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Abstract. The structure of the closed linear span R of the Rademacher functions
in the Cesàro space Ces∞ is investigated. It is shown that every infinite-dimensional
subspace of R either is isomorphic to l2 and uncomplemented in Ces∞, or contains a
subspace isomorphic to c0 and complemented in R. The situation is rather different in the
p-convexification of Ces∞ if 1 < p < ∞.

1. Introduction. The behaviour of the Rademacher functions in the
spaces Lp = Lp[0, 1] is well known. By the classical Khintchine inequality,
there exists a constant Ap > 0 such that for all real numbers ak, k = 1, 2, . . . ,
we have

A−1p

( ∞∑
k=1

a2k

)1/2
≤
∥∥∥ ∞∑
k=1

akrk

∥∥∥
Lp

≤ Ap
( ∞∑
k=1

a2k

)1/2
, 0 < p <∞,

that is, {rn}∞n=1 spans an isomorphic copy of l2 in Lp for every 0 < p <∞.
Moreover, the subspace [rn] is complemented in Lp for 1 < p <∞, and not
complemented in L1 since no complemented infinite-dimensional subspace of
L1 can be reflexive. Moreover, ‖

∑n
k=1 akrk‖L∞[0,1] =

∑n
k=1 |ak|, and so the

Rademacher functions span in L∞ an isometric copy of l1, which is known
to be uncomplemented (see [13, Theorem 2.b.4(ii)], [15, Theorem 1] and [2,
Theorem 3.4]).

Investigations of Rademacher sums in the Cesàro function spaces Cesp :=
Cesp[0, 1] were initiated in [6]. The Cesàro spaces consist of all Lebesgue
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Krĕın–Levin space, Cesàro function spaces Kp, subspaces, complemented subspaces.

DOI: 10.4064/sm226-3-4 [259] c© Instytut Matematyczny PAN, 2015



260 S. V. Astashkin and L. Maligranda

measurable real-valued functions f on [0, 1] such that

‖f‖Cesp =

[1�
0

(
1

x

x�

0

|f(t)| dt
)p

dx

]1/p
<∞ for 1 ≤ p <∞

and

‖f‖Ces∞ = sup
0<x≤1

1

x

x�

0

|f(t)| dt <∞ for p =∞.

The latter space Ces∞ appeared already in 1948 [10] (see also [14], [17, p. 469]
and [16, p. 26]) and is known as the Korenblyum–Krĕın–Levin space K.

Further, we will also consider the p-convexification of the space K =
Ces∞, 1 < p < ∞, which will be denoted by Kp, consisting of all Lebesgue
measurable real-valued functions f on [0, 1] such that the norm

‖f‖Kp = sup
0<x≤1

(
1

x

x�

0

|f(t)|p dt
)1/p

is finite.
The Cesàro function spaces Cesp, 1 ≤ p ≤ ∞, are not rearrangement

invariant, and are not isomorphic to Lq-spaces for any 1 ≤ q ≤ ∞ (see
[5], [7] and [8], where also other properties are investigated). However, sim-
ilarly to Lp-spaces, there is also an essential difference in the behaviour of
Rademacher sums in Cesp for 1 ≤ p < ∞ and p = ∞. Namely, as proved
in [6], for any 1 ≤ p <∞, the sequence {rn}∞n=1 is equivalent in Cesp to the
unit vector basis of l2, i.e.,

B−1p

( ∞∑
k=1

a2k

)1/2
≤
∥∥∥ ∞∑
k=1

ak rk

∥∥∥
Cesp
≤ Bp

( ∞∑
k=1

a2k

)1/2
for a suitable constant Bp > 0 and for all real ak, k = 1, 2, . . . . On the other
hand, we have

(1.1) C−1p

[( ∞∑
k=1

a2k

)1/2
+ sup
m∈N

∣∣∣ m∑
k=1

ak

∣∣∣] ≤ ∥∥∥ ∞∑
k=1

ak rk

∥∥∥
Kp

≤ Cp
[( ∞∑

k=1

a2k

)1/2
+ sup
m∈N

∣∣∣ m∑
k=1

ak

∣∣∣],
with some constant Cp > 0 which depends only on p ∈ [1,∞). In particular,∑∞

k=1 akrk converges in Kp if and only if both
∑∞

k=1 a
2
k and

∑∞
k=1 ak are

convergent. Moreover, (1.1) shows that the Rademacher functions form a
conditional basis in the subspace

Rp := [rk] spanned by rk, k = 1, 2, . . . , in Kp, 1 ≤ p <∞.
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The aim of this paper is to describe the geometrical structure of
the space Rp for 1 ≤ p < ∞. The following main results, which can be
treated as a Kadec–Pełczyński type alternative for the Rademacher sub-
spaces of Kp, indicate that their structures in the cases p = 1 and 1 < p <∞
are different.

Theorem 1. Every infinite-dimensional subspace of R either is isomor-
phic to l2 and uncomplemented in K = Ces∞, or contains a subspace iso-
morphic to c0 and complemented in R.

Theorem 2. Every infinite-dimensional subspace of Rp, 1 < p < ∞,
either is isomorphic to l2 and complemented in Kp, or contains a subspace
isomorphic to c0 and complemented in Rp.

It is worth noting that comparing Theorem 2 with Leibov’s results relat-
ing to the space of functions of bounded mean oscillation (see [11]) shows that
the structures of the Rademacher subspaces in Kp, 1 < p <∞, and in BMO
are similar. Generally speaking, this is not surprising, because Rademacher
sums satisfy in BMO inequalities completely analogous to (1.1) (see also [4],
where it is proved, among other results, that the subspace [rk] spanned
by the Rademacher functions in BMO is not complemented in BMO). At
the same time, it is instructive to emphasize the following point. In [11],
Leibov uses the fact that the continuous embedding BMO ↪→ L1 factorizes
through Lp for any p ∈ (1,∞), which allows him to apply the well-known
Kadec–Pełczyński result about complementability of any subspace of Lp,
p ≥ 2, isomorphic to l2. However, by contrast, the continuous embedding
Ces∞ ↪→ Lp holds if and only if p = 1; hence we cannot now use the Kadec–
Pełczyński argument, and the result obtained (Theorem 1) essentially differs
from the one proved by Leibov [11].

In what follows, given two positive functions (quasi-norms) f and g we
write f � g if there exists a constant C > 0 independent of all or of a
part of parameters such that C−1f ≤ g ≤ Cf . As usual, we denote by [xn]
the closed linear span of a sequence {xn}∞n=1 in a Banach space X, and set
‖f‖d :=

(∑∞
n=1 a

2
n

)1/2 for a Rademacher sum f =
∑∞

n=1 anrn converging
a.e. on [0, 1]. Moreover, we write K1 = K and R1 = R.

The paper is organized as follows. In Section 2, based on some construc-
tions from [11] and [4], we study properties of block bases of the Rademacher
system in Cesàro type spaces. We show that, depending on whether
lim infn→∞ ‖un‖d > 0 or lim infn→∞ ‖un‖d = 0, a block basis {un}∞n=1 of
the Rademacher functions weakly converging to zero in Kp, 1 ≤ p < ∞,
and such that C−1 ≤ ‖un‖Kp ≤ C for some C > 0 and all n ∈ N contains
a subsequence equivalent to the unit vector basis of l2 or c0 (Theorem 3).
This allows us to prove, in Theorem 4, that for each 1 ≤ p < ∞ every
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infinite-dimensional subspace of Rp either is isomorphic to l2, or contains a
subspace isomorphic to c0 and complemented in Rp.

In Sections 3 and 4, we complete the proof of Theorems 1 and 2 by
exhibiting an essential difference in the geometrical structure of subspaces
of Rp in the cases p = 1 and 1 < p < ∞. Finally, in Section 5, we finish
with some remarks relating to a more general weighted version of the Cesàro
space.

2. Block bases of the Rademacher system in Kp, 1 ≤ p <∞. Let
{un}∞n=1 be a block basis of the Rademacher system {rk}∞k=1, that is,

(2.1) un =

mn+1∑
k=mn+1

akrk, 0 < m1 < m2 < · · · , n ∈ N.

Theorem 3. Let 1 ≤ p < ∞, and {un}∞n=1 be a block basis of {rk}∞k=1
weakly converging to zero in Kp with 1/c0 ≤ ‖un‖Kp ≤ c0 for some constant
c0 > 0 and for all n ∈ N.

(a) If there is ε > 0 such that ‖un‖d ≥ ε (n ∈ N), then {un}∞n=1 contains
a subsequence equivalent to the unit vector basis of l2.

(b) If ‖un‖d → 0 as n → ∞, then {un}∞n=1 contains a subsequence
equivalent to the unit vector basis of c0.

To prove Theorem 3 we will need some auxiliary facts. First, we observe
that {rk}∞k=1 is not weakly convergent to zero in Kp. In fact, let ϕ0 be a
linear functional defined on the linear span of rk, k = 1, 2, . . . , by

ϕ0

( n∑
k=1

akrk

)
=

n∑
k=1

ak,

where n ∈ N, ak ∈ R, k = 1, . . . , n. By (1.1), we have∣∣∣ϕ0

( n∑
k=1

akrk

)∣∣∣ = ∣∣∣ n∑
k=1

ak

∣∣∣ ≤ C ∥∥∥ n∑
k=1

akrk

∥∥∥
Kp

.

Therefore, ϕ0 can be extended to a functional ϕ̃0 ∈ (Kp)
∗. Since ϕ̃0(rn) =

ϕ0(rn) = 1 for all n ∈ N, it follows that rn 9 0 weakly in Kp.
Now, we show that the sequence

sn := rn − rn−1, n = 1, 2, . . . , where r0 = 0,

converges weakly to zero in Rp, and it even forms a shrinking basis.

Proposition 1. The sequence {sn}∞n=1 is a shrinking basis in the space
Rp for every 1 ≤ p <∞.
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Proof. First, we show that {sn}∞n=1 is a basis in Rp. To this end, we
consider a function f =

∑∞
n=1 βnsn ∈ Rp. Since

f =
∞∑
n=1

βn(rn − rn−1) =
∞∑
n=0

(βn − βn−1)rn, where β0 = 0,

from (1.1) it follows that f ∈ Rp if and only if {βn}∞n=1 converges and∑∞
n=1(βn − βn−1)2 <∞. Moreover, {sn}∞n=1 is complete in Rp and

(2.2) ‖f‖Kp � sup
n=1,2,...

|βn|+
( ∞∑
n=1

(βn − βn−1)2
)1/2

,

which implies that {sn}∞n=1 forms a basis in Rp.
To prove the shrinking property of {sn}∞n=1 we need to show that for any

ϕ ∈ (Kp)
∗,

(2.3) ‖ϕ|[sn]∞n=m
‖Kp → 0 as m→∞.

Assume (2.3) does not hold. Then there exist ε∈ (0, 1), a functional ϕ∈ (Kp)
∗

with ‖ϕ‖(Kp)∗ = 1, and a sequence of functions fn =
∑∞

k=mn
amn
k sk, where

m1 < m2 < · · · , such that ‖fn‖Kp = 1, n = 1, 2, . . . , and

(2.4) ϕ(fn) ≥ ε for all n = 1, 2, . . . .

It is not hard to construct two sequences of positive integers, {qi}∞i=1 and
{pi}∞i=1, such that qi = mni , i = 1, 2, . . . , 1 < q1 < p1 < q2 < p2 < · · · and

(2.5)
∥∥∥ ∞∑
n=pi+1

aqik sk

∥∥∥
Kp

≤ ε

2
.

In fact, setting q1 = m1, we can find p1 > q1 such that ‖
∑∞

n=p1+1 a
q1
k sk‖Kp ≤

ε/2. Then, taking for q2 the smallest mn which is larger than p1, we find
p2 > q2 satisfying ‖

∑∞
n=p2+1 a

q2
k sk‖Kp ≤ ε/2. Continuing in the same way,

we come to the required sequences {qi}∞i=1 and {pi}∞i=1.
Since ‖fn‖Kp = 1, n = 1, 2, . . . , by (2.5) the sequence

ui :=

pi∑
k=qi

aqik sk, i = 1, 2, . . . ,

is bounded in Kp. Moreover, from (2.4) and (2.5) it follows that

ϕ(ui) = ϕ(fi)− ϕ
( ∞∑
k=pi+1

aqik sk

)
(2.6)

≥ ϕ(fi)−
∥∥∥ ∞∑
k=pi+1

aqik sk

∥∥∥
Kp

≥ ε

2
, i = 1, 2, . . . .
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Setting αik = aqik if qi ≤ k ≤ pi and αik = 0 if pi < k < qi+1, i = 1, 2, . . . ,
we have

ui :=

qi+1−1∑
k=qi

αiksk, i = 1, 2, . . . ,

that is, {ui}∞i=1 is a bounded block basis of {sk}∞k=1.
Let {γn}∞n=1 be an arbitrary sequence of positive numbers such that

(2.7)
∞∑
n=1

γ2n <∞ and
∞∑
n=1

γn =∞.

We want to show that the series
∑∞

n=1 γnun converges in Kp. To this end,
we set

bk := αikγi if qi ≤ k < qi+1, i = 1, 2, . . . .

Then, by (2.2), if k ≥ qj with some j = 1, 2, . . . , we have

|bk| ≤ sup
i≥j

max
qi≤k<qi+1

|aqik γi| ≤ C sup
i∈N
‖ui‖Kp sup

i≥j
γi

≤ C sup
i∈N
‖ui‖Kp sup

i≥j
γi.

Hence, thanks to (2.7), we obtain limk→∞ bk = 0. Moreover,
∞∑
k=1

(bk − bk+1)
2 =

∞∑
i=1

qi+1−2∑
k=qi

(αikγi − αik+1γi)
2

+
∞∑
i=1

(αiqi+1−1γi − α
i+1
qi+1

γi+1)
2 = A1 +A2.

Let us estimate A1 and A2 separately. In view of (2.2) and (2.7) we have

A1 =

∞∑
i=1

γ2i

qi+1−2∑
k=qi

(αik − αik+1)
2 ≤ C sup

i∈N
‖ui‖Kp

∞∑
i=1

γ2i <∞,

and similarly

A2 ≤ 2

∞∑
i=1

[
(αiqi+1−1)

2γ2i + (αi+1
qi+1

)2γi+1)
2
]
≤ C

∞∑
i=1

γ2i sup
i∈N
‖ui‖Kp <∞.

The above observations combined with (2.2) show that the series
∞∑
n=1

γnun =
∞∑
k=1

bksk

converges in Kp. At the same time, since ϕ ∈ (Kp)
∗, by (2.6) and (2.7) we

have
ϕ
( ∞∑
n=1

γnun

)
=

∞∑
n=1

γnϕ(un) ≥
ε

2

∞∑
n=1

γn =∞,

and therefore (2.3) is proved.
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Corollary 1. Let {un}∞n=1 be a block basis defined as in (2.1), suppose
‖un‖Kp ≤ C, n = 1, 2, . . . , for some C > 0, and let

γn = γn({un}) :=
mn+1∑

k=mn+1

ak, n = 1, 2, . . . .

Then un → 0 weakly in Kp if and only if γn → 0 as n→∞.

Proof. Denote by {s∗n}∞n=1 the system biorthogonal to the above ba-
sis {sn}∞n=1. From Proposition 1 and [12, Proposition 1.b.1] it follows that
{s∗n}∞n=1 is a basis in the dual space (Rp)∗. By definition, we have

s∗n(sm) = 0 if n 6= m and s∗n(sn) = 1, n = 1, 2, . . . .

Since s1 = r1, this implies that

(2.8) s∗n(rm) = 1 if n ≤ m and s∗n(rm) = 0 if n > m.

Now, define the sequence {r∗n}∞n=0 from (Rp)∗ by setting

r∗0 = s∗1 and r∗n = s∗n − s∗n+1, n = 1, 2, . . . .

Clearly, {r∗n}∞n=0 is complete in (Rp)∗ together with {s∗n}∞n=1, and from (2.8)
it follows that

r∗0(rm) = 1 (m=1, 2, . . .), r∗n(rm) = 0 (n 6= m), r∗n(rn) = 1 (n=1, 2, . . .).

Since r∗0(un) = γn, n = 1, 2, . . . , we have

(2.9) r∗k(un)→ 0 for every k = 0, 1, 2, . . .

if and only if γn → 0 as n→∞. On the other hand, in view of the bounded-
ness of {un}∞n=1 in Kp, condition (2.9) is equivalent to the weak convergence
of {un} to zero in Kp. Therefore, the result follows.

Proof of Theorem 3. Let {un}∞n=1 be a block basis of the Rademacher
functions defined in (2.1). First, by assumption and Corollary 1, we have

γn :=

mn+1∑
k=mn+1

ak → 0 as n→∞,

and passing to a subsequence of {un}∞n=1 if necessary, we can assume that

(2.10) |γn| ≤ 2−n, n = 1, 2, . . . .

(a) Let f =
∑∞

n=1 bnun ∈ Rp. Then

(2.11) f =
∞∑
n=1

mn+1∑
k=mn+1

bnakrk =

∞∑
k=1

βkrk.

First, we estimate
∑q

k=p βk for p ≤ q. Let mn−1 ≤ p < mn < mn+l < q ≤
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mn+l+1 for some n and l. Then∣∣∣ q∑
k=p

βk

∣∣∣ = ∣∣∣ mn∑
k=p

βk +

mn+l∑
k=mn+1

βk +

q∑
k=mn+l+1

βk

∣∣∣
=
∣∣∣ mn∑
k=p

bn−1ak +
n+l−1∑
i=n

mi+1∑
k=mi+1

biak +

q∑
k=mn+l+1

bn+lak

∣∣∣
≤ |bn−1|

∣∣∣ mn∑
k=p

ak

∣∣∣+ n+l−1∑
i=n

|bi|
∣∣∣ mi+1∑
k=mi+1

ak

∣∣∣+ |bn+l|∣∣∣ q∑
k=mn+l+1

ak

∣∣∣
≤ sup

n∈N
|bn|
(∣∣∣ mn∑

k=p

ak

∣∣∣+ n+l−1∑
i=n

∣∣∣ mi+1∑
k=mi+1

ak

∣∣∣+ ∣∣∣ q∑
k=mn+l+1

ak

∣∣∣).
By (1.1), we have

max
(∣∣∣ mn∑

k=p

ak

∣∣∣, ∣∣∣ q∑
k=mn+l+1

ak

∣∣∣) ≤ C‖un‖Kp ≤ C1.

Moreover, from (2.10) it follows that
n+l−1∑
i=n

∣∣∣ mi+1∑
k=mi+1

ak

∣∣∣ = n+l−1∑
i=n

|γi| ≤
n+l−1∑
i=n

2−i < 1.

Therefore, from the preceding estimates we infer that∣∣∣ q∑
k=p

βk

∣∣∣ ≤ (2C1 + 1) sup
n∈N
|bn|(2.12)

≤ (2C1 + 1)
( ∞∑
n=1

b2n

)1/2
for all 1 ≤ p ≤ q <∞.

By assumption and (1.1), there is a constant C2 > 0 such that for all n ∈ N,
mn+1∑

k=mn+1

a2k ≤ C‖un‖2Kp
≤ C2

2 ,

and so

(2.13)
( ∞∑
k=1

β2k

)1/2
≤
( ∞∑
n=1

b2n ·
mn+1∑

k=mn+1

a2k

)1/2
≤ C2

( ∞∑
n=1

b2n

)1/2
.

On the other hand, since ‖un‖d =
(∑mn+1

k=mn+1 a
2
k

)1/2 ≥ ε, we have

(2.14)
( ∞∑
k=1

β2k

)1/2
=
( ∞∑
n=1

b2n‖un‖2d
)1/2

≥ ε
( ∞∑
n=1

b2n

)1/2
.
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From (2.12)–(2.14) and (1.1), it follows that {un}∞n=1 is equivalent to the
unit vector basis in l2, so the proof of part (a) is complete.

(b) Since ‖un‖d → 0 as n→∞, we can assume that
(2.15) ‖un‖d ≤ η 2−n, n = 1, 2, . . . ,

where η > 0 will be chosen later on. Suppose that f =
∑∞

n=1 bnun ∈ Rp.
Then, representing f by formula (2.11), and applying (1.1), (2.15) and the
first inequality of (2.12) (which is still valid), we obtain

‖f‖Kp ≤ C
(
‖f‖d + sup

1≤p≤q<∞

∣∣∣ q∑
k=p

βk

∣∣∣)
≤ C

( ∞∑
n=1

|bn| ‖un‖d + (2C1 + 1) sup
n∈N
|bn|
)
≤ C3 sup

n∈N
|bn|.

On the other hand, by (1.1), we have

‖f‖Kp ≥ c sup
1≤p≤q<∞

∣∣∣ q∑
k=p

βk

∣∣∣ ≥ c sup
n∈N
|bn| · max

mn<j≤mn+1

∣∣∣ j∑
k=mn+1

ak

∣∣∣.
Since ‖un‖Kp ≥ 1/c0, n = 1, 2, . . . , choosing η > 0 in (2.15) sufficiently
small, for every n ∈ N we can find ln with mn < ln ≤ mn+1 such that for
some δ > 0, ∣∣∣ ln∑

k=mn+1

ak

∣∣∣ ≥ δ.
Combining this observation with the preceding estimate we obtain

‖f‖Kp ≥ cδ sup
n∈N
|bn|,

and therefore (b) is proved.
Now, we are ready to prove the main result of Section 2.
Theorem 4. Let 1 ≤ p < ∞. Every infinite-dimensional subspace X

of Rp either is isomorphic to l2, or contains a subspace isomorphic to c0
and complemented in Rp.

Proof. Suppose that for every f =
∑∞

k=1 bkrk ∈ X we have

‖f‖Kp � ‖f‖d =
( ∞∑
k=1

b2k

)1/2
.

This means that X is isomorphic to some subspace of l2 and so to l2 itself.
Otherwise, by (1.1), there is a sequence {fn}∞n=1 ⊂ X with ‖fn‖Kp = 1

for which ‖fn‖d → 0 as n → ∞. Observe that {fn}∞n=1 has no subsequence
converging in Kp-norm. In fact, if ‖fnk

− f‖Kp → 0 for some {fnk
} ⊂ {fn}

and f ∈ X, then ‖fnk
− f‖d → 0 and hence ‖f‖d = 0, i.e., f = 0. On the
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other hand, ‖f‖Kp should be equal to 1, and we come to a contradiction.
Thus, passing to a subsequence if necessary, we can assume that

(2.16) ‖fn − fm‖Kp ≥ ε > 0 for all n 6= m.

Recall that {s∗n}∞n=1 is a basis in (Rp)∗. Applying the diagonal process, we
can construct a sequence {nk}∞k=1, n1 < n2 < · · · , such that limk→∞ s

∗
i (fnk

)
exists for every i = 1, 2, . . . . Then

lim
k→∞

s∗i (fn2k+1
− fn2k

) = 0 for all i = 1, 2, . . . ,

and since {fn2k+1
−fn2k

}∞k=1 is bounded inRp, we infer that fn2k+1
−fn2k

→ 0
weakly in Kp. Now, taking into account (2.16) and applying the well-known
Bessaga–Pełczyński Selection Principle (see [1, Proposition 1.3.10] or [12,
Proposition 1.a.12]), we can find a subsequence of {fn2k+1

− fn2k
} (not rela-

belled) and a block basis {uk}∞k=1 of the Rademacher functions such that

(2.17) ‖uk − (fn2k+1
− fn2k

)‖Kp ≤ B−10 2−k−1, k = 1, 2, . . . ,

whereB0 is the basic constant of {rk} inRp. Then the sequences {uk}∞k=1 and
{fn2k+1

−fn2k
}∞k=1 are equivalent inKp (cf. [12, Proposition 1.a.9]). Moreover,

from (2.17) it follows that uk → 0 weakly in Kp and ‖uk‖d → 0. Therefore,
by Theorem 3(b), the sequence {uk}∞k=1 (and so {fn2k+1

−fn2k
}∞k=1) contains

a subsequence equivalent to the unit vector basis of c0. Complementability
in Rp of the subspace spanned by the latter subsequence is an immediate
consequence of Sobczyk’s theorem [1, Corollary 2.5.9].

Arguing as in the proof of Theorem 4, we also obtain the following result.

Theorem 5. Let 1 ≤ p <∞, and let {fn}∞n=1 be a basic sequence in Rp
weakly converging to zero in Kp with 1/c0 ≤ ‖fn‖Kp ≤ c0 for some constant
c0 > 0 and for all n ∈ N. Then {fn}∞n=1 contains a subsequence equivalent
to the unit vector basis of l2 or c0.

3. Structure of Rademacher subspaces in K. In this section we
complete the proof of Theorem 1. In view of Theorem 3 all we need is the
following result.

Theorem 6. Let X be a subspace of K = Ces∞ which is isomorphic
to l2 and such that X ⊂ R. Then X is uncomplemented in K.

Proof. On the contrary, assume that an X as above is complemented
in K. Let {xn}∞n=1 ⊂ X be equivalent to the unit vector basis {en}∞n=1 of l2.
Since en

w→ 0 in l2, it follows that xn
w→ 0 in K. Noting that xn ∈ R

and ‖xn‖K � 1, n = 1, 2, . . . , by applying the Bessaga–Pełczyński theorem
once more (see [1, Proposition 1.3.10] or [12, Proposition 1.a.12]), we select
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a subsequence {xni} ⊂ {xn} equivalent to a suitable block basis {un} of the
Rademacher functions,

un =

mn+1∑
k=mn+1

akrk, 0 < m1 < m2 < · · · , n ∈ N,

such that ‖xni − ui‖K → 0 as i→∞. Hence, {un} is equivalent in K to the
unit vector basis in l2, i.e.,

(3.1)
∥∥∥ ∞∑
n=1

bnun

∥∥∥
K
�
( ∞∑
n=1

b2n

)1/2
, bn ∈ R.

Taking into account the principle of small perturbations [1, Proposition
1.3.9], we can also assume that the closed linear span [un] is also comple-
mented in K. Moreover,

(3.2) ‖un‖K �
( mn+1∑
k=mn+1

a2k

)1/2
� 1, n = 1, 2, . . . .

In fact, otherwise we have

lim inf
n→∞

mn+1∑
k=mn+1

a2k = 0.

Also if ϕ ∈ K∗, then

|ϕ(ui)| ≤ |ϕ(ui − xni)|+ |ϕ(xni)| ≤ ‖ϕ‖ ‖ui − xni‖+ |ϕ(xni)|.

Since xn
w→ 0 in K and ‖ui − xni‖K → 0, we find that un

w→ 0 in K as
well. Therefore, by Theorem 3(b), {un}∞n=1 contains a subsequence {uni}∞i=1

equivalent in K to the unit vector basis in c0. Since this contradicts {un}
being equivalent in K to the unit vector basis in l2, (3.2) is proved.

Let P be a bounded projection from K onto [un]. Since {un} is a basic
sequence in K, we can find functionals ϕn ∈ K∗, n = 1, 2, . . . , such that

Pf(x) =

∞∑
n=1

ϕn(f)un(x), f ∈ K.

Since K ⊂ L1, the Köthe dual K ′ contains the space L∞, and therefore K ′
is a total set on K. Thus, by [9, Chapter 10, Theorem 3.6], we have

(3.3) K∗ = Kc ⊕Ks,

where Kc (respectively, Ks) is the set of all order continuous linear function-
als on K generated by the space K ′ (respectively, singular bounded linear
functionals on K). Hence, if θ ∈ Ks, then

(3.4) θ(f) = 0 for every f ∈ K0,
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where K0 is the separable part of K (the set of all elements in K having
absolutely continuous norm). In particular, from (3.3) it follows that

ϕn = ψn + θn with ψn ∈ Kc and θn ∈ Ks, n = 1, 2, . . . .

Moreover, since P is a projection onto [un], we have

(3.5) ψn(un) + θn(un) = 1 (n = 1, 2, . . .), ψn(ui) + θn(ui) = 0 for i 6= n.

Since from (3.1) it follows that

‖Pf‖K �
( ∞∑
n=1

ϕn(f)
2
)1/2

<∞ for every f ∈ K,

{ϕn} is a weakly∗ null sequence in K∗. Therefore,

(3.6) ‖ϕn‖K∗ ≤ A (n = 1, 2, . . .) for some A > 0.

On the other hand, taking into account (3.4), we see that the operator

Qf(x) =
∞∑
n=1

ψn(f)un(x), f ∈ K0,

coincides with P on K0 and hence Q : K0 → K is bounded. Let us show
that Q acts boundedly in K.

Since ψn ∈ Kc, we have

(3.7) ψn(f) =

1�

0

gn(t)f(t) dt for some gn ∈ K ′.

For every f ∈ K we have |f |χ[1/m,1] · sign gn ∈ K0, m, n = 1, 2, . . . , and
therefore in view of (3.6) and (3.4),

1�

0

|gn(t)f(t)χ[1/m,1](t)| dt = ψn(|f |χ[1/m,1] · sign gn)

= ϕn
(
|f |χ[1/m,1] sign gn

)
≤ A ‖f‖K , m, n = 1, 2, . . . .

Letting m→∞, by the Fatou lemma we have

1�

0

|gn(t)f(t)| dt ≤ A‖f‖K for all f ∈ K and n ∈ N,

whence ‖ψn‖K∗ ≤ A. Combining this inequality with (3.6), we infer that

(3.8) ‖θn‖K∗ ≤ 2A, n = 1, 2, . . . .
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Moreover, by (3.1),
∞∑
n=1

( 1�

0

gn(t)f(t)χ[1/m,1](t) dt
)2
� ‖Q(fχ[1/m,1])‖2K

≤ C‖fχ[1/m,1]‖2K ≤ C‖f‖2K .
Since gnf ∈ L1 for all n = 1, 2, . . . , as above we obtain

(3.9) ‖Qf‖2K �
∞∑
n=1

( 1�

0

gn(t)f(t) dt
)2
≤ C‖f‖2K ,

and the assertion is proved.
Note that ri − χ[0,1] ∈ K0 for all i ∈ N. Therefore, by (3.5), θn(ri) =

θn(χ[0,1]) := cn for all n, i ∈ N, and

θn(ui) = cn

mi+1∑
k=mi+1

ak, n, i ∈ N.

Moreover, since ui
w→ 0 in K, by Corollary 1 we obtain

mi+1∑
k=mi+1

ak → 0 as i→∞.

Therefore, by (3.8), for all positive integers n and i,

|cn| = |θn(χ[0,1])| ≤ ‖θn‖K∗‖χ[0,1]‖K ≤ 2A,

whence
lim
i→∞

sup
n∈N
|θn(ui)| = 0.

On the other hand, by (3.5), we have

ψn(ui) = −θn(ui) (i 6= n) and ψn(un) = 1− θn(un), n ∈ N,
whence

lim
n→∞

ψn(un) = 1 and lim
i→∞

sup
n 6=i
|ψn(ui)| = 0.

Thus, passing to subsequences of {un} and {ψn}, and keeping the same
notation, we deduce that the operator

Rf(x) :=
∞∑
n=1

ψn(f)un(x), f ∈ K,

where

(3.10) ψn(un) ≥ 1− 2−n (n = 1, 2, . . .) and |ψn(ui)| ≤ 2−i, n 6= i,

acts boundedly in K. As above, the functionals ψn are defined by (3.7).
Since K ⊂ L1[0, 1], the operator R is also bounded from K into L1.

Let us show that R : K → L1 is weakly compact. By the Dunford–Pettis
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theorem (see, for example, [1, Theorem 5.2.9]), it is sufficient to check that
the set {Rf : ‖f‖K ≤ 1} is uniformly integrable on [0, 1]. In fact, by (3.2)
and (3.9), for every f ∈ K with ‖f‖K ≤ 1 and any set E ⊂ [0, 1], we obtain

‖Rf · χE‖L1 ≤ m(E)1/2 ‖Rf‖L2 = m(E)1/2
( ∞∑
n=1

ψn(f)
2 ·

mn+1∑
k=mn+1

a2k

)1/2
� m(E)1/2

( ∞∑
n=1

ψn(f)
2
)1/2

≤ C‖R‖m(E)1/2,

whence
lim

m(E)→0
sup{‖Rf · χE‖L1 : ‖f‖K ≤ 1} = 0

(here,m(E) is the Lebesgue measure of a set E). Thus,R is a weakly compact
operator from K into L1.

Now, we consider separately two cases. Firstly, assume that there are
δ ∈ (0, 1) and a subsequence {unk

} ⊂ {un} such that

(3.11) |ψnk
(unk

· χ[δ,1])| =
∣∣∣ 1�
δ

gnk
(t)unk

(t) dt
∣∣∣ ≥ 1

2
, k = 1, 2, . . . .

Note that for every measurable function f on [0, 1] with supp f ⊂ [δ, 1] we
have

‖f‖L1[δ,1] ≤ ‖f‖K = sup
δ≤x≤1

1

x

1�

δ

|f(t)| dt ≤ 1

δ
‖f‖L1[δ,1].

Therefore, Rδf := R(fχ[δ,1]) is a weakly compact operator in L1[0, 1]. Since
L1[0, 1] has the Dunford–Pettis property (see [1, Theorem 5.4.5]), we con-
clude that Rδ is weak-to-norm sequentially continuous. Clearly, from un

w→ 0
in K it follows that unχ[δ,1]

w→ 0 in L1[0, 1]. Thus, ‖R(unχ[δ,1])‖L1 → 0 as
n → ∞. On the other hand, by the Khintchine inequality in L1, (3.2) and
(3.11), we have

‖R(unk
· χ[δ,1])‖L1 �

∥∥∥ ∞∑
i=1

ψi(unk
· χ[δ,1])

mi+1∑
j=mi+1

ajrj

∥∥∥
L1

�
[ ∞∑
i=1

ψi(unk
· χ[δ,1])

2

mi+1∑
j=mi+1

a2j

]1/2
�
[ ∞∑
i=1

ψi(unk
· χ[δ,1])

2
]1/2
≥ |ψnk

(unk
· χ[δ,1])| ≥

1

2

for all k = 1, 2, . . . . This contradiction concludes the proof in the case when
(3.11) holds.



Rademacher subspaces in Cesàro type spaces 273

Suppose now that (3.11) does not hold. Then, by (3.10) and (3.7), for
any δ ∈ (0, 1) and all sufficiently large n ∈ N we have

(3.12)
∣∣∣ δ�
0

gn(t)un(t) dt
∣∣∣ > 1

4
.

Setting δ0 = 1/2, we find n1 ∈ N and δ1 ∈ (0, δ0) such that∣∣∣ δ0�
δ1

gn1(t)un1(t) dt
∣∣∣ > 1

4
.

Denote vn1 := un1χ(δ1,δ0). From (3.9) it follows that gn
w∗→ 0 inK∗. Moreover,

we know that un
w→ 0 in K. Therefore, by (3.12), there is n2 > n1 for which∣∣∣ δ1�

0

gn1(t)un2(t) dt
∣∣∣ < 1

23
,

∣∣∣ 1�
0

gn2(t)vn1(t) dt
∣∣∣ < 1

23
,

∣∣∣ δ1�
0

gn2(t)un2(t) dt
∣∣∣ > 1

4
.

Furthermore, we can find δ2 ∈ (0, δ1) such that the functions gni and vni

(i = 1, 2), where vn2 := un2χ[δ2,δ1], satisfy∣∣∣ 1�
0

gnj (t)vni(t) dt
∣∣∣ < 1

23
for 1 ≤ i 6= j ≤ 2,

∣∣∣ 1�
0

gn2(t)vn2(t) dt
∣∣∣ > 1

4
.

Suppose that for some k ∈ N we have chosen

n1 < · · · < nk and 1/2 = δ0 > δ1 > · · · > δk > 0

so that the functions gni and vni := uniχ[δi,δi−1], i = 1, . . . , k, satisfy∣∣∣ 1�
0

gnj (t)vni(t) dt
∣∣∣ < 1

2i+j
, 1 ≤ i 6= j ≤ k,(3.13)

∣∣∣ 1�
0

gni(t)vni(t) dt
∣∣∣ > 1

4
, i = 1, . . . , k.(3.14)

Using the facts that un
w→ 0 in K and gn

w∗→ 0 in K∗, and (3.12) once more,
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we can find nk+1 > nk such that∣∣∣ δk�
0

gni(t)unk+1
(t) dt

∣∣∣ < 1

2i+k+1
, i = 1, . . . , k,

∣∣∣ 1�
0

gnk+1
(t)vni(t) dt

∣∣∣ < 1

2i+k+1
, i = 1, . . . , k,

∣∣∣ δk�
0

gnk+1
(t)unk+1

(t) dt
∣∣∣ > 1

4
.

Clearly, there is δk+1 ∈ (0, δk) such that for the functions gni and vni , where
vnk+1

:= unk+1
χ[δk+1,δk], inequalities (3.13) (respectively, (3.14)) hold for all

1 ≤ i 6= j ≤ k + 1 (respectively, i = 1, . . . , k + 1).
Thus, we can select sequences

n1 < n2 < · · · and 1/2 = δ0 > δ1 > · · · > 0

such that the functions gni and vni := uniχ[δi,δi−1], i = 1, 2, . . . , satisfy∣∣∣ 1�
0

gnj (t)vni(t) dt
∣∣∣ ≤ 1

2i+j
, 1 ≤ i 6= j <∞,(3.15)

∣∣∣ 1�
0

gni(t)vni(t) dt
∣∣∣ > 1

4
, i = 1, 2, . . . .(3.16)

By [3, Proposition 1], every sequence {fn} ⊂ K such that supp fn ⊂ [an, bn]
with b1 > a1 > b2 > a2 > · · · > 0 and bn → 0+ contains a subsequence
{fnk
} which is equivalent in K to the unit vector basis of c0. Therefore, we

can assume that

sup
m=1,2,...

∥∥∥ m∑
i=1

vni

∥∥∥
K
≤ C sup

i
‖vni‖K ≤ C sup

n=1,2,...
‖un‖K <∞.

Moreover, it is clear that the operator

R′f(x) :=

∞∑
i=1

1�

0

gni(t)f(t) dt · uni(x)

is bounded in K together with the operator R. Hence, on the one hand,∥∥∥R′( m∑
i=1

vni

)∥∥∥
K
≤ ‖R′‖

∥∥∥ m∑
i=1

vni

∥∥∥
K
≤ C‖R′‖ for all m ∈ N.

On the other hand, by (3.1), (3.15) and (3.16), for every m = 1, 2, . . . , we
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have∥∥∥R′( m∑
i=1

vni

)∥∥∥
K

=
∥∥∥ ∞∑
j=1

m∑
i=1

1�

0

gnj (s)vni(s) ds · unj

∥∥∥
K

≥
∥∥∥ m∑
i=1

1�

0

gni(s)vni(s) ds · uni

∥∥∥
K
−

∞∑
i,j=1,i 6=j

∣∣∣ 1�
0

gnj (s)vni(s) ds
∣∣∣

≥
∥∥∥ m∑
i=1

1�

0

gni(s)vni(s) ds · uni

∥∥∥
K
− 1

≥ c
[ m∑
i=1

∣∣∣ 1�
0

gni(s)vni(s) ds
∣∣∣2]1/2 − 1 ≥ cm1/2

4
− 1,

where c > 0. This contradiction finishes the proof.

From Theorem 6, it follows that every subspace of R isomorphic to l2 is
uncomplemented in K. However, the following result holds.

Proposition 2. Every subspace X of R isomorphic to l2 contains a sub-
space complemented in R.

Proof. Let {xn}∞n=1 ⊂ X be a sequence equivalent to the unit vector
basis in l2. Arguing as in the proof of Theorem 6, we can find a subsequence
{xni} ⊂ {xn} which is equivalent in K to a suitable block basis {ui}∞i=1 of
the Rademacher functions such that ‖ui‖K ≥ ε and ui → 0 weakly in K.
Moreover, we can assume that [xni ] is complemented in R if and only if [ui]
is complemented in R. Since {ui} is equivalent to the unit vector basis in l2,
equivalence (3.1) holds. Let

un =

mn+1∑
k=mn+1

akrk, 1 = m1 < m2 < · · · , n ∈ N.

For any f =
∑∞

n=1 ckrk ∈ R we set

Pf =
∞∑
n=1

bn(f)un, where bn(f) =
1

mn+1 −mn

mn+1∑
k=mn+1

ck.

Then Pg = g if g ∈ [un]. Moreover, by (3.1) and (1.1),

‖Pf‖K �
( ∞∑
n=1

bn(f)
2
)1/2

=

( ∞∑
n=1

1

(mn+1 −mn)2

( mn+1∑
k=mn+1

ck

)2)1/2

≤
( ∞∑
n=1

1

mn+1 −mn

mn+1∑
k=mn+1

c2k

)1/2

≤
( ∞∑
k=1

c2k

)1/2
≤ C‖f‖K .
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Thus, P is a bounded projection fromR onto [un]. By the above observation,
this implies that the subspace [xni ] of X is complemented in R.

4. Structure of Rademacher subspaces in Kp, 1 < p < ∞. Here,
we prove Theorem 2. Clearly, it is an immediate consequence of Theorem 3
and the following result.

Theorem 7. Let 1 < p <∞. Every subspace X of Rp isomorphic to l2
is complemented in Kp.

Proof. Let us prove that for every x =
∑∞

k=1 akrk ∈ X we have

(4.1) ‖x‖Kp � ‖x‖d =
( ∞∑
k=1

a2k

)1/2
,

with constants independent of x ∈ X. In view of (1.1), ‖x‖Kp ≥ c‖x‖d for all
x ∈ Rp. Hence, assuming the contrary, we find a sequence {xn} ⊂ X such
that ‖xn‖Kp = 1 (n = 1, 2, . . . ) and ‖xn‖d → 0 as n→∞.

Since X is isomorphic to l2, we may assume that xn → x weakly in Kp

for some x ∈ X. Then, setting xn =
∑∞

k=1 a
n
krk, n = 1, 2, . . . , and x =∑∞

k=1 akrk, we see that limn→∞ a
n
k = ak for each k = 1, 2, . . . . On the other

hand, limn→∞ a
n
k = 0, k = 1, 2, . . . because ‖xn‖d → 0, and so xn → 0

weakly in Kp. Therefore, applying the Bessaga–Pełczyński Selection Prin-
ciple, we can find a subsequence {xni} ⊂ {xn} and a block basis {ui} of the
Rademacher functions such that ‖xni − ui‖Kp → 0 as i→∞, and {xni} and
{ui} are equivalent in Kp. It is obvious that ‖ui‖Kp � 1 (i = 1, 2, . . . ) and
ui

w→ 0 as i→∞ in Kp. Moreover, by (1.1),
‖ui‖d ≤ ‖xni − ui‖d + ‖xni‖d ≤ C‖xni − ui‖Kp + ‖xni‖d,

whence ‖ui‖d → 0 as i→∞. But then, by Theorem 3(b), {ui}∞i=1 contains a
subsequence equivalent to the unit vector basis of c0. Clearly, this contradicts
the assumption, and relation (4.1) is proved.

Recall that the orthogonal projection P acts boundedly from Lp with
1 < p < ∞ onto the closed linear span [rn] in Lp. Since the Rademacher
functions are equivalent in Lp, 1 ≤ p <∞, to the unit vector basis of l2, from
(4.1) it follows that X is a complemented subspace in [rn]. Denote by R a
projection from [rn] onto X. Then S = RP is a bounded projection from Lp
onto X. Moreover, since

‖x‖Lp ≤ sup
0<x≤1

(
1

x

x�

0

|x(t)|p dt
)1/p

= ‖x‖Kp for all x ∈ Kp,

we have
‖Sx‖Kp � ‖Sx‖Lp ≤ C‖S‖Lp→Lp‖x‖Lp ≤ C1‖P‖Lp→Lp‖x‖Kp

for all x ∈ Kp. Thus, X is complemented in Kp, and the theorem is proved.
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From the Fatou lemma it follows that Kp, 1 ≤ p < ∞, has the Fatou
property, i.e., the conditions fn ∈ Kp, ‖fn‖Kp ≤ C, n = 1, 2, . . . , fn → f a.e.
on [0, 1] imply that f ∈ Kp and ‖f‖Kp ≤ C. Therefore, if X is a subspace
of the Rademacher space Rp, 1 ≤ p < ∞, isomorphic to c0, then by the
Bessaga–Pełczyński theorem, we can select a block basis {un}∞n=1 of the
Rademacher functions which is equivalent to the unit vector basis in c0 and
then Kp contains the subspace X̃p consisting of all functions

f =

∞∑
n=1

anun, where (an) ∈ l∞ (the series converges a.e. on [0, 1]).

Clearly, X̃p is isomorphic to l∞. Note that the existence of a bounded pro-
jection from Kp onto [un] ≈ c0 would imply immediately that we have a
bounded projection from X̃p ≈ l∞ onto [un], which contradicts the well-
known Phillips–Sobczyk theorem (see [1, Theorem 2.5.5]. Thus, we obtain

Corollary 2. Every subspace of Rp, 1 ≤ p < ∞, isomorphic to c0 is
uncomplemented in Kp.

5. Rademacher functions in weighted Cesàro spaces. In [6], we
have also considered a more general weighted version of Cesàro type spaces,
the space Kp,w = Kp,w[0, 1] with the norm

‖f‖Kp,w = sup
0<x≤1

(
1

w(x)

x�

0

|f(t)|p dt
)1/p

,

where 1 ≤ p < ∞ and w is a quasi-concave function on [0, 1], that is,
w(0) = 0, w is non-decreasing and w(x)/x is non-increasing on (0, 1]. Using
the equivalence (cf. [6, Theorem 2])

(5.1)
∥∥∥ ∞∑
k=1

akrk

∥∥∥
Kp,w

�
( ∞∑
k=1

a2k

)1/2
+ sup
m∈N

(
2−m

w(2−m)

)1/p∣∣∣ m∑
k=1

ak

∣∣∣
and the fact that the restriction of K1,w to any interval [δ, 1], where 0 <
δ < 1, coincides with L1[δ, 1] (with equivalence of norms), and applying the
Dunford–Pettis property of the latter space, we proved in [6, Theorem 5]
that the closed linear span [rn] of the Rademacher functions in K1,w is un-
complemented. The situation is different in the case when 1 < p < ∞. If
there is a constant c > 0 such that

(5.2) w(t) ≥ ct logp/22 (2/t) for all 0 < t ≤ 1,

then {rn}∞n=1 is equivalent in Kp,w to the unit vector basis of l2, and [rn] is
complemented in Kp,w (see [6, Theorems 3 and 5]).
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Now, the techniques based on using block bases from this paper allow us
to fill the gap in [6] related to the case when condition (5.2) does not hold.

Theorem 8. If 1 < p < ∞ and condition (5.2) does not hold, then the
subspace [rn] of the Rademacher functions is not complemented in Kp,w.

Indeed, arguing as in the proof of Theorem 4, we can construct a block
basis {un} of the Rademacher functions equivalent to the unit vector ba-
sis of c0 such that the closed linear span [un] in Kp,w is complemented in
the subspace [rn] and not complemented in Kp,w (see Corollary 2). Clearly,
these facts imply that [rn] is not complemented in Kp,w. We omit the de-
tails.
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