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Linear maps Lie derivable at zero on
J -subspace lattice algebras

by

Xiaofei Qi and Jinchuan Hou (Taiyuan)

Abstract. A linear map L on an algebra is said to be Lie derivable at zero if
L([A,B]) = [L(A), B] + [A,L(B)] whenever [A,B] = 0. It is shown that, for a J -subspace
lattice L on a Banach space X satisfying dimK 6= 2 whenever K ∈ J (L), every linear
map on F(L) (the subalgebra of all finite rank operators in the JSL algebra AlgL) Lie
derivable at zero is of the standard form A 7→ δ(A)+φ(A), where δ is a generalized deriva-
tion and φ is a center-valued linear map. A characterization of linear maps Lie derivable
at zero on AlgL is also obtained, which are not of the above standard form in general.

1. Introduction. Let A be an algebra (or a ring). Then A is a Lie
algebra (resp. Lie ring) under the Lie product [A,B] = AB−BA. Recall that
a linear (resp. an additive) map δ from A into itself is called a linear (resp.
an additive) derivation if δ(AB) = δ(A)B + Aδ(B) for all A,B ∈ A. Linear
(or additive) derivations are important both in theory and applications,
and studied intensively. More generally, a linear (resp. an additive) map
L from A into itself is called a linear (resp. an additive) Lie derivation if
L([A,B]) = [L(A), B] + [A,L(B)] for all A,B ∈ A.

Note that all derivations are Lie derivations, but the converse is not true.
The problem of how to characterize the linear (or additive) Lie derivations
has received many mathematicians’ attention for many years. Brešar [1]
proved that every additive Lie derivation on a prime ring R with character-
istic not 2 can be decomposed as τ + ζ, where τ is a derivation from R into
its central closure and ζ is an additive map of R into the extended centroid
C sending commutators to zero. Johnson [4] proved that every continuous
linear Lie derivation from a C∗-algebra A into a Banach A-bimodule M
is standard, that is, can be decomposed as τ + h, where τ : A → M is a
derivation and h is a linear map from A into the center of M vanishing at
each commutator. Mathieu and Villena [14] showed that every linear Lie
derivation on a C∗-algebra is standard. In [11] Qi and Hou proved that
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the same is true for additive Lie derivations of nest algebras over Banach
spaces. But linear Lie derivations on operator algebras are not necessarily
standard: in [9], Lu proved that a linear map L on a complex J -subspace
lattice algebra (briefly, JSL algebra) AlgL is a Lie derivation if and only
if, for each K ∈ J (L), there exist an operator TK ∈ B(K) and a lin-
ear functional hK : AlgL → C vanishing at every commutator such that
L(A)x = (TKA−ATK)x+ hK(A)x for all x ∈ K and A ∈ AlgL.

Let A be an algebra (or a ring). Recall that a linear (resp. an additive)
map γ : A → A is derivable at Z if γ(A)B+Aγ(B) = γ(Z) for any A,B ∈ A
with AB = Z; an element Z ∈ A is a full-derivable point of A if every
linear (resp. additive) map derivable at Z is a derivation. The problem of
characterizing maps, especially on operator algebras, derivable at a certain
point and the problem of finding full-derivable points have been studied by
several authors (for example, see [12, 15, 16]). Motivated by this, we say that
a linear (resp. an additive) map L : A → A is Lie derivable at a point Z if
L([A,B]) = [L(A), B]+[A,L(B)] for any A,B ∈ A with [A,B] = Z. Clearly,
this definition is vacuous for some Z, for instance, for Z = I, as the unit I
cannot be a commutator [A,B]. It is also obvious that the condition of being
Lie derivable at some point is much weaker than being a Lie derivation.

Let U be a triangular algebra and L : U → U an additive map Lie
derivable at zero. Hou and Qi [13] proved that, under some mild conditions,
L has the form L(X) = ZX + τ(X) + ν(X) for all X ∈ U , where Z ∈ Z(U)
(the center of U), τ : U → U is a derivation and ν is a map from U into
Z(U). The purpose of this paper is to discuss the question of characterizing
linear maps on JSL algebras Lie derivable at zero.

JSL algebras are an important class of subspace lattice algebras. Let L
be a J -subspace lattice on a Banach space X over the real or complex field
F with dimX ≥ 3 and AlgL be the associated J -subspace lattice algebra.
Generally, a linear map on AlgL Lie derivable at zero has a wild behavior
(see Proposition 2.5, Example 2.6 and Example 3.7). However, we show that,
under some mild conditions on the lattice, every linear map L derivable at
zero on F(L) has the form L(A) = δ(A) + φ(A) for all A ∈ F(L), where δ
is a generalized derivation and φ : F(L) → Z(F(L)) is a linear map (not
necessarily sending commutators to zero) (Theorem 3.1 and Corollary 3.2);
every linear map L derivable at zero on AlgL has the property that, for each
K ∈ J (L), there exist an operator TK ∈ B(K), a scalar λK and a linear func-
tional hK : AlgL → F such that L(A)x = (TKA−ATK + λKA+ hK(A)I)x
for all x ∈ K and A ∈ AlgL (Theorem 3.4). It is clear that if λK = 0
and if hK vanishes at each commutator, i.e., hK([A,B]) = 0 for all A,B,
then L is a Lie derivation. In particular, we get a characterization of linear
Lie derivations on both real and complex JSL algebras (Corollaries 3.5–3.6),
which generalizes the corresponding results in [9].
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To prove our main results, we first, in Section 2, discuss the question for
F(X), the algebra of all finite rank operators. By using a result of [1] (see
Lemma 2.1), we show that every linear map Lie derivable at zero on F(X) is
of the standard form, that is, A 7→ TA−AT+λA+f(A)I, where T ∈ B(X),
λ is a scalar and f is a linear functional on F(X) with f = 0 if dimX =∞
(Corollaries 2.2–2.4), provided X is a (real or complex) Banach space with
dimX > 2. For dimX = 2, we show that a linear map L on F(X) = M2(F)
is Lie derivable at zero if and only if L(I) = cI for some scalar c, which is not
necessarily the standard form stated above (Proposition 2.5). The results of
Section 2 are then used to prove our main results, Theorems 3.1 and 3.4.

Now let us recall some notions and fix some notations used in this paper.
Let X be a Banach space over the real or complex field F. A family L of
subspaces of X is called a subspace lattice on X if it contains {0} and X,
and is closed under taking closed linear span ∨ and intersection ∧ in the
sense that

∨
γ∈Γ Lγ ∈ L and

∧
γ∈Γ Lγ ∈ L for every family {Lγ : γ ∈ Γ}

of elements in L. For a subspace lattice L on X, the associated subspace
lattice algebra AlgL is the set of operators on X leaving every subspace in
L invariant. Given a subspace lattice L on X, put

J (L) = {K ∈ L : K 6= {0} and K− 6= X},

where K− =
∨
{L ∈ L : K * L}. Call L a J -subspace lattice (simply, JSL)

on X if it satisfies the following conditions:

(1)
∨
{K : K ∈ J (L)} = X;

(2)
∧
{K− : K ∈ J (L)} = {0};

(3) K ∨K− = X, ∀K ∈ J (L);
(4) K ∧K− = {0}, ∀K ∈ J (L).

If L is a JSL, the associated subspace lattice algebra AlgL is called a J -
subspace lattice algebra, or briefly, JSL algebra. It should be mentioned that
both atomic Boolean subspace lattices and pentagon subspace lattices are
J -subspace lattices [8].

For L ∈ L, denote L⊥− = (L−)⊥, where L⊥ denotes the annihilator of L.
Denote by 〈J (L)〉 and 〈J (L)⊥−〉 the (not necessarily closed) linear spans of⋃
{K : K ∈ J (L)} and of

⋃
{K⊥− : K ∈ J (L)}, respectively. For x ∈ X and

f ∈ X∗, x⊗ f stands for the operator on X with rank not greater than one
defined by (x⊗f)y = f(y)x. Sometimes we use 〈x, f〉 to represent the value
f(x) of f at x. For K ∈ J (L), let FL(K) denote the subspace spanned by
all rank one operators x⊗ f with x ∈ K and f ∈ K⊥− . Let F(L) denote the
algebra of all finite rank operators in AlgL. For an algebra A, we use Z(A)
to denote the center of A.

The following facts are well-known.
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Lemma 1.1 ([6]). Let L be a J -subspace lattice on a Banach space X.
Then x ⊗ f ∈ AlgL if and only if there exists a subspace K ∈ J (L) such
that x ∈ K and f ∈ K⊥− .

Thus FL(K) ⊂ AlgL for every K ∈ J (L). Also, we have

Lemma 1.2 ([8]). Let L be a J -subspace lattice on a Banach space X.
The following statements hold true.

(1) For any K,L ∈ J (L), K 6= L implies that K ⊆ L−.
(2) For any K,L ∈ J (L), K 6= L implies that K ∩ L = {0}.
(3) Let K ∈ J (L). Then, for any nonzero vector x ∈ K, there exists

f ∈ K⊥− such that f(x) = 1; dually, for any nonzero functional
f ∈ K⊥− , there exists x ∈ K such that f(x) = 1.

We refer the readers to [3, 5, 7, 8] for more properties of JSL algebras.

2. Preliminary results: Maps Lie derivable at zero on F(X). In
this section, we first give a characterization of linear maps Lie derivable at
zero on F(X), the algebra of all finite rank operators on a Banach space X,
which is needed in the next section. To do this, we need a lemma concerning
additive maps on prime rings Lie derivable at zero, which is a consequence
of [1, Theorem 4].

Let R be a ring and Z(R) its center. Recall that an element A ∈ R is
algebraic over Z(R) if there exists a nonzero polynomial p ∈ P(Z(R)) such
that p(A) = 0, that is, there exist Z0, Z1, . . . , Zn ∈ Z(R) such that Zn 6= 0
and p(A) = Z0 +Z1A+ · · ·+ZnA

n = 0. In this case n = deg(p) is called the
degree of p, and min{deg(p) : p(A) = 0} is called the degree of algebraicity
of A over Z(R), denoted by deg(A). If A is not algebraic over Z(R), then
we shall write deg(A) =∞. The degree of algebraicity of R is

deg(R) = sup{deg(A) : A ∈ R}.

Lemma 2.1. Let R be a prime ring of characteristic neither 2 nor 3 and
with deg(R) ≥ 3. Suppose that L : R → R is an additive map Lie derivable
at zero. Then there exists an element α in C, the extended centroid of R,
an additive derivation τ of R into its center closure, and an additive map
ν : R → C such that L(A) = τ(A) + αA+ ν(A) for all A ∈ R.

By the above result, we see that an additive map Lie derivable at zero is
not a Lie derivation in general since α need not be 0 and ν may not vanish
at every commutator.

Let X be a Banach space over the real or complex field F with dimX > 2
and let B(X) stand for the algebra of all bounded linear operators on X. It is
clear that B(X) is prime with characteristic 0 and deg(B(X)) ≥ 3. Thus by
Lemma 2.1, every additive (resp. linear) map on B(X) Lie derivable at zero
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has the form A 7→ τ(A)+λA+h(A)I, where τ is an additive (resp. a linear)
derivation, λ is a scalar and h is an additive (resp. a linear) functional.
Also, note that linear derivations on B(X) are inner. So, in particular, for
the finite-dimensional case, we have

Corollary 2.2. Let F be the real or complex field and n > 2. Suppose
that L : Mn(F) → Mn(F) is a linear map. Then L is Lie derivable at zero
if and only if there exists a scalar λ ∈ F, a matrix T ∈ Mn(F) and a linear
functional f on Mn(F) such that L(A) = TA − AT + λA + f(A)I for all
A ∈Mn(F).

Corollary 2.2 is needed in the next section to prove our main result. The
following result is also true and needed in the next section.

Corollary 2.3. Let X be an infinite-dimensional Banach space over
the real or complex field F and let F(X) be the subalgebra of all finite rank
operators in B(X). Suppose that L : F(X) → F(X) is a linear map. Then
L is Lie derivable at zero if and only if there exists a scalar λ ∈ F and an
operator T ∈ B(X) such that L(A) = TA−AT + λA for all A ∈ F(X).

Proof. The “if” part is obvious. To check the “only if” part, assume that
L is Lie derivable at zero. Since the extended centroid of the prime algebra
F(X) is FI and the derivations on F(X) are inner, by Lemma 2.1 there
exist λ ∈ F, T ∈ B(X) and a linear functional f on F(X) such that

(2.1) L(A) = TA−AT + λA+ f(A)I for all A ∈ F(X).

Because L(F(X)) ⊆ F(X), it follows from (2.1) that f(A) = 0 for all
A ∈ F(X), completing the proof.

Note that every factor von Neumann algebra is prime and all linear
derivations of von Neumann algebras are inner. By Lemma 2.1, the following
corollary is also immediate.

Corollary 2.4. Let M be a factor von Neumann algebra with deg(M)
> 2 and L :M→M a linear map. Then L is Lie derivable at zero if and
only if there exists an element T ∈M, a scalar λ and a linear functional h
on M such that L(A) = TA−AT + λA+ h(A)I for all A ∈M.

The story for 2× 2 matrices is quite different.

Proposition 2.5. Let L : M2(F) → M2(F) be a linear map. Then L is
Lie derivable at zero if and only if L(I) = λI for some λ ∈ F.

Proof. We need only check the “if” part. For any A ∈ M2(F), if A =
αI ∈ FI, then [A,B] = 0 for all B ∈M2(F). Since L is linear, we have

[L(A), B] + [A,L(B)] = [αL(I), B] + [αI, L(B)] = [αλI,B] + [αI, L(B)] = 0.

Now assume that A 6∈ FI. First note that, if [A,B] = AB − BA = 0,
then B = µ(B)A + ν(B)I for some µ(B), ν(B) ∈ F. In fact, one can easily
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check that, for A = (aij) /∈ FI and B = (bij), AB = BA implies that

B =


b21a

−1
21 A+ (b22 − b21a

−1
21 a22)I if a21 6= 0,

b12a
−1
12 A+ (b22 − b12a

−1
12 a22)I if a12 6= 0,

b11 − b22

a11 − a22
A+

(
b11 −

b11 − b22

a11 − a22
a11

)
I if a12 = a21 = 0.

It follows that

[L(A), B] + [A,L(B)] = [L(A), µ(B)A+ ν(B)I] + [A,µ(B)L(A) + ν(B)λI]
= µ(B)[L(A), A] + µ(B)[A,L(A)] = 0.

Thus L is Lie derivable at zero.

Therefore, unlike linear Lie derivations (every linear Lie derivation on
M2(F) has a standard form), linear maps on M2(F) Lie derivable at zero
behave wildly and are not always of the form stated in Corollary 2.2. To
illustrate this, we give a simple example.

Example 2.6. Let F be the real or complex field. For any A=
(
a11 a12
a21 a22

)
∈

M2(F), we define a map L : M2(F) → M2(F) by L(A) =
(

0 a12
a21 0

)
. We

will check that L is a linear map Lie derivable at zero, but there do not
exist λ ∈ F, T ∈ M2(F) and a linear functional f on M2(F) such that
L(A) = TA−AT + λA+ f(A)I for all A ∈M2(F).

Since L(I) = 0, by Proposition 2.5, L is Lie derivable at zero. Suppose,
on the contrary, that there exist λ, T and f as above. Let A =

(
2 0
0 1

)
. By the

definition of L, we have 0 = L(A) = TA − AT + λA + f(A)I. By a simple
calculation, we get λ = 0 and T =

(
t11 0
0 t22

)
for some t11, t22 ∈ F.

Now for any A =
(
a11 a12
a21 a22

)
, we have(

0 a12

a21 0

)
=
(
t11 0
0 t22

)(
a11 a12

a21 a22

)
−
(
a11 a12

a21 a22

)(
t11 0
0 t22

)

+
(
f(A) 0

0 f(A)

)

=
(

f(A) (t11 − t22)a12

(t22 − t11)a21 f(A)

)
.

This yields t11 − t22 = −1 and t11 − t22 = 1, a contradiction.

3. Linear maps Lie derivable at zero on JSL algebras. In this
section, we discuss linear maps Lie derivable at zero on J -subspace lattice
algebras. Note that a JSL algebra may not be prime.

Our first result in this section gives a characterization of linear maps Lie
derivable at zero on F(L).
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Theorem 3.1. Let L be a J -subspace lattice on a Banach space X over
the real or complex field F with dimX ≥ 3. Suppose that dimK 6= 2 for every
K ∈ J (L) and L : F(L)→ F(L) is a linear map. Then L is Lie derivable at
zero if and only if there exist linear operators T, S : 〈J (L)〉 → 〈J (L)〉 with
T |K ∈ B(K), S|K ∈ B(K) and T |K + S|K ∈ FIK for each K ∈ J (L), and
a linear map φ : F(L)→ Z(F(L)) such that L(A)x = (TA+ AS + φ(A))x
for all A ∈ F(L) and x ∈ 〈J (L)〉.

Recall that a linear map δ is called a generalized derivation if there exists
a linear derivation τ such that δ(AB) = δ(A)B +Aτ(B) for all A,B.

Corollary 3.2. Let L be a J -subspace lattice on a Banach space X
over the real or complex field F with dimX ≥ 3. Suppose that dimK 6= 2 for
every K ∈ J (L) and L : F(L)→ F(L) is a linear map. If L is Lie derivable
at zero, then there exists a generalized derivation δ : F(L) → F(L) and
a linear map φ : F(L) → Z(F(L)) such that L(A) = δ(A) + φ(A) for all
A ∈ F(L).

Proof. For any A ∈ F(L), let δ(A)|〈J (L)〉 = (TA + AS)|〈J (L)〉, where T
and S are as in Theorem 3.1. We will show that δ : F(L)→ F(L) is a linear
generalized derivation.

Define a map τ : F(L) → F(L) by τ(A)|〈J (L)〉 = (AS − SB)|〈J (L)〉 for
all A ∈ F(L). For any A,B ∈ F(L), by the definition of τ , on the one hand,
we have

τ(AB)|〈J (L)〉 = ABS − SA|〈J (L)〉B|〈J (L)〉.

On the other hand,

(τ(A)B +Aτ(B))|〈J (L)〉

= ASB|〈J (L)〉 − SA|〈J (L)〉B|〈J (L)〉 +ABS −ASB|〈J (L)〉

= ABS − SA|〈J (L)〉B|〈J (L)〉.

Comparing the above two equations, we get τ(AB) = τ(A)B+Aτ(B) since
〈J (L)〉 is dense in X. Hence τ is a derivation. Now for any A,B ∈ F(L),
by the definition of δ, on the one hand, we have

δ(AB)|〈J (L)〉 = TA|〈J (L)〉B|〈J (L)〉 +ABS.

On the other hand,

(δ(A)B +Aτ(B))|〈J (L)〉

= TA|〈J (L)〉B|〈J (L)〉 +ASB|〈J (L)〉 +ABS −ASB|〈J (L)〉

= TA|〈J (L)〉B|〈J (L)〉 +ABS.

Comparing the above two equations, we get δ(AB) = δ(A)B + Aτ(B) for
all A,B ∈ F(L). Hence δ is a generalized derivation and τ is the related
derivation.



164 X. F. Qi and J. C. Hou

By Theorem 3.1, we have L(A)x = (δ(A) +φ(A))x for all A ∈ F(L) and
x ∈ 〈J (L)〉. This implies that L(A) = δ(A) + φ(A) for all A ∈ F(L). The
proof is complete.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.3 ([10, Lemma 3.6]). Let L be a J -subspace lattice on a Ba-
nach space X and let A1, . . . , An ∈ FL(K) for some K ∈ J (L) with dimK
≥ 2. Then there is an idempotent P ∈ FL(K) such that Ai = PAiP ,
i = 1, . . . , n.

Proof of Theorem 3.1. The “if” part is obvious. We will check the “only
if” part by proving two claims.

Claim 1. There exist linear operators T, S : 〈J (L)〉 → 〈J (L)〉 with
T |K ∈ B(K), S|K ∈ B(K) and T |K + S|K ∈ FIK for each K ∈ J (L) and
with the following property: for any K ∈ J (L), there is a linear functional
fK : FL(K)→ F such that

L(A)|〈J (L)〉 = (TA+AS + fK(A)PK)|〈J (L)〉

for all A ∈ FL(K), where PK ∈ FL(K) is an idempotent satisfying PKA =
APK = A if dimK <∞, and fK = 0 if dimK =∞.

In fact, if dimK = 1, then dimK⊥− = 1. So dimFL(K) = 1. It is easy
to check that, for any A ∈ FL(K), we have L(A) = λA for some λ ∈ F. So
Claim 1 holds true in this case.

Now assume that dimK > 2. For any A ∈ FL(K), by Lemma 3.3, there
is an idempotent operator P =

∑n
i=1 yi ⊗ gi ∈ FL(K) such that A = PAP ,

where yi ∈ K and gi ∈ K⊥− . We may require that both {y1, . . . , yn} and
{g1, . . . , gn} are linearly independent sets. Since P 2 = P , it is easily checked
that

gi(yj) = δij for 1 ≤ i, j ≤ n.
Define

DP =
{
C ∈ FL(K) : C =

n∑
i,j=1

λijyi ⊗ gj , λij ∈ F
}
.

It is clear that DP is a subalgebra of FL(K) and DP is isomorphic to Mn(F)
via C 7→ [λij ]n×n. Since dimK > 2, we can choose P so that dim ran(P ) > 2.
For any A,B ∈ FL(K), by Lemma 3.3 again, there exists some P ∈ FL(K)
such that A = PAP and B = PBP . Hence FL(K) is a local matrix algebra.
Since K ∧ K− = {0} and K ∨ K⊥− = X, we may regard K⊥− as the dual
space K∗ of K. So FL(K) is isomorphic to F(K) ⊂ B(K), the algebra of
all bounded finite rank operators from K into K. Thus, if dimK < ∞,
then FL(K) is isomorphic to Mn(F). Hence by Corollary 2.2, there exist
TK , SK , PK ∈ FL(K) with TK + SK ∈ FIK and PK being an idempotent
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onto K, and a linear functional fK : FL(K)→ F, such that

(3.1) L(A) = TKA+ASK + fK(A)PK for all A ∈ FL(K).

If dimK =∞, then FL(K) is isomorphic to F(K) ⊂ B(K), and by Corollary
2.3, there exist λK ∈ F and TK ∈ B(K) such that L(A) = TKA−ATK+λKA
for all A ∈ FL(K). Let SK = λKIK − TK , where IK is the identity on K.
We get

(3.2) L(A) = TKA+ASK for all A ∈ FL(K).

Now, by (3.1)–(3.2), we can define linear maps T, S : 〈J (L)〉 → 〈J (L)〉
by T |K = TK and S|K = SK for every K ∈ J (L). Since L is a JSL, T and
S are well defined, and we have

(3.3) L(A)|〈J (L)〉 = (TA+AS + fK(A)PK)|〈J (L)〉 for all A ∈ FL(K),

where fK = 0 whenever dimK =∞. Also note that, by the definition of T
and S, T |K ∈ B(K) and S|K ∈ B(K) for every K ∈ J (L). Hence Claim 1
holds true.

Claim 2. L has the form stated in the theorem.

For any A ∈ F(L), there uniquely exist finite distinct K1, . . . ,Kn in
J (L) such that A = A1 + · · · + An with Ai ∈ FL(K), i = 1, . . . , n. Take
linear operators T, S : 〈J (L)〉 → 〈J (L)〉 as in Claim 1. Then, for each i, we
have T |Ki ∈ B(Ki), S|Ki ∈ B(Ki) and T |Ki + S|Ki ∈ FIKi . Also, for each i
there is a linear functional fKi : FL(Ki)→ F such that

L(Ai)|〈J (L)〉 = (TAi +AiS + fKi(Ai)PKi)|〈J (L)〉

for all Ai ∈ FL(Ki), where PKi ∈ FL(Ki) is an idempotent satisfying
PKiBi = BiPKi = Bi for all Bi ∈ FL(Ki) if dimKi < ∞, and fKi = 0
if dimKi = ∞. Let φ(A) =

∑n
i=1 fKi(Ai)PKi . Since AiPKj = PKjAi = 0 if

i 6= j, and AiPKj = PKjAi = Ai if i = j, and since A ∈ F(L) is arbitrary,
we see that φ is well-defined and φ(A) ∈ Z(F(L)). It follows that

L(A) =
n∑
i=1

L(Ai) =
n∑
i=1

(TAi +AiS + fKi(Ai)PKi) = TA+AS + φ(A)

on 〈J (L)〉, that is, L(A)x = (TA + AS + φ(A))x for all A ∈ F(L) and
x ∈ 〈J (L)〉. Now, it is obvious that φ is linear as L is linear.

The proof is complete.

Next, we discuss linear maps Lie derivable at zero on J -subspace lattice
algebras. The following is our second main result in this section.

Theorem 3.4. Let L be a J -subspace lattice on a Banach space X over
the real or complex field F with dimX ≥ 3. Suppose that dimK 6= 2 for
every K ∈ J (L) and L : AlgL → AlgL is a linear map. Then the following
are equivalent.
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(1) L is Lie derivable at zero.
(2) For each K ∈ J (L), there exists an operator TK ∈ B(K), a scalar

λK and a linear functional hK : AlgL → F such that L(A)x =
(TKA−ATK + λKA+ hK(A)I)x for all x ∈ K and A ∈ AlgL.

Proof. The “if” part is obvious. We check the “only if” part by proving
several claims.

Claim 1. For any K ∈ J (L), there exist TK , SK ∈ B(K) with TK+SK ∈
FIK and a linear functional fK : FL(K)→ F such that

(3.4) L(A)|K = (TKA+ASK + fK(A)PK)|K
for all A ∈ FL(K), where PK ∈ FL(K) is an idempotent satisfying PKA =
APK = A if dimK <∞, and fK = 0 if dimK =∞.

The proof is the same as that of Claim 1 in Theorem 3.1.

Claim 2. For each K ∈ J (L), there exist TK ∈ B(K) and a scalar λK
such that, for every invertible A ∈ AlgL,

L(A)x = (TKA−ATK + λKA+ hK(A)I)x

for some scalar hK(A) and all x ∈ K.

Assume that A ∈ AlgL is invertible. For any K ∈ J (L) and any nonzero
x ∈ K, we have 0 6= Ax ∈ K. By Lemma 1.2, there exists f ∈ K⊥− such that
〈Ax, f〉 = 1. Since

[A−Ax⊗A∗f, x⊗ f ] = Ax⊗ f −Ax⊗ f + x⊗A∗f − x⊗A∗f = 0,

we have

[L(A−Ax⊗A∗f), x⊗ f ] + [A−Ax⊗A∗f, L(x⊗ f)] = 0.

Thus, by (3.4), we get

(3.5) [L(A)− TK(Ax⊗A∗f)− (Ax⊗A∗f)SK , x⊗ f ]
+ [A−Ax⊗A∗f, TK(x⊗ f) + (x⊗ f)SK + fK(x⊗ f)PK ] = 0.

Note that fK(x⊗ f)(APK − PKA)x = 0. It follows from (3.5) that

((L(A)− TKA+ATK − (〈ASKx, f〉+ 〈ATKx, f〉)A)x⊗ f)x
= (x⊗ f)(L(A) + SKA−ASK − (〈TKAx, f〉+ 〈SKAx, f〉)A)x.

Since TK + SK = λKIK for each K ∈ 〈J (L)〉 and 〈Ax, f〉 = 1, the above
equation becomes

((L(A)−TKA+ATK−λKA)x⊗f)x = (x⊗f)(L(A)+SKA−ASK−λKA)x.

Hence we see that (L(A)−TKA+ATK−λKA)x and x are linearly dependent
for every x ∈ K. It follows that there exist scalars λK and hK(A) such that

L(A)− TKA+ATK − λKA = hK(A)IK
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on K. That is,

(3.6) L(A) = TKA−ATK + λKA+ hK(A)IK
on K for all invertible A.

Claim 3. For each K ∈ J (L), there exist TK ∈ B(K), a scalar λK and
a linear functional hK : AlgL → F such that L(A)x = (TKA−ATK+λKA+
hK(A)I)x for all x ∈ K and all A ∈ AlgL.

For any A ∈ AlgL, take a scalar c such that |c| > ‖A‖. Then cI − A is
invertible with inverse still in AlgL. By (3.6), we have

L(cI −A)|K
= TK(cI −A)|K − (cI −A)TK + λK(cI −A)|K + hK(cI −A)I|K
= −TKA|K +ATK + cλKI|K − λKA|K + hK(cI −A)I|K .

On the other hand,

L(cI −A)|K = L(cI)|K − L(A)|K = cλKI|K + hK(cI)I|K − L(A)|K .
Combining the above two equations, we get

L(A)|K = TKA|K −ATK + λKA|K + (hK(cI)− hK(cI −A))I|K
= TKA|K −ATK + λKA|K + hK(A)I|K ,

where hK(A) = hK(cI)− hK(cI −A). Thus there exists a functional hK on
AlgL such that

L(A)x = (TKA−ATK + λKA+ hK(A)I)x

for all A ∈ AlgL and all x ∈ K. Since L is linear, we see that hK is linear.
The proof of Theorem 3.4 is complete.

In particular, if L is a linear map on a pentagon subspace lattice algebra
AlgL over a Banach space, then L is Lie derivable at zero if and only if L
has the form stated in Theorem 3.4, since dimK =∞ for every K ∈ J (L).

Recall that every Lie derivation on Mn(F) (n ≥ 1) is a sum of a derivation
and of I multiplied by a linear functional vanishing at all commutators (for
example, see [2, Corollary 6.9]). From this fact, together with Theorem 3.1,
Theorem 3.4 and their proofs (including the case dimK = 2 for some K ∈
J (L)), one can immediately get a characterization of linear Lie derivations
on real or complex JSL algebras, which generalizes [9, Theorems 3.1, 4.1],
where only the complex case was dealt with.

Corollary 3.5. Let L be a J -subspace lattice on a real or complex
Banach space X and L : F(L) → F(L) be a linear map. Then L is a Lie
derivation if and only if there exists a derivation τ : F(L) → F(L) and a
linear map φ : F(L) → Z(F(L)) vanishing at each commutator such that
L(A) = τ(A) + φ(A) for all A ∈ F(L).
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Corollary 3.6. Let L be a J -subspace lattice on a real or complex
Banach space X. Suppose that L : AlgL → AlgL is a linear map. Then L is
a Lie derivation if and only if for each K ∈ J (L), there exists TK ∈ B(K),
a scalar λK and a linear functional hK : AlgL → F vanishing at every
commutator such that L(A)x = (TKA − ATK + λKA + hK(A)I)x for all
x ∈ K and A ∈ AlgL.

Finally, we remark that, in Theorems 3.1 and 3.4, the condition that
dimK 6= 2 for every K ∈ J (L) is necessary, as the following example
shows.

Example 3.7. Let X be a Banach space over the real or complex field
F with dimX = 4. Assume that L = {(0),K1,K2, X} with dimK1 =
dimK2 = 2 and K1 ∩ K2 = {0}. Then L is an atomic Boolean lattice
and AlgL is the associated atomic Boolean lattice algebra. It is clear that
J (L) = {K1,K2} and X = K1 ⊕ K2. Moreover, every A ∈ AlgL is of
the form A = A1 ⊕ A2, where Ai ∈ B(Ki), i = 1, 2. Take any linear maps
Li : B(Ki) → B(Ki) satisfying L1(Ii) = ciIi for some ci ∈ F, i = 1, 2.
By Proposition 2.5, both L1 and L2 are Lie derivable at zero. Now let
L(A) = L1(A1) ⊕ L2(A2), where A = A1 ⊕ A2 ∈ AlgL. It is clear that
L : AlgL → AlgL is a linear map Lie derivable at zero. However, it is
easily seen from Example 2.6 that L is not always of the form stated in
Theorem 3.4.
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