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Weakly countably determined spaces of high complexity

by

Antonio Avilés (Paris)

Abstract. We prove that there exist weakly countably determined spaces of com-
plexity higher than coanalytic. On the other hand, we also show that coanalytic sets can
be characterized by the existence of a cofinal adequate family of closed sets. Therefore the
Banach spaces constructed by means of these families have at most coanalytic complexity.

1. Introduction. We deal with the descriptive complexity of a Banach
space X with respect to weak∗ compact subsets of the double dual X∗∗.
The simplest Banach spaces in this sense are reflexive spaces, which have a
weakly compact ball and hence are Kσ (that is, σ-compact) subsets of the
double dual. On the next level of complexity we find the class of Banach
spaces which are Kσδ subsets (that is, countable intersections of Kσ sets) of
their double dual, which includes all weakly compactly generated (WCG)
spaces. Vašák [11] and Talagrand [9] introduced, respectively, the following
two further descriptive classes:

Definition 1. A Banach space X is called weakly countably determined
(WCD) if there exists a family {Ks : s ∈ ω<ω} of weak∗ compact subsets
of X∗∗, and a set A ⊂ ωω, such that

X =
⋃
a∈A

⋂
n<ω

Ka|n.

Definition 2. A Banach space X is called weakly K-analytic (WKA) if
there exists a family {Ks : s ∈ ω<ω} of weak∗ compact subsets of X∗∗, and
an analytic set A ⊂ ωω, such that

X =
⋃
a∈A

⋂
n<ω

Ka|n.
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Actually, in the case of WKA spaces, the analytic set A can be chosen
to be the whole Baire space A = ωω (1). Thus, the picture of the descriptive
classes already considered in those works is the following:

WCG ⊂ Kσδ ⊂WKA ⊂WCD.

An important problem concerning this hierarchy is the “separation” prob-
lem, that is, constructing examples showing that the above inclusions are
proper. To solve this problem, Talagrand used the technique of so-called
adequate families of sets (2), which allowed him to produce two examples:

• A Banach space which is Kσδ but not weakly compactly generated [9].
• A weakly countably determined space which is not weakly K-analytic

[10].

The remaining separation problem was left open by Talagrand and has
recently been solved by Argyros, Arvanitakis and Mercourakis [1], who pro-
vide an example of a WKA space which is not a Kσδ space. They construct
their example by a technique different from Talagrand’s adequate families,
by using the so-called Reznichenko families of trees. Actually, their result
shows that it is impossible to produce a Kσδ non-WKA space using adequate
families, which explains Talagrand’s failure to solve this question. Argyros,
Arvanitakis and Mercourakis have also succeeded in showing that not only
can the classes Kσδ and WKA be separated, but there is in fact a whole
Borel hierarchy of spaces between them,

Kσδ ⊂ Kσδσδ ⊂ · · · ⊂WKA.

In this note, we shall focus on higher levels of this hierarchy, on the
gap between WKA and WCD. If one looks at Talagrand’s example [10]
separating these two classes, one realizes that the setA ⊂ ωω which witnesses
that the example is WCD is actually a complete coanalytic set. We propose
the following definition:

Definition 3. Let C be a class of separable metrizable spaces. A Banach
space is said to be weakly C-determined if there exists a family {Ks : s ∈
ω<ω} of weak∗ compact subsets of X∗∗, and a set A ∈ C, A ⊂ ωω, such that

X =
⋃
a∈A

⋂
n<ω

Ka|n.

In this language, Talagrand’s example [10] is a weakly Π1
1-determined

space which is not weakly Σ1
1-determined (the symbols Π1

1 and Σ1
1 represent

(1) The reader can try to check this directly as an exercise, or else consider the
characterizations of these concepts in terms of uscos [4, pp. 117–118, 142]; remember that
any analytic set is a continuous image of ωω.

(2) Talagrand attributes the concept of adequate family to Roman Pol (cf. [9, p. 417]).
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the classes of coanalytic and analytic sets (3) in the logical notation, cf. [7]).
The natural question arises: Are there WCD spaces of higher complexity?
Namely, are there WCD spaces that are not weakly Π1

1-determined? The two
main results of this note are motivated by this problem and draw a similar
picture as the one obtained by Argyros, Arvanitakis and Mercourakis on the
lower level of the hierarchy.

We first analyze the technique of adequate families that Talagrand used
for his two examples. We simplify this construction and show that the right
framework for it is that of coanalytic sets. Again, although for different
reasons than in the Kσδ problem, our Theorem 11 shows that Talagrand’s
technique cannot produce WCD spaces of higher complexity than coanalytic.
This result is actually an intrinsic topological characterization of coanalytic
sets which may be of independent interest.

Our second result states that the technique of Reznichenko families of
trees developed in [1] does give a positive answer to our question: There are
WCD spaces of complexity higher than coanalytic, actually there are WCD
spaces of arbitrarily high complexity, in a sense that will be made precise.
In particular, all projective classes can be separated:

Theorem 4. For every n ≥ 1 there exists a Banach space which is
weakly Σ1

n+1-determined but not weakly Σ1
n-determined.

2. General facts about WCD spaces

Definition 5. A class C of separable metrizable spaces will be called
nice if it is closed under the following operations:

• closed subspaces,
• continuous images,
• countable products,
• Wadge reduction, that is, if f : A → B is a continuous function be-

tween Polish spaces, C ⊂ B, C ∈ C, then f−1(C) ∈ C.

Definition 6. Let Γ be an uncountable set, let K ⊂ RΓ be a compact
subset, and D a separable metrizable space. A mapping f : Γ → D is called
a determining function if for every x ∈ K, every compact subset C ⊂ D,
and every ε > 0 the set {γ ∈ f−1(C) : |xγ | > ε} is finite.

We leave it to the reader to check that the fact that f as above is a
determining function is equivalent to any of the following two statements:

(3) It is usually said that a subset A of a Polish space X is Borel, analytic, coanalytic,
Σ1
n, Π1

n, etc. However, all these properties are intrinsic topological properties of A which
do not depend on the Polish superspace [7]. Thus we talk about separable metrizable
spaces which are Borel, analytic and so on.
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(i) For every x ∈ K and ε > 0 there is a neighborhood V of x in K such
that {γ ∈ f−1(V ) : |xγ | > ε} is finite.

(ii) For every x ∈ K and ε > 0 the restriction of f to the set {γ ∈ Γ :
|xγ | > ε} is finite-to-one and has a closed and discrete range.

All the Banach spaces that we consider in this note are spaces C(K) of
continuous functions. The following theorem provides a useful criterion for
C(K) to be weakly C-determined. The history of this result embraces [9],
[6], [2], [8] and [5]. Originally it has been stated for WKA or WCD spaces,
but it holds for any nice class C.

Theorem 7. Let C be a nice class and let K ⊂ RΓ be a compact set such
that every x ∈ K has countable support , that is, |{γ ∈ Γ : xγ 6= 0}| ≤ ω.
Then the following are equivalent :

(1) C(K) is a weakly C-determined space.
(2) There exists D ∈ C and a determining function f : Γ → D.

Proof. First of all, in (2), D can be taken to be a subset of ωω. The reason
is that, because C is closed under Wadge reductions, for every D1 ∈ C there
exists D2 ⊂ ωω with D2 ∈ C such that D2 maps continuously onto D1, and
we have the following fact:

Lemma 8. If f : Γ → D2 is a determining function and g : D1 → D2 is a
continuous surjection, then there exists a determining function f ′ : Γ → D1.

Proof of the lemma. Choose any mapping s : D2 → D1 (not necessarily
continuous) such that gs = 1D2 . We prove that sf : Γ → D1 is a determining
function. Indeed, otherwise there would exist x ∈ K, ε > 0 and C ⊂ D1

compact such that {γ ∈ (sf)−1(C) : |xγ | > ε} is infinite. But

{γ ∈ (sf)−1(C) : |xγ | > ε} ⊂ {γ ∈ f−1(g(C)) : |xγ | > ε}.
This contradicts the assumption that f is a determining function.

After this observation, the statement of the theorem is the same as [5,
Theorem 10(c)] after changing “K is Talagrand compact” to “C(K) ∈ C”,
“Γ =

⋃
σ∈ωω

⋂∞
j=1 Γσ|j” to “Γ =

⋃
σ∈D

⋂∞
j=1 Γσ|j for some D ∈ C”, and

“∀σ ∈ ωω” to “∀σ ∈ D”. It is now a long but straightforward exercise that
the proofs of [5, Theorems 4 and 10(c)], with obvious modifications, yield
the assertion of Theorem 7.

The compact spaces K for which C(K) is WCG, WKA and WCD are
called Eberlein, Talagrand and Gul’ko compact respectively. We define C-
Gul’ko compact spaces to be those compact spaces K for which C(K) is
weakly C-determined.

3. Adequate families on coanalytic sets. A family A of subsets of
a set X is called adequate if it has the following two properties:
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• If A ∈ A and B ⊂ A, then B ∈ A.
• If B ⊂ X is such that all finite subsets of B belong to A, then B ∈ A.

In other words, to say that A is an adequate family is equivalent to
saying that a subset B ⊂ X belongs to A if and only if every finite subset
of B belongs to A. Every adequate family of subsets of X can be naturally
viewed as a closed subset of the product {0, 1}X , and hence is a compact
Hausdorff space.

A case of interest for us occurs when X is a separable metrizable space
and A is an adequate family of closed subsets of X (actually closed and dis-
crete, since the family is hereditary), because then we get a weakly countably
determined space:

Theorem 9. Let C be a nice class, X ∈ C, and A an adequate family of
closed subsets of X. Then C(A) is a weakly C-determined Banach space.

This follows immediately from Theorem 7, just taking the identity f :
X → X as a determining function. Talagrand’s example from [9] is an
adequate family of closed subsets of X = ωω, and the one from [10] is an
adequate family of closed subsets of X = WF, the set of well founded trees
on ω<ω, the standard complete coanalytic set. The fact that the former
Banach space is WKA and the latter is WCD follows immediately from
the above theorem. But the negative part, that they are not WCG and
WKA respectively, needs further arguments and relies on the fact that these
adequate families are big enough (of course, not any adequate family of
closed sets would work). We have isolated the property of these adequate
families that makes them as complicated as their underlying set.

Definition 10. We say that an adequate family A of closed subsets of a
topological space X is cofinal if for every infinite closed and discrete subset
B of X there exists an infinite subset A ⊂ B such that A ∈ A.

The following theorem is the main result of this section. The implication
(2)⇒(1) is a generalization and at the same a simplification of Talagrand’s
construction from [10] (in particular, we avoid any manipulation with trees,
using instead the easier and more general coanalytic structure). The converse
(1)⇒(2) establishes the impossibility of performing this construction outside
the framework of coanalytic sets.

Theorem 11. For a separable metrizable space X the following are
equivalent :

(1) There exists a cofinal adequate family of closed subsets of X.
(2) X is coanalytic.

Proof. Let (K, d) be a compact metric space which contains X as a
dense set, K = X, and let Y = K \ X. We denote by M the space of all
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strictly increasing sequences of positive integers, which is homeomorphic to
the Baire space NN.

(1)⇒(2). Let A be a cofinal adequate family of closed subsets of X and
let {an : n = 1, 2, . . .} be an enumeration of a dense subset of X. We consider
the set

C =
{

(y, σ) ∈ K ×M : {aσ1 , aσ2 , . . .} ∈ A and d(y, aσi) ≤
1
i

for all i ≥ 1
}
.

In order to prove that X is coanalytic, we check that Y is analytic by
showing that C is a closed subset of K ×M and Y = {y ∈ K : ∃σ ∈ M
with (y, σ) ∈ C}. If we pick (y, σ) ∈ K×M\C then either {aσ1 , aσ2 , . . .} 6∈ A
or there exists i ∈ N such that d(y, aσi) > 1/i. In the former case, since A
is an adequate family, there exists j ∈ N such that {aσ1 , . . . , aσj} 6∈ A and
then {(z, τ) ∈ K ×M : τr = σr ∀r ≤ j} is a neighborhood of (y, σ) which
does not intersect C. In the latter case, there exists a neighborhood U of y
such that d(z, aσi) > 1/i for all z ∈ U and then {(z, τ) : z ∈ U and τi = σi}
is a neighborhood of (y, σ) which does not intersect C. This proves that C
is closed.

We now show that Y = {y ∈ K : ∃σ ∈ M : (y, σ) ∈ C}. Fix y ∈ Y .
The sequence {a1, a2, . . .} is dense in X which is dense in K, so there exists
a subsequence {an1 , an2 , . . .} which converges to y. Since y 6∈ X, the set
{an1 , an2 , . . .} is closed and discrete in X, hence, as A is a cofinal adequate
family in X, this sequence has a subsequence {am1 , am2 , . . .} ∈ A which still
converges to y. We can pass to a further subsequence {ak1 , ak2 , . . .} ∈ A
such that d(aki , y) ≤ 1/i. If we set σ = (k1, k2, . . .), we find that (y, σ) ∈ C.
Conversely, suppose that (y, σ) ∈ C. Then {aσ1 , aσ2 , . . .}, being a member
of the adequate family A, is a closed and discrete subset of X, but at the
same time converges to y, so y 6∈ X, and hence y ∈ Y .

(2)⇒(1). Suppose that C ⊂ K × M is a closed set such that Y =
{x ∈ K : ∃σ ∈ M with (x, σ) ∈ C}. Let ≺ be a well order on X (the use of
the axiom of choice here is not essential, but it permits avoiding a number
of technicalities in the proof). We define a cofinal adequate family A in
the following way. A finite set belongs to A if and only if it is of the form
{x1 ≺ · · · ≺ xn} and there exists (y, σ) ∈ C such that d(y, xi) ≤ 1/σi for
every i = 1, . . . , n (notice that this is a hereditary condition: if a finite set
satisfies it, then so does every subset). An infinite set belongs to A if and
only if every finite subset belongs to A.

First, we show that every infinite set A ∈ A is closed and discrete in X.
Otherwise, there would exist a sequence {x1 ≺ x2 ≺ · · · } ⊂ A which con-
verges to a point x ∈ X with x 6= xi for all i. Since A ∈ A, for every n
there exists (yn, σn) ∈ C such that d(yn, xi) ≤ 1/σni for every i ≤ n. No-
tice that (yn) also converges to x because d(yn, xn) ≤ 1/σnn ≤ 1/n (recall
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that all sequences inM⊂ ωω are strictly increasing). Observe also that for
every i ∈ ω the sequence {σni : n = 1, 2, . . .} is eventually constant with
ultimate value that we call σ∞i (otherwise (yn) would converge to xi, since
d(yn, xi) ≤ 1/σni for every n ≥ i). The sequence {σ1, σ2, . . .} converges in
M to σ∞ = (σ∞1 , σ

∞
2 , . . .), and also (yn, σn) converges to (x, σ∞); since C

is closed, we find that (x, σ∞) ∈ C, contrary to x ∈ X.
It remains to show that A is cofinal in X. We select an infinite closed

and discrete subset B of X. Viewing B as a subset of the compact space K,
we know that there exists a sequence {x1 ≺ x2 ≺ · · · } ⊂ B which converges
to a point y ∈ K. Since B is closed and discrete in X, it must be the case
that y ∈ Y . Therefore, we can pick σ ∈ M such that (y, σ) ∈ C and then
we can find a subsequence {xn1 ≺ xn2 ≺ · · · } such that d(y, xni) ≤ 1/σi for
every i. This subsequence is an element of A, since every finite cut of the
sequence satisfies the definition of A with the same witness (y, σ) ∈ C.

We devote the rest of this section to checking that for a cofinal adequate
family A of closed subsets of a separable metrizable space X, the complexity
of C(A) is the same as that of A. We mention that Čižek and Fabian [3]
already realized that, by transferring the original examples of Talagrand,
given any 0-dimensional complete metrizable space X, for every coanalytic
non-Borel subset Y ⊂ X there is an adequate family of subsets of Y such
that the corresponding compact space is Gul’ko but not Talagrand com-
pact, and that for every Borel non-σ-compact subset Y ⊂ X there is an
adequate family of subsets of Y such that the corresponding compact space
is Talagrand but not Eberlein compact. They also gave a simpler approach
to checking the negative part in the first kind of examples, which we shall
follow.

For a family A of subsets of a set X and a subset Z ⊂ X, we denote by
A|Z = {A ∩ Z : A ∈ A} the restriction of A to Z. When A is an adequate
family we can write A|Z = {A ∈ A : A ⊂ Z}.

Theorem 12. Let X be a coanalytic space, A a cofinal adequate family
of closed subsets of X, and Z a subset of X. Then A|Z is an Eberlein compact
if and only if Z is contained in some σ-compact subset of X.

Corollary 13. Let X be a Borel non-σ-compact space, A a cofinal ad-
equate family of closed subsets of X, and Z ⊂ X any subset not contained in
any σ-compact subset of X. Then A|Z is a Talagrand non-Eberlein compact
space.

We notice that it follows from [1, Theorem 1.4] that if an adequate family
A is Talagrand compact, then indeed C(A) is a Kσδ space.

Proof of Theorem 12. Assume A|Z is Eberlein compact. Z being metris-
able and separable, every set in A|Z is at most countable. Hence, there is
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a decomposition Z =
⋃
n<ω Zn such that for every n < ω the family A|Zn

contains finite sets only [4, Theorem 4.3.2]. Fix n < ω; we show that Zn is
a relatively compact subset of X. Let (zm)m<ω be a one-to-one sequence in
Zn, and suppose for contradiction that it contains no subsequence conver-
gent in X. Then it must contain a subsequence which is closed and discrete
in X. From the cofinality of A this subsequence contains an infinite subset
A ∈ A. Hence A ∩ Zn is infinite, a contradiction.

Conversely, suppose that Z ⊂
⋃
n<ωKn where each Kn is a compact

subset of X. Fix any A ∈ A and any n < ω. We claim that the set A∩Z∩Kn

is finite. If not, because A is closed and Kn is compact, this set would contain
a sequence convergent to some x ∈ Kn∩A, contrary to the discreteness of A.
Having proved the claim, we conclude that A|Z is Eberlein compact by [4,
Theorem 4.3.2].

Theorem 14. Let X be a coanalytic space, A a cofinal adequate family
of closed subsets of X, and Z a subset of X. Then A|Z is Talagrand compact
if and only if Z is contained in some Borel subspace of X.

Corollary 15. Let X be a coanalytic non-Borel space, A a cofinal
adequate family of closed subsets of X, and Z any subset of X not contained
in any Borel subspace of X. Then A|Z is Gul’ko (in fact Π1

1-Gul’ko) compact ,
but not Talagrand compact.

Proof of Theorem 14. If Z is contained in some Borel space B ⊂ X, then
A|Z can be viewed as an adequate family of closed subsets of B, and then
it follows from Theorem 9 that C(A|Z) is WKA.

Now suppose that A|Z is Talagrand compact. Then by Theorem 7 there
is a determining function f : Z → A with A an analytic set; actually, there
is a determining function ψ : Z → ωω (compose f with a selection for
a continuous surjection ωω → A). We consider as usual a compact met-
ric space K with X = K. For a finite sequence (k1, . . . , kn) of natural
numbers we define [k1, . . . , kn] = {τ ∈ ωω : ∀i ≤ n τi = ki}. We claim
that

Z ⊂
⋃
σ∈ωω

⋂
n∈ω

ψ−1[σ1, . . . , σn] ⊂ X,

where the closures are taken inside K. The first inclusion is clear since
z ∈

⋂
n∈ω ψ

−1[(ψ(z)1, . . . , ψ(z)n)] for every z ∈ Z. For the second in-
clusion, suppose by contradiction that for some σ ∈ ωω we have y ∈⋂
n∈ω ψ

−1[σ1, . . . , σn] \ X. Then we can find a sequence of elements yn ∈
ψ−1[σ1, . . . , σn] which converges to y. Since y 6∈ X, {yn : n ∈ ω} is an infi-
nite closed and discrete subset of X, so by cofinality we find a subsequence
a = {ynk : k ∈ ω} ∈ A. Then the image of the support of a ∈ A|Z un-
der ψ is a convergent sequence in ωω, contrary to ψ being a determining
function.
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Thus Z is contained in a subset of X which is a Suslin operation on closed
subsets ofK, hence analytic. SinceX is coanalytic, by the separation theorem
(any two disjoint analytic sets in a Polish space can be separated by disjoint
larger Borel sets) we deduce that Z is contained in a Borel subspace of X.

4. Gul’ko compact spaces of higher complexity. We now recall
the notion of Reznichenko family of trees associated to a hereditary family
of sets and the corresponding compact space, which have been introduced
and studied in [1]. In what follows, by a tree we mean a set T endowed with a
partial order relation ≤ such that (1) for every t ∈ T the set {s ∈ T : s < t}
is well ordered, and (2) T has a ≺-minimum, called the root of T . An element
of the tree t ∈ T is called a node of T . An immediate successor of t ∈ T
is a node s < t for which there is no further node r with t < r < s. For
an ordinal α, the αth level of the tree T is the set of all t ∈ T such that
{s : s < t} has order type α. The height of a tree is the first ordinal α for
which the αth level is empty. A subset S of a tree (T,≤) is a segment if
(1) any two elements of S are ≤-comparable and (2) if t, s ∈ S, r ∈ T and
t ≤ r ≤ s then r ∈ S. A segment S is initial if it contains the root of T .

Let A be a set of cardinality at most c, and F a hereditary family of
subsets of A (if B ∈ F and C ⊂ B, then C ∈ F). An (A,F)-Reznichenko
family of trees is a family {Ta : a ∈ A} of trees indexed by A with the
following properties:

(1) For every a ∈ A, Ta is a tree of height ω in which every node has c
immediate successors (in particular, Ta has cardinality c).

(2) Ta ∩A = {a} and a is the root of Ta.
(3) For every t ∈

⋃
a∈A Ta, we have {a ∈ A : t ∈ Ta} ∈ F .

(4) For any a, b ∈ A, a 6= b and any segments S ⊂ Ta and S′ ⊂ Tb, we
have |S ∩ S′| ≤ 1.

(5) For every B ∈ F and every disjoint family {Sb : b ∈ B} where Sb is
a finite initial segment of Tb for every b ∈ B, there exist c elements
t that are immediate successors of Sb in Tb simultaneously for all
b ∈ B.

In this context we put T =
⋃
a∈A Ta and let R[F ] ⊂ 2T denote the

family of all segments of all the trees Ta, which can be easily checked to be a
compact family. It is shown in [1] that for any given set A of cardinality c and
any hereditary family F of subsets of A there exists an (A,F)-Reznichenko
family of trees.

Recall that ω<ω is the set of finite sequences of natural numbers, ordered
in the following way: (si)i<n < (ti)i<m if n ≤ m and si = ti for i < n. In
order to avoid confusion with the concept of tree introduced before, we define
a tree on ω to be a subset T ⊂ ω<ω such that if a ∈ T and b < a then b ∈ T .
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We denote by Tr ⊂ 2ω
<ω

the family of all trees on ω; this is a compact
family and is viewed as a compact metrizable space. A branch of T ∈ Tr is
an infinite sequence a ∈ ωω such that a|n ∈ T for all n.

We fix A ⊂ N = ωω. For every s ∈ ω<ω we define Ws = {a ∈ A : s ≺ a}
where s ≺ a means that if s = (si)i<n, then si = ai for all i < n. These
sets constitute a basis for the topology of A. Also, we denote by wf(A) ⊂ Tr
the family of all trees on ω none of whose branches are elements of A.
The following theorem asserts that in this context, a compact space R[F ]
constructed as above from a hereditary family of closed and discrete subsets
of A is always Gul’ko compact, with complexity bounded by that of wf(A).
This is nothing else than a more informative restatement of some lemmas
from [1]. Nevertheless, we include a complete proof.

Theorem 16. Let A ⊂ N and T =
⋃
a∈A Ta, let F be a hereditary

family of closed and discrete subsets of A, and let R[F ] ⊂ 2T be the compact
set coming from an (A,F)-Reznichenko family of trees. Then there exists a
determining function f : T → wf(A)× ω(ω<ω).

Proof. Let t ∈ T =
⋃
a∈A Ta, and let B(t) = {a ∈ A : t ∈ Ta}, which is

a set from F and hence closed and discrete in A. We define

f1(t) = {s ∈ ω<ω : |Ws ∩B(t)| > 1}.
Clearly, f1(t) ∈ wf(A) because if a ∈ A were a branch of f1(t) then a would
be a cluster point of B(t), and this contradicts the fact that B(t) is closed
and discrete.

On the other hand, for every a ∈ B(t) we define sta to be the lowest
element s ∈ ω<ω such that s ≺ a and s 6∈ f1(t). We define a function
f2 : T → ω(ω<ω) in the following way: for a ∈ B(t), f2(t)(sta) equals the
level of the tree Ta in which t lies; if s is different from any sta, then set
f2(t)(s) = 0. Thus, we have defined a function f : T → wf(A) × ω(ω<ω)

by f(t) = (f1(t), f2(t)), t ∈ T . It remains to show that it is a determining
function.

Let C ⊂ wf(A)× ω(ω<ω) be compact and suppose by contradiction that
there is an element x ∈ R[F ] ⊂ 2T , that is, a branch x = {t1 <a t2 <a · · · }
of the tree Ta for some a ∈ A, such that f(x) ⊂ C. Two cases arise:

Case 1: The elements stna are equal to some fixed s ∈ ω<ω for infinitely
many n’s. For these n’s we have n ≤ f2(tn)(stna ) = fs(tn)(s), which contra-
dicts f(x) ⊂ C with C compact.

Case 2: Modulo passing to a subsequence, we may assume that st1a <
st2a < · · · ≺ a. For every n consider the element un < stna which has length
one less than stna . Then un ∈ f1(tn), and the un’s show that a is a branch
of
⋃
i<ω f1(ti). But, by the Claim below,

⋃
i<ω f1(ti) ⊂

⋃
x∈C f1(x) ∈ wf(A),

which is a contradiction.
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Claim. If L ⊂ wf(A) is compact, then
⋃
L ∈ wf(A).

Proof. Suppose b ∈ A were a branch of
⋃
L. For every n < ω, let Cn =

{T ∈ L : b|n ∈ T}. This is a decreasing sequence of nonempty closed subsets
of L. By compactness, their intersection is nonempty, which implies that for
some T ∈ L, b is a branch of T .

Theorem 17. Let A ⊂ N and T =
⋃
a∈A Ta, let F = FA be the family

of all closed and discrete subsets of A, and let R[F ] ⊂ 2T be the compact
set coming from an (A,F)-Reznichenko family of trees. Then there exists no
determining function f : T → A.

For the proof we need Lemma 18 below, which is a generalization of [1,
Lemma 6.2] with analogous proof. A subset D of a tree T is called succes-
sively dense if there is a countable family R of immediate successors of the
root such that every t ∈ T incomparable with every element of R has an
immediate successor in D.

Lemma 18. Let {Un}n<ω be a disjoint family of open subsets of A whose
union is closed in A, and let T =

⋃
n<ωDn be a countable decomposition

of T . Then there exists n < ω such that Dn ∩Ta is successively dense in the
tree Ta for every a ∈ Un.

Proof. Suppose that the statement is false. Then we can construct re-
cursively a sequence (an) of elements of A and a sequence (tn) of elements
of T with the following properties:

• an ∈ Un, tn ∈ Tan for every n.
• No immediate successor of tn in Tan belongs to Dn.
• The sets Sn of predecessors of tn in Tan are pairwise disjoint.

The construction is performed as follows: Assume that we have already
defined ai and ti for i < n. From the negation of the lemma, we obtain
an ∈ Un such that Dn ∩ Tan is not successively dense in Tan . Let R be the
set of those immediate successors of an in Tan which are comparable with
some element of

⋃
i<n Si in Tan . The set R is finite. Hence, as Dn ∩ Tan is

not successively dense in Tan , we can pick tn ∈ Tan incomparable with every
r ∈ R such that no immediate successor of tn belongs to Dn. This finishes
the recursive construction.

Now, since an ∈ Un and the Un’s are disjoint open sets with closed union,
the set {an : n < ω} is closed and discrete in A, hence it belongs to F . From
the definition of Reznichenko family of trees, we conclude that there must
exist an element t which is an immediate successor of the segment Sn in Tan
for every n. For some m, t ∈ Dm. But this contradicts the assumption that
tm has no immediate successor in Tam belonging to Dm.
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Proof of Theorem 17. Suppose that there exists a determining function
f : T → A. Remember that A ⊂ N , and that for s ∈ ω<ω we have put
Ws = {a ∈ A : s ≺ a}. Let Ds = f−1(Ws), and let

S0 = {s ∈ ω<ω : Ds is successively dense in Ta for every a ∈Ws}
S1 = {s ∈ S0 : t ∈ S0 for all t < s},
S2 = {s ∈ ω<ω \ S0 : s is an immediate successor of some element of S1}.

Notice that S1 is a tree on ω. We claim that S1 has a branch a ∈ A.
Indeed, if no branch of S1 were an element of A, the union of the family
{Ws : s ∈ S2} of disjoint clopen sets would be the whole A. We could then
apply Lemma 18 to the decomposition T =

⋃
s∈S2

Ds and the clopen sets
{Ws : s ∈ S2} to conclude that there exists s ∈ S2 such that Ds is succes-
sively dense in Ta for every a ∈Ws, that is, s ∈ S0, which contradicts s ∈ S2.

Let a ∈ A be a branch of S1. Then Da|n is successively dense in Ta for
every n < ω. Hence, for every n < ω there is a countable family Cn of
immediate successors of a in Ta such that every element of Ta incomparable
with Cn has an immediate succesor in Da|n. Let t be an immediate successor
of a in Ta such that t 6∈

⋃
n<ω Cn. We can construct in Ta an infinite sequence

t <a t1 <a t2 <a · · · with tn ∈ Da|n = f−1(Wa|n). This sequence is an
element of R[F ] ⊂ 2T , contrary to f being a determining function.

Let us recall the definition of the projective classes Σ1
n and Π1

n. As al-
ready indicated, Σ1

1 and Π1
1 denote the classes of analytic and conalytic sets

respectively. Recursively, Σ1
n+1 is defined as the class of separable metriz-

able spaces which are continuous images of spaces in Π1
n, and Π1

n+1 are the
separable metrizable spaces which are complements of sets in Σ1

n+1 inside a
Polish space.

Proof of Theorem 4. Let A ⊂ ωω × ωω be a universal Π1
n−1 space, that

is, a Π1
n−1 set such that for every Π1

n−1 subset B of ωω there exists b ∈ ωω
such that {b} × B = A ∩ ({b} × ωω). Such a set always exists (cf. [7]). Set
X = C(R[FA]). By Theorem 17, for R[FA] ⊂ 2T , there is no determining
function f : T → A. Actually, this implies that there is no determining
function to any Σ1

n set, in view of Lemma 8 and the fact that A maps
continuously onto any Σ1

n set.
Finally, we prove that C(R[FA]) is weakly Σ1

n+1-determined. By Theo-
rem 16, it is enough to show that wf(A) belongs in Π1

n ⊂ Σ1
n+1. Put

S = {x ∈ Tr : ∃a ∈ A which is a branch of x},
Ω = {(x, a) ∈ Tr×A : a is a branch of x}.

Then Ω is a closed subset of Tr×A, hence a Π1
n−1 set like A. The set S is the

projection of Ω to the first coordinate, so S is Σ1
n. Finally, wf(A) = Tr \S

is Π1
n.
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