊂ Dn(T : S).
If α0 6= 0, we have found an element belonging to Dn(T : S) and to

(S−1T )n−1y, which contradicts (2).
So α0 =0. Thus α1z1+. . .+αn−1zn−1∈Dn(T : S). Applying (S−1T )n−2,

we show that α1 = 0. Step by step, we conclude that αi = 0 for i =
0, . . . , n− 1.

Proof of Theorem 2.3. The implications (3)⇒(1) and (3)⇒(2) are clear
since N(T ) = N1(T : S) ⊂ N(T : S) and D(T : S) ⊂ D1(T : S) = S−1R(T ).

(4)⇒(3): Let (X2,X1, Y2, Y1) be a KDF associated to the couple (T, S).
We have

N(T : S) = N(T2 : S2)⊕N(T1 : S1) ⊂ N(T2 : S2) +X1 ⊂ D(T2 : S2) +X1,

by Lemma 2.5, since T |X2 has the property P (S|X2 : 0). As S−1T |X1 is
nilpotent of index d, Dn(T : S) = Dn(T1 : S1)⊕Dn(T2 : S2) = Dn(T2 : S2)
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for all n ≥ d. Therefore D(T : S) = D(T2 : S2). Moreover X1 is finite-
dimensional, so we have N(T : S) ⊂e D(T : S).

We now prove that (1) or (2) implies (4). In these two cases, (c) of
Lemma 2.6 is satisfied. Thus, for all positive integers n, we haveNn(T : S)⊂e

D1(T : S) = S−1R(T ).
If Nn(T : S) ⊂ S−1R(T ) for all n ≥ 0, then by Lemma 2.5, T has the

property P (S : 0), and (X, {0}, Y, {0}) is a Kato decomposition of finite
type associated to (T, S).

Assume that there exists n ≥ 1 such that Nn(T : S) * S−1R(T ) and
Nn−1(T : S) ⊂ S−1R(T ). Let y ∈ Nn(T : S) \ S−1R(T ). By Lemma 2.10,
y, (S−1T )y, . . . , (S−1T )n−1y are independent modulo Dn(T : S). As y ∈
Nn(T : S), there exist x0, . . . , xn such that Sxi+1 = Txi for i = 0, . . . , n−1,
x0 = y and xn = 0. Let zi = Sxi for i = 0, . . . , n − 1. We prove that
z0, . . . , zn−1 are independent. If α0z0 + . . . + αn−1zn−1 = 0, then α0x0 +
. . . + αn−1xn−1 ∈ N(S) ⊂ Dn(T : S). As y, (S−1T )y, . . . , (S−1T )n−1y are
independent modulo Dn(T : S), αi = 0 for i = 0, . . . , n − 1. Notice that
x0, . . . , xn−1 are also independent.

Step 1. We will define two projections P and Q which will allow us to
find a Kato decomposition. To do so, we first define a functional f ∈ X∗

which will be useful in the construction of P and Q.
As (c) of Lemma 2.6 holds, by Lemma 2.9, Dj(T : S) is closed for all

positive integers j. In particular, Dn(T : S) is closed. So, by the Hahn–
Banach Theorem, there exists f ∈ Dn(T : S)⊥ such that f(xn−1) = 1 and
f(xj) = 0 for j = 0, . . . , n− 2.

Let us prove that

f |(S−1T )jy = δj,n−1 for j = 0, . . . , n− 1.

This is clear for j = 0. Let j ∈ {1, . . . , n−1} and aj ∈ (S−1T )jy. There exist
u0, . . . , uj , v0, . . . , vj such that u0 = xj , v0 = aj , uj = vj = y, Sui = Tui+1

and Svi = Tvi+1. Then uj−1 − vj−1 ∈ N(S). Step by step, we obtain
u0 − v0 ∈ Nj(S : T ) ⊂ Dn(T : S). As f ∈ Dn(T : S)⊥, we find that
f(u0) = f(v0), i.e. f(xj) = f(aj).

Let us show some properties of f . Set Ki,j = (S−1T )i(S−1T )n−j−1y for
0 ≤ j ≤ n− 1.

We prove that

f |Ki,j = δij for 0 ≤ i, j ≤ n− 1.

If i = j, then Ki,i = (S−1T )n−1y, so f |Ki,i = 1.

If i > j, then Ki,j = (S−1T )n+(i−j−1)y ⊂ (S−1T )n+(i−j−1)Nn(T : S).
Moreover, by Lemma 2.7, for all positive integers k, we have
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(S−1T )pNk(T : S)

=
{
Nk−p(T : S) ∩Dp(T : S) +Np(S : T ) if p ∈ {0, . . . , k},
Np(S : T ) if p ≥ k.

Thus Ki,j ⊂ Nn+i−j−1(S : T ) ⊂ Dn(T : S), so Ki,j ⊂ Dn(T : S). Hence
f |Ki,j = 0, as f ∈ Dn(T : S)⊥.

If i < j, then 0 ≤ (n− 1)− (j − i) ≤ n− 2, hence also f |Ki,j = 0.
We now prove that

∀x ∈ X, ∀j ∈ {0, . . . , n− 1}, f is constant on Hj(x) = (s−1T )jx.

Let x ∈ X, j ∈ {0, . . . , n−1} and consider z1, z2 in Hj(x). For i = 1, 2, there
exist h0

i , . . . , h
j
i such that h0

i = zi, h
j
i = x and Shp−1

i = Thpi for 1 ≤ p ≤ j.

We can easily show that hj−p1 − hj−p2 ∈ Np(S : T ) for p ∈ {0, . . . , j}. So
z1− z2 ∈ Nj(S : T ) ⊂ Dn(T : S), hence f(z1) = f(z2). This will allow us to
define the projection P .

Next, we show that

∀z ∈ Y, ∀j ∈ {0, . . . , n− 1}, f is constant on Hj(S−1z),

which will allow us to construct Q. Let z ∈ Y , j ∈ {0, . . . , n−1} and z1, z2 be
in Hj(S−1z). For i = 1, 2, there exist h0

i , . . . , h
j
i such that h0

i = zi, Sh
j
i = z

and Shp−1
i = Thpi for 1 ≤ p ≤ j. We can easily show that hj−p1 − hj−p2 ∈

Np+1(S : T ) for p ∈ {0, . . . , j}. So z1 − z2 ∈ Nj+1(S : T ) ⊂ Dn(T : S), and
hence f(z1) = f(z2).

Now we can define the two projections P and Q. For (x, z) ∈ X ×Y , set

P (x) =
n−1∑

j=0

f(Hj(x))xn−j−1, Q(z) =
n−1∑

j=0

f(Hj(S−1z))zn−j−1.

We prove that
P 2 = P and Q2 = Q.

For x ∈ X,

P 2(x) =
n−1∑

j=0

f(Hj(P (x)))xn−j−1.

We show that f(Hj(P (x))) = f(Hj(x)). Indeed,

Hj(P (x)) = (S−1T )j
[ n−1∑

i=0

f(Hi(x))xn−i−1

]

⊃
n−1∑

i=0

f(Hi(x))Hj(xn−i−1) by Lemma 2.4.
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Let w ∈ ∑n−1
i=0 f(Hi(x))Hj(xn−i−1). As f is constant on each Hj(xn−i−1)

(i ∈ {0, . . . , n− 1}), we have

f(w) =
n−1∑

i=0

f(Hi(x))f(Hj(xn−i−1)).

As xn−i−1 ∈ (S−1T )n−i−1y and f |Ki,j = δij , we have f(Hj(xn−i−1)) =
δi,j . Thus f(w) = f(Hj(x)). As f is constant on Hj(P (x)), it follows that
f(Hj(P (x))) = f(w) = f(Hj(x)). Therefore P 2 = P .

For z ∈ Y ,

Q2(z) =
n−1∑

j=0

f(Hj(S−1Q(z)))zn−j−1.

We show that f(Hj(S−1Q(z))) = f(Hj(S−1z)). We have

Hj(S−1Q(z)) ⊃
n−1∑

i=0

f(Hi(S−1z))Hj(S−1zn−i−1) by Lemma 2.4.

Notice that xn−i−1 ∈ S−1zn−i−1. So f [Hj(S−1zn−i−1)] = f [Hj(xn−i−1)].
Let w ∈ ∑n−1

i=0 f(Hi(S−1z))Hj(xn−i−1). As before, we find that f(w) =
f(Hj(S−1z)). Hence f(Hj(S−1Q(z))) = f(Hj(S−1z)).

Step 2. We study different properties of the two projections. Set

X1 = R(P ), X2 = N(P ), Y1 = R(Q), Y2 = N(Q).

We have dim X1 = dimY1 < ∞, the equality following from the fact that
P (xk) = xk and Q(zk) = zk for all k ∈ {0, . . . , n− 1}.

We want to prove that

QS = SP and QT = TP.

Let x ∈ X. As x ∈ S−1Sx and f is constant on each Hj(S−1z), it follows
that f(HjS

−1Sx) = f(Hjx). Thus, we have

QS(x) =
n−1∑

j=0

f(Hj(x))zn−j−1 =
n−1∑

j=0

f(Hj(x))Sxn−j−1 = SP (x),

QT (x) =
n−1∑

j=0

f(HjS
−1Tx)zn−j−1 =

n−1∑

j=0

f(Hj+1(x))zn−j−1

=
n−1∑

j=1

f(Hj(x))zn−j as f((S−1T )nx) = 0

= TP (x) as xn−1 ∈ N(T ).

Hence TXi ⊂ Yi and SXi ⊂ Yi for i = 1, 2. Denote by Si and Ti the
restrictions of S and T to Xi, considered as operators from Xi to Yi.
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Let us prove that
N(T ) ∩X1 = Cxn−1.

Let x ∈ N(T ) ∩X1. As x = P (x), we have

0 = Tx =
n−1∑

j=1

f(Hj(x))Txn−j−1 =
n−1∑

j=1

f(Hj(x))Sxn−j =
n−1∑

j=1

f(Hj(x))zn−j.

As z0, . . . , zn−1 are independent, f(Hj(x)) = 0 for each j ∈ {1, . . . , n − 1}.
Thus x = f(x)xn−1, and so N(T )∩X1 ⊂ Cxn−1. Conversely, let x = λxn−1.
Then f(x) = λf(xn−1) = λ, so x = f(x)xn−1. Moreover, f(x)xn−1 = P (x),
so x ∈ R(P ) = X1. Further, Tx = f(x)Txn−1 = 0.

We now prove that
N(S) ∩X1 = {0}.

Let x ∈ N(S) ∩X1. Then x = P (x) =
∑n−1
j=0 f(Hj(x))xn−j−1. We have

0 = Sx = SP (x) =
n−1∑

j=0

f(Hj(x))Sxn−j−1 =
n−1∑

j=0

f(Hj(x))zn−j−1.

So f(Hj(x)) = 0 for j ∈ {0, . . . , n− 1}, since z0, . . . , zn−1 are independent.
Hence x = 0.

Thus S1 : X1 → Y1 is injective. Moreover, dimX1 = dimY1 < ∞. So
S1 : X1 → Y1 is bijective. Thus, we can consider S−1T from X1 to X1.

We now prove that

S−1T : X1 → X1 is nilpotent.

Let x ∈ X1. We have

TP (x) =
n−1∑

j=0

f(Hj(x))Txn−j−1 =
n−1∑

j=1

f(Hj(x))Sxn−j ,

and S−1TPx =
∑n−1
j=1 f(Hj(x))xn−j, as S1 : X1 → Y1 is injective, as well as

(S−1T )2Px =
∑n−1
j=2 f(Hj(x))xn−j+1. Step by step, we obtain (S−1T )nPx

= 0.
We now prove that

N(S) ⊂ X2.

Let x ∈ X = X1 ⊕ X2, x = x1 + x2 with x1 ∈ X1 and x2 ∈ X2. Assume
that Sx = 0, i.e. Sx1 = −Sx2. As Sx1 ∈ Y1 and Sx2 ∈ Y2, it follows that
Sx1 = Sx2 = 0. We thus have x1 ∈ N(S) ∩X1 = {0}, hence x1 = 0.

Therefore we can consider S−1T : X2 → X2. As X = X2 ⊕X1, N(T ) =
N(T2)⊕ Cxn−1.

Step 3. Now we finish the proof. We have to separate two cases. First,
assume that (1) is true, i.e. N(T ) ⊂e D(T : S). We have N(T ) = N(T2) ⊕
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Cxn−1 and D(T : S) = D(T2 : S2), as S−1T |X1 is nilpotent. So

N(T )/[N(T ) ∩D(T : S)] ∼= N(T2)/[N(T2) ∩D(T2 : S2)]× Cxn−1.

Hence

dim(N(T2)/[N(T2) ∩D(T2 : S2)]) = dim(N(T )/[N(T ) ∩D(T : S)])− 1.

If dim(N(T )/[N(T ) ∩D(T : S)]) = 1, we stop. Otherwise, we reiterate the
operation with X replaced by N(P ) and Y by N(Q). We obtain two new
projections P1 and Q1. Thus, in a finite number of steps, we will obtain





X =
( k−1⋂

j=0

N(Pj)
)
⊕
( k−1⊕

j=0

R(Pj)
)
,

Y =
( k−1⋂

j=0

N(Qj)
)
⊕
( k−1⊕

j=0

R(Qj)
)
,

T2 has the property P (S2 : 0).

Now, assume that (2) is true, i.e. N(T : S) ⊂e S−1R(T ). We have
Nk(T : S) = Nk(T1 : S1) ⊕ Nk(T2 : S2) for each k ∈ N. As S−1T |X1 is
nilpotent of index ≤ n, we get

Nk(T1 : S1) = X1 for every k ≥ n.
In fact,Nk(T1 : S1) is clearly a subset ofX1. Conversely, let x ∈ X1. We want
to prove that x ∈ Nn(T1 : S1), i.e. we want to find a0, . . . , an such that a0 =
x, an = 0 and Tai = Sai+1. We have x = P (x) =

∑n−1
j=0 f(Hj(x))xn−j−1, so

Tx =
n−1∑

j=0

f(Hj(x))Txn−j−1 =
n−1∑

j=1

f(Hj(x))Sxn−j .

Hence we can put a1 =
∑n−1
j=1 f(Hj(x))xn−j. Then

Ta1 =
n−1∑

j=2

f(Hj(x))Sxn−j+1,

and we can put a2 =
∑n−1
j=2 f(Hj(x))xn−j+1. Step by step, we find the

desired ai, and we prove that x ∈ Nn(T1 : S1).
So N(T : S) = X1 ⊕ N(T2 : S2). Moreover, D1(T : S) = D1(T1 : S1) ⊕

D1(T2 :S2). We have already shown that D1(T1 :S1) =S−1TPX= 〈xi〉n−1
i=1 .

Thus

N(T : S)/[N(T : S) ∩D1(T : S)] ∼= N(T2 : S2)/[N(T2 : S2) ∩D1(T2 : S2)]

×X1/〈xi〉n−1
i=1 .
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As X1/〈xi〉n−1
i=1 = Cx0, we get

dim(N(T2 : S2)/[N(T2 : S2) ∩D1(T2 : S2)])

= dim(N(T : S)/[N(T : S) ∩D1(T : S)])− 1.

By Lemma 2.5, T2 has the property P (S2 : 0) if and only if N(T2 : S2) ⊂
D1(T2 : S2). Thus, we can complete the proof in the same way as in the first
case.

2.9. Remarks. (1) In the particular case where X = Y and S = I, we
recover the result on the essentially s-regular operators proved by V. Müller
and V. Rakočević (see [8, Theorem 3.1] and [9]).

(2) Under condition (4) of Theorem 2.3, as S−1
1 T1 is nilpotent and

S1 : X1 → Y1 is bijective, we have σ(T1 : S1) = {λ ∈ C; T1 − λS1 is
not invertible} = {0}.
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