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On multipliers of Hilbert modules over pro-C∗-algebras

by

Maria Joiţa (Bucureşti)

Abstract. We investigate the structure of the multiplier module of a Hilbert module
over a pro-C∗-algebra and the relationship between the set of all adjointable operators from
a Hilbert A-module E to a Hilbert A-module F and the set of all adjointable operators
from the multiplier module M(E) to M(F ).

1. Introduction. The notion of Hilbert C∗-module is a generalization
of the notion of Hilbert space by allowing the inner product to take values
in a C∗-algebra. Hilbert modules over commutative C∗-algebras were used
by I. Kaplansky [8] to show that derivations of type I AW ∗-algebras are
inner. The research on Hilbert modules over arbitrary C∗-algebras began
in the 70’s in [10, 14]. Hilbert C∗-modules are useful tools in the theory
of operator algebras, operator K-theory, KK-theory of C∗-algebras, group
representation theory, the C∗-algebraic theory of quantum groups and the
theory of operator spaces. In applications, one often assumes that Hilbert
modules are over C∗-algebras with countable approximate unit, because
for a given C∗-algebra A, the Hilbert C∗-modules A and HA (the Hilbert
C∗-module of all sequences (an)n in A such that

∑
n a
∗
nan converges in the

C∗-algebra A) are countably generated if and only if A has a countable
approximate unit. In [13], I. Raeburn and S. J. Thompson considered a
more general notion of countably generated module in which the generators
are multipliers of the module. With their definition, A and HA are countably
generated.

In this paper, we investigate the multipliers of Hilbert modules over pro-
C∗-algebras. Pro-C∗-algebras are generalizations of C∗-algebras. Instead of
being given by a single C∗-norm, the topology on a pro-C∗-algebra is defined
by a directed family of C∗-seminorms. Clearly, any C∗-algebra is a pro-C∗-
algebra. The set Ccc([0, 1]) of all complex-valued continuous functions on
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[0, 1] with the topology of uniform convergence on countable compact subsets
of [0, 1] is a pro-C∗-algebra which is not topologically isomorphic to any C∗-
algebra [3]. In [11, §1] other nice examples of pro-C∗-algebras are presented.
Besides their intrinsic interest as topological algebras, pro-C∗-algebras pro-
vide an important tool in investigation of certain aspects of C∗-algebras (like
multipliers of the Pedersen ideal, the tangent algebra of a C∗-algebra, crossed
product and K-theory, as well as non-commutative algebraic topology) and
quantum field theory. In the literature, pro-C∗-algebras have been given dif-
ferent names, such as b∗-algebras (C. Apostol), LMC∗-algebras (G. Lassner,
K. Schmüdgen) or locally C∗-algebras (A. Inoue, M. Fragoulopoulou).

Let A be a pro-C∗-algebra and let E be a Hilbert A-module. A multiplier
of E is an adjointable operator from A to E. The set M(E) of all multipliers
of E is a Hilbert module over the multiplier algebra M(A) of A in a natural
way. We show that M(E) is an inverse limit of multiplier modules of Hilbert
C∗-modules and E can be identified with a closed submodule of M(E) which
is strictly dense in M(E) (Theorem 3.3). For a countable family {En}n of
Hilbert A-modules, the multiplier module M(

⊕
nEn) can be identified with

the set of all sequences (tn)n with tn ∈M(En) such that
∑

n t
∗
n◦tn converges

strictly in M(A) (Theorem 3.5). This is a generalization of a result of Bakic
and Guljas [2] which sates that M(HA) is the set of all sequences (mn)n in
M(A) such that the series

∑
nm

∗
nmna and

∑
n am

∗
nmn converge in A for all

a in A.
Section 4 is devoted to the study of the connection between the set of

all adjointable operators between two Hilbert A-modules E and F and the
set of all adjointable operators between the respective multiplier modules
M(E) and M(F ). We show that any adjointable operator from M(E) to
M(F ) is strictly continuous (see Definition 3.2) and the locally convex space
LA(E,F ) of all adjointable operators from E to F is isomorphic to the
locally convex space LM(A)(M(E),M(F )) of all adjointable operators from
M(E) to M(F ) (Theorem 4.1). In particular the pro-C∗-algebras LA(E) and
LM(A)(M(E)) are isomorphic. The last result is a generalization of a result
of Bakic and Guljas [2] which states that the C∗-algebra of all adjointable
operators on a full Hilbert C∗-module is isomorphic to the C∗-algebra of
all adjointable operators on the multiplier module. Also we show that E
and F are unitarily equivalent if and only if M(E) and M(F ) are unitarily
equivalent (Corollary 4.2).

2. Preliminaries. A pro-C∗-algebra is a complete Hausdorff complex
topological ∗-algebra A whose topology is determined by its continuous C∗-
seminorms in the sense that a net {ai}i∈I converges to 0 in A if and only
if the net {p(ai)}i converges to 0 for all continuous C∗-seminorms p on A.
From now on, we denote the set of all such seminorms by S(A).
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Here, we recall some facts about pro-C∗-algebras from [3, 4, 7, 11, 12].
Let A be a pro-C∗-algebra.

A multiplier on A is a pair (l, r) of linear maps from A to A such
that l(ab) = l(a)b, r(ab) = ar(b) and al(b) = r(a)b for all a, b ∈ A. The
set M(A) of all multipliers of A is a pro-C∗-algebra with respect to the
topology determined by the family of C∗-seminorms {pM(A)}p∈S(A), where
pM(A)(l, r) = sup{p(l(a)); p(a) ≤ 1}.

An approximate unit for A is an increasing net {ei}i∈I of positive ele-
ments in A such that p(ei) ≤ 1 for all p ∈ S(A) and i ∈ I, and p(aei−a)→ 0
and p(eia− a)→ 0 for all p ∈ S(A) and a ∈ A. Any pro-C∗-algebra has an
approximate unit.

An element a ∈ A is bounded if ‖a‖∞ = sup{p(a); p ∈ S(A)} <∞. The
set b(A) of all bounded elements in A is dense in A and it is a C∗-algebra
in the C∗-norm ‖ · ‖∞.

By a morphism of pro-C∗-algebras we always mean a continuous mor-
phism. Two pro-C∗-algebras A and B are isomorphic if there is a bijec-
tive map Φ : A → B such that Φ and Φ−1 are morphisms of pro-C∗-
algebras.

The set S(A) of all continuous C∗-seminorms on A is directed by the
order p ≥ q if p(a) ≥ q(a) for all a ∈ A. For each p ∈ S(A), ker p = {a ∈ A;
p(a) = 0} is a two-sided ∗-ideal of A and the quotient algebra A/ker p, de-
noted by Ap, is a C∗-algebra in the C∗-norm induced by p (see, for example,
[1]). The canonical map from A to Ap is denoted by πp. For p, q ∈ S(A) with
p ≥ q there is a canonical surjective morphism of C∗-algebras πpq : Ap → Aq
such that πpq(πp(a)) = πq(a) for all a ∈ A, which extends to a mor-
phism of C∗-algebras π′′pq : M(Ap) → M(Aq). Then {Ap; πpq}p,q∈S(A),p≥q
and {M(Ap); π′′pq}p,q∈S(A),p≥q are inverse systems of C∗-algebras, and more-
over, the pro-C∗-algebras A and M(A) are isomorphic to lim←− p∈S(A)Ap and
lim←− p∈S(A)M(Ap), respectively.

Hilbert modules over pro-C∗-algebras are generalizations of Hilbert C∗-
modules by allowing the inner product to take values in a pro-C∗-algebra
rather than in a C∗-algebra. Here, we recall some facts about Hilbert mod-
ules over pro-C∗-algebras from [5, 6, 7, 11, 15].

Definition 2.1. A pre-Hilbert A-module is a complex vector space E
which is also a right A-module, compatible with the complex algebra struc-
ture, equipped with an A-valued inner product 〈·, ·〉 : E × E → A which is
C- and A-linear in its second variable and satisfies the following relations:

(i) 〈ξ, η〉∗ = 〈η, ξ〉 for every ξ, η ∈ E;
(ii) 〈ξ, ξ〉 ≥ 0 for every ξ ∈ E;

(iii) 〈ξ, ξ〉 = 0 if and only if ξ = 0.
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We say that E is a Hilbert A-module if E is complete with respect to the
topology determined by the family of seminorms {pE}p∈S(A), where pE(ξ) =√
p(〈ξ, ξ〉), ξ ∈ E.

An element ξ ∈ E is bounded if sup{pE(ξ); p ∈ S(A)} <∞. The set b(E)
of all bounded elements in E is a Hilbert b(A)-module which is dense in E,
where b(A) = {a ∈ A; sup{p(a); p ∈ S(A)} < ∞} is the so-called bounded
part of A and it is a C∗-subalgebra of A (see, for example, [7, 11, 15]).

Any pro-C∗-algebra A is a Hilbert A-module in a natural way.
A Hilbert A-module E is full if the linear space 〈E,E〉 generated by

{〈ξ, η〉; ξ, η ∈ E} is dense in A.
Let E be a Hilbert A-module. For p ∈ S(A), ker pE = {ξ ∈ E; pE(ξ) = 0}

is a closed submodule of E and Ep = E/ker pE is a Hilbert Ap-module with
(ξ+ ker pE)πp(a) = ξa+ ker pE and 〈ξ+ ker pE , η+ ker pE〉 = πp(〈ξ, η〉) (see,
for example, [7, 11, 15]). The canonical map from E onto Ep is denoted by
σEp . For p, q ∈ S(A) with p ≥ q there is a canonical morphism of vector
spaces σEpq from Ep onto Eq such that σEpq(σ

E
p (ξ)) = σEq (ξ) for ξ ∈ E. Then

{Ep;Ap;σEpq, πpq}p,q∈S(A), p≥q is an inverse system of Hilbert C∗-modules in
the following sense: σEpq(ξpap) = σEpq(ξp)πpq(ap) for ξp ∈ Ep and ap ∈ Ap;
〈σEpq(ξp), σEpq(ηp)〉 = πpq(〈ξp, ηp〉) for ξp, ηp ∈ Ep; σEpp(ξp) = ξp for ξp ∈ Ep;
and σEqr◦σEpq = σEpr if p ≥ q ≥ r; moreover, lim←− p∈S(A)Ep is a Hilbert A-module
which can be identified with E.

We say that an A-module morphism T : E → F is adjointable if there
is an A-module morphism T ∗ : F → E such that 〈Tξ, η〉 = 〈ξ, T ∗η〉 for
every ξ ∈ E and η ∈ F . Any adjointable A-module morphism T : E → F is
continuous (that is, for any p ∈ S(A), there is Mp > 0 such that pF (T (ξ)) ≤
MppE(ξ) for all ξ ∈ E). The set LA(E,F ) of all adjointable A-module mor-
phisms from E into F is a complete locally convex space with the topology
defined by the family of seminorms {p̃LA(E,F )}p∈S(A), where p̃LA(E,F )(T ) =
‖(πE,Fp )∗(T )‖LAp (Ep,Fp) for T ∈ LA(E,F ) and (πE,Fp )∗(T )(σEp (ξ)) = σFp (Tξ)

for ξ ∈ E. Moreover, {LAp(Ep, Fp); (πE,Fpq )∗}p,q∈S(A), p≥q, where (πE,Fpq )∗ :
LAp(Ep, Fp)→ LAq(Eq, Fq),

(πE,Fpq )∗(Tp)(σEq (ξ)) = σFpq(Tp(σ
E
p (ξ))),

is an inverse system of Banach spaces, and lim←− p∈S(A)LAp(Ep, Fp) can be
identified with LA(E,F ). Thus topologized, LA(E,E) becomes a pro-C∗-
algebra, and we write LA(E) for LA(E,E).

An element T in LA(E,F ) is said to be bounded in LA(E,F ) if ‖T‖∞ =
sup{p̃LA(E,F )(T ); p ∈ S(A)} < ∞. The set b(LA(E,F )) of all bounded ele-
ments in LA(E,F ) is a Banach space with respect to the norm ‖ · ‖∞, which
is isometrically isomorphic to Lb(A)(b(E), b(F )).
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For ξ ∈ E and η ∈ F we consider the rank one homomorphism θη,ξ
from E into F defined by θη,ξ(ζ) = η〈ξ, ζ〉. Clearly, θη,ξ ∈ LA(E,F ) and
θ∗η,ξ = θξ,η. The closed linear subspace of LA(E,F ) spanned by {θη,ξ; ξ ∈ E,
η ∈ F} is denoted by KA(E,F ), and we write KA(E) for KA(E,E). More-
over, KA(E,F ) may be identified with lim←− p∈S(A)KAp(Ep, Fp).

We say that the Hilbert A-modules E and F are unitarily equivalent
if there is a unitary element U in LA(E,F ) (i.e., U∗U = idE and UU∗ =
idF ).

Given a countable family {En}n of Hilbert A-modules, the set
⊕

nEn
of all sequences (ξn)n with ξn ∈ En such that

∑
n〈ξn, ξn〉 converges in A

is a Hilbert A-module with the action of A on
⊕

nEn defined by (ξn)na =
(ξna)n and the inner product defined by 〈(ξn)n, (ηn)n〉 =

∑
n〈ξn, ηn〉. For

each p ∈ S(A), the Hilbert Ap-modules
⊕

n(En)p and (
⊕

nEn)p are unitarily
equivalent and so the Hilbert A-modules

⊕
nEn and lim←− p∈S(A)

⊕
n(En)p are

unitarily equivalent. If En = A for any n, the Hilbert A-module
⊕

nA is
denoted by HA.

3. Multiplier modules. Let A be a pro-C∗-algebra and E a Hilbert
A-module. It is not difficult to check that LA(A,E) is a Hilbert LA(A)-
module with the action of LA(A) on LA(A,E) defined by t ·m = t ◦m for
t ∈ LA(A,E) and m ∈ LA(A), and with the LA(A)-valued inner product
defined by 〈s, t〉LA(A) = s∗ ◦ t. Moreover, since

p̃
LA(A)

(s∗ ◦ s) = p̃LA(A,E)(s)
2

for all s ∈ LA(A,E) and p ∈ S(A), the topology on LA(A,E) induced by the
inner product coincides with the topology determined by the family of semi-
norms {p̃LA(A,E)}p∈S(A). Therefore LA(A,E) is a Hilbert LA(A)-module,
and since LA(A) can be identified with the multiplier algebra M(A) of A
(see, for example, [11]), LA(A,E) becomes a Hilbert M(A)-module.

Definition 3.1. The Hilbert M(A)-module LA(A,E) is called the mul-
tiplier module of E, and denoted by M(E).

Definition 3.2. The strict topology on M(E) is the one generated
by the family of seminorms {‖ · ‖p,a,ξ}(p,a,ξ)∈S(A)×A×E , where ‖t‖p,a,ξ =
pE(t(a)) + p(t∗(ξ)).

Theorem 3.3. Let A be a pro-C∗-algebra and E a Hilbert A-module.

(i) {M(Ep);M(Ap); (πA,Epq )∗;π′′pq}p,q∈S(A), p≥q is an inverse system of
Hilbert C∗-modules.

(ii) The Hilbert M(A)-modules M(E) and lim←− p∈S(A)M(Ep) are unitar-
ily equivalent.
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(iii) The isomorphism of (ii) identifies the strict topology on E with the
topology on lim←− p∈S(A)M(Ep) obtained by taking the inverse limit of
the strict topologies on the M(Ep)’s.

(iv) M(E) is complete with respect to the strict topology.
(v) The map iE : E → M(E) defined by iE(ξ)(a) = ξa, a ∈ A, embeds

E as a closed submodule of M(E). Moreover , if t ∈ M(E) then
t · a = iE(t(a)) for all a ∈ A and 〈t, iE(ξ)〉M(E) = t∗(ξ) for all
ξ ∈ E.

(vi) The image of iE is dense in M(E) with respect to the strict topology.

Proof. (i) Let p, q ∈ S(A) with p ≥ q, t, t1, t2 ∈ M(Ep), b ∈ M(Ap).
Then

(πA,Epq )∗(t · b)(πq(a)) = σEpq((t · b)(πp(a))) = σEpq(t(bπp(a)))

= (πA,Epq )∗(t)(πpq(bπp(a)))

= (πA,Epq )∗(t)(π′′pq(b)πq(a))

= ((πA,Epq )∗(t) · π′′pq(b))(πq(a))

and

〈(πA,Epq )∗(t1), (πA,Epq )∗(t2)〉M(Eq)(πq(a)) = ((πA,Epq )∗(t1))∗(σEpq(t2(πp(a))))

= (πE,Apq )∗(t∗1)(σEpq(t2(πp(a))))

= πpq((t∗1 ◦ t2)(πp(a)))

= (πA,Apq )∗(t∗1 ◦ t2)(πq(a))

= (πA,Apq )∗(〈t1, t2〉M(Ep))(πq(a))

for all a ∈ A. From these relations we deduce (i).
(ii) By (i), lim←− p∈S(A)M(Ep) is a Hilbert lim←− p∈S(A)M(Ap)-module, and

since lim←− p∈S(A)M(Ap) can be identified with M(A), we can suppose that
lim←− p∈S(A)M(Ep) is a Hilbert M(A)-module. The linear map U : M(E) →
lim←− p∈S(A)M(Ep) defined by U(t) = ((πA,Ep )∗(t))p is an isomorphism of lo-
cally convex spaces [11, Proposition 4.7]. Moreover,

〈U(t), U(t)〉M(A) = (〈(πA,Ep )∗(t), (πA,Ep )∗(t)〉M(Ap))p

= ((πA,Ep )∗(t)∗(πA,Ep )∗(t))p

= ((πA,Ap )∗(t∗ ◦ t))p = 〈t, t〉M(A)

for all t ∈ M(E). From [5, Proposition 3.3], we now deduce that U is a
unitary operator from M(E) to lim←− p∈S(A)M(Ep). Therefore the Hilbert
modules M(E) and lim←− p∈S(A)M(Ep) are unitarily equivalent.
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(iii) We will show that the connecting maps (πA,Epq )∗, p, q ∈ S(A) with
p ≥ q, are strictly continuous. Indeed, from

‖(πA,Epq )∗(t)‖Eq ,πq(a),σE
q (ξ) = ‖(πA,Epq )∗(t)(πq(a))‖Eq

+ ‖((πA,Epq )∗(t))∗(σEq (ξ))‖Aq

= ‖σEpq(t(πp(a)))‖Eq + ‖πpq(t∗(σEp (ξ)))‖Aq

≤ ‖t(πp(a))‖Ep + ‖t∗(σEp (ξ))‖Ap = ‖t‖Ep,πp(a),σE
p (ξ)

for all a ∈ A, ξ ∈ E, and t ∈ M(Ep), we deduce that (πA,Epq )∗ is strictly
continuous. Clearly, the net {ti}i∈I converges strictly in M(E) if and only
if the net {(πA,Ep )∗(ti)}i∈I converges strictly in M(Ep) for each p ∈ S(A).

(iv) Since for each p∈S(A), M(Ep) is strictly complete, lim←− p∈S(A)M(Ep)
is strictly complete, and then by (iii), so is M(E).

(v) Let p ∈ S(A). The map iEp : Ep → M(Ep) defined by iEp(ξp)(ap) =
ξpap for ap ∈ Ap and ξp ∈ Ep embeds Ep in M(Ep) (see, for example,
[13]). It is not difficult to check that σEpq ◦ iEp = iEq ◦ (πA,Epq )∗ for all p, q ∈
S(A) with p ≥ q. Therefore {iEp}p is an inverse system of isometric linear
maps. Let iE = lim←− p∈S(A) iEp . Identifying E with lim←− p∈S(A)Ep and M(E)
with lim←− p∈S(A)M(Ep), we can suppose that iE is a linear map from E to
M(E). It is not difficult to check that iE(ξ)(a) = ξa, iE(ξa) = iE(ξ) · a and
〈iE(ξ), iE(ξ)〉M(A) = 〈ξ, ξ〉 for all a ∈ A and ξ ∈ E. Moreover, if t ∈ M(E),
a ∈ A and ξ ∈ E, then

(t · a)(c) = t(ac) = t(a)c = iE(t(a))(c)

and
〈t, iE(ξ)〉M(A)(c) = t∗(ξc) = t∗(ξ)c = t∗(ξ)(c)

for all c ∈ A.
(vi) Let {ei}i∈I be an approximate unit for A and let t ∈M(E). By (v),

{t · ei}i∈I is a net in E. Let p ∈ S(A), a ∈ A, ξ ∈ E. Then

‖t · ei − t‖p,a,ξ = pE((t · ei − t)(a)) + p((t · ei − t)∗(ξ))
= pE(t(eia− a)) + p(eit∗(ξ)− t∗(ξ))
≤ pM(E)(t)p(eia− a) + p(eit∗(ξ)− t∗(ξ)).

Since {ei}i∈I is an approximate unit for A, we have p(eia− a)→ 0 and
p(eit∗(ξ)− t∗(ξ))→ 0. Therefore {t · ei}i∈I converges strictly to t.

Remark 3.4. Let A be a pro-C∗-algebra and E a Hilbert A-module.

(i) The multiplier module M(A) coincides with the Hilbert M(A)-
module M(A).
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(ii) According to Theorem 3.3(v), E can be identified with a closed
submodule of M(E). Thus, the image of an element ξ under iE will
also be denoted by ξ.

(iii) According to Theorem 3.3(v), EA ⊆ M(E)A ⊆ E. Since EA is
dense in E, we conclude that M(E)A is dense in E.

(iv) If A is unital, then E is complete with respect to the strict topology
and so E = M(E).

(v) If KA(E) is unital, then, for each p ∈ S(A), KAp(Ep) is unital and
by [2, Proposition 2.8], M(Ep) = Ep. From Theorem 3.3(ii) we now
deduce that E = M(E).

(vi) The map Φ : b(LA(A,E)) → Lb(A)(b(A), b(E)) defined by Φ(t) =
t|b(A), where t|b(A) denotes the restriction of t to b(A), is an isometric
isomorphism of Banach spaces [6, Theorem 3.7]. Since

Φ(t · b)(a) = (t · b)|b(A)(a) = t(ba)

and
(Φ(t) · b)(a) = (t|b(A) · b)(a) = t(ba)

for all t ∈ b(LA(A,E)), b ∈ M(b(A)), and a ∈ b(A), Φ is a uni-
tary operator from b(LA(A,E)) to Lb(A)(b(A), b(E)) [9]. Therefore
the Hilbert M(b(A))-modules b(M(E)) and M(b(E)) are unitarily
equivalent.

Let {En}n be a countable family of Hilbert A-modules and let

str.-
⊕

nM(En) = {(tn)n; tn ∈M(En) and∑
nt
∗
n ◦ tn converges strictly in M(A)}.

If α is a complex number and (tn)n ∈ str.-
⊕

nM(En), then clearly
(αtn)n ∈ str.-

⊕
nM(En).

Let (tn)n ∈ str.-
⊕

nM(En) with t = str.- limn
∑n

k=1 t
∗
k ◦ tk. Clearly,

{
∑n

k=1 t
∗
k ◦ tk}n is an increasing sequence of positive elements in M(A).

Thus for any a ∈ A and p ∈ S(A), {p(
∑n

k=1 a
∗t∗k(tk(a)))}n is an increasing

sequence of positive numbers which converges to p(a∗t(a)). If {ei}i is an
approximate unit for A, then

p̃LA(A)

( n∑
k=1

t∗k ◦ tk
)

= sup
{
p
( n∑
k=1

t∗k(tk(a))
)

; a ∈ A, p(a) ≤ 1
}

= sup
{

lim
i
p
( n∑
k=1

eit
∗
k(tk(eia))

)
; a ∈ A, p(a) ≤ 1

}
≤ lim

i
p
( n∑
k=1

eit
∗
k(tk(ei))

)
≤ lim

i
p(eit(ei)) ≤ p̃LA(A,E)(t).
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Let (tn)n, (sn)n ∈ str.-
⊕

nM(En) with

t = str.- lim
n

n∑
k=1

t∗k ◦ tk, s = str.- lim
n

n∑
k=1

s∗k ◦ sk,

and a ∈ A and p ∈ S(A). Then

p
( m∑
k=n

s∗k(tk(a))
)

= p
( m∑
k=n

〈sk, tk〉M(A)(a)
)

= p
( m∑
k=n

〈sk, tk〉M(A) · a
)

= p̃LA(A)

( m∑
k=n

〈sk, tk · a〉M(A)

)
= p̃LA(A)(〈(sk)mk=n, (tk · a)mk=n〉M(A))

≤ p̃LA(A)

( m∑
k=n

〈sk, sk〉M(A)

)1/2
p̃LA(A)

( m∑
k=n

〈tk · a, tk · a〉M(A)

)1/2

(Cauchy–Schwarz inequality)

≤ p̃LA(A)(s)
1/2p̃LA(A)

( m∑
k=n

(t∗k ◦ tk)(a)
)1/2

p(a)1/2

and

p
( m∑
k=n

t∗k(sk(a))
)
≤ p̃LA(A)(t)

1/2p̃LA(A)

( m∑
k=n

(s∗k ◦ sk)(a)
)1/2

p(a)1/2

for all positive integers n andm withm ≥ n. Hence {
∑n

k=1 s
∗
k◦tk}n converges

strictly in M(A) and so (tn + sn)n ∈ str.-
⊕

nM(En), since

p
( m∑
k=n

(tk + sk)∗((tk + sk)(a))
)
≤ p
( m∑
k=n

t∗k(tk(a))
)

+ p
( m∑
k=n

s∗k(sk(a))
)

+ p
( m∑
k=n

t∗k(sk(a))
)

+ p
( m∑
k=n

s∗k(tk(a))
)

for all positive integers n and m with n ≥ m. It is not difficult to check
that str.-

⊕
nM(En) with the above addition and multiplication by complex

scalars is a complex vector space.
Let b ∈M(A) and (tn)n ∈ str.-

⊕
nM(En). From

p
( m∑
k=n

(tk · b)∗((tk · b)(a))
)

= p
( m∑
k=n

b∗t∗k(tk(ba))
)
≤ p
(
b∗

m∑
k=n

t∗k(tk(ba))
)

≤ p(b)p
( m∑
k=n

t∗n(tn(ba))
)

for all a ∈ A, p ∈ S(A), and m ≥ n, we conclude that
∑

n(tn · b)∗ ◦ (tn · b)
converges strictly in M(A) and so (tn · b)n ∈ str.-

⊕
nM(En).
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Theorem 3.5. Let {En}n be a countable family of Hilbert A-modules.
Then the vector space str.-

⊕
nM(En) is a Hilbert M(A)-module with the

module action defined by (tn)n · b = (tn · b)n and the M(A)-valued inner
product defined by

〈(tn)n, (sn)n〉M(A) = str.- lim
n

n∑
k=1

t∗k ◦ sk.

Moreover , the Hilbert M(A)-modules str.-
⊕

nM(En) and M(
⊕

nEn) are
unitarily equivalent.

Proof. It is not difficult to check that str.-
⊕

nM(En) with the above
inner product and action ofM(A) is a pre-HilbertM(A)-module. Let (tn)n ∈
str.-

⊕
nM(En) and a ∈ A. Since

p
( m∑
k=n

〈tk(a), tk(a)〉
)

= p
( m∑
k=n

a∗tk
∗(tk(a))

)
≤ p(a)p

( m∑
k=n

(tk∗ ◦ tk)(a)
)

for all p ∈ S(A) and m ≥ n, we have (tn(a))n ∈
⊕

nEn. It is not difficult
to check that the map U((tn)n) from A to

⊕
nEn defined by U((tn)n)(a) =

(tn(a))n is a module morphism. Let (ξn)n ∈
⊕

nEn and p ∈ S(A). Since

p
( m∑
k=n

t∗k(ξk)
)

= sup
{
p
(〈 m∑

k=n

t∗k(ξk), a
〉)

; p(a) ≤ 1
}

= sup
{
p
( m∑
k=n

〈ξk, tk(a)〉
)

; p(a) ≤ 1
}

= sup{p(〈(ξk)mk=n, (tk(a))mk=n〉); p(a) ≤ 1}

= p
( m∑
k=n

〈ξk, ξk〉
)1/2

sup
{
p
( m∑
k=n

〈a, t∗k(tk(a))〉
)1/2

; p(a) ≤ 1
}

(Cauchy–Schwarz inequality)

= p
( m∑
k=n

〈ξk, ξk〉
)1/2

sup
{
p
( m∑
k=n

a∗t∗k(tk(a))
)1/2

; p(a) ≤ 1
}

≤ p
( m∑
k=n

〈ξk, ξk〉
)1/2

p̃LA(A)

(∑
n

t∗k ◦ tk
)1/2

for m ≥ n, it follows that
∑

n t
∗
n(ξn) converges in A. Thus we can define a

linear map U((tn)n)∗ :
⊕

nM(En)→ A by

U((tn)n)∗((ξn)n) =
∑
n

t∗n(ξn).
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Moreover, since

〈U((tn)n)(a), (ξn)n〉 = 〈(tn(a))n, (ξn)n〉 =
∑
n

〈tn(a), ξn〉

=
∑
n

〈a, t∗n(ξn)〉 = 〈a, U((tn)n)∗((ξn)n)〉

for all a ∈ A and (ξn)n ∈
⊕

nEn, we see that U((tn)n) ∈ M(
⊕

nEn).
Thus, we have defined a map U from str.-

⊕
nM(En) to M(

⊕
nEn). It is

not difficult to check that U is a module morphism. Moreover,

〈U((tn)n), U((sn)n)〉M(A)(a) = U((tn)n)∗(U((sn)n)(a))

= U((tn)n)∗((sn(a))n) =
∑
n

t∗n(sn(a)))

= 〈(tn)n, (sn)n〉M(A)(a)

for all a ∈ A and (tn)n, (sn)n ∈ str.-
⊕

nM(En).
Now, we will show that U is surjective. Let m be a positive integer.

Clearly, Pm :
⊕

nEn→Em defined by Pm((ξn)n)=ξm is in LA(
⊕

nEn, Em).
Moreover, P ∗m is the embedding of Em in

⊕
nEn. Let t ∈ M(

⊕
nEn), and

set tn = Pn ◦ t for each integer n. Then tn ∈ M(En) for each n and t(a) =
(tn(a))n for all a ∈ A. Therefore

∑
n a
∗t∗n(tn(a)) converges in A for all a ∈ A.

Moreover,
∑

n a
∗t∗n(tn(a)) = a∗t∗(t(a)) for all a ∈ A, and so

p̃LA(A)

( m∑
k=n

t∗k ◦ tk
)

= sup
{
p
(〈( m∑

k=n

t∗k ◦ tk
)

(a), a
〉)

; p(a) ≤ 1
}

= sup
{
p
( m∑
k=n

a∗t∗k(tk(a))
)

; p(a) ≤ 1
}

≤ sup{p(a∗t∗(t(a))); p(a) ≤ 1} ≤ p̃LA(A)(t
∗ ◦ t)

for all m ≥ n and p ∈ S(A). Let a ∈ A. From

p
( m∑
k=n

t∗k(tk(a))
)2

= p
(〈 m∑

k=n

t∗k(tk(a)),
m∑
k=n

t∗k(tk(a))
〉)

= p
(〈( m∑

k=n

t∗k ◦ tk
)

(a),
( m∑
k=n

t∗k ◦ tk
)

(a)
〉)

=
∥∥∥〈(πA,Ap )∗

( m∑
k=n

t∗k ◦ tk
)

(πp(a)), (πA,Ap )∗
( m∑
k=n

t∗k ◦ tk
)

(πp(a))
〉∥∥∥

Ap

≤
∥∥∥(πA,Ap )∗

( m∑
k=n

t∗k ◦ tk
)∥∥∥

LAp (Ap)

∥∥∥〈πp(a), πp
(( m∑

k=n

t∗k ◦ tk
)

(a)
)〉∥∥∥

Ap

([10, Proposition 2.6])
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≤ p̃LA(A)

( m∑
k=n

t∗k ◦ tk
)
p
(〈
a,
( m∑
k=n

t∗k ◦ tk
)

(a)
〉)

≤ p̃LA(A)(t
∗ ◦ t)p

( m∑
k=n

a∗t∗k(tk(a))
)

for all m ≥ n and p ∈ S(A), we conclude that
∑

n t
∗
n(tn(a)) converges in A.

Therefore (tn)n ∈ str.-
⊕

nM(En). Moreover, U((tn)n) = t and so U is
surjective. As

〈U((tn)n), U((tn)n)〉M(A) = 〈(tn)n, (tn)n〉M(A)

for all (tn)n ∈ str.-
⊕

nM(En), we conclude that str.-
⊕

nM(En) is a Hilbert
M(A)-module, and moreover U is a unitary operator [5, Proposition 3.3].
Therefore the Hilbert M(A)-modules str.-

⊕
nM(En) and M(

⊕
nEn) are

unitarily equivalent.

Remark 3.6. Let {En}n be a countable family of Hilbert A-modules.
In general,

⊕
nM(En) is a submodule of M(

⊕
nEn); they coincide when

the pro-C∗-algebra A is also unital.

4. Operators on multiplier modules. Let E and F be Hilbert A-
modules. If T ∈ LM(A)(M(E),M(F )), then

T (E) ⊆ T (M(E)A) = T (M(E))A ⊆M(F )A = F.

Therefore T (E) ⊆ F . Clearly T |E : E → F is a module morphism. Moreover,
T |E ∈ LA(E,F ), since

〈T |E(ξ), η〉=〈T (iE(ξ)), iE(η)〉M(A) =〈iE(ξ), T ∗(iE(η))〉M(A) = 〈ξ, T ∗|F (η)〉
for all ξ ∈ E and η ∈ F .

Theorem 4.1. Let E and F be Hilbert A-modules.

(i) If T ∈ LM(A)(M(E),M(F )), then T is strictly continuous.
(ii) The locally convex spaces LM(A)(M(E),M(F )) and LA(E,F ) are

isomorphic.
(iii) The pro-C∗-algebras LM(A)(M(E)) and LA(E) are isomorphic.

Proof. (i) Let {si}i∈I be a net in M(E) which converges strictly to 0.
From

pF (T (si)(a)) = pF (T (si · a)) = pF (T |E(si(a))) ≤ p̃LA(E,F )(T |E)pE(si(a))

and
p(T (si)∗(ξ)) = p(s∗i (T

∗(ξ)))

for all p ∈ S(A), a ∈ A, ξ ∈ F and i ∈ I, we conclude that {T (si)}i∈I
converges strictly to 0. Therefore T is strictly continuous.
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(ii) We show that the map Φ : LM(A)(M(E),M(F ))→ LA(E,F ) defined
by Φ(T ) = T |E is an isomorphism of locally convex spaces. Clearly, Φ is a
linear map. Moreover, Φ is continuous, since

p̃LA(E,F )(Φ(T )) = p̃LA(E,F )(T |E) ≤ p̃LM(A)(M(E),M(F ))(T )

for all T ∈ LM(A)(M(E),M(F )) and p ∈ S(A). To show that Φ is injective,
let T ∈ LM(A)(M(E),M(F )) be such that T |E = 0. Then

pM(F )(T (s)) = sup{pF (T (s)(a)); p(a) ≤ 1}

= sup{pF (T (s · a)); p(a) ≤ 1} = 0

for all s ∈M(E) and p ∈ S(A). Therefore T = 0.
Let T ∈ L(E,F ). Then, for each s ∈ M(E), T ◦ s ∈ M(F ). Define

T̃ : M(E)→M(F ) by T̃ (s) = T ◦ s. Clearly, T̃ is linear. Moreover,

T̃ (s · b)(a) = T ((s · b)(a)) = T (s(ba)) = T̃ (s)(ba) = (T̃ (s) · b)(a)

and
〈T̃ (s), r〉M(A) = s∗ ◦ T ∗ ◦ r = 〈s, T ∗ ◦ r〉M(A)

for all s ∈M(E), r ∈M(F ), b ∈M(A), and a ∈ A. Hence T̃ is an adjointable
module morphism. Therefore T̃ ∈ LM(A)(M(E),M(F )). It is not difficult
to check that T̃ |E = T . Thus Φ is surjective. Therefore it is a continuous
bijective linear map from LM(A)(M(E),M(F )) onto LA(E,F ). Moreover,
Φ−1(T )(s) = T ◦ s for all s ∈M(E) and T ∈ LA(E,F ).

To show that Φ is an isomorphism of locally convex spaces it remains to
prove that Φ−1 is continuous. Let p ∈ S(A) and T ∈ LA(E,F ). Then

p̃LM(A)(M(E),M(F ))(Φ
−1(T )) = sup{pM(F )(T ◦ s); pM(E)(s) ≤ 1}

≤ sup{p̃LA(E,F )(T )p̃LA(A,E)(s); pM(E)(s) ≤ 1}

≤ p̃LA(E,F )(T ).

Hence Φ−1 is continuous. Moreover, we showed that p̃LM(A)(M(E),M(F ))(T )
= p̃LA(E,F )(T |E) for all p ∈ S(A).

(iii) We have shown that Φ : LM(A)(M(E)) → LA(E) defined by
Φ(T ) = T |E is an isomorphism of locally convex spaces. It is not diffi-
cult to check that also Φ(T1T2) = Φ(T1)Φ(T2) and Φ(T ∗) = Φ(T )∗ for
all T, T1, T2 ∈ LM(A)(M(E)). Therefore Φ is an isomorphism of pro-C∗-
algebras.

If E and F are unitarily equivalent full Hilbert C∗-modules, then the
Hilbert C∗-modulesM(E) andM(F ) are unitarily equivalent [2, Proposition
1.7]. This is also valid for Hilbert modules over pro-C∗-algebras.



276 M. Joiţa

Corollary 4.2. Let E and F be Hilbert A-modules. Then E and F are
unitarily equivalent if and only if M(E) and M(F ) are unitarily equivalent.

Proof. Indeed, E and F are unitarily equivalent if and only if there is
a unitary operator U in LA(E,F ). But it is not difficult to check that T ∈
LM(A)(M(E),M(F )) is unitary if and only if T |E is unitary in LA(E,F ).
This yields the assertion.

Corollary 4.3. If E is a Hilbert A-module, then KA(E) is isomorphic
to an essential ideal of KM(A)(M(E)).

Proof. By the proof of Theorem 4.1, Φ−1(KA(E)) is a pro-C∗-subalgebra
of LM(A)(M(E)). Moreover, the pro-C∗-algebras KA(E) and Φ−1(KA(E))
are isomorphic. Clearly, Φ−1(KA(E)) is a two-sided ∗-ideal ofKM(A)(M(E)).
To show that Φ−1(KA(E)) is essential, let ξ, η ∈ E. If Φ−1(θξ,η)θt1,t2 = 0 for
all t1, t2 ∈M(E), then

θξ,η((t1 ◦ t∗2 ◦ t3)(a)) = 0

for all a ∈ A and t1, t2, t3 ∈ M(E). As M(E)〈M(E),M(E)〉M(A)A is dense
in E, we conclude that θξ,η = 0.
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