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Essentially-Euclidean convex bodies
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Abstract. In this note we introduce a notion of essentially-Euclidean normed spaces
(and convex bodies). Roughly speaking, an n-dimensional space is λ-essentially-Euclidean
(with 0 < λ < 1) if it has a [λn]-dimensional subspace which has further proportional-
dimensional Euclidean subspaces of any proportion. We consider a space X1 = (Rn, ‖ · ‖1)
with the property that if a space X2 = (Rn, ‖·‖2) is “not too far” from X1 then there exists
a [λn]-dimensional subspace E ⊂ Rn such that E1 = (E, ‖ · ‖1) and E2 = (E, ‖ · ‖2) are
“very close.” We then show that such an X1 is λ-essentially-Euclidean (with λ depending
only on quantitative parameters measuring “closeness” of two normed spaces). This gives
a very strong negative answer to an old question of the second named author. It also
clarifies a previously obtained answer by Bourgain and Tzafriri. We prove a number of
other results of a similar nature. Our work shows that, in a sense, most constructions of
the asymptotic theory of normed spaces cannot be extended beyond essentially-Euclidean
spaces.

1. Introduction. The asymptotic theory of normed spaces, as well as
the asymptotic study of centrally symmetric convex bodies, has revolved
mainly around properties of “Euclidean type.” One searched for large sec-
tions well isomorphic to Euclidean spaces, for well complemented subspaces
(which were often actually Euclidean) and so on. It was not necessarily the
goal of the theory but a consequence of the methods used. For example, the
following problem was formulated in [M3]:

Problem. Is it true that for every β > 0 and R > 1 + β there exists
a λ = λ(β,R) ∈ (0, 1] such that for each n and all X1 = (Rn, ‖ · ‖1) and
X2 = (Rn, ‖ · ‖2) with d(X1, X2) < R, there exists a k-dimensional subspace
E ⊂ Rn such that k ≥ λn and d(E1, E2) ≤ 1 + β, where E1 = (E, ‖ · ‖1)
and E2 = (E, ‖ · ‖2)?
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Clearly, if one space is Euclidean then the answer is affirmative (see,
e.g., [M2]). Bourgain and Tzafriri gave a very strong negative answer in
[BT] for spaces `np for p > 2 and the Banach–Mazur distance. This shows
that even a “nice” geometry of uniformly smooth and uniformly convex
spheres does not ensure a positive answer. This example, however, is not
easy, as it uses, in a very precise quantitative form, all accumulated knowl-
edge about the structure of subspaces of `np . A simpler (counter-)example
is provided by `n∞ by using results of [FJ] (we thank W. B. Johnson for
this recent observation). This is based on rougher arguments but does not
have any additional geometric properties which appeared implicitly in the
background of [M3]. So the question of how far constructions of the asymp-
totic theory can be extended beyond the “Euclidean” framework remained
open.

We show in this note that, actually, the theory cannot be extended be-
yond “essentially-Euclidean” spaces. (For this and related definitions see
Section 3 and note that these definitions involve a number of (fixed) param-
eters.) For example, we not only provide a negative answer to the problem
above, but in fact we give a characterization of spaces under consideration
by answering the following question.

Question. Let λ ∈ (0, 1], β > 0, and R > 1 + β; let n be a positive
integer. Assume that a space X1 = (Rn, ‖·‖1) has the property that whenever
X2 = (Rn, ‖ · ‖2) is a space satisfying d(X1, X2) < R then there exists
a [λn]-dimensional subspace E ⊂ Rn such that d(E1, E2) ≤ 1 + β, where
E1 = (E, ‖ · ‖1), E2 = (E, ‖ · ‖2). What can be said about X1?

We show (in Theorem 4.3 and remarks following it) that if X1 has such
a property (in terms of the geometric distance) for a fixed triple (β,R, λ) of
parameters, with β > 0, R > 2(1 + β), λ ∈ (0, 1], then X1 is λ-essentially-
Euclidean. This means, roughly speaking, that X1 has a [λn]-dimensional
subspace, which has further proportional-dimensional Euclidean subspaces
of any proportion. This provides a strong negative answer to the problem
discussed in two ways. Firstly, it characterizes a class of spaces X1 for which
the problem has a positive solution for every space X2 such that the ge-
ometric distance d(X1, X2) < R. (Strictly speaking, Theorem 4.3 proves
one implication only, but the converse implication is well-known.) Secondly,
note that in the problem, given β and R > 1 + β, λ is a function of β
and R, while Theorem 4.3 and remarks afterwards provide the answer for
an arbitrary choice of parameters (β,R, λ) satisfying R > 2(1 + β). It also
explains why Bourgain–Tzafriri’s example works only for p > 2 (namely,
as is well-known, for p ≤ 2 the `np spaces are essentially-Euclidean; while
for p > 2 the `np spaces are not essentially-Euclidean, see Section 3). We
would also like to mention that we do not know an answer for the case
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1 + β < R ≤ 2(1 + β). Although we might expect the answer to be the
same we do not exclude a possibility of some different surprising result. Fi-
nally, in Section 5 we prove results of a similar nature relating the existence
of nice proportional-dimensional sections to coverings of symmetric convex
bodies.

2. Notation. We consider Rn with the standard Euclidean structure.
The canonical Euclidean norm on Rn is denoted by |·|, and the corresponding
inner product by 〈·, ·〉. The Euclidean unit ball and the Euclidean unit sphere
are denoted by Bn

2 and Sn−1, respectively.
By a body we always mean a compact star-shaped body. By a symmetric

body we mean a body that is centrally-symmetric with respect to the origin.
Let K be a convex body in Rn containing the origin. The polar body K0 is
given by

K0 := {x ∈ Rn | 〈x, y〉 ≤ 1 for every y ∈ K}.
We recall that for every subspace E of Rn the polar (in E) of K ∩ E is
PEK

0, where PE is the orthogonal projection onto E.
Given a symmetric convex body K ⊂ Rn we will use the notation ‖ · ‖K

for the Minkowski functional of K. The normed space (Rn, ‖·‖K) will also be
denoted by (Rn,K). The geometric distance between K ⊂ Rn and L ⊂ Rn

is defined by

dg(K,L) := inf {b/a | a > 0, b > 0, aK ⊂ L ⊂ bK}.
If dg(K,L) ≤ C then we say that K and L are C-equivalent. The Banach–
Mazur distance between K and L is defined by

d(K,L) := inf {dg(K,TL)},
where the infimum is taken over all invertible linear operators T from Rn

to Rn. The Banach–Mazur distance between normed spaces is defined as
the Banach–Mazur distance between their unit balls. If the Banach–Mazur
distance between a space and the Euclidean space is bounded by C we say
that the space is C-Euclidean.

Let K,L ⊂ Rn. The covering number N(K,L) is the smallest integer m
such that m shifts of L cover K. If K is a convex body, then a standard
volume argument shows that N(K, εK) ≤ (1 + 2/ε)n.

The n-dimensional volume of a body K in Rn is denoted by |K|.
Finally, we will need the definition of M -position of a convex body. This

requires the following theorem of the second named author ([M4], see also
Chapter 7 of [Pi]).

Theorem 2.1. There exists an absolute constant C such that for ev-
ery n ≥ 1 and every symmetric convex body K ⊂ Rn there exists a linear
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operator T on Rn satisfying

N(TK,Bn
2 ) ≤ exp(Cn) and N(Bn

2 , TK) ≤ exp(Cn).

The image of K under a linear operator T satisfying Theorem 2.1 is
called an M -position of K.

We will use the following property of M -position. In fact, this property
played a role in the probabilistic proof of the quotient-of-subspace theorem
by the second named author.

Proposition 2.2. Let C > 0 and let K ⊂ Rm be a symmetric convex
body such that

N(K,Bm
2 ) ≤ exp(Cm).

Then for every 0 < ε < 1 there exists an [εm]-dimensional subspace E ⊂ Rm

such that
K ∩ E ⊂ CεBm

2 ∩ E,

where Cε depends only on ε and C.

The proposition follows immediately from the volume ratio theorem
([ST]), used for example in the (equivalent) form of Proposition 5.1. It suf-
fices to note that the Minkowski sum K1 = K+Bm

2 satisfies N(K1, 2Bm
2 ) ≤

exp(Cm) and K1 ⊃ Bm
2 .

We shall also provide a direct elementary argument, for the convenience
of the readers.

Proof. Without loss of generality we assume that m ≥ 3. Let r < 1 be a
(small) positive parameter, which we specify later. Denote N := N(K,Bm

2 )
= N(rK, rBm

2 ) ≤ exp(Cm). By the definition of covering numbers there
exist N points x1, . . . , xN in Rm such that

rK ⊂
N⋃
i=1

(xi + rBm
2 ).

Let
K̄ := {y ∈ Sm−1 | |x− y| ≤ r for some x ∈ (rK) ∩ Sm−1}

and, for i ≤ N , let

Si := {y ∈ Sm−1 | |x− y| ≤ r for some x ∈ (xi + rBm
2 ) ∩ Sm−1}.

Then

K̄ ⊂
N⋃
i=1

Si.

Clearly, every Si is a cap of radius at most (in the geodesic metric) α =
arcsin(2r). Let µ denote the normalized Lebesgue measure on Sm−1. Direct
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calculation (see, e.g., [MS]) shows that

µ(Si) ≤
	α
0 sinm−2 t dt	π
0 sinm−2 t dt

≤ α sinm−2(α)
√
m− 2

2
≤
√
m− 2 (2r)m−1.

Thus
µ(K̄) ≤ eCm(3r)m−1.

Now let F be a (fixed) k-dimensional subspace of R with k = [εm]. Let
N be an r-net (in the Euclidean metric) in F ∩ Sm−1 of cardinality |N | <
(3/r)k−1 (existence of such a net follows by a standard volume argument).
Let P be the normalized Haar measure on the group O(m) of orthogonal
operators. Using the uniqueness of Haar measure and the union bound, we
obtain

P({U ∈ O(m) | ∃a ∈ N such that Ua ∈ K̄})
≤ |N |µ(K̄) < (3/r)εm−1eCm(3r)m−1 < 1,

provided that
1/r ≥ (31+εe2C)1/(1−ε).

Thus there exists an operator U ∈ O(m) such that the subspace E = UF
satisfies Ua 6∈ K̄ for every a ∈ N . Since {Ua} is an r-net in E ∩ Sm−1 it
follows that for every x ∈ E ∩ Sm−1 we have x 6∈ rK, i.e.

(rK) ∩ E ⊂ Bm
2 ∩ E.

The choice r = (3eC)−2/(1−ε) implies the result.

Since N(K ∩ F,Bn
2 ∩ F ) ≤ N(K,Bn

2 ) for every subspace F ⊂ Rn, the
proposition immediately implies the following corollary.

Corollary 2.3. Let K ⊂Rn be a symmetric convex body in M -position.
Let 0 < δ < 1 and F ⊂ Rn be a [δn]-dimensional subspace. Then for every
0 < ε < 1 there exists an [εδn]-dimensional subspace F0 ⊂ F such that

K ∩ F0 ⊂ C(ε, δ)Bn
2 ∩ F0,

where C(ε, δ) depends only on ε and the ratio C/δ (where C is the constant
from the definition of an M -position). In particular, if for some R > 0,

Bn
2 ∩ F ⊂ RK ∩ F,

then
1
R
Bn

2 ∩ F0 ⊂ K ∩ F0 ⊂ C(ε, δ)Bn
2 ∩ F0.

Remark. One can get a better dependence of C(ε, δ) on ε and δ than
the one that follows from the proof of Proposition 2.2 above using so-called
regular M -position. Recall that a convex body K is said to be in regular
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M -position if for every t > 0,

N(K, tBn
2 ) ≤ exp(C0n/t) and N(Bn

2 , tK) ≤ exp(C0n/t),

where C0 is an absolute positive constant independent of the dimension, t,
and the body K. (This position is often called 1-regular, because the power
of t in the exponent equals to 1. However, since in this paper we do not
use other regular positions, we suppress the number 1 in the definition.)
Actually, Pisier showed a more delicate fact that for any positive α < 2,
the above bound for covering numbers can be replaced by exp(Cαn/tα) (see
e.g. [Pi, Chapter 7] for the proof). A strengthening to regular M -positions is
not essential for Corollary 2.3. Moreover, we do not use this notion further
on, except in the proof of Theorem 4.3.

3. Essentially-Euclidean bodies. We introduce the following defini-
tions.

Fix a function d = d(λ, ε) ≥ 1 on (0, 1] × (0, 1). Let λ ∈ (0, 1]. A body
K ⊂ Rn is called λ-ess-Euclidean if there exists a [λn]-dimensional section
K ∩ F of K such that for every ε ∈ (0, 1) there exists a further [ελn]-
dimensional section of K ∩F which is d-Euclidean. Note that this definition
also depends on d, although this dependence is suppressed in the termi-
nology. The case λ = 1 is of importance and has appeared implicitly in
many contexts. It contains, in particular, bodies with bounded volume ra-
tios ([ST]), unit balls of cotype-2 spaces ([FLM], [M1], [DS]), unit balls of
weak-cotype-2 spaces ([MP], see also [Pi]).

Let 0 < δ ≤ λ < 1 and d ≥ 1. A body K ⊂ Rn is called (λ, δ)-ess-
Euclidean if for every [λn]-dimensional section of K there exists a further
[δn]-dimensional section which is d-Euclidean.

We extend these notions to normed spaces in the standard way by saying
that a space X = (Rn, ‖ · ‖) is λ-ess-Euclidean (resp. (λ, δ)-ess-Euclidean) if
its unit ball is λ-ess-Euclidean (resp. (λ, δ)-ess-Euclidean).

We would like to emphasize that, as usual in the asymptotic theory of
normed spaces, for a fixed value of the parameter λ and a fixed function
d = d(ε), we consider the class of λ-ess-Euclidean convex bodies in Rn for
an arbitrary n ≥ 1. Similarly, for fixed values of parameters λ, δ and d, we
consider (λ, δ)-ess-Euclidean convex bodies in Rn, for all n ≥ 1. In particu-
lar, all results below are stated for a given convex body in Rn, and describe
relevant parameters of the body and dependences between them in full de-
tail, by formulas valid for all n ≥ 1. Of course, if the dimension n is small
(say, n < 2/λ or n ≤ d2) then any symmetric convex body is λ-ess-Euclidean
and (λ, δ)-ess-Euclidean, and so our results are really interesting in suitably
high dimensions only.
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It should be noted that the terminology “essentially-Euclidean spaces/
bodies” freely used throughout the paper is rather a jargon of the asymp-
totic theory of normed spaces than a precise notion (in the same spirit as,
for example, type-2 and cotype-2 spaces, spaces of bounded volume ratio,
and many others). We believe that it provides the right intuition of the
subject and at the same time is not misleading—especially that, as men-
tioned earlier, results below are stated in precise terms of all parameters
involved.

Finally, we would like to recall that, given (fixed) p > 2, the class of `np
spaces, n ≥ 1, is not a subset of the class of all λ-ess-Euclidean or (λ, δ)-
ess-Euclidean spaces (for any choice of parameters). Indeed, for p = ∞,
it is well known that `n∞ does not have Euclidean subspaces of dimension
essentially higher than logn. More precisely, if E is a k-dimensional subspace
of `n∞ satisfying d(E, `k2) ≤ d then k ≤ C(d) log n, where C(d) is a constant
depending only on d ([M2], see also 5.7 of [MS]). In fact, sharper estimates
are known, namely, for such an E one has d(E, `k2) > c

√
k/log(n/k), which

implies that k ≤ Cd2 log(n/d2), where c, C are absolute positive constants
(see [G]). For 2 < p <∞, the space `np cannot have Euclidean subspaces of
dimension higher than Cpn

2/p. That is, if F is a k-dimensional subspace
of `np satisfying d(E, `k2) ≤ d then k ≤ d2pn2/p ([BDGJN], see also 5.6
of [MS]). Thus, for large enough n, the space `np , 2 < p ≤ ∞, cannot be
λ-ess-Euclidean or (λ, δ)-ess-Euclidean.

4. Lipschitz functions on convex bodies. In 1971 the second named
author used properties of Lipschitz functions on the sphere and the concen-
tration phenomenon on the sphere to provide a new proof of Dvoretzky’s
Theorem ([M2], see also [FLM] and [MS]). The new argument was much
simpler than the original one and led to better (in fact, the best possible)
estimates on the dimension of Euclidean sections of a convex body. It also
provided a powerful general tool to study the behavior of high-dimensional
convex bodies. In particular, the following stabilization result was proved
([M2], see also [MS, 2.4]).

Theorem 4.1. Let f : Sn−1 → R+ be a 1-Lipschitz function in the
Euclidean metric and let Mf be the median of f . Let ε > 0 and set λ =
ε2/(2 log(4/ε)). Then there exists a [λn]-dimensional subspace E ⊂ Rn such
that |f(x)−Mf | ≤ 2ε for all x ∈ Sn−1 ∩ E.

In particular, under the hypotheses of the theorem, considering the cases
Mf ≤ 6ε and Mf > 6ε, it is clear that the subspace E satisfies the (non-
exclusive) dichotomy: either f(x) ≤ 8ε for all x ∈ Sn−1 ∩ E, or (2/3)Mf ≤
f(x) ≤ (4/3)Mf for all x ∈ Sn−1 ∩ E.
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In this section we consider similar dichotomies for Lipschitz functions on
a general convex body and show that they can hold if and only if the body
is essentially-Euclidean.

Let K ⊂ Rn be a symmetric convex body. Let 0 < λ < 1 and α,R > 0.
We say that K has property L (with parameters λ, α, R) if for every 1-
Lipschitz function f (in the metric ‖ · ‖K) defined on the boundary ∂K
of K, there exists a [λn]-dimensional subspace E ⊂ Rn such that either
f(·) ≤ α on ∂K ∩ E or f(·) ≥ R on ∂K ∩ E. It is noteworthy that in the
latter case the lower bound assumed for f already implies, as a byproduct
of the argument, the stronger condition that f is equivalent to R.

Note that property L does not depend on the position of a body K,
that is, if K has property L then so does TK for any invertible linear
operator T . Indeed, given a function f on the boundary of TK we can
consider the function g on the boundary of K defined by g(x) = f(Tx) and
apply property L of K.

Theorem 4.2. There exists an absolute constant C such that the fol-
lowing holds. Let n ≥ 1 and K be a symmetric convex body in Rn. Let
0 < λ < 1 and α,R > 0. If α < 1/(4 exp(C/λ)) and K has property L with
parameters λ, α, and R then K is λ-ess-Euclidean with d(λ, ε) < C(ε, λ)R,
where C(ε, λ) depends only on ε and the ratio C/λ.

Stabilization Theorem 4.1 says that Bn
2 has property L, and it is easy to

see that if K is essentially-Euclidean then it also has property L.
In a sense, Theorem 4.2 provides some kind of uniqueness: if a body K

has property L then K is essentially-Euclidean. So stabilization (and prop-
erty L which is weaker) can be achieved only by relating to some Euclidean
structure.

Proof. Let C be the constant from the definition of M -position and
assume without loss of generality that K is in M -position. Consider the body
B = conv(K∪Bn

2 ). Consider the function f on ∂K defined by f(x) = ‖x‖B.
Clearly,

|f(x)− f(y)| ≤ ‖x− y‖B ≤ ‖x− y‖K ,
i.e., f is 1-Lipschitz. By property L of K there exists a [λn]-dimensional
subspace E of Rn such that either f(·) ≤ α on ∂K ∩ E or f(·) ≥ R on
∂K ∩ E.

First we show that the former case is impossible, due to the assumption
on α. Indeed, f(·) ≤ α on ∂K∩E means ‖x‖B ≤ α‖x‖K on E, which implies

K ∩ E ⊂ α(conv(K ∪Bn
2 )) ∩ E ⊂ α(K +Bn

2 ) ∩ E.
On the other hand, since K is in M -position, we have

N(K +Bn
2 , 2K) ≤ N(Bn

2 ,K) ≤ exp(Cn).
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Using standard properties of covering numbers we obtain

N((K +Bn
2 ) ∩ E, 4K ∩ E) ≤ exp(Cn).

This yields

N((K +Bn
2 ) ∩ E, 4α(K +Bn

2 ) ∩ E) ≤ exp(Cn),

which is impossible by comparison of volumes and the condition on α.
Thus we have f(·) ≥ R on ∂K ∩ E, that is, ‖x‖B ≥ R‖x‖K on E. In

particular,
Bn

2 ∩ E ⊂ RK ∩ E.
Applying Corollary 2.3 we obtain the desired result.

We conclude this section with a theorem providing a negative answer to
the problem stated in the Introduction. More precisely, this theorem gives
a characterization of bodies that have the property in question by stating
that only essentially-Euclidean bodies can have it. The proof is very similar
to the proof of Theorem 4.2 and is provided for the sake of completeness.

Theorem 4.3. Let α ≥ 1, R ≥ 3α, and λ > 0. Assume that a symmetric
convex body K ⊂ Rn has the property “if dg(K,L) ≤ R for a symmetric
convex body L ⊂ Rn then there exists a subspace E ⊂ Rn of dimension at
least λn and such that dg(K ∩ E,L ∩ E) ≤ α.” Then K is λ-ess-Euclidean
with

d(λ, ε) < C1C(ε, λ)R
(
λ log

2R
5α

)−1

,

where C(ε, λ) depends only on ε, λ, and C1 is an absolute positive constant.

Remark 1. One can check that in fact our proof works for every R > 2α
and gives

d(λ, ε) < C1C(ε, λ)
αR

R− 2α

(
λ log

2R
R+ 2α

)−1

.

Remark 2. Note that Theorem 4.3 answers the question stated in the
Introduction.

Proof. Without loss of generality we can assume that K is in regular
M -position, that is, for every t > 0,

N(K, tBn
2 ) ≤ exp(C0n/t) and N(Bn

2 , tK) ≤ exp(C0n/t)

(see the remark following Corollary 2.3).
Set r = λ

5C0
log 2R

5α and consider the following two bodies:

S := conv(K ∪ rBn
2 ) and L := S ∩RK.

Clearly, K ⊂ L ⊂ RK. Thus, by the property of the body K, there exists a
subspace E ⊂ Rn of dimension k ≥ λn and such that dg(K ∩E,L∩E) ≤ α.
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This means that there is 0 < a ≤ R such that
a

α
K ∩ E ⊂ L ∩ E ⊂ aK ∩ E.

First we show that a < R. Assume that a = R. Then, clearly,

|L ∩ E| ≥
(
R

α

)k
|K ∩ E|.

On the other hand,

N(L ∩ E, (5/2)K ∩ E) ≤ N(L, (5/4)K) ≤ N(K + rBn
2 , (5/4)K)

≤ N(rBn
2 , (1/4)K) = N(Bn

2 , (1/4r)K) ≤ exp(4C0rn).

Therefore,

|L ∩ E| ≤
(

5
2

)k
exp(4C0rn)|K ∩ E|.

This yields
R

α
≤ 5

2
exp(4C0r(n/k)),

which contradicts our choice of r (recall that k ≥ λn).
Now observe that since L ∩ E ⊂ aK ∩ E and a < R, we have

S ∩ E ⊂ aK ∩ E.
Indeed, let x ∈ S ∩E. If x ∈ RK then x ∈ L∩E and the inclusion holds. If
x 6∈ RK then ‖x‖K > R. Define y = Rx/‖x‖K . Then ‖y‖K = R, y ∈ S ∩E,
y ∈ RK. Hence y ∈ L ∩ E ⊂ aK ∩ E. Thus ‖y‖K ≤ a. This contradicts the
fact ‖y‖K = R > a.

The inclusions S ∩ E ⊂ aK ∩ E ⊂ RK ∩ E imply
r

R
Bn

2 ∩ E ⊂ K ∩ E,

and the proof is completed by invoking Corollary 2.3.

5. Properties “from coverings to sections”. We now introduce
properties of convex bodies which we call “from coverings to sections” and
denote by c/s. They relate the covering number of an arbitrary convex body
by a given convex body to the geometric distance between some sections of
these bodies. There will be two underlying parameters A > 0 and R > 1,
related to the covering and the distance, respectively, which we usually omit
in our notation.

Our results will use the following well-known immediate corollary of the
volume ratio theorem ([ST], see also [Pi, Chapter 6]).

Proposition 5.1. Let K ⊂ Rm be a convex body and E be an ellipsoid
such that

E ⊂ K and N(K, cE) ≤ Cm
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for some constants C, c ≥ 1. Then for every k ≤ m there exists a k-
dimensional subspace E ⊂ Rm such that

E ∩ E ⊂ K ∩ E ⊂ dE ∩ E,
where

d ≤ (4πcC)m/(m−k).

Proof. The hypothesis clearly yields |K|/|E| ≤ (cC)m, hence the result
follows from the volume ratio theorem.

Remark. Of course, Proposition 2.2 immediately implies Proposi-
tion 5.1, with worse dependence of the distance d on the parameters c,
C, and m/(m− k).

5.1. Property c/s1. We define property c/s1 as follows.
Let A > 0 and R > 1. Let 0 < δ ≤ λ < 1. We say that a bodyK ⊂ Rn has

property (λ, δ)-c/s1 if for every body L ⊃ K satisfying N(L,K) ≤ exp(An)
the following holds. For every [λn]-dimensional E ⊂ Rn there exists a [δn]-
dimensional F ⊂ E such that L ∩ F ⊂ RK ∩ F .

Note that this property does not depend on the position of the body K,
that is, if K has c/s1 then so does TK for any invertible linear operator T .

Theorem 5.2. Let K be a symmetric convex body in Rn. Let A ≥ C
+ log 5 and R > 1, where C is the constant from the definition of M -
position. Let 0 < δ ≤ λ < 1. If K has (λ, δ)-c/s1 then K is (λ, εδ)-ess-
Euclidean for every ε ∈ (0, 1). Conversely, if K is (λ, δ)-ess-Euclidean then
K has (λ, εδ)-c/s1 for every ε ∈ (0, 1).

Remark 1. The second part of the theorem is known. We provide a
proof for completeness.

Remark 2. The proof below gives in the first part d ≤ C(ε, δ)R, where
C(ε, δ) is the constant from Corollary 2.3, and in the second part R ≤
(8πd exp(A/δ))1/(1−ε).

Proof. Without loss of generality assume that K is in M -position. Con-
sider the body L = conv(K ∪Bn

2 ). Then

N(L,K) ≤ N(K +Bn
2 ,K +K)N(2K,K) ≤ exp(Cn) 5n ≤ exp(An).

Observe that by property c/s1, for every [λn]-dimensional E ⊂ Rn there
exists a [δn]-dimensional F ⊂ E such that L ∩ F ⊂ RK ∩ F , which implies

Bn
2 ∩ F ⊂ RK ∩ F.

Applying Corollary 2.3, we obtain
1
R
Bn

2 ∩ F0 ⊂ K ∩ F0 ⊂ C(ε, δ)Bn
2 ∩ F0.

This implies the result with d = C(ε, δ)R.
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To prove the second part of the theorem we assume that K is (λ, δ)-ess-
Euclidean and that L ⊃ K satisfies N(L,K) ≤ exp(An). By the definition,
for every [λn]-dimensional E ⊂ Rn there exists a [δn]-dimensional F ⊂ E
such that

E ∩ F ⊂ K ∩ F ⊂ dE ∩ F,

for some ellipsoid E . Then

N(L ∩ F, 2dE ∩ F ) ≤ N(L ∩ F, 2K ∩ F ) ≤ N(L,K) ≤ exp(An)

and E ∩ F ⊂ L ∩ F . Proposition 5.1 applied to L ∩ F and the inclusion
E ∩ F ⊂ K ∩ F imply the desired result with

R = (8πd exp(A/δ))1/(1−ε).

5.2. Property c/s2. Another property from coverings to sections,
c/s2, is similar but slightly stronger than property c/s1, as the require-
ment L ⊃ K is dropped.

Let A > 0 and R > 1. Let 0 < δ ≤ λ < 1. We say that a body K ⊂ Rn

has property (λ, δ)-c/s2 if for every body L satisfying N(L,K) ≤ exp(An)
the following holds. For every [λn]-dimensional E ⊂ Rn there exists a [δn]-
dimensional F ⊂ E such that L ∩ F ⊂ RK ∩ F .

As before, c/s2 does not depend on the position of a body K.
The relation between property c/s2 and being essentially-Euclidean is

the same as for property c/s1 in Theorem 5.2, but in this case the restriction
on A becomes weaker (or actually unnecessary).

Theorem 5.3. Let K be a symmetric convex body in Rn. Let A ≥ C
and R > 1, where C is the constant from the definition of M -position.
Let 0 < δ ≤ λ < 1. If K has (λ, δ)-c/s2 then K is (λ, εδ)-ess-Euclidean
for every ε ∈ (0, 1). Conversely, if K is (λ, δ)-ess-Euclidean then K has
(λ, εδ)-c/s2 for every ε ∈ (0, 1).

The proof repeats the argument of Theorem 5.2. The only difference is
that we consider L = Bn

2 instead of L = conv(K ∪ Bn
2 ) and adjust the

covering estimates. Moreover, using regular M -position (see the proof of
Theorem 4.3) one can prove the theorem for every A > 0.

5.3. Property c/s3. We define one more property of the c/s-type,
called c/s3. In the definition below we identify Rn with the coordinate
subspace of RN , N ≥ n, of vectors having zeros in the last N−n coordinates.

Let A > 0 and R > 1. Let 0 < λ < 1. We say that a body K ⊂ Rn has
property λ-c/s3 if for every N , every body L ⊂ RN satisfying K = L ∩ Rn

and N(PL,K) ≤ exp(An) for some projection P from RN onto Rn the



Essentially-Euclidean convex bodies 219

following holds. There exists a [λn]-dimensional subspace E ⊂ Rn such that
(PL) ∩ E ⊂ RK ∩ E.

Remark. Let L ⊂ RN be a body satisfying the two conditions above.
Clearly the projection P does not need to have a well bounded norm (in
the norm induced by L). However, in the presence of property λ-c/s3, there
exists an F ⊂ RN of dimension N −n+ [λn], that contains E and such that
there exists a bounded projection Q : F → E. Indeed, take F = kerP ⊕ E
and Q = P|F . Then, since E ⊂ Rn = ImP , we have

dimF = dim kerP + dimE = N − n+ [λn]

and

Q(L ∩ F ) = P (L ∩ F ) = (P (L ∩ F )) ∩ E ⊂ RK ∩ E = RL ∩ E,

which means ‖Q : (F,L ∩ F )→ (E,L ∩ E)‖ ≤ R.

Theorem 5.4. Let K be a symmetric convex body in Rn. Let A ≥ C +
log 5 and R > 1, where C is the constant from the definition of M -position.
Let 0 < λ < 1. If K has λ-c/s3 then K is λ-ess-Euclidean. Conversely, if
K contains an [λn]-dimensional section which is d-Euclidean, then K has
(ελ)-c/s3 for every ε ∈ (0, 1).

Proof. Let N = 2n. Let B ⊂ Rn be an M -ellipsoid for K. Define the
ellipsoid E ⊂ RN by

E = {(x, x) | x ∈ B}.

Let L be the convex hull of K∪E and P be the orthogonal projection on Rn.
Then L ∩ Rn = K and PL = conv(K ∪ B). As in the proof of Theorem 5.2
we obtain

N(PL,K) ≤ exp(An).

By property c/s3 it follows that there exists a [λn]-dimensional E ⊂ Rn

such that (PL) ∩ E ⊂ RK ∩ E. Thus B ∩ E ⊂ RK ∩ E. Since B is an
M -ellipsoid for K, applying Corollary 2.3 we find that for every ε ∈ (0, 1)
there exists a further [ελn]-dimensional subspace E1 of E such that

1
R
B ∩ E1 ⊂ K ∩ E1 ⊂ C(ε, λ)B ∩ E1.

Thus K ∩E1 is C(ε, λ)R-Euclidean, which shows that K is λ-ess-Euclidean
with d = C(ε, λ)R.

The proof of the second part is similar to the proof of Theorem 5.2.
Assume that for a [λn]-dimensional E ⊂ Rn we have E ⊂ K ∩ E ⊂ dE for
some ellipsoid E ⊂ E. Assume that a body L ⊂ RN and a projection P from
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RN onto Rn satisfy L ∩ Rn = K and N(PL,K) ≤ eAn. Then

N((PL) ∩ E, 2dE) ≤ eAn.
By Proposition 5.1 applied to (PL) ∩ E we infer the existence of an [ελn]-
dimensional subspace F ⊂ E such that

(PL) ∩ F ⊂ (8πd exp(A/λ))1/(1−ε)E .
Since E ⊂ K ∩ E, the result follows.
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