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On multipliers of Hilbert modules over pro-C*-algebras
by

MARIA JOITA (Bucuresti)

Abstract. We investigate the structure of the multiplier module of a Hilbert module
over a pro-C*-algebra and the relationship between the set of all adjointable operators from
a Hilbert A-module FE to a Hilbert A-module F' and the set of all adjointable operators
from the multiplier module M (E) to M(F).

1. Introduction. The notion of Hilbert C*-module is a generalization
of the notion of Hilbert space by allowing the inner product to take values
in a C*-algebra. Hilbert modules over commutative C*-algebras were used
by I. Kaplansky [8] to show that derivations of type I AW™*-algebras are
inner. The research on Hilbert modules over arbitrary C*-algebras began
in the 70’s in [10, 14]. Hilbert C*-modules are useful tools in the theory
of operator algebras, operator K-theory, K K-theory of C*-algebras, group
representation theory, the C*-algebraic theory of quantum groups and the
theory of operator spaces. In applications, one often assumes that Hilbert
modules are over C*-algebras with countable approximate unit, because
for a given C*-algebra A, the Hilbert C*-modules A and Hy4 (the Hilbert
C*-module of all sequences (ay), in A such that ), a)a, converges in the
C*-algebra A) are countably generated if and only if A has a countable
approximate unit. In [13], I. Raeburn and S. J. Thompson considered a
more general notion of countably generated module in which the generators
are multipliers of the module. With their definition, A and H4 are countably
generated.

In this paper, we investigate the multipliers of Hilbert modules over pro-
C*-algebras. Pro-C*-algebras are generalizations of C*-algebras. Instead of
being given by a single C*-norm, the topology on a pro-C*-algebra is defined
by a directed family of C*-seminorms. Clearly, any C*-algebra is a pro-C*-
algebra. The set C..([0,1]) of all complex-valued continuous functions on
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[0, 1] with the topology of uniform convergence on countable compact subsets
of [0, 1] is a pro-C*-algebra which is not topologically isomorphic to any C*-
algebra [3]. In [11, §1] other nice examples of pro-C*-algebras are presented.
Besides their intrinsic interest as topological algebras, pro-C*-algebras pro-
vide an important tool in investigation of certain aspects of C*-algebras (like
multipliers of the Pedersen ideal, the tangent algebra of a C*-algebra, crossed
product and K-theory, as well as non-commutative algebraic topology) and
quantum field theory. In the literature, pro-C*-algebras have been given dif-
ferent names, such as b*-algebras (C. Apostol), LM C*-algebras (G. Lassner,
K. Schmiidgen) or locally C*-algebras (A. Inoue, M. Fragoulopoulou).

Let A be a pro-C*-algebra and let E be a Hilbert A-module. A multiplier
of E is an adjointable operator from A to E. The set M (E) of all multipliers
of E is a Hilbert module over the multiplier algebra M (A) of A in a natural
way. We show that M (FE) is an inverse limit of multiplier modules of Hilbert
C*-modules and E can be identified with a closed submodule of M (E) which
is strictly dense in M (E) (Theorem 3.3). For a countable family {E,}, of
Hilbert A-modules, the multiplier module M (€p,, Ey,) can be identified with
the set of all sequences (t,), with ¢, € M(E,) such that )t ot,, converges
strictly in M (A) (Theorem 3.5). This is a generalization of a result of Bakic
and Guljas [2] which sates that M (H4) is the set of all sequences (my,), in
M (A) such that the series > m;mya and ) am;m, converge in A for all
ain A.

Section 4 is devoted to the study of the connection between the set of
all adjointable operators between two Hilbert A-modules E and F' and the
set of all adjointable operators between the respective multiplier modules
M(FE) and M(F'). We show that any adjointable operator from M (E) to
M (F) is strictly continuous (see Definition 3.2) and the locally convex space
LA(E,F) of all adjointable operators from E to F is isomorphic to the
locally convex space Lysa)(M(E), M(F)) of all adjointable operators from
M(FE) to M(F) (Theorem 4.1). In particular the pro-C*-algebras L 4(F) and
Lyrca)(M(E)) are isomorphic. The last result is a generalization of a result
of Bakic and Guljas [2] which states that the C*-algebra of all adjointable
operators on a full Hilbert C*-module is isomorphic to the C*-algebra of
all adjointable operators on the multiplier module. Also we show that F
and F are unitarily equivalent if and only if M (E) and M (F') are unitarily
equivalent (Corollary 4.2).

2. Preliminaries. A pro-C*-algebra is a complete Hausdorff complex
topological *-algebra A whose topology is determined by its continuous C*-
seminorms in the sense that a net {a;};e; converges to 0 in A if and only
if the net {p(a;)}; converges to 0 for all continuous C*-seminorms p on A.
From now on, we denote the set of all such seminorms by S(A).
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Here, we recall some facts about pro-C*-algebras from [3, 4, 7, 11, 12].
Let A be a pro-C*-algebra.

A multiplier on A is a pair (I,r) of linear maps from A to A such
that [(ab) = l(a)b, r(ab) = ar(b) and al(b) = r(a)b for all a,b € A. The
set M(A) of all multipliers of A is a pro-C*-algebra with respect to the
topology determined by the family of C*-seminorms {pys(a) boe S(A), Where
py(ay(l,r) = sup{p(l(a)); p(a) < 1}

An approzimate unit for A is an increasing net {e;};c; of positive ele-
ments in A such that p(e;) < 1forallp € S(A) and i € I, and p(ae;—a) — 0
and p(e;a —a) — 0 for all p € S(A) and a € A. Any pro-C*-algebra has an
approximate unit.

An element a € A is bounded if ||a|lcc = sup{p(a); p € S(A)} < oo. The
set b(A) of all bounded elements in A is dense in A and it is a C*-algebra
in the C*-norm || - ||co-

By a morphism of pro-C*-algebras we always mean a continuous mor-
phism. Two pro-C*-algebras A and B are isomorphic if there is a bijec-
tive map @ : A — B such that ¢ and &' are morphisms of pro-C*-
algebras.

The set S(A) of all continuous C*-seminorms on A is directed by the
order p > q if p(a) > g(a) for all a € A. For each p € S(A), kerp = {a € A;
p(a) = 0} is a two-sided *-ideal of A and the quotient algebra A/kerp, de-
noted by Ay, is a C*-algebra in the C*-norm induced by p (see, for example,
[1]). The canonical map from A to A, is denoted by . For p,¢q € S(A) with
p > q there is a canonical surjective morphism of C*-algebras m,, : A, — A,
such that mpe(mp(a)) = my(a) for all a € A, which extends to a mor-
phism of C*-algebras 7, : M(A,) — M(Ay). Then {Ap; Tpq}pges(a)p>q
and {M(Ap); Ty }pqes(A)p>q are inverse systems of C*-algebras, and more-
over, the pro-C*-algebras A and M (A) are isomorphic to lim e 5(4)4p and
lim e 5(4)M(Ap), respectively.

Hilbert modules over pro-C*-algebras are generalizations of Hilbert C*-
modules by allowing the inner product to take values in a pro-C*-algebra
rather than in a C*-algebra. Here, we recall some facts about Hilbert mod-
ules over pro-C*-algebras from [5, 6, 7, 11, 15].

DEFINITION 2.1. A pre-Hilbert A-module is a complex vector space E
which is also a right A-module, compatible with the complex algebra struc-
ture, equipped with an A-valued inner product (-,-) : E x E'— A which is
C- and A-linear in its second variable and satisfies the following relations:

(i) (&m)* = (n,&) for every &, € E;
(ii) (£,&) > 0 for every & € E;
(iii) (&,&) =0 if and only if £ = 0.
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We say that F is a Hilbert A-module if E is complete with respect to the
topology determined by the family of seminorms {pg }pes(4), where pg(§) =

VP((§:6)), § € E.

An element £ € E is bounded if sup{pg(£); p € S(A)} < co. The set b(E)
of all bounded elements in F is a Hilbert b(A)-module which is dense in FE,
where b(A) = {a € A; sup{p(a); p € S(A)} < oo} is the so-called bounded
part of A and it is a C*-subalgebra of A (see, for example, [7, 11, 15]).

Any pro-C*-algebra A is a Hilbert A-module in a natural way.

A Hilbert A-module E is full if the linear space (F, E) generated by
{(¢&,n); &,m € E} is dense in A.

Let E be a Hilbert A-module. For p € S(A), kerpg = {{ € E; pp(§) =0}
is a closed submodule of E and E, = E/kerpg, is a Hilbert A,-module with
(€ +kerpp)mp(a) = Ea+ker by and ({+ker by, n+kerbg) = mp((€,m)) (see,
for example, 7, 11, 15]). The canonical map from E onto E, is denoted by
af . For p,q € S(A) with p > ¢ there is a canonical morphism of vector
spaces oy from E, onto E, such that o} (07(¢€)) = o2 () for & € E. Then
{Ep; Ap; U}Z’WPQ}PHES(A),Z)ZQ is an inverse system of Hilbert C*-modules in
the following sense: Uﬁl(fpap) = ng(fp)wpq(ap) for &, € E, and a, € Ap;
<‘7;€;(§p)7051(77p)> = mpg({&py Mp)) for Ep,mp € Ep; U;?p(fp) = §p for & € Ep;
and Ufroo'Eq = 05 if p > g > r; moreover, @peS(A)Ep is a Hilbert A-module
which can be identified with E.

We say that an A-module morphism T : E — F' is adjointable if there
is an A-module morphism 7™ : F' — E such that (T'¢,n) = (¢,T*n) for
every £ € E and n € F. Any adjointable A-module morphism 7' : £ — F'is
continuous (that is, for any p € S(A), there is M,, > 0 such that px(T'(¢)) <
Mypg(€) for all £ € E). The set La(E, F') of all adjointable A-module mor-
phisms from FE into F is a complete locally convex space with the topology
defined by the family of seminorms {py,, (g, r)}pes(a), where pp, (g r)(T) =

|G )T, iy for T € La(E, F) and (xF),(T)(02(€)) = of (T€)

for ¢ € E. Moreover, {LA (Ep, Fp); (7rpq )*}p,qES(A),quv where (WﬁI’F)* :
LA (Epv F ) - LA (Eanq)a

(Mpg)(Tp) (0 (€)) = g (T, (€))),

is an inverse system of Banach spaces, and lim ,cg(4)L 4,(Ep, Fp) can be
identified with L4(E, F'). Thus topologized, LA( , E) becomes a pro-C*-
algebra, and we write L4(F) for Lao(FE, E).

An element T in L4(FE, F) is said to be bounded in La(E, F) if ||T||s =
sup{pr,(g,r)(T); p € S(A)} < co. The set b(La(E, F)) of all bounded ele-
ments in L4 (F, F') is a Banach space with respect to the norm || - |0, which
is isometrically isomorphic to Ly4)(b(E), b(F)).
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For £ € E and n € F' we consider the rank one homomorphism 6, ¢
from E into F' defined by 6, ¢(() = n(§,(). Clearly, 0, ¢ € La(E,F) and
0% = f¢ - The closed linear subspace of L4(FE, F') spanned by {6, ¢; £ € E,
n € F} is denoted by K4(E, F), and we write K4(F) for K4(E, E). More-
over, K4(E, F') may be identified with lim e (1)K a, (Ep, Fp)-

We say that the Hilbert A-modules F and F' are unitarily equivalent
if there is a unitary element U in L4(E, F) (i.e., U*U = idg and UU* =
idp).

Given a countable family {E,}, of Hilbert A-modules, the set @, E,
of all sequences (&), with &, € E, such that > (&,,&,) converges in A
is a Hilbert A-module with the action of A on €p,, E,, defined by (&,)na =
(éna)yn and the inner product defined by ((§n)n, (Mn)n) = D, (&n, ). For
each p € S(A), the Hilbert Aj,-modules @,,(Ey), and (P,, Er)p are unitarily
equivalent and so the Hilbert A-modules €p,, £y, and lim e 54y €D,,(En)p are
unitarily equivalent. If E, = A for any n, the Hilbert A-module , A is
denoted by H 4.

3. Multiplier modules. Let A be a pro-C*-algebra and F a Hilbert
A-module. It is not difficult to check that L4(A, E) is a Hilbert L (A)-
module with the action of L4(A) on L4(A, E) defined by ¢ -m =t om for
t € Ly(A,E) and m € La(A), and with the L4(A)-valued inner product
defined by (s,t)r,(4) = s* o t. Moreover, since

5LA(A)(8* 0s) = ﬁLA(A,E) (5)2

forall s € Ls(A, E) and p € S(A), the topology on L 4(A, F) induced by the
inner product coincides with the topology determined by the family of semi-
norms {pr,,(a,r)pes(a). Therefore La(A, E) is a Hilbert L4(A)-module,
and since L4(A) can be identified with the multiplier algebra M(A) of A
(see, for example, [11]), La(A, E) becomes a Hilbert M (A)-module.

DEFINITION 3.1. The Hilbert M (A)-module L4 (A, E) is called the mul-
tiplier module of E, and denoted by M (E).

DEFINITION 3.2. The strict topology on M(FE) is the one generated
by the family of seminorms {|| - [lpa.¢}(pac)es(a)xaxm, Where [t

Pr(t(a)) + p(t*(£))-
THEOREM 3.3. Let A be a pro-C*-algebra and E a Hilbert A-module.

‘Pﬂ,f =

(i) {M(Ep);M(Ap);(W%E)*;ng}nqes(lq)’pzq is an inverse system of
Hilbert C*-modules.

(ii) The Hilbert M(A)-modules M(E) and lim pcg(4)M (Ep) are unitar-
ily equivalent.
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(iii) The isomorphism of (ii) identifies the strict topology on E with the
topology on @peS(A)M(Ep) obtained by taking the inverse limit of
the strict topologies on the M(E,)’s

(iv) M(E) is complete with respect to the strict topology.

(v) The map ig : E — M(E) defined by ig(§)(a) = &a, a € A, embeds
E as a closed submodule of M(E). Moreover, if t € M(FE) then
t-a =ig(t(a)) for all a € A and (t,ip(&))m@E) = t°(§) for all
¢EeE.

(vi) The image of ig is dense in M (E) with respect to the strict topology.

Proof. (i) Let p,q € S(A) with p > q, t,t1,t2 € M(Ep), b € M(A,).
Then

(g )e(t - 0)(mg()) = g ((t - D) (mp(a))) = g (t(bTp(a)))

and
(T P)(12), (T ). (82)) a1 1) (Mo (@) = ((T25P)(42)) (0 2 ()
= (mpg ™) (1) (g (t2(mp(a))))
= Tpg (7 © 12)(7p(a)))
= (mpg ™) (1 0 t2) (mg(a))
= (Wﬁq’ )+ ((t1, t2) () ) (g (@)

for all a € A. From these relations we deduce (i).

(ii) By (i), lim peg(ay M (Ep) is a Hilbert lim ,c (1) M (Ap)-module, and
since lim e g(4) M (Ap) can be identified with M(A), we can suppose that
lim e 54y M (Ep) is a Hilbert M (A)-module. The linear map U : M(E) —
lim e 5(a) M (Ep) defined by U(t) = (( fE)*(t))p is an isomorphism of lo-
cally convex spaces [11, Proposition 4.7]. Moreover,

(U, U aray = ((1,75)x (), (155 (8)) () )
= (") () (" F)u(8))
= ((my )t o t))p = (.t nr(a)

for all t € M(E). From [5, Proposition 3.3], we now deduce that U is a
unitary operator from M(E) to lim,eg4) M(Ep). Therefore the Hilbert
modules M (E) and lim ,cg(4) M (E)) are unitarily equivalent.

i

~
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(iii) We will show that the connecting maps (W%E)*, p,q € S(A) with
p > q, are strictly continuous. Indeed, from

162 (O]l 2y ). o8 ) = 11T () (@) I
[ NGINCA)]
= llogg(t(mp(@))llz, + llmpg (t* (7 (6))) 4,
< t(mp(a))llg, + 1 (05 ()4, = 1l 5, (@) 02 0)

for all a € A, £ € E, and t € M(E,), we deduce that (W]‘;‘q’E)* is strictly
continuous. Clearly, the net {¢;};c; converges strictly in M (FE) if and only
if the net {(Wﬁ’E)*(ti)}ig converges strictly in M (E,) for each p € S(A).

(iv) Since for each p€ S(A), M (E),) is strictly complete, lim ¢ 5(4) M (Ep)
is strictly complete, and then by (iii), so is M (E).

(v) Let p € S(A). The map ig, : £, — M(E,) defined by ig,(£,)(ap) =
&pap for a, € Ay and §, € E, embeds E, in M(E),) (see, for example,
[13]). It is not difficult to check that o o ig, = ig, o (ﬂz‘;‘(I’E)* for all p,q €
S(A) with p > q. Therefore {ig,}, is an inverse system of isometric linear
maps. Let ip = lim jcg(4) i, Identifying £ with lim e 54y Ep and M(E)
with lim ;e g(a) M (E,), we can suppose that ip is a linear map from E to
M(E). It is not difficult to check that ig(£)(a) = &a, ig(€a) = ig(§) - a and
(i£(€),ip(§)) M) = (§,€) for all a € A and € € E. Moreover, if t € M(E),
a € Aand € € F, then

(t-a)(c) =t(ac) = t(a)c = ip(t(a))(c)
and
(t,i5(8))aa)(c) = t"(§e) =t7(§)e = t"(§)(c)

for all c € A.
(vi) Let {e;}icr be an approximate unit for A and let t € M(E). By (v),

{t-e;}icrisanetin E. Let p € S(A), a € A, £ € E. Then
[t~ €i = tlpae =Pr((t-ei—t)(a)) +p((t-ei —1)"(E))
= Pp(t(eia —a)) +pleit”(§) — 7(¢))
< Pum(r)(t)pleia — a) + pleit™(§) — t*(€))-
Since {ej}ier is an approximate unit for A, we have p(e;a —a) — 0 and
pleit* (&) — t*(£)) — 0. Therefore {t - e;};cr converges strictly to ¢. m
REMARK 3.4. Let A be a pro-C*-algebra and F a Hilbert A-module.

(i) The multiplier module M(A) coincides with the Hilbert M (A)-
module M (A).
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(ii) According to Theorem 3.3(v), E can be identified with a closed
submodule of M (E). Thus, the image of an element & under ip will
also be denoted by &.

(iii) According to Theorem 3.3(v), EA C M(E)A C E. Since EA is
dense in E, we conclude that M (F)A is dense in E.

(iv) If A is unital, then E is complete with respect to the strict topology
and so E = M(FE).

(v) If K4(F) is unital, then, for each p € S(A), K,(E,) is unital and
by [2, Proposition 2.8], M (E,) = E,. From Theorem 3.3(ii) we now
deduce that F = M(E).

(vi) The map @ : b(La(A, E)) — Lya)(b(A),b(E)) defined by &(t) =
tlp(a), where |y 4) denotes the restriction of ¢ to b(A), is an isometric
isomorphism of Banach spaces [6, Theorem 3.7]. Since

P(t-b)(a) = (¢ b)[pa)(a) = t(ba)
and
(@(t) - b)(a) = (t[p(a) - b)(a) = t(ba)

for all t € b(La(A,E)), b € M(b(A)), and a
tary operator from b(L4(A, E)) to Ly ay(b(A),
the Hilbert M (b(A))-modules b(M(E)) and M
equivalent.

€ b(A), & is a uni-
E)) [9]. Therefore

b
(b(E)) are unitarily

Let {E,}, be a countable family of Hilbert A-modules and let

str-@,, M (Ey) = {(tn)n; tn € M(E,) and
> ntn oty converges strictly in M (A)}.

If o is a complex number and (t,), € str.-@, M(E,), then clearly
(atp)n € str.-€D,, M (Ey).

Let (tn)n € str.-@,, M(Ey,) with t = str.-lim, Y, t; o t. Clearly,
{> ki tf oty }n is an increasing sequence of positive elements in M(A).
Thus for any a € A and p € S(A), {p(>_j_; a*t;(tx(a)))}n is an increasing
sequence of positive numbers which converges to p(a*t(a)). If {e;}; is an
approximate unit for A, then

5LA(A)(;tZ otk> = sup {p(éti(t;&a))); a€ A, pla) < 1}

= sup { liglp<zeit2(tk(eia))); a€ A, pla) < 1}

k=1

< limp( Y eiti(tu(ei))) < Timpleit(e:)) < bryeam)(t):
k=1
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Let (tn)n, (Sn)n € str-@D,, M (E,) with

n n
t = str.- hﬁnZl&Z oty, s= str.-liyrlnz S} 0 Sk,
k=1 k=1
and a € A and p € S(A). Then
m

p(iSZ(tk(a))) :p(i<3k7tk>M(A)(a)) :p(z<3k7tk>M(A) 'a)

k=n k=n k=n

m
= DLa(A) ( > skt - a)M(A)) = D) ({(8k)kns (tk - @)kn) mr(a))
k=n

1/2

< PLa(a) ( > sk 5k:>M(A)) PLA(A) ( > k- aty - CL)J\4(,4))1/2

k=n k=n
(Cauchy—Schwarz inequality)
m 1/2

< D)) a3 ot (@) p(a)?
k=n

and
1/2

m m
(Y tilsn@) < P ®25ru (Yo (st o se)(@)  p(a)?
k=n k=n
for all positive integers n and m with m > n. Hence {d>_}'_; syoty} converges
strictly in M(A) and so (t, + Sn)n € str-@,, M (E,), since

P32+ 50" (e + 50(@) < p( 3 i(tr(@)) + (3 silona))
k=n

k=n k=n

b p(( D tion(@)) +p( 3 siltala))
k=n

k=n
for all positive integers n and m with n > m. It is not difficult to check
that str.-@, M (E,) with the above addition and multiplication by complex
scalars is a complex vector space.
Let b € M(A) and (t,), € str.-@,, M (E,). From

P30 b (- B(@) = o 3 b tp(ta(ba))) < p(5" Y ti(ea(ba))
k=n k=n

=N

< ol (( 3 it (ba)
k=n

for all a € A, p € S(A), and m > n, we conclude that > (¢, -b)* o (t, - b)
converges strictly in M (A) and so (t, - b),, € str.-@@, M(E,).
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THEOREM 3.5. Let {E,}, be a countable family of Hilbert A-modules.
Then the vector space str-@, M(E,) is a Hilbert M(A)-module with the
module action defined by (t,)n - b = (t, - b)y and the M(A)-valued inner
product defined by

<(tn)n7 (sn)n>M(A) = str.- hg_'LHZ tz O Sk.
k=1

Moreover, the Hilbert M(A)-modules str.-@,, M (E,) and M(ED,, E,) are

unitarily equivalent.

Proof. It is not difficult to check that str.-@, M(E,) with the above
inner product and action of M (A) is a pre-Hilbert M (A)-module. Let (t,), €
str.-@,, M(E,) and a € A. Since

p(Sttla) (@) = p( Xt (tu(a))) < plawn( 3 (0" 0 t)(@)
k

k=n =N k=n

for all p € S(A) and m > n, we have (t,(a)), € @,, En. It is not difficult
to check that the map U((ty),) from A to @,, E,, defined by U((t5)n)(a) =
(tn(a))n is a module morphism. Let (&,), € @,, Er, and p € S(A). Since

(3 tite) = {o(( it i <)
= s (6 ) o) <1}
)

= sup{p(<(§k:)? n (t6(@))52n)); pla) < 1}

=p(i<€k,€k )WSUP {p(i (a, ;. (tr(a )1/2; pla) < 1}

k=n k=n
(Cauchy—Schwarz inequality)

=p(i<§k,€k)l/28up{ (Zatktk ) ;p(a)sl}

k=n
< p( i<5ka§k )1/2pLA (Ztk o tk)
k=n

for m > n, it follows that ) t*(&,) converges in A. Thus we can define a
linear map U((tn)n)* : @,, M(E,) — A by

1/2

1/2
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Moreover, since

(U((t)n)(@); (€n)n) = ((Ea(@))ns (Ea)n) = D (tn(a), &n)

n

— Z a, t* a U(( ) )*((fn)n»

for all @ € A and (&,), € @n E,, we see that U((t,),) € M(D,, En).
Thus, we have defined a map U from str.-@@,, M (E,) to M(D,, Ey). It is
not difficult to check that U is a module morphism. Moreover,

(U((tn)n), U(sn)n))may(a) = U((tn)n)*(U((Sn)n)(a))
= U((tn)n) Zt* snla

= <(tn)na (Sn)n> (A)( )
for all @ € A and (t,)n, (Sn)n € str.-€p,, M (Ey).

Now, we will show that U is surjective. Let m be a positive integer.
Clearly, P, : @,, Er,— Ey, defined by Pp,((£n)n) =&m is in La(6D,, En, Em)-
Moreover, P;, is the embedding of E,, in @, Ey. Let t € M(D,, En), and
set t, = P, ot for each integer n. Then ¢, € M(FE,) for each n and t(a) =
(tn(a)), for all a € A. Therefore ), a*ty (t,(a)) converges in A for all a € A.
Moreover, > a*t} (tn(a)) = a*t*(t(a)) for all a € A, and so

Praco z) — sup {({ z oty @).a)); pla) < 1}
= aup {p( S tituta)): o) <1}
k=n

< sup{p(a”t*(t(a))); pla) <1} < pp,(a)(t" ot)
for all m > n and p € S(A). Let a € A. From

p(étwk(a)) (<Ztktk Ztktk ))
:p(<(§t;otk)<a>,(}itzotk)(aw)
=H<<w§’A>*(§tzom)m<a> (Ztkofk) i),
< H(ﬂﬁ’%(éti ots) <7fp<a>v”p(<,§_;fz o) @),

([10, Proposition 2.6])

L4, (Ap)
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< (3o no((n (L o) @)
< Pyt ot) (Za £ (te(a )

for all m > n and p € S(A), we conclude that ) ¢ (t,(a)) converges in A.
Therefore (t,), € str.-@,, M(E,). Moreover, U((t,),) = t and so U is
surjective. As

(U((tn)n), U((tn)n»M(A) = ((tn)n, (tn)n>M(A)
for all (t,), € str.-@D,, M (E,), we conclude that str.-@,, M (E,,) is a Hilbert
M (A)-module, and moreover U is a unitary operator [5, Proposition 3.3].
Therefore the Hilbert M (A)-modules str.-€p,, M (E,) and M (D, E,) are
unitarily equivalent. m

REMARK 3.6. Let {E,}, be a countable family of Hilbert A-modules.
In general, @, M(E,) is a submodule of M(€D,, E,); they coincide when
the pro-C*-algebra A is also unital.

4. Operators on multiplier modules. Let F and F' be Hilbert A-
modules. If T' € Ly 4)(M(E), M(F')), then

T(E) C T(M(E)A) = T(M(E))A C M(F)A = F.

Therefore T(E) C F. Clearly T'|g : E — F is a module morphism. Moreover,
T|g € La(E, F), since

(Te(€),n) =(T (i) ie(m)mwu)y=(ie(&), T (i) ) = & T |r(n)
forall £ € Fand ne F.
THEOREM 4.1. Let E and F' be Hilbert A-modules.

(i) If T € Lyjay(M(E), M(F)), then T is strictly continuous.
(ii) The locally convex spaces Lyja(M(E), M(F)) and La(E,F') are
isomorphic.
(iii) The pro-C*-algebras Ly ay(M(E)) and La(E) are isomorphic.
Proof. (i) Let {s;}i,cr be a net in M(FE) which converges strictly to 0.
From

pr(T(si)(a)) =pp(T(si-a)) =pp(T|e(si(a) < pr,er) (TIE)PE(si(a))
and

p(T(s:)"(€)) = p(si (T7(£)))
for all p € S(A), a € A, £ € F and i € I, we conclude that {T'(s;)}ier
converges strictly to 0. Therefore T is strictly continuous.
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(ii) We show that the map @ : Lysa)(M(E), M(F)) — La(E, F) defined
by @(T) = T'|g is an isomorphism of locally convex spaces. Clearly, @ is a
linear map. Moreover, @ is continuous, since

PrLae,R) (P(T)) = Pr,45,r) (T1E) < DLy iE),m@)(T)

for all T € Lpy(a)(M(E), M(F')) and p € S(A). To show that @ is injective,
let '€ Lygay(M(E), M(F')) be such that 7|z = 0. Then

Py r)(T(s)) = sup{pp(T(s)(a)); pla) < 1}
= sup{pp(T'(s-a)); p(a) <1} =0
for all s € M(FE) and p € S(A). Therefore T' = 0.

Let T € L(E,F). Then, for each s € M(E), T os € M(F). Define
T:M(E)— M(F) by T(s) =T os. Clearly, T is linear. Moreover,

T(s-b)(a) = T((s - b)(a)) = T(s(ba)) = T(s)(ba) = (T(s) - b)(a)

and
(T(s),m)ppay =8 0T or = (s,T" or)pr(a)

foralls € M(E),r € M(F),be M(A),and a € A. Hence T is an adjointable
module morphism. Therefore T € L M) (M(E), M(F)). It is not difficult
to check that T! g = T'. Thus & is surjective. Therefore it is a continuous
bijective linear map from Lj; 4y (M (E), M(F)) onto La(E, F'). Moreover,
& YT)(s)=Tosforalsec M(E)and T € La(E, F).

To show that @ is an isomorphism of locally convex spaces it remains to
prove that @~ is continuous. Let p € S(A) and T' € L4(E, F). Then

PLygay(2).01(7)) (D (T)) = sup{Bas(ry(T © 8); Pay(ey (5) < 1}
< sup{pr (&7 (T)PLaa,E)(5); Par)(s) < 1}
S ﬁLA(E,F) (T)

Hence ¢! is continuous. Moreover, we showed that DLy, (o (M(E),M( F))(T )
= ﬁLA(E,F)(T‘E) for all p € S(A)

(iii) We have shown that @ : Lpya)(M(E)) — La(FE) defined by
&(T) =T|g is an isomorphism of locally convex spaces. It is not diffi-
cult to check that also &(T1T2) = @(Th)P(T>) and &(T*) = &(T)* for
all T,T1,Ty € Lppa)(M(E)). Therefore ¢ is an isomorphism of pro-C*-
algebras. m

If EF and F are unitarily equivalent full Hilbert C*-modules, then the
Hilbert C*-modules M (E) and M (F') are unitarily equivalent [2, Proposition
1.7]. This is also valid for Hilbert modules over pro-C*-algebras.
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COROLLARY 4.2. Let E and F be Hilbert A-modules. Then E and F are
unitarily equivalent if and only if M(E) and M (F') are unitarily equivalent.

Proof. Indeed, E and F are unitarily equivalent if and only if there is
a unitary operator U in L4(E, F'). But it is not difficult to check that T' €
Lyray(M(E), M(F)) is unitary if and only if T'|g is unitary in La(E, F).
This yields the assertion. m

COROLLARY 4.3. If E is a Hilbert A-module, then K 4(E) is isomorphic
to an essential ideal of Kyr(a)(M(E)).

Proof. By the proof of Theorem 4.1, ! (K 4(E)) is a pro-C*-subalgebra
of Lys(a)(M(E)). Moreover, the pro-C*-algebras K4 (E) and ¢~ (K4(E))
are isomorphic. Clearly, &1 (K4(E)) is a two-sided #-ideal of K ;(4)(M(E)).
To show that @~ 1(K4(FE)) is essential, let £,n € E. If &~ 1(6¢ )04, 1, = 0 for
all t1,to € M(E), then

Oc.n((t1 0 ts ot3)(a)) =0
(

for all @ € A and t1,t9,t3 € M(E). As M(E)(M
in E, we conclude that 0¢, = 0. =

E), M(E))a)A is dense
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