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Compactness properties of weighted summation operators
on trees
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Mikhail Lifshits (St. Petersburg) and Werner Linde (Jena)

Abstract. We investigate compactness properties of weighted summation operators
Vα,σ as mappings from `1(T ) into `q(T ) for some q ∈ (1,∞). Those operators are defined
by

(Vα,σx)(t) := α(t)
X
s�t

σ(s)x(s), t ∈ T,

where T is a tree with partial order �. Here α and σ are given weights on T . We introduce
a metric d on T such that compactness properties of (T, d) imply two-sided estimates for
en(Vα,σ), the (dyadic) entropy numbers of Vα,σ. The results are applied to concrete trees,
e.g. moderately increasing, biased or binary trees and to weights with α(t)σ(t) decreas-
ing either polynomially or exponentially. We also give some probabilistic applications to
Gaussian summation schemes on trees.

1. Introduction. This work essentially stems from the article [L] where
the entropy of linear Volterra integral operators was studied in a difficult
critical case. Handling this case required a new technique and it turned out
that this technique could be cleanly elaborated and better explained if we
replace the Volterra operator by an analogous summation operator on a
binary tree. Notice that trees appear naturally in the study of functional
spaces because the Haar base and other similar wavelet bases indeed have a
structure close to that of a binary tree.

The class of summation operators on trees is quite simple and natural
but it has not been investigated at all, and we believe that a deeper study
of its properties, as presented here, is not only interesting in its own right
but might also be helpful as a model for studying more conventional classes
of operators.

Thus let T be a finite or infinite tree and let � be the partial order
generated by its structure, i.e. t � s means that t is situated on the path
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leading from the root of the tree to s. If k : T ×T → R is a kernel satisfying

(1.1) sup
s∈T

∑
t�s
|k(t, s)|q <∞

for some q ∈ [1,∞), then the Volterra-type summation operator V with

(V x)(t) :=
∑
s�t

k(t, s)x(s), t ∈ T,

is bounded from `1(T ) into `q(T ). Compactness properties of V surely de-
pend on the kernel k as well as on the structure of the underlying tree. It
seems to be hopeless to describe such properties of V in this general con-
text. A first step could be the investigation of this problem in the case of
special kernels k (and for quite general trees). Thus we restrict ourselves to
kernels k which may be written as k(t, s) = α(t)σ(s) for some given weights
α, σ : T → (0,∞) where we assume that σ is non-increasing. Condition (1.1)
then reads

(1.2) sup
s∈T

(∑
r�s

α(r)q
)1/q

σ(s) <∞

and V = Vα,σ acts as

(1.3) (Vα,σx)(t) = α(t)
∑
s�t

σ(s)x(s), t ∈ T.

Note that adding signs to α and σ does not change compactness proper-
ties (or any other property), thus assuming positive weights we do not lose
generality.

In the linear case T = N0, those weighted summation operators have
been investigated in [CL]. The main observation in that paper was that
such operators may be regarded as special weighted integration operators,
and consequently their properties follow from those of integration operators
as proved in [EEH1], [EEH2], [LL], [Ma], etc.

The situation is completely different for general trees. Here known results
about Volterra integration operators are not applicable. Therefore summa-
tion operators in this general context have to be treated independently and
new interesting phenomena appear because the structure of the underlying
tree plays an important role.

The main objective of the present paper is to investigate compactness
properties of the operators Vα,σ defined in (1.3). Our basic observation is
as follows. Suppose we are given weights α and σ satisfying (1.2) with σ
non-decreasing and let q ∈ (1,∞). If t � s are in T we define their distance
by

d(t, s) := max
t≺v�s

( ∑
t≺r�v

α(r)q
)1/q

σ(v).
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Then d may be extended to a metric d on T . Let N(T, d, ε) be the covering
numbers of (T, d), i.e.,

N(T, d, ε) := inf
{
n ≥ 1 : T =

n⋃
j=1

Bε(tj)
}

with (open) ε-balls Bε(tj) for certain tj ∈ T . We prove that the behavior of
N(T, d, ε) as ε → 0 is closely connected with the degree of compactness of
Vα,σ. More precisely, let en(Vα,σ) be the sequence of dyadic entropy numbers
defined by

en(Vα,σ) := inf
{
ε > 0 : {Vα,σx : ‖x‖1 ≤ 1} ⊆

2n−1⋃
j=1

Bε(yj)
}

where the Bε(yj) are open ε-balls in `q(T ) centered at certain yj . We refer
to [CS] for more information about entropy numbers. Our main objective
is to prove that upper (resp. lower) bounds for N(T, d, ε) yield upper (resp.
lower) bounds for en(Vα,σ).

For example, as shown in Theorem 4.4, given a > 0 and b ≥ 0 it follows
that

N(T, d, ε) ≤ cε−a|log ε|b implies en(Vα,σ) ≤ c′n−1/a−1/p′(log n)b/a

with p := min{2, q} and 1/p′ = 1− 1/p. In Theorem 5.3 we prove a similar
result assuming N(T, d, ε) ≥ cε−a|log ε|b. In particular, if 1 < q ≤ 2, then

N(T, d, ε) ≈ ε−a|log ε|b implies en(Vα,σ) ≈ n−1/a−1/q′(log n)b/a.

We also treat the case that N(T, d, ε) increases exponentially. Apart from
some critical case, sharp estimates are obtained as well.

Thus in order to get precise estimates for en(Vα,σ) it suffices to describe
the behavior of N(T, d, ε) in dependence on properties of the weights α and σ
and on the structure of the tree. This question is investigated in Sections 6
and 7. There we prove quite precise estimates for N(T, d, ε) in the case
of moderate trees (the number of nodes in the nth generation increases
polynomially) or for binary trees provided we know something about the
behavior of α(t)σ(t). In Section 8 we investigate a class of trees where the
branches die out very quickly. Here the behavior of N(T, d, ε) is completely
different from the one observed for trees where each node has at least one
offspring. This example demonstrates the influence of the tree structure on
compactness properties of Vα,σ.

In Section 9 we sketch a probabilistic interpretation of our results by
providing the asymptotics of small deviation probabilities for some tree-
indexed Gaussian random functions, and at the end in Section 10 we state
some open problems related to the topic of the present paper.
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Let us finally mention that throughout this paper we always denote by
c or C (with or without subscript) universal constants which may vary even
in one line. The constants may depend on q but neither on n nor on the
behavior of the weights.

2. Trees. Let us recall some basic notation related to trees which will
be used later on. Throughout, T denotes a finite or an infinite tree. We
suppose that T has a unique root which we denote by 0, and each element
t ∈ T has a finite number ξ(t) of offsprings. We do not exclude the case
ξ(t) = 0, i.e., some elements may “die out”. The tree structure leads in
the natural way to a partial order � by letting t � s (or s � t) provided
there are t = t0, t1, . . . , tm = s in T such that tj is an offspring of tj−1

for 1 ≤ j ≤ m. The strict inequalities have the same meaning with the
additional assumption t 6= s. Elements t, s ∈ T are said to be comparable
provided that either t � s or s � t; otherwise they are incomparable.

For t, s ∈ T with t � s the order interval [t, s] is defined by

[t, s] := {r ∈ T : t � r � s},
and similarly for (t, s].

A subset B ⊆ T is said to be a branch provided that all elements in B
are comparable, and moreover, if t � r � s with t, s ∈ B, then r ∈ B as
well. Of course, finite branches are of the form [t, s] for suitable t � s.

Given s ∈ T its order |s| ≥ 0 is defined by

|s| := #{t ∈ T : t ≺ s}.
Then

R(n) := #{t ∈ T : |t| = n}, n ≥ 0,

is the number of elements in the nth generation of T .

3. Metrics and ε-nets on trees. Suppose we are given two weight
functions α : T → (0,∞) and σ : T → (0,∞) where we assume that σ is
non-increasing, i.e., if t � s, then σ(t) ≥ σ(s).

Given q ∈ [1,∞) and t, v ∈ T with t � v, we set

‖α1(t,v]‖q :=
( ∑
t≺r�v

α(r)q
)1/q

.

Using this, we define a mapping d : T ×T → [0,∞) as follows: if t � s, then

(3.1) d(t, s) := max
t≺v�s

{‖α1(t,v]‖qσ(v)}.

We let d(t, s) := d(s, t) provided that t � s, and

d(t, s) := d(t ∧ s, t) + d(t ∧ s, s)
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whenever t and s are incomparable. Here t∧ s denotes the infimum of t and
s which may be defined as the maximal element in [0, t] ∩ [0, s].

Remark. Since σ is assumed to be non-increasing it follows that for
t � s,

d(t, s) = max
t≺v�s

{‖α1(t,v]‖q · ‖σ1[v,s]‖∞}.

A similar expression (for weights and intervals on R) played an impor-
tant role in the investigation of weighted integration operators (cf. [EEH1],
[EEH2], [LL] and [LLS]).

Proposition 3.1. The mapping d constructed above is a metric on T
with the following monotonicity property: whenever t′ � t � s � s′, then
d(t, s) ≤ d(t′, s′).

Proof. The monotonicity is a direct consequence of the definition of d.
Clearly d(t, s) ≥ 0 and since we assumed α(t) > 0 for t ∈ T we see that

d(t, s) = 0 implies t = s. By the construction we also have d(t, s) = d(s, t).
Thus it remains to prove the triangle inequality

d(t, s) ≤ d(t, r) + d(r, s)

whenever t, s, r ∈ T . To do this, one has to treat six cases in dependence
on the relation between t, s and r. Among them only one is non-trivial,
namely when t, s and r are on a common branch and satisfy t � r � s or,
equivalently, s � r � t. Therefore we only consider that situation.

Assume t � r � s and choose v in T with t ≺ v � s where the maximum
in (3.1) is attained. Then we have to distinguish between the cases v � r
and r ≺ v.

In the first case we have

d(t, s) = ‖α1(t,v]‖qσ(v) ≤ max
t≺v′�r

{‖α1(t,v′]‖qσ(v′)} = d(t, r) ≤ d(t, r)+d(r, s).

Suppose now r ≺ v. Here we argue as follows:

d(t, s) = ‖α1(t,v]‖qσ(v) ≤ (‖α1(t,r]‖q + ‖α1(r,v]‖q)σ(v),

and since σ is non-increasing, it follows that

d(t, s) ≤ ‖α1(t,r]‖qσ(r) + ‖α1(r,v]‖qσ(v) ≤ d(t, r) + d(r, s).

Our next objective is to investigate ε-nets for T with respect to the
metric d possessing an additional useful property. Given ε > 0, a set S ⊆ T
is said to be an order ε-net provided that for each t ∈ T there is an s ∈ S
satisfying d(s, t) < ε as well as s � t. The corresponding order covering
numbers of T are then

(3.2) Ñ(T, d, ε) := inf{#S : S is an order ε-net of T}.
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Recall that the usual covering numbers N(T, d, ε) are defined by

N(T, d, ε) = inf
{

#S : S ⊂ T, T =
⋃
s∈S

Bε(s)
}

where Bε(s) is the open ε-ball centered at s ∈ T , i.e.

Bε(s) := {r ∈ T : d(r, s) < ε}.
Clearly N(T, d, ε) ≤ Ñ(T, d, ε), but as we shall see now, a slightly weaker
reverse estimate is valid as well. More precisely we have the following.

Proposition 3.2. Let d be the metric defined in (3.1). Then for any
ε > 0,

(3.3) Ñ(T, d, 2ε) ≤ N(T, d, ε).

Proof. Take any ε-net S ⊂ T . For each s ∈ S we choose rs ∈ Bε(s) such
that rs ∧ s is the minimal element in {r ∧ s : r ∈ Bε(s)}. Then

rs ∧ s � r ∧ s � s whenever r ∈ Bε(s).
Set

S̃ := {rs ∧ s : s ∈ S}.
Clearly, #S̃ ≤ #S, hence it suffices to prove that S̃ is an order 2ε-net of T .
To this end take any t ∈ T . Then there is an s ∈ S such that t ∈ Bε(s),
and by the choice of rs it follows that rs ∧ s � t ∧ s � t. Thus it remains
to estimate the distance between rs ∧ s and t. Note that the definition of d
implies d(rs ∧ s, s) ≤ d(rs, s) < ε. Thus the triangle inequality leads to

d(rs ∧ s, t) ≤ d(rs ∧ s, s) + d(t, s) < 2ε

because of t ∈ Bε(s). This completes the proof.

4. Upper entropy estimates for weighted summation operators.
Here and later on, the basic assumption about the weight functions α and
σ is that they satisfy (1.2) for some fixed q ∈ (1,∞) and that σ is non-
increasing.

In a first step we investigate weights σ attaining only dyadic values, i.e.,
in {2−m : m ∈ Z}. Without losing generality assume σ(0) = 1, hence there
are subsets Im ⊆ T , m ≥ 0, such that

(4.1) σ(s) =
∞∑
m=0

2−m1Im(s), s ∈ T.

Since σ is supposed to be non-increasing, the sets Im have the following
properties:

(1) T =
⋃∞
m=0 Im and Il ∩ Im = ∅ provided that l 6= m.
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(2) Whenever B ⊆ T is a branch, for each m ≥ 0 either B ∩ Im = ∅ or
it is an order interval in T . Furthermore, if l < m, t ∈ B ∩ Il, and
s ∈ B ∩ Im, then t ≺ s.

Define an operator W on `1(T ) by

(4.2) (Wx)(t) := α(t)
∑
s�t
s∈Im

σ(s)x(s) = α(t) 2−m
∑
s�t
s∈Im

x(s), t ∈ Im.

The mapping W acts as a “partial” weighted summation operator depending
on the partition (Im)m≥0. We claim that condition (1.2) implies that W is a
bounded operator from `1(T ) into `q(T ). To see this define the unit vectors
δt ∈ `1(T ), t ∈ T , by

δt(r) :=
{

1, r = t,

0, r 6= t.

Then
W (δt) = σ(t)

∑
r�t
r∈Im

α(r)δr = 2−m
∑
r�t
r∈Im

α(r)δr, t ∈ Im,

hence (1.2) implies supt∈T ‖W (δt)‖q < ∞ and W : `1(T ) → `q(T ) is well-
defined and bounded.

Define the set EW ⊆ `q(T ) by

EW := {W (δt) : t ∈ T}
and let the metric d on T be as in (3.1) with weights α and σ satisfying
(1.2) and (4.1), respectively. Then the following holds.

Proposition 4.1. We have

N(EW , ‖ · ‖q, ε) ≤ Ñ(T, d, ε) + 1.

Proof. Fix ε > 0 and choose an arbitrary order ε-net S in T (with respect
to the metric d). Given t ∈ T , there is a unique m ≥ 0 with t ∈ Im. By
definition we find an s ∈ S satisfying d(s, t) < ε as well as s � t. Assume
first that s ∈ Im as well. Then we get

‖W (δt)−W (δs)‖q =
( ∑
s≺r�t

α(r)q
)1/q

· 2−m = ‖α1(s,t]‖qσ(t) ≤ d(s, t) < ε.

Otherwise, if s ∈ Il for a certain l < m, we argue as follows:

‖W (δt)‖q =
( ∑

r�t
r∈Im

α(r)q
)1/q

· 2−m ≤
( ∑
s≺r�t

α(r)q
)1/q

· σ(t) ≤ d(s, t) < ε.

Consequently, the set {W (δs) : s ∈ S}∪{0} is an ε-net of EW in `q(T ). This
being true for any order net S completes the proof.
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Proposition 4.2. For q ∈ (1,∞) let p := min{q, 2} and 1/p′ := 1−1/p.
Furthermore let a > 0 and 0 ≤ b <∞. If

(4.3) Ñ(T, d, ε) ≤ cε−a|log ε|b,

then

(4.4) en(W : `1(T )→ `q(T )) ≤ c′n−1/a−1/p′(log n)b/a.

If instead of (4.3) we only have

(4.5) log Ñ(T, d, ε) ≤ cε−a,

then

(4.6) en(W : `1(T )→ `q(T )) ≤ c′n−1/p′(log n)1/p
′−1/a

whenever a < p′, while for a > p′ we have

(4.7) en(W : `1(T )→ `q(T )) ≤ c′n−1/a.

Proof. If we assume (4.3), by Proposition 4.1 we also have

(4.8) N(EW , ‖ · ‖q, ε) ≤ cε−a|log ε|b.

Observe that en(W ) = en(aco(EW )), where aco(B) denotes the absolutely
convex hull of a set B ⊆ `q(T ). Thus we may use known estimates for the
entropy of absolutely convex hulls as can be found in [CKP] or [St]. For
example, assuming (4.8) we may apply Corollary 5 in [St]. Recall that `q(T )
is of type p with p = min{2, q}. Hence we get

en(W ) = en(aco(EW )) ≤ c′n−1/a−1/p′(log n)b/a,

which completes the proof of (4.4).
Assuming (4.5), estimates (4.6) and (4.7) follow by similar arguments

using Corollaries 4 and 3 in [St], respectively.

Our next objective is to apply the previous results to weighted summa-
tion operators. To this end let α and σ be weight functions satisfying (1.2),
where σ is non-increasing. Then we define the weighted summation operator
Vα,σ as in (1.3). Under the assumptions on the weights the operator Vα,σ is
well-defined and bounded from `1(T ) into `q(T ).

The main goal is to relate the degree of compactness of Vα,σ to the
behavior of Ñ(T, d, ε) as ε → 0. Here the metric d is defined as in (3.1) by
α and σ. In a first step we suppose that σ is of the special form (4.1) with
sets Im ⊆ T defined there.

Given t ∈ T , set

Kt := {k ≥ 0 : Ik ∩ [0, t] 6= ∅}.

Consequently, if k ∈ Kt, then Ik ∩ [0, t] = [λk(t), θk(t)] for some λk(t) �
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θk(t) � t. Note that θm(t) = t for t ∈ Im and

(4.9) [0, t] =
⋃
k∈Kt

[λk(t), θk(t)].

Define now an operator Z : `1(T )→ `1(T ) by

(4.10) Z(δt) :=
∑
k∈Kt

2k−mδθk(t), t ∈ Im.

Proposition 4.3. Assume (1.2) and (4.1) and define W : `1(T ) →
`q(T ) and Z : `1(T ) → `1(T ) as in (4.2) and (4.10), respectively. Then Z
is bounded with ‖Z‖ ≤ 2, and the operator Vα,σ given by (1.3) admits a
factorization

(4.11) Vα,σ = W ◦ Z.

Proof. By construction, for each t ∈ Im we have

‖Z(δt)‖1 ≤
∑
k∈Kt

2k−m ≤
m∑
k=0

2k−m ≤ 2,

hence ‖Z‖ = supt∈T ‖Z(δt)‖1 implies ‖Z‖ ≤ 2 as asserted.
To prove (4.11) first note that for t ∈ T and k ∈ Kt we get

W (δθk(t)) = σ(θk(t))
∑

r∈[λk(t),θk(t)]

α(r)δr = 2−k
∑

r∈[λk(t),θk(t)]

α(r)δr,

hence, if t ∈ Im, then by (4.9),

W (Z(δt)) =
∑
k∈Kt

2k−m
[
2−k

∑
r∈[λk(t),θk(t)]

α(r)δr
]

= 2−m
∑
r∈[0,t]

α(r)δr.

On the other hand,

Vα,σ(δt) = σ(t)
∑
r�t

α(r)δr = 2−m
∑
r∈[0,t]

α(r)δr,

and it follows that Vα,σ(δt) = W (Z(δt)). This being true for any t ∈ T proves
(4.11).

Theorem 4.4. Let α and σ be weight functions satisfying (1.2) where σ
is non-increasing. If

Ñ(T, d, ε) ≤ cε−a|log ε|b

for some a > 0 and b ≥ 0, then

en(Vα,σ : `1(T )→ `q(T )) ≤ cn−1/a−1/p′(log n)b/a

with p as in Proposition 4.2. If

(4.12) log Ñ(T, d, ε) ≤ cε−a,
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then
en(Vα,σ : `1(T )→ `q(T )) ≤ c′n−1/p′(log n)1/p

′−1/a

whenever a < p′, while for a > p′ we have

en(Vα,σ : `1(T )→ `q(T )) ≤ c′n−1/a.

Proof. Suppose as before σ(0) = 1 and for m ≥ 0 define

Im := {t ∈ T : 2−m−1 < σ(t) ≤ 2−m}.

If
σ̂(t) :=

∑
m≥0

2−m1Im(t), t ∈ T,

then σ̂ is a non-increasing weight function as in (4.1). By construction,

(4.13) σ(t) ≤ σ̂(t) ≤ 2σ(t), t ∈ T.

Define the metrics d and d̂ as in (3.1) by α and by σ or σ̂, respectively. In
view of (4.13) we get

d(t, s) ≤ d̂(t, s) ≤ 2 d(t, s), t, s ∈ T,

hence Ñ(T, d̂, ε/2) ≤ Ñ(T, d, ε), which implies Ñ(T, d̂, ε) ≤ cε−a|log ε|b as
well. But now we are in the situation of Proposition 4.2 and obtain

(4.14) en(W : `1(T )→ `q(T )) ≤ cn−1/a−1/p′(log n)b/a.

An application of Proposition 4.3 yields

en(Vα,σ̂) = en(W ◦ Z) ≤ en(W )‖Z‖ ≤ 2en(W ),

hence by (4.14) it follows that also

en(Vα,σ̂) ≤ cn−1/a−1/p′(log n)b/a.

To complete the proof note that (4.13) implies that the diagonal operator
∆ : `1(T )→ `1(T ) defined by

∆(δt) :=
σ(t)
σ̂(t)

δt

is bounded with ‖∆‖ ≤ 1. Of course, Vα,σ = Vα,σ̂ ◦∆, hence

(4.15) en(Vα,σ) ≤ en(Vα,σ̂)‖∆‖ ≤ en(Vα,σ̂),

completing the proof of the first part.
The second part is proved by exactly the same arguments. Indeed, (4.12)

implies log Ñ(T, d̂, ε) ≤ cε−a. An application of Proposition 4.3 now yields

en(Vα,σ̂) = en(W ◦ Z) ≤ en(W )‖Z‖ ≤ 2en(W ),

and the estimates follow by the second part of Proposition 4.2 via (4.15).
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Remark. The critical case a = p′ is excluded in the second part of The-
orem 4.4. This is due to the fact that in that case only weaker estimates for
en(aco(EW )), hence for en(W ) and also for en(Vα,σ), are available. Indeed,
using Corollary 1.4 in [CSt] it follows that (4.12) only gives

en(Vα,σ : `1(T )→ `q(T )) ≤ c′n−1/a log n.

But the results in [L] suggest that the right order in that case is n−1/a, i.e.,
the above estimate probably contains an unnecessary log-term (1).

5. Lower entropy estimates. We start with a quite general lower
estimate for weighted summation operators on trees.

Proposition 5.1. Suppose there are m pairs of elements ti, si in T with
the following properties.

(1) ti ≺ si and (ti, si] ∩ (tj , sj ] = ∅ for 1 ≤ i, j ≤ m, i 6= j.
(2) For some ε > 0 we have d(ti, si) ≥ ε, 1 ≤ i ≤ m.

Then

en(Vα,σ : `1(T )→ `q(T )) ≥ cε
(

log(1 +m/n)
n

)1/q′

with some c = c(q) whenever logm ≤ n ≤ m.

Proof. The strategy of the following construction consists in “inscribing”
the well studied identity operator from `m1 into `mq into our operator Vα,σ.

The definition of the metric d implies the existence of vi ∈ T such that
ti ≺ vi � si and ( ∑

ti≺r�vi

α(r)q
)1/q

σ(vi) ≥ ε, 1 ≤ i ≤ m.

By assumption the intervals Ji := (ti, vi], 1 ≤ i ≤ m, are disjoint subsets
of T .

Next define elements yi ∈ `1(T ) by

yi := δvi −
σ(vi)
σ(ti)

δti , 1 ≤ i ≤ m,

as well as an operator I : `m1 → `1(T ) by setting

I(δi) := yi, 1 ≤ i ≤ m.

Here δi is the ith unit vector in `m1 = `1({1, . . . ,m}). Then σ(vi) ≤ σ(ti)
implies ‖yi‖1 ≤ 2, hence ‖I‖ ≤ 2 as well.

(1) This conjecture has indeed been recently proved by the authors: see arXiv:
1009.2339.
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The image zi ∈ `q(T ) of yi under Vα,σ equals

zi := Vα,σ(yi) = σ(vi)
∑

ti≺r�vi

α(r)δr, 1 ≤ i ≤ m.

In particular, the support of zi is contained in Ji.
Finally, let

βi :=
( ∑
ti≺r�vi

α(r)q
)1/q′

, bi := β−1
i

∑
ti≺r�vi

α(r)q−1δr.

By the choice of βi we obtain ‖bi‖q′ = 1. Moreover, since the order intervals
Ji are disjoint, it follows that

〈zi, bj〉 = 0, 1 ≤ i, j ≤ m, i 6= j,

while

(5.1) 〈zi, bi〉 = σ(vi)
( ∑
ti≺r�vi

α(r)q
)1/q

≥ ε, 1 ≤ i ≤ m.

Define P : `q(T )→ `mq by

P (z) := (〈z, bi〉)mi=1, z ∈ `q(T ).

Then ‖P‖ ≤ 1. Indeed, if z ∈ `q(T ), then

‖P (z)‖qq =
m∑
i=1

|〈z, bi〉|q =
m∑
i=1

|〈z, bi1Ji〉|q ≤
m∑
i=1

‖z1Ji‖qq‖bi‖
q
q′ ≤ ‖z‖

q
q.

Summing up,

PVα,σI(δi) = 〈zi, bi〉δi, 1 ≤ i ≤ m,
and because of (5.1) we obtain, for the identity Idm from `m1 into `mq ,

Idm = ∆ ◦ (PVα,σI)

with a diagonal operator ∆ satisfying ‖∆ : `mq → `mq ‖ ≤ ε−1. Consequently,

en(Idm : `m1 → `mq ) ≤ ε−1en(PVα,σI) ≤ 2ε−1en(Vα,σ).

To complete the proof note that a result of Schütt (cf. [Sch]) asserts that

en(Idm : `m1 → `mq ) ≥ c
(

log(1 +m/n)
n

)1/q′

as long as logm ≤ n ≤ m.

In order to apply Proposition 5.1 we have to find sufficiently many order
intervals (ti, si] with the properties stated above. The next result shows that
we can find at least N(T, d, 2ε)− 1 such intervals.

Proposition 5.2. Let ε > 0. Then there are at least N(T, d, 2ε) − 1
order intervals (ti, si] such that d(ti, si) ≥ ε and (ti, si] ∩ (tj , sj ] = ∅ for
i 6= j.
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Proof. Let S = {s1, . . . , sn} ⊂ T be a maximal 2ε-distant set, i.e.,
d(si, sj) ≥ 2ε whenever i 6= j. Since S is chosen maximal, for any t ∈ T
there is an si ∈ S with d(t, si) < 2ε. Thus S is a 2ε-net, and consequently
n ≥ N(T, d, 2ε). There is at most one si in S with d(0, si) < ε. By changing
the numbering we may assume d(0, sj) ≥ ε for 1 ≤ j ≤ n − 1. For those
j we now define tj ∈ T possessing the following properties: tj ≺ sj and
d(tj , sj) ≥ ε, but whenever t ∈ T satisfies tj ≺ t � sj , then d(tj , sj) < ε.
Such tj exist (and are uniquely determined) by d(0, sj) ≥ ε and by the
monotonicity property of d.

We now claim that the order intervals (t1, s1], . . . , (tn−1, sn−1] have the
desired properties. By construction d(tj , sj) ≥ ε and it remains to prove
that the intervals are disjoint. Assume to the contrary that there is some t
in (ti, si] ∩ (tj , sj) for certain i 6= j. Then d(t, si) < ε as well as d(t, sj) < ε
by the choice of tj . This implies d(si, sj) ≤ d(t, si) + d(t, sj) < 2ε, which
contradicts the choice of the set S.

Let us state a first consequence of Propositions 5.1 and 5.2.

Theorem 5.3. Suppose that for some a > 0 and b ≥ 0,

(5.2) N(T, d, ε) ≥ cε−a|log ε|b.
Then

(5.3) en(Vα,σ : `1(T )→ `q(T )) ≥ c̃n−1/a−1/q′(log n)b/a

with a constant c̃ = c̃(c, q). In particular, if 1 < q ≤ 2, then

(5.4) N(T, d, ε) ≈ ε−a|log ε|b

implies
en(Vα,σ : `1(T )→ `q(T )) ≈ n−1/a−1/q′(log n)b/a.

Proof. In view of Proposition 5.2 the assumption implies that there are
m disjoint order intervals (ti, si] with d(ti, si) ≥ ε. We may choose m of
order ε−a|log ε|b. Next we apply Proposition 5.1 with n = m to obtain

en(Vα,σ) ≥ cε
(

log 2
n

)1/q′

≥ c̃n−1/a−1/q′(log n)b/a.

Remark. (1) Note that by (3.3), both in (5.2) and in (5.4) the covering
numbers N(T, d, ε) may be replaced by the order numbers Ñ(T, d, ε).

(2) It remains open whether or not in (5.3) the expression n−1/a−1/q′

may be replaced by n−1/a−1/2 whenever 2 < q < ∞. For those q, there
remains a gap between the upper estimate in Theorem 4.4 and the lower
one in Theorem 5.3.

Our next objective is an application of Propositions 5.1 and 5.2 in the
case of rapidly increasing covering numbers.
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Theorem 5.4. Suppose that

logN(T, d, ε) ≥ cε−a

for a certain a > 0. Then

(5.5) en(Vα,σ : `1(T )→ `q(T )) ≥ cn−1/q′(log n)1/q
′−1/a

provided that a < q′. On the other hand, if q′ ≤ a, then

(5.6) en(Vα,σ : `1(T )→ `q(T )) ≥ cn−1/a.

Proof. First observe that Proposition 5.2 implies the existence of m dis-
joint order intervals (ti, si] with d(ti, si) ≥ ε where logm ≈ ε−a.

So let us prove (5.5). We use Proposition 5.1 with n ≈
√
m and note

that the choice of m and n implies ε ≈ (logm)−1/a ≈ (log n)−1/a. Of course,
logm ≤ n ≤ m, thus Proposition 5.1 applies and leads to

en(Vα,σ) ≥ cε
(

log(1 +
√
m)

n

)1/q′

≥ c(logm)−1/a+1/q′ n−1/q′

≥ c(log n)−1/a+1/q′n−1/q′ .

Inequality (5.6) follows by similar arguments. The number m is chosen
as before but this time we take n of order logm. This implies ε ≈ n−1/a and
we get

en(Vα,σ) ≥ cε
( log(1 + m

logm)

n

)1/q′

≥ cε ≥ cn−1/a.

Remark. Note that (5.5) as well as (5.6) are valid for all a > 0. But for
a ≤ q′ the first estimate is better while for a ≥ q′ the second one leads to a
better lower bound.

6. Examples of upper entropy estimates. The aim of this section is
to apply the previous results to weights and trees satisfying certain growth
assumptions. We start by assuming that there is a strictly decreasing, con-
tinuous function ϕ on (0,∞) with

∞�

0

ϕ(x) dx <∞

such that for some fixed q <∞,

(6.1) (α(t)σ(t))q ≤ ϕ(|t|), t ∈ T.

The next objective is to construct order ε-nets on N for a metric generated
by ϕ. Later on, those nets on N lead in a natural way to nets on trees. Given
ϕ as above define Φ on [0,∞] by
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(6.2) Φ(y) :=
∞�

y

ϕ(x) dx, 0 ≤ y <∞,

and Φ(∞) := 0. The generated metric d̄ on [0,∞] is then defined by

(6.3) d̄(y1, y2) := Φ(y1)− Φ(y2) =
y2�

y1

ϕ(x) dx

provided that y1 ≤ y2. Given ε > 0 we construct a 2ε-net for (N, d̄) as
follows. First we take all points in N up to the level ϕ−1(ε), i.e., as a first
part of the net we choose

Mε := {n ≥ 1 : n ≤ ϕ−1(ε)} = {n ≥ 1 : ϕ(n) ≥ ε}

and note that #Mε ≤ ϕ−1(ε).
It remains to find a suitable 2ε-cover for {n ≥ 1 : n ≥ ϕ−1(ε)}. Here we

proceed as follows. For k = 1, . . . , N set

(6.4) ũk := Φ−1(kε)

where the number N is chosen as

N := max{k ≥ 1 : ũk ≥ ϕ−1(ε)} = max{k ≥ 1 : kε ≤ Φ(ϕ−1(ε))}
= max{k ≥ 1 : k ≤ Φ(ϕ−1(ε))/ε}.

Note that ũ1 > · · · > ũN , and moreover, since in that region ϕ(x) < ε,
we necessarily have ũk−1 − ũk > 1, k = 1, . . . , N . Hence, setting (here [u]
denotes the integer part of u ∈ R)

uk := [ũk], k = 1, . . . , N − 1,

it follows that ũ1 ≥ u1 > ũ2 ≥ · · · ≥ uN−1 > ũN . It remains to define uN .
If [ũN ] ≥ ϕ−1(ε) we set uN := [ũN ]. Otherwise we take uN := [ϕ−1(ε)] + 1.
By the construction it follows that d̄(uk,m) < 2ε for all m ∈ N with uk ≤
m < uk−1 where u0 :=∞. Consequently, the set

(6.5) S̄ε := Mε ∪ {u1, . . . , uN}

is a 2ε-net of (N, d̄).
Next we want to apply the preceding construction to build suitable ε-

nets on trees. Recall that R(n) denotes the number of elements in the nth
generation of a tree.

Proposition 6.1. Let T be a tree such that R(n) ≤ ρ(n) for a certain
continuous, non-decreasing function ρ on [0,∞). Furthermore, suppose that
the weights α and σ on T satisfy (6.1) for a certain q ≥ 1 and some function
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ϕ as before. Define the metric d as in (3.1) with α, σ and q. Then

Ñ(T, d, ε) ≤
ϕ−1(εq/2)+1�

0

ρ(x) dx+ ρ(Φ−1(εq/2))

+ 2ε−q
Φ−1(εq/2)�

ϕ−1(εq/2)

ρ(y)ϕ(y) dy

where Φ is as in (6.2).

Proof. Assuming (6.1) it follows (recall that σ is non-increasing) that
for all t � s in T ,

d(t, s) = max
t≺v�s

{( ∑
t≺r�v

α(r)q
)1/q

σ(v)
}
≤
( ∑
t≺r�s

(α(r)σ(r))q
)1/q

≤
( ∑
t≺r�s

ϕ(|r|)
)1/q

=
( ∑
|t|<k≤|s|

ϕ(k)
)1/q

≤
( |s|�
|t|

ϕ(x) dx
)1/q

= d̄(|t|, |s|)1/q.
Hence, if S̄ε = Mε ∪ {u1, . . . , uN} is defined as in (6.5), setting

(6.6) Sε := {t ∈ T : |t| ∈ S̄εq}
we obtain an order 21/qε-net for (T, d).

To proceed further we have to estimate #Sε suitably. In view of R(n) ≤
ρ(n) we get

#Sε ≤
∑

n≤ϕ−1(εq)

ρ(n) +
N∑
k=1

ρ(uk) ≤
∑

n≤ϕ−1(εq)

ρ(n) +
N∑
k=1

ρ(ũk)

=
∑

n≤ϕ−1(εq)

ρ(n) +
N∑
k=1

ρ(Φ−1(kεq)).

Since ρ is non-decreasing and ρ ◦ Φ−1 non-increasing, this leads to

#Sε ≤
ϕ−1(εq)+1�

0

ρ(x) dx+ ρ(Φ−1(εq)) +
Φ(ϕ−1(εq))/εq�

1

ρ(Φ−1(xεq)) dx

=
ϕ−1(εq)+1�

0

ρ(x) dx+ ρ(Φ−1(εq)) + ε−q
Φ−1(εq)�

ϕ−1(εq)

ρ(y)ϕ(y) dy.

Finally, we use Ñ(T, d, 21/qε) ≤ #Sε and replace εq by εq/2.

One can slightly simplify the bound for subsequent use as follows.
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Corollary 6.2.

(1) (Convergent case) Suppose that
	∞
1 ρ(y)ϕ(y) dy <∞. Then

Ñ(T, d, ε) ≤
ϕ−1(εq/2)+1�

0

ρ(x) dx+ ρ(Φ−1(εq/2))(6.7)

+ 2ε−q
∞�

ϕ−1(εq/2)

ρ(y)ϕ(y) dy.

(2) (Divergent case) If
	∞
1 ρ(y)ϕ(y) dy =∞, then

Ñ(T, d, ε) ≤
ϕ−1(εq/2)+1�

0

ρ(x) dx+ ρ(Φ−1(εq/2))(6.8)

+ 2ε−q
Φ−1(εq/2)�

1

ρ(y)ϕ(y) dy.

Let us give a first application of Proposition 6.1 in the case of moderate
trees, i.e. those where the number of elements in the generations increases
at most polynomially.

Proposition 6.3. Let T be a tree such that R(n)≤cnH for some H≥0.
Suppose, furthermore, that

α(t)σ(t) ≤ c|t|−γ/q, t ∈ T,
for some γ > 1. Then

Ñ(T, d, ε) ≤ c


ε−qH/(γ−1), γ < H + 1,
ε−q log(1/ε), γ = H + 1,
ε−q(H+1)/γ , γ > H + 1.

Proof. First we note that in all three cases the first and the second terms
in (6.7) and (6.8) behave like ε−q(H+1)/γ and ε−qH/(γ−1), respectively. Only
the third term behaves differently in each of the three cases.

Thus let us start with the investigation of this third term in the conver-
gent case, i.e., if γ > H + 1. We use (6.7) and observe that the third term
behaves as the first term, i.e., as

cε−q[ϕ−1(εq/2)]H−γ+1 ≤ cε−q(H+1)/γ .

Since here H/(γ − 1) < (H + 1)/γ, the second term in (6.7) is of smaller
order and we obtain

Ñ(T, d, ε) ≤ cε−q(H+1)/γ

as asserted.
Next assume γ = H + 1. This is a kind of divergent case and the third

term in (6.8) is of order ε−q log(1/ε), while the first and second terms are
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of lower order ε−q, and we get

Ñ(T, d, ε) ≤ cε−q log(1/ε)

as claimed above.
Finally, suppose γ < H + 1. This is again a divergent case and the third

term in (6.8) behaves like

ε−q[Φ−1(εq/2)]H−γ+1 ≤ cε−qH/(γ−1),

thus the second and third terms are of the same order. Since for γ < H + 1
we have H/(γ − 1) > (H + 1)/γ, the first term that behaves like ε−q(H+1)/γ

is of smaller order. Thus it follows that

Ñ(T, d, ε) ≤ cε−qH/(γ−1).

An application of Theorem 4.4 to the above estimates leads to the fol-
lowing.

Theorem 6.4. Suppose 1 < q < ∞ and let as before p := min{2, q}.
Suppose that the tree T satisfies R(n) ≤ cnH for a certain H ≥ 0 and that

α(t)σ(t) ≤ c|t|−γ/q, t ∈ T,
for a certain γ > 1. Then

en(Vα,σ : `1(T )→ `q(T )) ≤ c


n
− γ−1
qH
− 1
p′ , γ < H + 1,

n
− 1
q
− 1
p′ (log n)1/q, γ = H + 1,

n
− γ
q(H+1)

− 1
p′ , γ > H + 1.

Remark. Note that p = q for 1 < q ≤ 2. In particular, in that case

en(Vα,σ : `1(T )→ `q(T )) ≤ c


n
− γ−1
qH
− 1
q′ , γ < H + 1,

n−1(log n)1/q, γ = H + 1,
n
− γ
q(H+1)

− 1
q′ , γ > H + 1.

Our next objective is to investigate weighted summation operators on
binary trees. Here we have ρ(x) = 2x. Let us first suppose that the weights
decay polynomially, i.e.,

α(t)σ(t) ≤ c|t|−γ/q, t ∈ T,
for some γ > 1. Of course, in order to estimate Ñ(T, d, ε) we have to use
the divergent case of Corollary 6.2. Then we get

log
ϕ−1(εq/2)+1�

0

ρ(x) dx ≈ ε−q/γ , log ρ(Φ−1(εq/2)) ≈ ε−q/(γ−1).

Furthermore, as can be easily seen, the logarithm of the third term in (6.8)
behaves like ε−q/(γ−1) as well.
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Summing up, it follows that

log Ñ(T, d, ε) ≤ cε−q/(γ−1).

Hence we see that the critical case appears if q/(γ − 1) = p′ (recall that
p = min{2, q}), i.e.,

γ =
{
q if 1 < q ≤ 2,
q/2 + 1 if 2 ≤ q <∞.

In the non-critical cases we get the following.

Theorem 6.5. Let T be a binary tree and suppose that

α(t)σ(t) ≤ c|t|−γ/q, t ∈ T,
for a certain γ > 1 with γ 6= q/p′ + 1. Then

(a) for 1 < q ≤ 2,

en(Vα,σ : `1(T )→ `q(T )) ≤ c
{
n−1/q′(log n)1−γ/q, γ > q,
n−(γ−1)/q, γ < q;

(b) for 2 ≤ q <∞,

en(Vα,σ : `1(T )→ `q(T )) ≤ c
{
n−1/2(log n)1/2−(γ−1)/q, γ > q/2 + 1,
n−(γ−1)/q, γ < q/2 + 1.

Remark. For one-weight operators, i.e., if σ(t) = 1, t ∈ T , and for
q = 2 the preceding result was also proved in [L]. Moreover, it was shown
there that the above estimates are sharp. But the main result in [L] is the
investigation of the critical case γ = 2 if q = 2. As mentioned above, the
general results for the entropy of the convex hull in [CSt] lead only to

en(Vα,σ : `1(T )→ `q(T )) ≤ cn−(γ−1)/q log n

in the critical case γ = q/p′ + 1.

Let us briefly mention a third example. Again we take a binary tree T ,
but this time the weights decrease exponentially, i.e., we assume

α(t)σ(t) ≤ c2−
γ
q
|t|
, t ∈ T,

for some γ > 0. Hence we have ϕ(x) = 2−γx and

ϕ−1(εq) ∼ Φ−1(εq) ∼ q

γ
log2(1/ε).

Thus all terms in (6.7) and (6.8) are of the same order ε−q/γ and under
these assumptions

Ñ(T, d, ε) ≤ cε−q/γ .
Thus,

(6.9) en(Vα,σ : `1(T )→ `q(T )) ≤ cn−γ/q−1/p′
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in that case. In completely different probabilistic language, this example was
studied in [AL].

7. Examples of lower entropy estimates. In Section 6 we proved
upper estimates for N(T, d, ε) under certain growth assumptions for the
weights and for R(n), the number of elements in the nth generation of T .
The aim of this section is to prove in a similar way lower estimates for
N(T, d, ε) or en(Vα,σ), respectively, assuming lower growth estimates. Thus
we investigate weights satisfying

(7.1) (α(t)σ(t))q ≥ ϕ(|t|), t ∈ T,
for a function ϕ as in Section 6 and, furthermore, we assume

(7.2) R(n) ≥ ρ(n), n ∈ N0,

where ρ is as before non-increasing and continuous with ρ(0) = 1.
Under these assumptions we get the following.

Proposition 7.1. Assume (7.1) and (7.2). Then

N(T, d, ε/2) ≥
ϕ−1(εq)−1�

1

ρ(x) dx.

Proof. Fix ε > 0 and set

Tε := {t ∈ T : 0 ≤ |t| ≤ ϕ−1(εq)}.
Given s ∈ T , s 6= 0, let s′ be the parent element of s, i.e., s is an offspring
of s′. Then (7.1) implies

d(s′, s) = α(s)σ(s) ≥ ϕ(|s|)1/q ≥ ε
provided that s ∈ Tε. Let now t, s ∈ Tε with t 6= s. If t ≺ s, then t � s′ ≺ s,
hence d(t, s) ≥ d(s′, s) ≥ ε. Otherwise, i.e. if t and s are incomparable, by
the same argument we get

d(t, s) ≥ d(t ∧ s, s) ≥ ε
as well. Consequently, Tε is an ε-separated subset of T , which implies

N(T, d, ε/2) ≥ #Tε.

Thus, it suffices to estimate #Tε suitably. Here we use (7.2) to obtain

#Tε =
∑

0≤n≤ϕ−1(εq)

R(n) ≥
∑

0≤n≤ϕ−1(εq)

ρ(n) ≥
ϕ−1(εq)−1�

1

ρ(x) dx.

Corollary 7.2. Suppose that
ϕ−1(εq)−1�

1

ρ(x) dx ≥ cε−a|log ε|b
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for certain a > 0 and b ≥ 0. Then

(7.3) en(Vα,σ : `1(T )→ `q(T )) ≥ c̃n−1/a−1/q′(log n)b/a.

Proof. Using Proposition 7.1 the assumption leads to

N(T, d, ε) ≥ c′ε−a|log ε|b.
Consequently, Theorem 5.3 applies and proves (7.3).

Let us apply the preceding corollary to concrete functions ϕ and ρ. We
start with the investigation of moderate trees and polynomial weights, i.e.,
ρ is of polynomial growth and ϕ(x) ≥ cx−γ for a certain γ > 1. Here we get

Proposition 7.3. Suppose that T is a tree with R(n) ≥ cnH for some
H ≥ 0. Furthermore assume

α(t)σ(t) ≥ c|t|−γ/q, t ∈ T,
for some γ > 1. Then

(7.4) en(Vα,σ : `1(T )→ `q(T )) ≥ c̃n−
γ

q(H+1)
− 1
q′ .

Proof. This follows directly from Corollary 7.2 by evaluating the inte-
gral.

Remark. Suppose 1 < q ≤ 2. Then the preceding proposition shows
that the estimates in Theorem 6.4 are sharp provided that γ > H + 1. We
will see later on that this is no longer always true if 1 < γ ≤ H + 1.

Another application of Proposition 7.1 leading to sharp lower estimates
is as follows.

Proposition 7.4. Let T be a binary tree and suppose that

α(t)σ(t) ≥ c2−
γ
q
|t|
, t ∈ T,

for some γ > 0. Then

en(Vα,σ : `1(T )→ `q(T )) ≥ cn−γ/q−1/q′ .

Proof. Again this is a direct consequence of Corollary 7.2 and the fact
that

ϕ−1(εq) =
q

γ
log2(1/ε) +

log2 c

γ
.

Recall that ρ may be chosen as ρ(x) = 2x in that case.

Remark. Combining the preceding proposition with (6.9) gives the fol-
lowing: Let T be a binary tree and suppose 1 < q ≤ 2. If

α(t)σ(t) ≈ 2−
γ
q
|t|
, t ∈ T,

then
en(Vα,σ : `1(T )→ `q(T )) ≈ n−γ/q−1/q′ .
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As we said above, Proposition 7.3 does not always lead to sharp lower
estimates, even if 1 < q ≤ 2. The reason is that here the structure of the
underlying tree plays a role. We assume now that ξ(t) ≥ 1 for each t ∈ T . In
other words, we suppose that each element in T has at least one offspring.
Furthermore we restrict ourselves to one-weight operators defined as follows.
We write Vα instead of Vα,σ if σ ≡ 1, i.e.,

(7.5) (Vαx)(t) := α(t)
∑
s�t

x(s), t ∈ T.

Condition (7.1) now reads

(7.6) α(t) ≥ ϕ(|t|)1/q, t ∈ T.

To proceed further we have to exclude functions ϕ decreasing too fast. Thus
we assume that there is a constant κ ≥ 1 such that

(7.7) ϕ(x) ≤ κϕ(2x), x ≥ x0.

Let Φ be defined as in (6.2). For later use we mention that (7.7) implies

Φ(x)
ϕ(x)

≥ xϕ(2x)
ϕ(x)

≥ κ−1x, x ≥ x0,

hence

(7.8)
Φ(ϕ−1(y))

y
≥ κ−1ϕ−1(y)→∞ as y → 0.

Under these assumptions we get the following general lower estimate.

Proposition 7.5. Let T be a tree with ξ(t) ≥ 1 for each t ∈ T and
suppose (7.6) and (7.7) hold. Then there is an ε0 > 0 such that

(7.9) N(T, d, ε/2) ≥ 4−1ε−q
Φ−1(8εq)�

ϕ−1(εq)

ρ(y)ϕ(y) dy

whenever 0 < ε < ε0.

Proof. First note that for one-weight operators the metric d reduces to

d(t, s) =
( ∑
t≺r�s

α(r)q
)1/q

whenever t � s. By (7.6) this implies

(7.10) d(t, s) ≥
( |s|∑
k=|t|+1

ϕ(k)
)1/q

≥ d̄(|t|+ 1, |s|)1/q

with d̄ defined in (6.3).
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We now construct positive numbers ũ1 > · · · > ũN as in (6.4) but this
time directly with εq instead of ε, i.e.,

ũk := Φ−1(kεq), 1 ≤ k ≤ N,

where N satisfies

N ≤ Φ(ϕ−1(εq))
εq

< N + 1.

Next set
vk := [ũ3k] + 1, 1 ≤ k ≤ m,

where

m =
[
N

3

]
≥ Φ(ϕ−1(εq))

3εq
− 2.

Using (7.8) this implies

(7.11) m ≥ Φ(ϕ−1(εq))
4εq

provided that ε < ε0 for a certain ε0 depending on ϕ.
Since ũk − ũk−1 > 1 we get [ũ3k−2, ũ3k−3] ⊆ [vk + 1, vk−1], hence

(7.12) d̄(vk + 1, vk−1) ≥ εq.

Let us now construct an ε-separated subset Sε ⊆ T as follows. For 1 ≤
k ≤ m set

Tk := {t ∈ T : |t| = vk}

and given t ∈ Tk with 2 ≤ k ≤ m we choose exactly one sk−1(t) ∈ Tk−1

satisfying sk−1(t) � t. Those sk−1(t) exist because we assumed ξ(t) ≥ 1 for
all t ∈ T . Finally, define

Sε :=
m⋃
k=2

{sk−1(t) : t ∈ Tk}.

Because of (7.10) and (7.12) the points in Sε are ε-separated and since
ũ3k ≤ vk the properties of ρ yield

#Sε =
m∑
k=2

#Tk =
m∑
k=2

R(vk) ≥
m∑
k=2

ρ(vk) ≥
m∑
k=2

ρ(ũ3k) =
m∑
k=2

ρ(Φ−1(3kεq)).

Clearly this implies

N(T, d, ε/2) ≥
m∑
k=2

ρ(Φ−1(3kεq)).
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Observe that ρ ◦ Φ−1 is decreasing and recall (7.11). Then we get

N(T, d, ε/2) ≥

Φ(ϕ−1(εq))
4εq�

2

ρ(Φ−1(3xεq)) dx ≥

Φ(ϕ−1(εq))
4εq�

2

ρ(Φ−1(4xεq)) dx

= 4−1ε−q
Φ−1(8εq)�

ϕ−1(εq)

ρ(y)ϕ(y) dy.

Remark. Unfortunately, we do not know whether or not an estimate
similar to (7.9) remains valid in the case of two weights α and σ satisfying
(7.1). The crucial point is that in this case estimate (7.10) is no longer valid.
For example, take ϕ(x) = x−γ for some γ > 1 and choose the weights to
be α(t) = 2|t|/q and σ(t) = |t|−γ/q2−|t|/q to see that (7.10) is not satisfied in
general.

A first application is to moderate trees with polynomial decay of the
weight α. It shows that the estimates in Theorem 6.4 are also sharp (at
least for one-weight operators and 1 < q ≤ 2) for 1 < γ ≤ H + 1, provided
we have the additional assumption ξ(t) ≥ 1 for t ∈ T .

Proposition 7.6. Let T be a tree with ξ(t) ≥ 1 for t ∈ T such that
R(n) ≥ cnH . Given γ > 1 let α(t) ≥ c|t|−γ/q. If γ < H + 1, then

(7.13) N(T, d, ε) ≥ cε−qH/(γ−1)

Similarly, if γ = H + 1, then

(7.14) N(T, d, ε) ≥ cε−q log(1/ε).

For the operator Vα we have

en(Vα : `1(T )→ `q(T )) ≥ c

{
n
− γ−1
qH
− 1
q′ , γ < H + 1,

n−1(log n)1/q, γ = H + 1.

Proof. Of course, ϕ(x) = cqx−γ satisfies condition (7.7). Thus Propo-
sition 7.5 applies and the lower estimates in (7.13) and (7.14) are direct
consequences of ϕ−1(εq) ≈ ε−q/γ as well as of Φ−1(εq) ≈ ε−q/(γ−1). The
estimates for en(Vα) now follow from Theorem 5.3.

Another application of Proposition 7.5 is to binary trees and polynomial
decay of α.

Proposition 7.7. Let T be a binary tree and suppose α(t) ≥ c|t|−γ/q
for some γ > 1. Then

logN(T, d, ε) ≥ cε−q/(γ−1).
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Proof. Again ϕ satisfies (7.7), hence Proposition 7.5 applies as well and
the assertion easily follows from

log
Φ−1(8εq)�

ϕ−1(εq)

ρ(y)ϕ(y) dy ≈ Φ−1(8εq) ≈ ε−q/(γ−1).

Combining Proposition 7.7 with Theorem 5.4 leads to the following.

Proposition 7.8. Let T be a binary tree and suppose that α(t)≥c|t|−γ/q
for a certain γ > 1. Then

en(Vα : `1(T )→ `q(T )) ≥ c
{
n−1/q′(log n)1−γ/q, γ > q,
n−(γ−1)/q, γ ≤ q.

8. Biased trees. We will now test the sharpness of our bounds on an
interesting class of trees whose branches, unlike the case of Proposition 7.6,
die out quickly. Let H ≥ 1. We define a biased tree of order H as follows.
Take a binary tree, draw it on the plane so that it grows from the bottom to
the top, and for any level n ≥ 0 keep only the R(n) rightmost nodes where

R(n) :=
{

2n, n ≤ 2H,
nH , n > 2H.

The set of nodes we have kept is a tree since

R(n+ 1) ≤ 2R(n), n ≥ 0.

We call this tree a biased tree (because it is really biased to the right) of
order H and denote it by TH . Since the size of its nth level for large n is
nH , the biased tree satisfies both the upper and lower size bounds

(8.1) cnH ≤ R(n) ≤ CnH ,
as in Theorem 6.4 and in Proposition 7.3, respectively. At the same time
the nodes situated on large levels die out pretty quickly, which enables more
efficient covering constructions than in the general case.

On TH we will consider the usual one-weight operator Vα defined in (7.5).
Recall that Ñ(TH , d, ε) stands for the order covering numbers of the tree TH
defined in (3.2). Our main result for biased trees is the following.

Proposition 8.1. Let Vα be the one-weight operator on TH with the
weight α(t) = |t|−γ/q, γ > 1, and let d be the metric on TH corresponding
to this weight. For the related order covering numbers we have

(8.2) cε−q(H+1)/γ ≤ Ñ(TH , d, ε) ≤ Cε−q(H+1)/γ .

For the entropy numbers of Vα we have

(8.3) cn−γ/q(H+1)−1/q′ ≤ en(Vα) ≤ Cn−γ/q(H+1)−1/q′ .
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This shows that the lower bound (7.4) of Section 7 cannot be improved
in general, unless we make some extra assumptions about the tree, as in
Proposition 7.6.

We also see from this bound that the upper estimates for order covering
numbers obtained in Proposition 6.3 and those for entropy numbers obtained
in Theorem 6.4 are not sharp for certain trees in the convergent case γ <
H + 1 and in the intermediate case γ = H + 1, while the results of Sections
6 and 7 show that in the divergent case (γ > H + 1) the estimate for the
entropy numbers is sharp for any tree satisfying (8.1).

Proof of Proposition 8.1. The construction will be based on the same
set of levels as in (6.5) but we specify it for our situation. Let

(8.4) Φ(y) =
∞�

y

x−γ dx = cy−(γ−1).

We will use the following elementary property: for any positive integers
n < m,

(8.5)
m∑

k=n+1

k−γ ≤
m�

n

x−γ dx = Φ(n)− Φ(m).

Given ε ∈ (0, 1), let J = [ε−q/γ ] and define a decreasing sequence (nj)1≤j≤J
of integers by

nj := inf{n ∈ N : Φ(n) ≤ jεq}.

We also let n0 := +∞ for uniformity of further writing. By (8.4) we have

nj ≤ C(jεq)−1/(γ−1).

In particular, we have

(8.6) nJ ≤ Cε−q/γ .

Now we define our order net to be Sε := S1
ε ∪S2

ε , where S1
ε := {s : |s| < nJ}

and

S2
ε :=

J⋃
j=1

Sε,j ,

where Sε,j consists of the first νj := min{c∗ε−qH/γ , R(nj)} rightmost nodes
of the level nj . The large constant c∗ will be specified later. Recall that in
the construction used to prove Proposition 6.1 we included the entire levels
in the net (see (6.6)). Due to the structure of the biased tree, only a small
part of the level suffices, thus the net is more efficient.
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The size of the net is bounded by

#Sε ≤
nJ∑
n=1

R(n) +
J∑
j=1

νj ≤ C
nJ∑
n=1

nH + J · c∗ε−qH/γ

≤ CnH+1
J + J · c∗ε−qH/γ ≤ Cε−q(H+1)/γ

in view of (8.6) and by the definition of J .
In order to evaluate the precision of the net, we will use the following

structural property of the biased tree.

Lemma 8.2. Let j ≤ J and let s ∈ T be such that |s| ≥ nj. Then there
exists a t ∈ Sε,j+1 such that t ≺ s.

Proof. First of all, notice that it is enough to consider the case |s| = nj .
Indeed, for any s with |s| ≥ nj we find s′ satisfying |s′| = nj and s′ � s.
Once the lemma is proved for s′, we find an appropriate t ∈ Sε,j+1 for s′

and conclude from t ≺ s′ � s that t ≺ s.
So assume that |s| = nj . Look at νj+1 = min{c∗ε−qH/γ , R(nj+1)}. If

νj+1 = R(nj+1), this means that Sε,j+1 coincides with the entire nj+1th
level of TH . Then of course there exists t ∈ Sε,j+1 such that t ≺ s.

On the other hand, if νj+1 = c∗ε
−qH/γ , then our statement reduces to

the numerical inequality
(8.7) c∗ε

−qH/γ · 2nj−nj+1 ≥ C̃nHj .
Here the left hand side is the total number of offsprings of elements in Sε,j+1

counted on the njth level of the initial binary tree, and the right hand side
is an upper bound for the size R(nj) of the njth level in TH .

It follows from the definition of nj that nj ∼ c(jεq)−1/(γ−1), hence

nj+1 − nj ≥ cε−
q

γ−1 j
−(1+ 1

γ−1
) ≥ cε−

q
γ−1 (nγ−1

j εq)1+ 1
γ−1 := c1n

γ
j ε
q.

If c∗ is large enough, then for any x ≥ 0 we have 2c1x ≥ c−1
∗ C̃xH/γ . By

letting here x = nγj ε
q we obtain

2c1n
γ
j ε
q

≥ C̃c−1
∗ nHj ε

qH/γ ,

hence
c∗ε
−qH/γ · 2nj−nj+1 ≥ c∗ε−qH/γ · 2c1n

γ
j ε

2

≥ c∗ε−qH/γ · C̃c−1
∗ nHj ε

qH/γ = C̃nHj ,

and (8.7) follows.

Now the precision of the net is easy to establish. Recall that if t ≺ s then

(8.8) d(t, s)q =
∑

t≺ r�s
α(r)q =

∑
|t|<k≤|s|

k−γ .

Next, if s 6∈ Sε, only the following two cases are possible.
1) |s| > n1. Apply Lemma 8.2 with j = 1. We find t ∈ Sε,2 such that

t ≺ s. Then by (8.8) and (8.5) we have
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d(t, s)q ≤
∞∑

k=n2+1

k−γ ≤ Φ(n2) ≤ 2εq.

2) nj < |s| < nj−1 for some 2 ≤ j ≤ J . Apply Lemma 8.2 with j. We
find a t ∈ Sε,j+1 such that t ≺ s. Then by (8.8) and (8.5) we have

d(t, s)q ≤
nj−1−1∑
k=nj+1+1

k−γ ≤ Φ(nj+1)− Φ(nj−1 − 1) ≤ 2εq.

Therefore for any s ∈ TH we have a t ∈ Sε such that t � s and d(t, s) ≤
21/qε. Taking into account the bound for #Sε, we see that Ñ(TH , d, ε) ≤
Cε−q(H+1)/γ .

For the lower bound, take any distinct s, t ∈ S1
ε , that is, |s| < nJ ,

|t| < nJ . Then

d(s, t) ≥ max{α(s), α(t)} ≥ (nJ)−γ/q ≥ cε,
while the number of points we consider is bounded from below by

#S1
ε =

nJ−1∑
n=1

R(n) ≥ c
nJ−1∑
n=1

nH ≥ c(nJ − 1)H+1 ≥ cε−q(H+1)/γ .

It follows that
Ñ(TH , d, ε) ≥ N(TH , d, ε) ≥ cε−q(H+1)/γ ,

as required in (8.2). For the entropy numbers, the upper bound in (8.3)
follows from the upper bound in (8.2) via Theorem 4.4, while the lower
bound in (8.3) was proved in the more general context of Proposition 7.3
(see (7.4)).

9. A probabilistic application. Due to the well known relations be-
tween the entropy of operators on Hilbert spaces and small deviation prob-
abilities of Gaussian random functions, our results have immediate proba-
bilistic consequences. Thus regard Vα,σ as an operator from `1(T ) into `2(T ).
Its dual V ∗α,σ maps `2(T ) into `∞(T ), hence it generates a Gaussian random
function X = (Xt)t∈T by

Xt :=
∑
r∈T

ξr(V ∗α,σδr)(t) = σ(t)
∑
r�t

α(r)ξr

where {ξr : r ∈ T} is a family of independent N (0, 1)-distributed random
variables. The covariance structure of X is given by

EXtXs = σ(t)σ(s)
∑
r�t∧s

α(r)2, t, s ∈ T.

Such summation schemes on trees are extensively studied and applied: see
e.g. the literature on Derrida random energy model [BK] or displacements
in random branching walks [Pe], to mention just a few.
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As a consequence of our results we get the following.

Proposition 9.1. Suppose N(T, d, ε) ≈ ε−a|log ε|b, for some a > 0,
b ≥ 0. Then

− log P
(

sup
t∈T
|Xt| < ε

)
≈ ε−a|log ε|b.

Proof. An application of Theorem 5.3 implies

en(Vα,σ : `1(T )→ `2(T )) ≈ n−1/a−1/2(log n)b/a.

Next, duality results for entropy numbers (cf. [TJ]) lead to

en(V ∗α,σ : `2(T )→ `∞(T )) ≈ n−1/a−1/2(log n)b/a

as well. Recall that V ∗α,σ generates X, hence we may apply the classical
Kuelbs–Li result (see [KL] or [LiL]) to obtain

− log P
(

sup
t∈T
|Xt| < ε

)
≈ ε−a|log ε|b.

Remark. By the same methods one shows that N(T, d, ε) ≤ cε−a|log ε|b
yields

− log P
(

sup
t∈T
|Xt| < ε

)
≤ cε−a|log ε|b.

Surprisingly, this looks exactly as a special case of a general small deviation
result due to M. Talagrand (cf. [Ta] or [Le]). Yet the main difference is
that in the cited result one uses the covering numbers with respect to the
so-called Dudley distance dX while our results are based on the metric d
defined in (3.1). This suggests that there is maybe some relation between
dX and d. Even if this is the case, it is not obvious.

10. Concluding remarks and open problems. The study of summa-
tion operators on trees we merely initiated here is far from being complete.
For example, many of our estimates are proven to be sharp only in the range
q ≤ 2 while there are gaps for q > 2. One possibility to fill these gaps would
be to apply the technique used in [C, pp. 91 and 92]. To this end one has to
modify the proof of Proposition 5.1 for those q by inscribing Walsh matrices
into Vα,σ instead of the identity Idm from `m1 into `mq . But at the moment
we do not see how to accomplish this.

Moreover, it would also be quite natural to consider operators acting
from `p(T ) into `q(T ) with general p, q ∈ [1,∞]. However, the technique of
convex hulls that we refer to in Section 4 is not appropriate anymore and
other tools are needed.

In this context let us mention the following related open question: Given
1 < p, q < ∞ and a tree T , for which weights α and σ is Vα,σ a bounded
operator from `p(T ) into `q(T )? To our knowledge this is unknown even if T
is a binary tree. Let us briefly recall the answer in the case T = N0 (cf. [CL]
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where it was derived from the classical Maz’ya–Rosin Theorem for weighted
integration operators). We formulate it only in the case 1 ≤ p ≤ q ≤ ∞
although the answer is known for all p, q ∈ [1,∞].

Proposition 10.1. If 1 ≤ p ≤ q ≤ ∞, then Vα,σ is bounded from `p(N0)
into `q(N0) if and only if

sup
v∈N0

‖α1[0,v]‖q‖σ1[v,∞)‖p′ <∞.

We briefly mention two other problems related to this topic.

(1) Throughout the paper we always assumed σ to be non-increasing.
This property was used at several places. For example, it played an impor-
tant role in the proofs of Propositions 3.1 and 5.1. If σ is not necessarily
non-increasing, then the distance d has surely to be modified as

d̂(t, s) := max
t≺v�s

‖α1(t,v]‖q‖σ1[v,s]‖∞

whenever t � s. Unfortunately, then, in general, d̂ can no longer be extended
to a metric on T . Nevertheless we believe that some covering properties
of T with respect to d̂ are closely connected with compactness properties
of Vα,σ. At least this is suggested by the known results on compactness
and approximation properties of weighted integration operators as proved
in [EEH1] or [LL].

(2) A challenging problem is the critical case as treated in Theorem 4.4.
Some related partial results are known. For example, in [L] the problem is
solved for the binary tree provided that q = 2 and σ(t) ≡ 1. Other results
in the critical case we are aware of are based on [CE] and will be handled
in a separate publication.
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