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Type and cotype of operator spaces

by

Hun Hee Lee (Waterloo, Ont.)

Abstract. We consider two operator space versions of type and cotype, namely Sp-
type, Sq-cotype and type (p,H), cotype (q,H) for a homogeneous Hilbertian operator
space H and 1 ≤ p ≤ 2 ≤ q ≤ ∞, generalizing “OH-cotype 2” of G. Pisier. We compute
type and cotype of some Hilbertian operator spaces and Lp spaces, and we investigate
the relationship between a homogeneous Hilbertian space H and operator spaces with
cotype (2, H). As applications we consider operator space versions of generalized little
Grothendieck’s theorem and Maurey’s extension theorem in terms of these new notions.

1. Introduction. Type and cotype play an important role in Banach
space theory. Thus, it is natural to expect operator space analogues of type
and cotype. Actually there has been several attempts to define type and co-
type in the operator space category. In [18] G. Pisier defined OH-cotype 2
and M. Junge (Chapter 4 of [8]) studied a variant of this notion, namely
cotype (2, R + C), where OH and R + C are the operator Hilbert space
and the operator space sum of the row and column Hilbert spaces, respec-
tively. In this paper we are going to give two different definitions of type
and cotype of operator spaces, namely Sp-type, Sq-cotype and type (p,H),
cotype (q,H) for a homogeneous Hilbertian operator space H, which are
both generalizations of Pisier’s “OH-cotype 2”.

In order to get a satisfactory theory we need to focus on two aspects.
The first one is about how big the cotype 2 class is. Note that the co-
type 2 class in the Banach space category includes all (noncommutative) Lp
(1 ≤ p ≤ 2) spaces. The second one is about the possibility of applications
such as generalized little Grothendieck’s theorem, Maurey’s extension theo-
rem and Kwapień’s theorem. Although these new notions still do not promise
satisfactory results in both aspects, each definition has its own pros. For ex-
ample, type (p,H) and cotype (q,H) of Lp spaces behave well for some good
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choice of H, and both notions allow corresponding applications mentioned
above. Moreover, cotype (2, H) gives us an insight about the relationship
between a homogeneous Hilbertian space H and an operator space E which
has cotype (2, H). More precisely, it is known ([8, 18]) that S1 (the trace
class on `2) has cotype (2, R+C) but not cotype (2, OH). Thus, it is natu-
ral to be interested in which H is best among all H for which S1 has cotype
(2, H). This question will be answered later for all Lp (1 ≤ p ≤ 2) spaces
and the meaning of “best” will be clarified.

Now let us discuss our approach more precisely. Recall that a Banach
space X is said to have (gaussian) type p (1 ≤ p ≤ 2) if there exists a
constant C > 0 such that

πp′,2(v∗) ≤ C · `∗(v)(1.1)

for 1/p + 1/p′ = 1 and every v : X → `n2 , n ∈ N, and (gaussian) cotype q
(2 ≤ q ≤ ∞) if there exists a constant C ′ > 0 such that

πq,2(u) ≤ C ′ · `(u)(1.2)

for every u : `n2 → X and n ∈ N. Here, πq,2(·) is the (q, 2)-summing norm
defined by

πq,2(T : X → Y ) = sup
{

(
∑

k ‖Txk‖q)1/q

‖
∑

k xk ⊗ ek‖X⊗λ`2

}
,

where ⊗λ is the injective tensor product of Banach spaces, and `(u) and
`∗(v) are the `-norm and adjoint `-norm, respectively, defined by

`(u) :=
[ �
Ω

∥∥∥ n∑
k=1

gk(ω)uek
∥∥∥2

X
dP (ω)

]1/2
for i.i.d. gaussian variables {gk} on a probability space (Ω,P ) and

`∗(v) := sup{tr(vu) | u : `n2 → X, `(u) ≤ 1}.
Pisier’s definition of OH-cotype 2 is as follows. An operator space E is

said to have OH-cotype 2 if there is a constant C > 0 such that for all
v : E → `n2 ,

`∗(v) ≤ Cπ2,oh(v),(1.3)

where π2,oh(v) is the (2, oh)-summing norm defined by

π2,oh(v) = sup
{

(
∑

k ‖vxk‖2)1/2

‖
∑

k xk ⊗ ek‖E⊗minOH

}
and ⊗min is the injective tensor product of operator spaces. Note that this
definition is based on the trace dual formulation of (1.2). Thus, in order
to extend these notions to general exponents q ≥ 2 we need to consider
the trace dual version of (1.3). However, unlike the Banach space case we
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have the problem that π2,oh is not self-dual. We can resolve this difficulty by
observing that (Proposition 6.2 in [21])

π2,oh(v : E → `n2 ) = πo2(v : E → OHn),

where πo2(·) is the completely 2-summing norm defined by

πo2(T : E → F ) = sup
{ ‖(Txij)‖S2(F )

‖
∑

i,j xij ⊗ eij‖E⊗minS2

}
and Sr(F ) (1 ≤ r ≤ ∞) is the vector-valued Schatten class introduced in [21].
Then since πo2 is self-dual (which will be checked later) we can reformulate
(1.3) as follows. E has OH-cotype 2 if there is a constant C > 0 such that
for all u : OHn → E, we have

πo2(u) ≤ C · `(u).(1.4)

Now it is easy to extend the cotype notion to the q ≥ 2 case by replacing
πo2(u) with the completely (q, 2)-summing norm πoq,2(u) defined by

πoq,2(T : E → F ) := sup
{ ‖(Txij)‖Sq(F )

‖
∑

i,j xij ⊗ eij‖E⊗minS2

}
and we will call it Sq-cotype. Sp-type can be defined similarly.

There is another approach using approximation numbers. This can be
done in a more general context. Let H be a homogeneous Hilbertian operator
space, i.e. H is isometric to a Hilbert space and for every u : H → H we
have ‖u‖cb = ‖u‖. Then we can define π2,H(v) by replacing OH with H
and use it in the definition of cotype (2, H). In order to ensure that π2,H(·)
is actually a norm we need to assume that H is “subquadratic”, i.e. for all
orthogonal projections {Pi}ni=1 in H with IH = P1 + · · ·+ Pn we have

‖x‖2B(`2)⊗minH
≤

n∑
i=1

‖IB(`2) ⊗ Pi(x)‖2B(`2)⊗minH

for any x ∈ B(`2)⊗H (see p. 82 of [20]).
E is said to have cotype (2, H) if there is a constant C > 0 such that for

all u : `n2 → E, we have

π∗2,H(u) ≤ C · `(u),(1.5)

where π∗2,H is the trace dual of π2,H . Now we recall the equivalence between
πq,2(u) and (

∑
k ak(u)

q)1/q for u : `2 → X (Corollary 19.7 of [26]) where
ak(·) is the kth approximation number defined by

ak(u) = inf{‖u− v‖ : v ∈ B(`2, X), rk(v) < k}.
Since we do not have an appropriate (q, 2)-extension of π∗2,H we use the
`q-sum of cb (completely bounded) approximation numbers of the map u :
H∗n → E, where H∗n is the n-dimensional version of H∗. See Section 3 for the
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details. We will call it cotype (q,H), and type (p,H) can be defined similarly.
Note that S2-type and S2-cotype are equivalent to type (2, OH) and cotype
(2, OH), respectively.

The behavior of Sq-cotype of Lp spaces is quite different from the Banach
space case. Moreover, the behavior of cotype (2, H) depends on H. More
precisely, we have the following.

Theorem. Let 1 ≤ p ≤ 2 and µ be a σ-finite measure.

(1) Sp has cotype (2, H) if and only if the formal identity

id : RC[p]→ H

is completely bounded.
(2) Lp(µ) has cotype (2, H) if and only if the formal identity

id : RC[p′]→ H

is completely bounded.

Note that RC[r] = [R∩C,R+C]1/r for 1 ≤ r ≤ ∞, where ∩ and [·, ·]1/r
are the intersection and the complex interpolation space in the category of
operator spaces, respectively. Thus we can say that RC[p] (resp. RC[p′]) is
the best (in the above sense) homogeneous Hilbertian operator space H for
which Sp (resp. Lp(µ)) has cotype (2, H).

With these notions of type and cotype we can consider several appli-
cations. The first one is an operator space analogue of “generalized little
Grothendieck’s theorem” (see [3, 13] for the Banach space case).

Theorem. For any compact set K and 2 ≤ q <∞, every bounded linear
map from C(K) into an Sq-cotype space is completely (q, 2)-summing.

The second one is an operator space analogue of “Maurey’s extension
theorem” (see [14] for the Banach space case). We say that an operator
space H is perfectly Hilbertian if H is a homogeneous Hilbertian operator
space and H and H∗ are subquadratic (see Section 8 of [20]). Note that
R[p] = [R,C]1/p and C[p] = [C,R]1/p are perfectly Hilbertian, and RC[p]
is completely isomorphic to a perfectly Hilbertian operator space. Then we
have the following.

Theorem. Let E and F be operator spaces of type (2, H) and cotype
(2, H∗), respectively , for a perfectly Hilbertian operator space H. Then there
is a constant C > 0 such that for any subspace G ⊆ E and any bounded
linear map u : G→ F we have an extension ũ : E → F with

γH(ũ) ≤ C‖u‖.
Recall that γH(ũ) = inf{‖A‖cb‖B‖cb}, where the infimum is taken over

all possible factorizations ũ : E A→ H(I) B→ F for some index set I. We need
“perfectness” of H to ensure that γH(·) is actually a norm. By the Remark
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on p. 82 of [20], H(I) is well defined for any index set I. As a corollary we
get operator space versions of “Kwapień’s theorem”. See [10] for the classical
Banach space case and [6] for another operator space case.

Note that there is a different notion of type and cotype of operator spaces
by J. García-Cuerva and J. Parcet using quantized orthonormal systems
([5, 6, 16]). At the end of Section 2 we will see how S2-type and S2-cotype
are related to the type 2 and cotype 2 of [6].

This paper is organized as follows. In Section 2, we define Sp-type and
Sq-cotype of operator spaces and develop their basic theory. As examples,
we estimate Sp-type and Sq-cotype of R[p] = [R,C]1/p, C[p] = [C,R]1/p
and of Lp spaces. Sp-type and Sq-cotype of commutative Lp spaces are the
same as in the Banach space case while those of Sp are completely differ-
ent. In Section 3 we define type (p,H) and cotype (q,H) of operator spaces
and investigate their basic properties. As examples, we compute type (p,H)
and cotype (q,H) of R[p], C[p] and of Lp spaces. Note that we can recover
the same result as in the Banach space case for Sp with a “good” choice
of H. Moreover, we investigate the relationship between a homogeneous
Hilbertian space H and operator spaces of cotype (2, H). In the last section
we present the above two applications of type and cotype notions of this
paper.

Throughout this paper, we will assume some knowledge of operator space
theory ([4, 22]), completely p-summing maps ([21]), absolutely p-summing
operators ([2, 26]) and vector-valued noncommutative Lp spaces ([21]). For
1 ≤ p ≤ ∞, Sp (resp. Snp ) and Sp(E) (resp. Snp (E)) are the Schatten classes
on `2 (resp. `n2 ) and their vector-valued versions ([21]). We will assume that
all Lp spaces (commutative or not) and their vector-valued versions are en-
dowed with their natural operator space structure in the sense of [21]. In
this paper H is reserved for a homogeneous Hilbertian operator space on `2;
we will denote its n-dimensional version by Hn. In particular, Rn[p], Cn[p]
and RCn[p] are n-dimensional versions of R[p], C[p] and RC[p] respectively.
As usual, B(E,F ) and CB(E,F ) denote the sets of all bounded linear maps
and all completely bounded linear maps from E into F , respectively. We
use the symbol a . b if there is a C > 0 such that a ≤ Cb, and a ∼ b if
a . b and b . a. We denote the conjugate exponent of 1 ≤ r ≤ ∞ by r′, i.e.
1/r + 1/r′ = 1.

2. Sp-type and Sq-cotype of operator spaces

2.1. Definition and basic properties. As an operator space version of
absolutely p-summing operators G. Pisier introduced completely p-summing
maps in [21] as follows.
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A linear map u : E → F between operator spaces is called completely
p-summing for 1 ≤ p ≤ ∞ if

ISp ⊗ u : Sp ⊗min E → Sp(F )

is a bounded map. We denote by πop(u) the operator norm of ISp⊗u. Similarly
we define an operator space version of absolutely (q, 2)-summing operators.

A linear map u : E → F between operator spaces is called completely
(q, 2)-summing for 2 ≤ q ≤ ∞ if

I2,q ⊗ u : S2 ⊗min E → Sq(F )

is a bounded map, where I2,q is the formal identity from S2 into Sq. We write
πoq,2(u) for the operator norm of I2,q ⊗ u and Πo

q,2(E,F ) for the collection of
all such operators from E into F . Now we define Sp-type and Sq-cotype.

Definition 2.1. Let E be an operator space.
(1) E is said to have Sp-type (1 ≤ p ≤ 2) if there is a constant C > 0

such that
πop′,2(v

∗) ≤ C · `∗(v)
for every n ∈ N and v : E → OHn.

(2) E is said to have Sq-cotype (2 ≤ q ≤ ∞) if there is a constant C ′ > 0
such that

πoq,2(u) ≤ C ′ · `(u)
for every n ∈ N and u : OHn → E.

We can reformulate Sp-type and Sq-cotype by comparing the vector-
valued Schatten class norms of E-valued matrices and their gaussian aver-
ages. Let {gij} be a re-indexing of {gi}.

Proposition 2.2. Let E be an operator space.

(1) For n ∈ N and 1 ≤ p ≤ 2 we define TSp,n(E) to be the infimum of
the constants C > 0 satisfying

(2.1)
[ �
Ω

∥∥∥ n∑
i,j=1

gij(ω)xij
∥∥∥2
dP (ω)

]1/2
≤ C‖(xij)‖Snp (E).

E has Sp-type if and only if

TSp(E) = sup
n≥1

TSp,n(E) <∞.

(2) For n ∈ N and 2 ≤ q ≤ ∞ we define CSq ,n(E) to be the infimum of
the constants C ′ > 0 satisfying

(2.2) ‖(xij)‖Snq (E) ≤ C ′
[ �
Ω

∥∥∥ n∑
i,j=1

gij(ω)xij
∥∥∥2
dP (ω)

]1/2
.

E has Sq-cotype if and only if

CSq(E) = sup
n≥1

CSq ,n(E) <∞.
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Proof. (1) E satisfies (2.1) if and only if there is a constant C > 0 such
that

`(u) ≤ C‖(ueij)‖Snp (E)

for all n ∈ N and u : Sn2 → E. By trace duality this is equivalent to

‖(v∗eij)‖Sn
p′ (E

∗) ≤ C · `∗(v)

for all n ∈ N and v : E → Sn2 . Indeed, by Corollary 1.8 of [20] we have

|tr(vu)|=
∣∣∣∑
i,j

〈vueij , eij〉
∣∣∣= ∣∣∣∑

i,j

〈ueij , v∗eij〉
∣∣∣≤‖(ueij)‖Snp (E)‖(v∗eij)‖Snq (E∗).

Now we assume that E satisfies (2.1) and consider v : E → OHn and
(xij) ∈Mm(OHn), m ∈ N. If we set w : Sm2 → OHn, eij 7→ xij , then by 12.5
of [26] we have

‖(v∗xij)‖Sm
p′ (E

∗) = ‖(v∗weij)‖Sm
p′ (E

∗) ≤ C · `∗(w∗v)

= C sup{|tr(uw∗v)| : `(u : Sm2 → E) ≤ 1}
≤ C sup{|tr(ũv)| : `(ũ : OHn → E) ≤ 1}‖w‖
= C · `∗(v)‖w‖cb = C · `∗(v)‖(xij)‖Sm2 ⊗minOHn .

The converse is straightforward from the above observation and the fact that

‖(eij)‖Sn2⊗minS
n
2

= ‖ISn2 ‖cb = 1.

(2) Suppose E satisfies (2.2) and let u : OHn → E and (xij) ∈ Smq (OHn)
for m ∈ N. If we set v : Sm2 → OHn, eij 7→ xij , then ‖v‖ = ‖v‖cb =
‖(xij)‖Sm2 ⊗minOHn . Now, by (12.5) of [26] we have

‖(uxij)‖Smq (E) = ‖(uveij)‖Smq (E) ≤ C ′
∥∥∥ ∑

1≤i,j≤m
gij(·)uveij

∥∥∥
L2(Ω,E)

= C ′`(uv) ≤ C ′`(u)‖v‖ = C ′`(u)‖(xij)‖Sm2 ⊗minOHn .

The converse direction is straightforward as before.

Remark 2.3. (1) If we take diagonals of (2.1) and (2.2), then it is trivial
that every Sp-type (resp. Sq-cotype) space has type p (resp. cotype q) as a
Banach space.

(2) Instead of gaussian systems we can use the Rademacher system {ri}
defined by ri(t) = sign(sin(2iπt)), t ∈ [0, 1] and i = 1, 2, . . . , in the definition
to get the Rademacher Sp-type and Sq-cotype. It is easy to check that the
two notions are equivalent when 1 < p ≤ 2 ≤ q < ∞. Although we do not
know the equivalence for p = 1 and q =∞ all the calculations in this paper
can be transferred to the Rademacher setting with the same arguments.

(3) Unlike the Banach space case, S1-type and S∞-cotype are no more
trivial, that is, we have examples of operator spaces without S1-type and
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S∞-cotype, respectively. We will see examples in Lemma 2.11 and Theorem
2.13 in detail. Moreover, for any operator space E we have

TS1,n(E) . n1/2 and CS∞,n(E) . n1/2.

Indeed, ∥∥∥ n∑
i,j=1

rij ⊗ xij
∥∥∥
L1(Ω,E)

=
�

Ω

∥∥∥ n∑
i,j=1

xijgij(ω)
∥∥∥ dP (ω)

≤
�

Ω

‖(gij(ω))‖Sn∞‖(xij)‖Sn1 (E) dP (ω)

. n1/2‖(xij)‖Sn1 (E)

by Lemma 2.3 of [5] and Proposition 45.1 of [26]. The estimation for CS∞,n(E)
can be obtained by the duality below (Proposition 2.4).

(4) We consider the following transforms:

FG : f 7→
( �

Ω

f(t)gij(ω) dP (ω)
)
i,j

and F−1
G : (xij) 7→

∑
i,j

gij(ω)xij

for appropriate f : Ω → C and (xij) ∈M∞. Then E has Sp-type (1 ≤ p ≤ 2)
if and only if

F−1
G ⊗ IE : Sp(E)→ G2(E)

is bounded, and E has Sq-cotype (2 ≤ q ≤ ∞) if and only if

FG ⊗ IE : G2(E)→ Sq(E)

is bounded, where Gr(E) is the closed linear span of {gij} ⊗ E in Lr(Ω,E)
for 1 ≤ r < ∞. We write Gnr (E) (n ∈ N) for the closed linear span of
{gij}ni,j=1 ⊗ E in Lr(Ω,E).

Sp-type and Sq-cotype have a partial duality as follows. The proof is the
same as in the Banach space case, so we omit it. Note that we can include the
cases of S1-type and S∞-cotype without any extra effort (see Propositions
11.10 and 13.17 in [2]).

Proposition 2.4. Let E be an operator space, 1 ≤ p ≤ 2 and n ∈ N.

(1) If E has Sp-type, then E∗ has Sp′-cotype with CSp′ ,n(E
∗) ≤ TSp,n(E).

(2) If E has Sp′-cotype and is K-convex as a Banach space, then E∗ has
Sp-type with TSp,n(E∗) ≤ K(E)CSp′ ,n(E),

where K(E) is the K-convexity constant of E defined by the operator norm
of the E-valued gaussian projection from L2(Ω,E) onto G2(E), given by

f 7→
∑
i,j

( �

Ω

f(t)gij(ω) dP (ω)
)
gij .
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2.2. Relation to other concepts. Now we check that the S2-cotype of this
paper coincides with the OH-cotype 2 of [18]. This can be achieved by the
following trace duality for the πo2-norm. It is well-known to experts, but we
include the proof since we could not find a reference.

Lemma 2.5. Let E and F be operator spaces and E be finite-dimensional.
Then for v : F → E we have

(πo2)
∗(v) := sup{|tr(vu)| | πo2(u : E → F ) ≤ 1} = πo2(v).

Proof. Let u : E → F and v : F → E. By Proposition 6.1 of [21], we
have factorizations

u : E V1→ OH(I) T1→ F and v : F V2→ OH(J) T2→ E

for some index sets I and J with

πo2(V1), πo2(V2) ≤ 1, ‖T1‖cb ≤ πo2(u), ‖T2‖cb ≤ πo2(v).
Then, by Proposition 6.3 of [21] we have

|tr(vu)| = |tr(T2V2T1V1)| = |tr(V1T2V2T1)|
≤ ‖V2T1‖HS‖V1T2‖HS = πo2(V2T1)πo2(V1T2)
≤ πo2(V2)‖T1‖cbπo2(V1)‖T2‖cb ≤ πo2(v)πo2(u),

where ‖ · ‖HS is the Hilbert–Schmidt norm.
Thus, we get (πo2)

∗(v) ≤ πo2(v).
For the opposite inequality we consider any ε > 0 and choose (xij) ∈

Sn2 ⊗min F with

‖(xij)‖Sn2⊗minF = 1 and ‖(vxij)‖Sn2 (E) ≥ (1− ε)πo2(v).
Then there is (y∗ij) ∈ Sn2 (E∗) such that

‖(y∗ij)‖Sn2 (E∗) = 1 and ‖(vxij)‖Sn2 (E) = |〈(vxij), (y∗ij)〉|.
Now we set A : E → Sn2 , x 7→ (y∗ijx)i,j , and B : Sn2 → F, eij 7→ xij . Then we
get

πo2(BA) ≤ ‖B‖cbπo2(A) ≤ ‖(y∗ij)‖Sn2 (E)‖(xij)‖Sn2⊗minF ≤ 1

by Lemma 5.14 of [21]. Thus, we have

(πo2)
∗(v) ≥ |tr(vBA)| = |tr(AvB)| =

n∑
i,j=1

|〈AvBeij , eij〉|

= |〈(vxij), (y∗ij)〉| ≥ (1− ε)πo2(v),
which gives us the opposite inequality.

Corollary 2.6. The S2-cotype coincides with the OH-cotype 2 of [18].

Proof. By Proposition 6.2 of [21], we have πo2(v) = π2,oh(v) for any v :
E → OHn. Thus, we get the desired conclusion by Lemma 2.5 and trace
duality.
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We end this section by providing a partial relationship between S2-type
and S2-cotype and notions in [6].

Let (Ω,P ) be a probability space and (Σ, dΣ) be a pair of an index set Σ
and a collection of natural numbers indexed by Σ, dΣ = {dσ ∈ N : σ ∈ Σ}.
The quantized gaussian system GΣ with parameter (Σ, dΣ) is the collection
of random matrices gσ = d

−1/2
σ (gσij) : Ω → Mdσ indexed by Σ, where gσij ’s

are i.i.d. gaussian random variables. We consider the following transforms:

FGΣ (f)(σ) =
�

Ω

f(ω)gσ(ω)∗ dP (ω) and F−1
GΣ (A)(ω) =

∑
σ∈Σ

dσ tr(Aσgσ(ω))

for appropriate f : Ω → C and A ∈
∏
σ∈ΣMdσ .

For 1 ≤ p ≤ 2, 2 ≤ q ≤ ∞, 1/p + 1/p′ = 1 and 1/q + 1/q′ = 1 we say
that an operator space E has Banach GΣ-type p if

sup
finiteΓ⊆Σ

‖F−1
GΣ ⊗ IE‖Lp(Γ,E)→Lp′ (Ω,E) <∞,

and that E has Banach GΣ-cotype q if

sup
finiteΓ⊆Σ

‖FGΣ ⊗ IE‖LΓ
q′ (Ω,E)→Lq(Γ,E) <∞

where LΓq′(Ω,E) is the closed linear span of {gσij : σ ∈ Γ} ⊗ E in Lq′(Ω,E),

Lr(Γ,E) =
{
A ∈

∏
σ∈Γ

Mdσ⊗E : ‖A‖Lr(Γ,E) =
(∑
σ∈Γ

dσ‖Aσ‖rSdσr (E)

)1/r
<∞

}
for 1 ≤ r <∞ and

L∞(Γ,E) =
{
A ∈

∏
σ∈Γ

Mdσ ⊗ E : ‖A‖L∞(Γ,E) = sup
σ∈Γ
‖Aσ‖

Sdσ∞ (E)
<∞

}
.

For the details and the natural operator space structure on Lr(Γ,E), see
[5, 21].

Proposition 2.7. Let E be an operator space and GΣ be the quantized
gaussian system with parameter (Σ, dΣ). Suppose that dΣ is unbounded.
Then E has gaussian S2-type if and only if it has Banach GΣ-type 2, and E
has gaussian S2-cotype if and only if it has Banach GΣ-cotype 2.

Proof. Let Γ be a finite subset of Σ and A (= (Aσ)) ∈
∏
σ∈Γ Mdσ ⊗ E.

If we set
B =

⊕
σ∈Γ

√
dσA

σ ∈ Sn∞(E)

for n =
∑

σ∈Γ dσ, then we get

F−1
GΣ (A)(ω) =

∑
σ∈Γ

dσ tr(Aσgσ(ω)) =
∑
σ∈Γ

√
dσ tr(Aσ(gσij(ω))) = F−1

G (B)(ω)
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and
‖A‖L2(Γ,E) =

[∑
σ∈Γ

dσ‖Aσ‖2Sσ2 (E)

]1/2
= ‖B‖Sn2 (E).

Conversely, for any B ∈ Sn∞(E) we choose σ0 ∈ Σ with dσ0 > n and define
A (= (Aσ)) ∈

∏
σ∈ΣMdσ ⊗ E by Aσ0 = d

−1/2
σ0 B ⊕ 0 and Aσ = 0 elsewhere.

Then we also get F−1
GΣ (A) = F−1

G (B) and ‖A‖L2(Σ,E) = ‖B‖Sn2 (E). Thus, we
get the desired result.

2.3. Sp-type and Sq-cotype of R[p] and C[p]. In the case of Hilbertian
spaces the gaussian average of a vector-valued matrix is easy to calculate so
that we can determine Sp-type and Sq-cotype in some concrete cases.

Theorem 2.8. Let 1 ≤ p ≤ ∞ and 1/p + 1/p′ = 1. Then both R[p]
and C[p] have Smin{p,p′}-type and Smax{p,p′}-cotype, and neither of them has
Sr-type or Sr′-cotype for min{p, p′} < r ≤ 2.

Proof. Note that R and Rn are isometric to OH and OHn, respectively.
Thus,
R has Sq-cotype ⇔ FR ⊗ IR : G2(R)→ Sq(R) is bounded

⇔ FR ⊗ id : G2(OH)→ Sq(R) is bounded
⇔ I2,q ⊗ id : S2(OH)→ Sq(R) is bounded
⇔ In2,q ⊗ idn : Sn2 (OHn)→ Snq (Rn) is uniformly bounded

for all n ∈ N, where id, idn, I2,q and In2,q are the corresponding formal
identities.

First, we consider the case q =∞. For (xij) ∈ Sn∞(Rn), xij=
∑n

k=1 x
k
ije1k,

we have

‖(xij)‖Sn2 (OHn) =
( n∑
i,j,k=1

|xkij |2
)1/2

,

and by considering (xij) as an n2 × n2-matrix,

‖(xij)‖Sn∞(Rn) = sup
{[ n∑

i=1

( n∑
j,k=1

xkijajk

)2]1/2 ∣∣∣ n∑
j,k=1

|ajk|2 = 1
}
.

However, we have[ n∑
i=1

( n∑
j,k=1

xkijajk

)2]1/2
≤
[ n∑
i=1

( n∑
j,k=1

|xkij |2
)( n∑

j,k=1

|ajk|2
)]1/2

=
( n∑
i,j,k=1

|xkij |2
)1/2( n∑

j,k=1

|ajk|2
)1/2

,

and consequently
‖(xij)‖Sn∞(Rn) ≤ ‖(xij)‖Sn2 (OHn).
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Thus, R has S∞-cotype with CS∞(R) = 1, and we can similarly show that
C has S∞-cotype with CS∞(C) = 1. Since R and C are K-convex as Banach
spaces, they have S1-type by duality (Proposition 2.4). SinceR[2] (resp. C[2])
is completely isometric to OH, it has S2-type and S2-cotype. Thus by com-
plex interpolation, both R[p] and C[p] have Smin{p,p′}-type and Smax{p,p′}-
cotype.

Now suppose 2 ≤ q < p ≤ ∞ and consider Sq(R[p]). By Theorem 1.1
of [21],

Sq(R[p]) ∼= C[q]⊗h R[p]⊗h R[q]

completely isometrically under the mapping

eij ⊗ x 7→ ei1 ⊗ x⊗ e1j ,
where ⊗h is the Haagerup tensor product. Note that by the commutation
property of the Haagerup tensor product with respect to complex interpola-
tion we have the following completely isometric isomorphisms:

R[p]⊗h R[q] ∼= [R[p]⊗h R,R[p]⊗h C]1/q
∼= [[R⊗h R,C ⊗h R]1/p, [R⊗h C,C ⊗h C]1/p]1/q.

Since C ⊗h R (resp. R ⊗h C) is completely isometric to S∞ (resp. S1), and
R⊗h R and C ⊗h C are both isometric to S2, we get a subspace

F (∼= R[p]⊗h R[q]) of Sq(R[p]) isometric to Sr
under the mapping e1j ⊗ e1i 7→ eij , where r = 2pq/(pq + p− q). However,
we have

(I2,q ⊗ id)−1(e1j ⊗ e1i) = e1j ⊗ ei ∈ S2(OH),

so that
G = (I2,q ⊗ id)−1(F ) ∼= S2

isometrically.
Consequently, I2,q ⊗ id cannot be bounded since r < 2 and (I2,q ⊗ id)|G

is nothing but the formal identity I2,r : S2 → Sr, which means R[p] does not
have Sq-cotype. We can show that C[p] does not have Sq-cotype similarly, and
the type cases are obtained by duality (Proposition 2.4). Since R[p′] ∼= C[p]
we get the desired result for all 1 ≤ p ≤ ∞.

2.4. Sp-type and Sq-cotype of Lp spaces. In this section we will compute
Sp-type and Sq-cotype of Lp spaces. Unfortunately, we do not have good
behavior as in the Banach space case generally. We only have the same
results as in the Banach space case for Lp spaces (1 ≤ p <∞) with respect
to Type I von Neumann algebras of bounded degree. When p =∞, we have
very bad behavior even in the commutative cases.

Theorem 2.9. Let (M, µ) be a σ-finite measure space, 1 ≤ p < ∞ and
n ∈ N.
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(1) Lp(µ, Snp ) has Sr-type and Sr′-cotype for r = min{p, 2} and 1/r +
1/r′ = 1. If Lp(µ) is infinite-dimensional , then it does not have Sr-
type nor Sr′-cotype for any min{p, 2} < r ≤ 2.

(2) L∞(µ, Sn∞) has S∞-cotype. If L∞(µ) is infinite-dimensional , then it
does not have S1-type nor Sq-cotype for any q <∞.

Proof. Note that the p = 2 cases are trivial. First, we consider the case
1 ≤ p ≤ 2. For (xij) ∈ S2(L1(µ, Sn1 )), we have∥∥∥∑

i,j

gij ⊗ xij
∥∥∥
L2(Ω,L1(µ,Sn1 ))

≥
∥∥∥∑

i,j

gij ⊗ xij
∥∥∥
L1(Ω,L1(µ,Sn1 ))

=
�

M

∥∥∥∑
i,j

xij(s)⊗ gij
∥∥∥
Sn1 (L1(Ω))

dµ(s).

Since G1 and S2 are isomorphic as Banach spaces, Sn1 (G1) and Sn1 (S2) are
isomorphic allowing constants depending on n. Indeed, we have Sn1 (G1)∗ =
CB(G1, S

n
∞) ∼= B(G1, S

n
∞) ∼= B(S2, S

n
∞) ∼= CB(S2, S

n
∞) = Sn1 (S2)∗ isomor-

phically. Thus, by Corollary 1.10 of [21] we have∥∥∥∑
i,j

gij ⊗ xij
∥∥∥
L2(Ω,L1(µ,Sn1 ))

&
�

M

∥∥∥∑
i,j

xij(s)⊗ eij
∥∥∥
Sn1 (S2)

dµ(s)

≥ ‖(xij)‖S2(L1(µ,Sn1 )).

Thus, L1(µ, Sn1 ) has S2-cotype and by complex interpolation with L2(µ, Sn2 )
we find that Lp(µ, Snp ) (1 ≤ p ≤ 2) has S2-cotype.

Since S1
I1,2−→ S2

F−1
R−→ G2 ⊆ L2(Ω) is a contraction, where I1,2 is the

corresponding formal identity, so is

F−1
R ⊗ IL1(µ,Sn1 ) : S1 ⊗γ L1(µ, Sn1 )→ L2(Ω)⊗γ L1(µ, Sn1 ),

where ⊗γ is the projective tensor product in the category of Banach spaces.
Note that L2(Ω) ⊗γ E ↪→ L2(Ω,E) contractively by the canonical embed-
ding, and

S1 ⊗γ L1(µ, Sn1 ) ∼= S1(L1(µ, Sn1 ))

isomorphically. Indeed, we have

(S1 ⊗γ L1(µ, Sn1 ))∗ = B(S1(L1(µ)), Sn∞) ∼= CB(S1(L1(µ)), Sn∞)
= S1(L1(µ, Sn1 ))∗

isomorphically (allowing constants depending on n). Thus, we have a
bounded map

F−1
R ⊗ IL1(µ,Sn1 ) : S1(L1(µ, Sn1 ))→ L2(Ω,L1(µ, Sn1 )),

which implies that L1(µ, Sn1 ) has S1-type. By complex interpolation with
respect to L2(µ, Sn2 ) we see that Lp(µ, Snp ) (1 ≤ p ≤ 2) has Sp-type.
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Now we consider the case 2 ≤ p < ∞. We can show that Lp(µ, Snp )

has S2-type by a direct calculation as above. Since G2
FR−→ S2

I2,∞−→ S∞ is a
contraction, where I2,∞ is the corresponding formal identity, so is

FR ⊗ IL∞(µ,Sn∞) : G2 ⊗λ L∞(µ, Sn∞)→ S∞ ⊗λ L∞(µ, Sn∞),

where ⊗λ is the injective tensor product in the category of Banach spaces.
Note that we have the contraction

G2(E) ⊆ L2(Ω,E) ↪→ L2(Ω)⊗λ E
P2⊗IE−−−→ G2 ⊗λ E,

for E = L∞(µ, Sn∞) and P2 is the gaussian projection from L2(Ω) onto G2.
Since

B(S1(L1(µ)), Sn∞) ⊇ S∞ ⊗λ L∞(µ, Sn∞)
∼= S∞(L∞(µ, Sn∞)) ⊆ CB(S1(L1(µ)), Sn∞)

isomorphically, we have a bounded map

FR ⊗ IL∞(µ,Sn∞) : G2(L∞(µ, Sn∞))→ S∞(L∞(µ, Sn∞)),

which implies L∞(µ, Sn∞) has S∞-cotype. By complex interpolation with
respect to L2(µ, Sn2 ) we conclude that Lp(µ, Snp ) (2 ≤ p ≤ ∞) has Sp-cotype.

The other statements concerning best Sp-type and Sq-cotype follow by
Remark 2.3 and the Banach space case, except the fact that an infinite-
dimensional L∞(µ) does not have S1-type. For simplicity we just consider
the case of c0, the space of null sequences. Note that by the dominance of the
gaussian average over the Rademacher average (for example, (4.2) of [26])
we have

T o,n1 (c0) =
∥∥∥Sn1 (c0)→ L2(Ω, c0), (xij) 7→

n∑
i,j=1

gij ⊗ xij
∥∥∥

&
∥∥∥Sn1 (c0)→ L2([0, 1], c0), (xij) 7→

n∑
i,j=1

rij ⊗ xij
∥∥∥

= ‖L2([0, 1], `1)→ Sn∞(`1), f 7→ (〈rij , f〉)i,j‖,

where {rij} is a reindexing of the classical Rademacher system {ri}.
Set f(t) =

∏n
i,j=1(1 + rij(t)rij) ∈ L2([0, 1], L1[0, 1]). Then

‖f(t)‖L1[0,1] =
1�

0

∣∣∣ n∏
i,j=1

(1 + rij(t)rij(s))
∣∣∣ ds =

1�

0

n∏
i,j=1

(1 + rij(t)rij(s)) ds = 1

for all t ∈ [0, 1], and consequently

‖f‖L2([0,1],L1[0,1]) = 1.
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On the other hand, we have 〈rij , f〉 = rij , so that

‖(〈rij , f〉)i,j‖Sn∞(L1[0,1])

=
∥∥∥ n∑
i,j=1

eij ⊗ rij
∥∥∥
Sn∞(L1[0,1])

∼
∥∥∥ n∑
i,j=1

eij ⊗ eij
∥∥∥
Sn∞(Rn2+Cn2 )

= ‖Rn2 ∩ Cn2 → Sn∞, δij 7→ eij‖cb

≥
‖
∑n

i,j=1 eij ⊗ eij‖Sn∞(Sn∞)

max{‖
∑n

i,j=1 eije
∗
ij‖

1/2
min, ‖

∑n
i,j=1 e

∗
ijeij‖

1/2
min}

= n1/2.

Since span{rA =
∏

(i,j)∈A rij | A ⊆ {(i, j) | 1 ≤ i, j ≤ n}} in L1[0, 1] is

completely isometric to `2n
2

1 we get

T o,n1 (c0) & n1/2,

the desired result.

Remark 2.10. We do not need σ-finiteness of µ to prove that L1(µ, Sn1 )
has S1-type and L∞(µ, Sn∞) has S∞-cotype in the above theorem, and we
can similarly show that every maximal operator space has S1-type and every
minimal operator space has S∞-cotype.

Now, we consider Sp-type and Sq-cotype of infinite-dimensional Schatten
classes. Unfortunately we have not been able to determine the best Sp-type
and Sq-cotype of those spaces, but the following estimate shows that they
are quite different from type and cotype as Banach spaces.

Lemma 2.11. Let 1 ≤ p ≤ 2. Then

TSp,n(Sp) ∼ CSp′ ,n(Sp′) ∼ n
1/p−1/2.

Proof. First, we consider type constants. By Theorem 9.8.5 of [22] we
have

TSp,n(Sp) ∼ ‖F−1
R ⊗ ISp : Snp (Sp)→ Gnp (Sp)‖ = ‖Snp → Gnp , eij 7→ rij‖cb

∼ ‖Rn2 [p′] ∩ Cn2 [p′]→ Snp′ , eij 7→ eij‖cb
≤ ‖Rn2 [p′]→ Snp′ , eij 7→ eij‖cb
= ‖Rn[p′]⊗h Rn[p′]→ Cn[p′]⊗h Rn[p′], e1i ⊗ e1j 7→ ei1 ⊗ e1j‖cb
≤ ‖Rn[p′]→ Cn[p′], e1i 7→ ei1‖cb.

By complex interpolation for θ/2 + (1− θ)/∞ = 1/p′ we get

‖Rn[p′]→ Cn[p′], e1i 7→ ei1‖cb
≤ ‖Rn2 → Cn2 , e1i 7→ ei1‖θcb‖Rn∞ → Cn∞, e1i 7→ ei1‖1−θcb = n1/p−1/2.
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For the upper bound we consider

‖Rn2 [p′] ∩ Cn2 [p′]→ Snp′ , eij 7→ eij‖cb

≥
‖
∑n

i,j=1 eij ⊗ eij‖Snp′ (Snp′ )
max{‖(

∑n
i,j=1 e

∗
ijeij)1/2‖Snp′ , ‖(

∑n
i,j=1 eije

∗
ij)1/2‖Snp′}

= n1/p−1/2.

Now we consider cotype constants. For 1 < p ≤ 2 we have

CSp′ ,n(Sp′) ∼ ‖FR ⊗ ISp : Gnp′(Sp′)→ Snp′(Sp′)‖

∼ ‖Rn2 [p′] ∩ Cn2 [p′]→ Snp′ , eij 7→ eij‖cb = n1/p−1/2.

For p = 1 we have, by Proposition 45.1 of [26],

Co,n∞ (S∞) ∼ ‖FR ⊗ IS∞ : Gn1 (S∞)→ Sn∞(S∞)‖

≥
‖
∑n

i,j=1 eij ⊗ eij‖Sn∞(Sn∞)	
Ω ‖(gij(ω))‖Sn∞dP (ω)

& n1/2.

We get the upper bound by Remark 2.3(3).

Theorem 2.12. Let 1/p+ 1/p′ = 1.

(1) If 1 ≤ p < 4/3, then Sp does not have S1-type nor Ss-cotype for
2 ≤ s < p′.

(2) If 4/3 ≤ p < 2, then Sp does not have Sr-type nor Ss-cotype for
2p

4− p
< r ≤ 2 ≤ s < p′.

(3) If 2 < p ≤ 4, then Sp does not have Sr-type nor Ss-cotype for

p′ < r ≤ 2 ≤ s < 2p
4− p

.

(4) If 4 < p < ∞, then Sp does not have Sr-type for p′ < r ≤ 2 nor
S∞-cotype.

(5) S∞ does not have S1-type nor S∞-cotype.

Proof. Since the formal identity Snp (E) → Snr (E) has norm ≤ n1/r−1/p

for 1 ≤ r < p, we get

T o,nr (Sp) ≥ TSp,n(Sp)n1/p−1/r & n2/p−1/2−1/r,

which means Sp does not have Sr-type for 2/p−1/2−1/r > 0⇔ 2p/(4− p)
< r. The other statements are obtained by duality (Proposition 2.4), Theo-
rem 2.9, Theorem 2.8 and the fact that R[p] is a closed subspace of Sp.

We close this section with the case of C∗-algebras and their duals. S1-type
and S∞-cotype are related to subhomogeneity of a C∗-algebra.

Theorem 2.13. Let A be a C∗-algebra. Then A is subhomogeneous if
and only if A has S∞-cotype if and only if A∗ has S1-type. Moreover , if A
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is not subhomogeneous, then

T o,n1 (A∗) ∼ Co,n∞ (A) ∼ n1/2,

which is worst possible.

Proof. Suppose that A is m-subhomogeneous for some m ∈ N. Then
we can assume that A∗∗ is a subalgebra of L∞(µ, Sm∞) for some measure
space (M, µ). Since L∞(µ, Sm∞) has S∞-cotype and L1(µ, Sm1 ) has S1-type
(Remark 2.10), so do A and A∗, respectively.

Now we assume that A is not subhomogeneous. Then for any ε > 0 and
n ≥ 1 there are completely positive maps % : Sn∞ → A and σ : A→ Sn∞ such
that

‖σ%− ISn∞‖cb ≤ n‖σ%− ISn∞‖ < ε/n

by Lemma 2.7 of [25] and [7]. Then
�

Ω

∥∥∥ n∑
i,j=1

gij(ω)%eij
∥∥∥
A
dP (ω) ≤ ‖%‖cb

�

Ω

∥∥∥ n∑
i,j=1

gij(ω)eij
∥∥∥
Sn∞
dP (ω) . n1/2

and

‖(%eij)‖Sn∞(A) ≥ ‖σ‖−1
cb ‖(σ%eij)‖Sn∞(Sn∞) = ‖((σ%− ISn∞)eij + eij)‖Sn∞(Sn∞)

≥ ‖(eij)‖Sn∞(Sn∞) − ‖((σ%− ISn∞)eij)‖Sn∞(Sn∞)

≥ n− ‖σ%− ISn∞‖cbn ≥ n− ε,

which implies Co,n∞ (A) ∼ n1/2; T o,n1 (A∗) ∼ n1/2 is obtained by duality.

3. Type (p,H) and cotype (q,H) of operator spaces

3.1. Definitions and basic properties. We fix a subquadratic homoge-
neous Hilbertian operator space H from now on. Now for an operator space
E we define (2, H)-summing norm of a map v : E → `2 by

π2,H(v) = sup
{

(
∑

k ‖vxk‖2)1/2

‖
∑

k xk ⊗ ek‖E⊗minH

}
.

Note that the subquadraticity of H ensures that π2,H(·) is actually a norm
(p. 82 of [20]). Also note that all results remain true for all H which are
completely isomorphic to a subquadratic homogeneous Hilbertian operator
space allowing suitable constants.

Definition 3.1. An operator space E is said to have type (2, H) if there
is a constant C > 0 such that

`(u) ≤ Cπ2,H(u∗)

for all n ∈ N and u : `n2 → E.
E is said to have cotype (2, H) if there is a constant C ′ > 0 such that

`∗(v) ≤ C ′π2,H(v)
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for all n ∈ N and v : E → `n2 . We denote the infima of such C and C ′ by
T2,H(E) and C2,H(E), respectively.

We give a description of the trace dual of π2,H .

Proposition 3.2. For n ∈ N and u : `n2 → E we have

π∗2,H(u) = inf ‖A‖HS‖B‖cb,

where the infimum is taken over all possible factorizations u : `n2
A→ H∗

B→ E.

Proof. Let α(u) be the infimum on the right hand side. For any v : E →
`n2 and factorization u : `n2

A→ H∗
B→ E we have

|tr(vu)| ≤ |tr(vBA)| = |tr(AvB)| ≤ ‖A‖HS‖vB‖HS

= ‖A‖HSπ2,H(vB) ≤ ‖A‖HS‖B‖cbπ2,H(v),

which implies π∗2,H(u) ≤ α(u).
For the opposite inequality we will show that α∗(v) ≥ π2,H(v) for any

v : E → `n2 . For any given ε > 0 we choose (xk) ⊆ E such that(∑
k

‖vxk‖2
)1/2

≥ (1− ε)
∥∥∥∑

k

xk ⊗ ek
∥∥∥
E⊗minH

.

Then there is (y∗k) ∈ `n2 (`n2 ) with norm 1 such that

|〈(y∗k), (vxk)〉| ≥ (1− ε)2‖(vxk)‖`n2 (`n2 ) = (1− ε)2
(∑

k

‖vxk‖2
)1/2

.

Consider A : `n2 → H∗n, z 7→ (〈y∗k, z〉)k, and B : H∗n → E, ek 7→ xk. Then

α∗(v) ≥ |tr(vBA)|
‖A‖HS‖B‖cb

=
|tr(AvB)|

‖
∑

k xk ⊗ ek‖E⊗minH

=
|
∑

k〈A∗ek, vBek〉|
‖
∑

k xk ⊗ ek‖E⊗minH
=

|〈(y∗k), (vxk)〉|
‖
∑

k xk ⊗ ek‖E⊗minH

≥ (1− ε)2π2,H(v).

Now we consider the kth cb-approximation number of T : E → F de-
fined by

aok(T ) := inf{‖T − S‖cb : S ∈ CB(E,F ), rk(S) < k}.

See [15] for operator space versions of Gelfand and Kolmogorov numbers.

Proposition 3.3. For u : H∗n → E we have(∑
k

aok(u)
2
)1/2

≤ π∗2,H(u).
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Proof. By Proposition 3.2 for any given ε > 0 we have a factorization

u : H∗n
A→ H∗

B→ E

with ‖A‖HS‖B‖cb ≤ (1 + ε)π∗2,H(u). Thus,(∑
k

aok(u)
2
)1/2

=
(∑

k

aok(BA)2
)1/2

≤ ‖B‖cb
(∑

k

aok(A)2
)1/2

= ‖B‖cb‖A‖HS ≤ (1 + ε)π∗2,H(u).

Recall that there is a constant C > 0 such that(∑
k

ak(u)q
)1/q

≤ πq,2(u) ≤
Cq

q − 2

(∑
k

ak(u)q
)1/q

for any u : `n2 → X n ∈ N and 2 < q ≤ ∞. This equivalence and (1.1) and
(1.2) lead us to the following definition.

Definition 3.4. Let 1 ≤ p < 2 < q ≤ ∞. An operator space E is said
to have type (p,H) if there is a constant C > 0 such that(∑

k

aok(v)
p′
)1/p′

≤ C · `∗(v)

for all n ∈ N and v : E → Hn.
E has cotype (q,H) if there is a constant C ′ > 0 such that(∑

k

aok(u)
q
)1/q

≤ C ′ · `(u)

for all n ∈ N and u : H∗n → E. We denote the infima of such C and C ′ by
Tp,H(E) and Cq,H(E), respectively.

Remark 3.5. (1) It is clear from the definition that type (p,H) and
cotype (q,H) imply type p and cotype q as Banach spaces, respectively.

(2) Let

Sor (E,F ) = {u ∈ CB(E,F ) | ‖(aok(u))k≥1‖`r <∞}
for 1 ≤ r ≤ ∞. Then by the same argument in the proof of Proposition 1 in
[11] we have

K(t, u;So1(E,F ), So∞(E,F )) ∼ K(t, (aok(u))k≥1; `1, `∞)

for t > 0, where K(t, ·;E0, E1) is the K-functional with respect to a com-
patible pair of Banach spaces (E0, E1). Thus

[So2(E,F ), So∞(E,F )]2/q = Soq (E,F )

for 2 < q <∞. When E has cotype (2, H) we have(∑
k

aok(u)
2
)1/2

≤ C2,H(E)`(u)
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for all n ∈ N and u : H∗n → E, thus cotype (q,H) (resp. type (p,H)) behaves
well under interpolation as in the Banach space case.

As in the Sp-type and Sq-cotype case, we have the following duality results.
Proposition 3.6. Let E be an operator space and 1 ≤ p ≤ 2.

(1) If E has type (p,H), then E∗ has cotype (p′, H) with

Cp′,H(E∗) ≤ Tp,H(E).

(2) If E has cotype (p′, H) and is K-convex as a Banach space, then E∗
has type (p,H) with

Tp,H(E∗) ≤ K(E)Cp′,H(E).

Proof. Note that `∗(v) ≤ `(v∗) and `(v∗) ≤ K(X)`∗(v) for any Banach
space X and v : `2 → X.

3.2. The case of homogeneous Hilbertian operator spaces. If we consider
type (p,H) and cotype (q,H) of homogeneous Hilbertian operator spaces,
then the calculation becomes simple, so that we can completely determine
type and cotype in some cases. We only consider cotype, since type can be
directly obtained by duality.

Let us start with the following lemma about the approximation numbers
of formal identities between homogeneous Hilbertian operator spaces. Recall
that the kth cb-Gelfand number of u : E → F between operator spaces is
defined by

cok(u) := inf{‖u|S‖cb : S ⊆ E, codimS < k}
for k ∈ N, and clearly
(3.1) cok(u) ≤ aok(u).

Lemma 3.7. Let H and H′ be homogeneous Hilbertian operator spaces.
Then for the n-dimensional formal identity idn : Hn → H′n we have

cok(idn) = aok(idn) = ‖idn−k+1 : Hn−k+1 → H′n−k+1‖cb
for 1 ≤ k ≤ n.

Proof. Fix 1 ≤ k ≤ n. By (3.1) it is enough to show that
cok(idn) ≥ ‖idn−k+1 : Hn−k+1 → H′n−k+1‖cb.

Now we consider any subspace S ⊆ Hn with m := dimS = n − codimS ≥
n − k + 1. Then there is a partial isometry US : `m2 → `n2 whose image is S
and

U∗SUS = I`m2 .

Thus, we have
‖idn−k+1‖cb≤‖idm : Hm→H′m‖cb≤‖US : Hm→H′n‖cb‖U∗S : H′n→H′m‖cb

= ‖idn|S : Hn → H′n‖cb.
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Proposition 3.8. Let H be a homogeneous Hilbertian operator space.
Then H has cotype (2, H) if and only if the formal identity id : H∗ → H is
completely bounded.

Proof. The necessity part is clear from the definition. Now we suppose
that H has cotype (2, H). Then for n ∈ N and u : H∗n → Hn we have∑

k

aok(u)
2 ≤ C2`(u)2,

where C = C2,H(H). If we set u = idn : H∗n → Hn, then by Lemma 3.7 we
have

C2n ≥
n∑
k=1

‖idk : H∗k → Hk‖2cb ≥
n∑

k=[n/2]

‖idk‖2cb ≥
n

2
‖id[n/2]‖2cb,

which means ‖id[n/2]‖cb ≤
√

2C and consequently ‖id : H∗ → H‖cb is
bounded.

Now we focus on R[p] and C[p].

Theorem 3.9. Let 1 ≤ p, q ≤ ∞. Then R[q] (resp. C[q]) has cotype
(s, C[p]) (resp. (s,R[p])) if and only if |1/p− 1/q|+ 1/s ≤ 1/2.

Proof. Consider u : R[p]→ R[q]. Let |1/p− 1/q| = 1/r. Then by Lemma
5.9 of [27] we have

CB(R[p], R[q]) ∼= Sr

isometrically. Since cb-approximation numbers of u and `(u) are both uni-
tarily invariant we can assume that

u = diag(u1, . . . , un), n ∈ N,
with |u1| ≥ · · · ≥ |un| by the usual density argument.

Now we suppose R[q] has cotype (2, C[p]) and set u1 = · · · = un = 1.
Then

`(u) =
( n∑
k=1

|uk|2
)1/2

= n1/2

and by Lemma 3.7,(∑
k

aok(u)
s
)1/s

=
(∑

k

(n− k + 1)s/r
)1/s

∼ n1/r+1/s.

Consequently, ∣∣∣∣1p − 1
q

∣∣∣∣+ 1
s

=
1
r

+
1
s
≤ 1

2
.

For the converse we observe the following:(∑
k

aok(u)
s
)1/s

≤
[∑

k

(∑
i≥k
|ui|r

)s/r]1/s
= ‖U‖`ns (`nr ),
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where U = (uij)ni,j=1 with uij = uj for j ≤ i and uij = 0 elsewhere. Thus, it
is enough to show that

‖U‖`ns (`nr ) ≤
( n∑
k=1

|uk|2
)1/2

for 1/r + 1/s = 1/2. Since

`ns (`
n
r ) = [`n4 (`n4 ), `n2 (`n∞)]θ

for r ≥ s and θ = 1− 4/r, and

`ns (`
n
r ) = [`n4 (`n4 ), `n∞(`n2 )]ψ

for r < s and ψ = 1−4/s, it suffices to consider the following three extremal
cases: (r, s) = (2,∞), (∞, 2) and (4, 4).

When (r, s) = (2,∞) or (∞, 2) this is trivial from the definition. The
case r = s = 4 is obtained from the inequality( n∑

k=1

k|uk|4
)1/4

≤
( n∑
k=1

|uk|2
)1/2

,

which can be proved by induction on n. Indeed, when n = 1 it is trivial.
Suppose that it is true for n; then

n∑
k=1

k|uk|4 ≤
( n∑
k=1

|uk|2
)2
,

and consequently
n+1∑
k=1

k|uk|4 =
n∑
k=1

k|uk|4 + (n+ 1)|uk+1|4 ≤
n∑

k,l=1

|uk|2|ul|2 + (n+ 1)|uk+1|4

≤
n+1∑
k,l=1

|uk|2|ul|2 =
( n+1∑
k=1

|uk|2
)2
,

since |uk|’s are nonincreasing.
The proof for C[q] is the same.

Remark 3.10. Since cotype (2, H) is a local property, if F is λ-cb-
representable in E for some λ > 0 (i.e. every finite-dimensional subspace
of F can be (1 + ε)λ-cb-embedded in E for any ε > 0) then cotype (2, H)
of E can be transferred to F . However, sometimes cotype (2, H) can be
transferred to an operator space related in a weaker sense. More precisely,
let us say that F is λ-representable in E at every matrix level if for any
m ∈ N, ε > 0 and finite-dimensional subspace F ′ of F there is a subspace
E′ ⊆ E and an isomorphism T : F ′ → E′ such that

‖IMm ⊗ T−1 : Mm(E′)→Mm(F ′)‖ = 1
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and
‖IMm ⊗ T : Mm(F ′)→Mm(E′)‖ ≤ (1 + ε)λ.

Then cotype (2, H) of E can be transferred to F if F is another homogeneous
Hilbertian operator space.

Indeed, by Proposition 3.8 we need to check that ‖idn : H∗n → Fn‖cb is
uniformly bounded with respect to n ∈ N. Now we fix n ∈ N. Then for any
ε > 0 there is m ∈ N such that

‖idn : H∗n → Fn‖cb ≤ (1 + ε)‖IMn ⊗ idn : Mm(H∗n)→Mm(Fn)‖.
Now we set F ′ = F2n and choose E′ ⊆ E and T as above. Since E′ is a
subspace of E we have

2n∑
k=1

aok(u) ≤ C2,H(E)`(u)

for any u : H∗2n → E′. For u = T ◦ id2n we have

`(u) ≤ (1 + ε)λ`(id2n) = (1 + ε)λ
√

2n

and
2n∑
k=1

aok(u) ≥
2n∑
k=1

aMm
k (u) ≥

2n∑
k=1

aMm
k (id2n),

where
aMm
k (v : E1 → E2)

:= inf{‖IMm ⊗ (v − w) : Mm(E1)→Mm(E2)‖ : w∈B(E1, E2), rk(w)<k}.
By a similar argument to that for Lemma 3.7 we get

aMm
k (id2n) = ‖IMm ⊗ idk : Mm(H∗2n)→Mm(F2n)‖

and consequently

‖IMm ⊗ idn : Mm(H∗n)→Mm(Fn)‖ ≤
√

2(1 + ε)λ.

The situation as above does happen. By [19] we know that for every
infinite-dimensional operator space E there is a homogeneous Hilbertian
operator space contained in EU , an ultrapower of E. It is well known that
the local structure of EU as an operator space is not the same as E, unlike
the Banach space case. However, by a similar argument to the Banach space
case we can show that EU is λ-representable in E at every matrix level for
λ = 1.

3.3. The case of Lp spaces. As in the Banach space case, type (1, H)
and cotype (∞, H) are trivial for certain H.

Proposition 3.11. Every operator space has type (1, H) and cotype
(∞, H) for H = R[p], C[p] and RC[p].
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Proof. We only prove the type case since the cotype case is obtained by
duality. Note that an operator space E has type (1, H) if and only if there
is a constant C > 0 such that

‖v‖cb ≤ C · `∗(v)
for any n ∈ N and v : E → Hn.

First, we consider the case H = R. Since

‖v : E → Rn‖cb ≤ ‖v : min(E)→ Rn‖cb = π2(v : E → `n2 )

by (1.45) of [1] it is enough to show that

π2(v) ≤ `∗(v)
for any n ∈ N and v : E → `n2 . By trace duality this is equivalent to the
following well-known result (for example (3.14) of [17]):

`(u) ≤ π2(u)

for any n ∈ N and u : `n2 → E.
We can prove the case H = C in the same way, and by combining these

two results we get the cases of H = R ∩ C and R+ C. Finally, we are done
by interpolation.

Using Proposition 3.8 we can determine the condition for Lp (1 ≤ p ≤ 2)
spaces to have cotype 2.

Theorem 3.12. Let 1 ≤ p ≤ 2 and µ be a σ-finite measure.

(1) Sp has cotype (2, H) if and only if the formal identity

id : RC[p]→ H

is completely bounded.
(2) Lp(µ) has cotype (2, H) if and only if the formal identity

id : RC[p′]→ H

is completely bounded.

Proof. (1) Suppose Sp has cotype (2, H). Then since R[p], C[p] ⊆ Sp the
formal identities

id : C[p]→ H and id : R[p]→ H

are completely bounded by Proposition 3.8, so that we get the desired con-
clusion. For the converse direction it suffices to show that Sp has cotype
(2, RC[p]), which is obtained from the Banach space case and the following
fact (Proposition 4.2.6 in [8]):

B(RC[p′], Sp) = CB(RC[p′], Sp).

(2) By the usual localization argument we can assume that Lp(µ) =
Lp[0, 1]. Suppose Lp[0, 1] has cotype (2, H). Note that Radp ⊆ Lp[0, 1] and
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Radp ∼= RC[p] completely isomorphically, where Radp is the closed linear
span of the classical Rademacher system {ri} in Lp[0, 1]. Thus, the formal
identity id : RC[p′]→ H is completely bounded by Proposition 3.8, so that
we get the desired conclusion. For the converse direction it suffices to show
that Lp[0, 1] has cotype (2, RC[p′]), which is obtained from the Banach space
case and the following fact obtained similarly to Proposition 4.2.6 in [8]:

B(RC[p], Lp[0, 1]) = CB(RC[p], Lp[0, 1]).

For a certain choice of H we can recover the same behavior of type and
cotype as in the Banach space case.

Corollary 3.13. Sp (1 ≤ p ≤ 2) has type (p,R + C) and cotype
(2, R+ C), and Sq (2 ≤ q <∞) has type (2, R+ C) and cotype (q,R+ C).

Proof. First we consider the case 1 ≤ p ≤ 2. Since S2 has type (2, OH)
and the formal identity

id : OH → R+ C

is a complete contraction, S2 has type (2, R+C). Thus, Sp has type (p,R+C)
by Proposition 3.11 and complex interpolation, and cotype (2, R + C) by
Theorem 3.12.

The case 2 ≤ q <∞ is obtained by duality.

4. Applications

4.1. Completely (q, 2)-summing maps and Sq-cotype. Now we present our
operator space version of “generalized little Grothendieck’s theorem”.

Theorem 4.1. Let F be an operator space with Sq-cotype (2 ≤ q <∞).
Then

B(C(K), F ) ⊆ Πo
q,2(C(K), F ).

Proof. Let u ∈ B(C(K), F ). Since F has cotype q, we have u ∈ Πr(E,F )
for all q < r <∞ from the Banach space result (Theorem 11.14 in [2]). Thus,
by a similar calculation to the proof of Theorem 11.13 in [2],

‖(uxij)‖Sq(F ) ≤ Coq (F )
[ �
Ω

∥∥∥u(∑
i,j

gij(ω)xij
)∥∥∥2

F
dP (ω)

]1/2
. Coq (F )πr(u)‖(xij)‖S2⊗λC(K)

= Coq (F )πr(u)‖(xij)‖S2⊗minC(K).

Remark 4.2. (1) Sq-cotype conditions in Theorem 4.1 are essential. In-
deed, for n ≥ 1, 2 ≤ q < p < ∞ and the formal identity In : `n∞ → Rn[p]
we have ‖In‖ =

√
n. As in the proof of Theorem 2.8, we get a subspace

F (∼= Rn[p] ⊗h Rn[q]) of Snq (Rn[p]) isometric to Snr under the mapping
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e1j ⊗ e1i 7→ eij , where r = 2pq/(pq + p− q) < 2. Now we have∥∥∥ n∑
j=1

ej ⊗ e1j
∥∥∥
Sn2⊗min`n∞

=
∥∥∥ n∑
j=1

ej ⊗ e1j
∥∥∥
`n∞(Sn2 )

= 1

and ∥∥∥ n∑
j=1

e1j ⊗ e1j
∥∥∥
Snq (Rn[p])

=
∥∥∥ n∑
j=1

ejj

∥∥∥
Snr

= n1/r.

Consequently,
πoq,2(In)
‖un‖

≥ n1/r−1/2.

(2) Unlike complete p-summing, complete (q, 2)-summing (q > 2) does
not imply complete boundedness in general. Indeed, for q > 2 and the formal
identity In : min `n2 → OHn we have

πoq,2(In) = πoq,2(IOHn) ≤ n1/4+1/2q

by Lemma 2.7 of [12] and

n . ‖min `n2
In→ OHn

I∗n→ max `n2‖cb ≤ ‖In‖2cb
by Theorem 3.8 of [18]. Thus,

‖In‖cb
πoq,2(In)

& n1/4−1/2q.

(3) We cannot extend Theorem 4.1 to the case of B(H) instead of C(K).
If we take F = OH then F has S2-cotype, but it is well-known that there
is a completely bounded map from B(H) into OH which is not completely
2-summing ([9]).

4.2. An operator space version of Maurey’s extension theorem. In this
section we consider an operator space version of Maurey’s extension theorem
and Kwapień’s theorem. We fix a perfectly Hilbertian operator space H.

Theorem 4.3. Let E and F be operator spaces with type (2, H) and
cotype (2, H∗), respectively. Then for any subspace G ⊆ E and any bounded
linear map u : G→ F we have an extension ũ : E → F with

γH(ũ) ≤ T2,H(E)C2,H∗(F )‖u‖.
Proof. First we observe that we can reduce our theorem to the case where

G and F are finite-dimensional by a standard argument. We fix u : G → F
and assume that for some constant C > 0 there are extensions

uZ : E AZ→ H(IZ) BZ→ F with ‖AZ‖cb ≤ 1 and ‖BZ‖cb ≤ C‖u‖
for all finite-dimensional Z ⊆ G. Now we consider a nontrivial ultrafilter U
of the set of all finite-dimensional subspaces of G ordered by inclusion. If we
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set

A : E →
∏
U
H(IZ), x 7→ (AZx), B : A(G)→ F, (AZx) 7→ ux,

then

‖A‖cb ≤ lim
U
‖AZ‖cb ≤ 1 and ‖B‖cb ≤ lim

U
‖BZ‖cb ≤ C‖u‖,

which leads us to the desired extension ũ = BPA, where P is the orthogonal
projection from

∏
U H(IZ) onto A(G) since the class ofH(I)’s for some index

set I is closed under ultraproduct.
Now we can assume that G is finite-dimensional. Then since the range

of u is finite-dimensional we can assume that so is F . Fix u : G → F , and
consider any v : F → G. Note that the subquadratic conditions for H and
H∗ together with the Remark on p. 82 of [20] enable us to use Theorem 6.1
of [20] in our situation. Thus, by Theorem 6.1 of [20] there is a factorization

iv : F A→ `2(I)
B→ E with π2,H∗(A) ≤ 1 and π2,H(B∗) ≤ γ∗H(iv),

where i : G ↪→ E is the inclusion. If we set B̃ = BPj, where P is the
orthogonal projection from H(I) onto ran(A) and j : ran(A) ↪→ H(I) is the
inclusion, then we have the factorization

v : F A→ ran(A)
eB→ G,

so that

|tr(vu)| = |tr(B̃Au)| ≤ `∗(Au)`(B̃) ≤ ‖u‖`∗(A)`(B)
≤ ‖u‖`∗(A)T2,H(E)π2,H(B∗)
≤ T2,H(E)C2,H∗(F )‖u‖π2,H∗(A)π2,H(B∗)
≤ T2,H(E)C2,H∗(F )‖u‖γ∗H(iv).

By applying the Hahn–Banach theorem to the functional v 7→ tr(vu) we can
obtain the desired extension ũ : E→F with γH(ũ)≤T2,H(E)C2,H∗(F )‖u‖.

Corollary 4.4. Every operator space with type (2,H) and cotype (2,H∗)
is completely isomorphic to H(I) for some index set I.

We end this paper with an example where different choices of H’s do
appear.

Example 4.5. Let 1 < p ≤ 2. Then Sp has cotype (2, RC[p]), and for
any σ-finite measure µ, Lp′(µ) has type (2, RC[p′]) by Theorem 3.12 and
duality. If we apply Theorem 4.3 with G = E = Lp′(µ) and F = Sp we have

B(Lp′(µ), Sp) = ΓRC[p′](Lp′(µ), Sp),

where ΓH(E,F ) denotes the set of all completely bounded maps from E to F
which factorize completely boundedly through H(I) for some index set I.
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