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Periodic solutions of degenerate differential equations
in vector-valued function spaces

by

Carlos Lizama and Rodrigo Ponce (Santiago)

Abstract. Let A and M be closed linear operators defined on a complex Banach
space X. Using operator-valued Fourier multiplier theorems, we obtain necessary and suf-
ficient conditions for the existence and uniqueness of periodic solutions to the equation
d
dt

(Mu(t)) = Au(t) + f(t), in terms of either boundedness or R-boundedness of the modi-
fied resolvent operator determined by the equation. Our results are obtained in the scales
of periodic Besov and periodic Lebesgue vector-valued spaces.

1. Introduction. We are concerned with the regularity of solutions to
the equation

(1.1)
d

dt
(Mu(t)) = Au(t) + f(t), 0 ≤ t ≤ 2π,

where (A,D(A)) and (M,D(M)) are (unbounded) closed linear operators
on a Banach space X, with D(A) ⊆ D(M). The model (1.1), in case A = ∆
is the Laplacian and M = m is multiplication by a function m(x), was first
considered by Carroll and Showalter [CS] and has recently been studied
by Marinoschi [M1]. This model describes, for example, the infiltration of
water in unsaturated porous media, in which saturation might occur. The
function m characterizes the porosity of the nonhomogeneous medium, while
the fact that m is zero indicates the existence of impermeable intrusions in
the soil. A study of solutions for this model, with m(x) = 1 and periodic
initial conditions, was made in [M2] in the case of a nonlinear convection, in
connection with some results given in [H]. An interesting analysis of periodic
solutions to a nonlinear model involving a degenerate diffusion equation of
the form (1.1) with homogeneous Dirichlet boundary conditions, where A is
a multivalued linear operator, has recently been given in [FM].

A detailed study of linear abstract degenerate differential equations, us-
ing both the semigroups generated by multivalued (linear) operators and
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extensions of the operational method of Da Prato and Grisvard, has been
described in the monograph [FY3].

Regularity of solutions in various vector-valued function spaces for the
abstract equation (1.1) with periodic initial condition

(1.2) Mu(0) = Mu(2π)

has been studied in [BF] using the sum method. The results obtained give
sufficient conditions for periodicity, but leave it as an open problem to char-
acterize the maximal regularity in terms of a hypothesis on the modified
resolvent operator (λM −A)−1 of the operators M and A.

On the other hand, Arendt and Bu [AB1], using operator-valued Fourier
multiplier theorems, have derived spectral characterizations of maximal reg-
ularity in Lebesgue spaces for the equation (1.1) with M = I, the identity
operator, and periodic initial conditions. Similar characterizations were then
obtained for the scale of Besov spaces [AB2], and subsequently the scale of
Triebel–Lizorkin spaces [BK]. See also [KLP] and the references therein. This
motivates the question whether it is possible to obtain a similar character-
ization for the problem (1.1)–(1.2). We note that, starting with [AB1], the
problem of characterizing maximal regularity for evolution equations with
periodic initial conditions has been intensively studied in the last years. See
e.g. [BF1], [BF2], [BF3], [KLP], [L], [P] and the references therein. The main
novelty of the present paper lies in the presence of two non-commuting op-
erators A and M , which are only related by the domain. There are only a
few papers dealing with this situation (see [LP]). Furthermore, our approach
lends itself to immediate application to degenerate evolution equations, aris-
ing from applications. Some examples are given in the last section of this
paper.

This work is organized as follows: After some preliminaries in the first
section, and under a geometrical assumption on the Banach space X, we are
able to characterize in Section 2 the uniqueness and existence of a strong
Lp-solution for the problem (1.1)–(1.2) solely in terms of a boundedness
property for the sequence of operators ikM(ikM − A)−1. We remark that
no additional assumption on the operator A is required. In Section 3, we
prove a characterization in the context of Besov spaces. We notice that
in this case the additional hypothesis on X is no longer required. In the
particular case of Hölder spaces Cs((0, 2π), X), 0 < s < 1, we show that
the following assertions are equivalent in general Banach spaces, provided
D(A) ⊂ D(M):

(1) ikM−A is bijective for all k∈Z and supk∈Z ‖ikM(ikM −A)−1‖<∞.
(2) For every f ∈ Cs((0, 2π), X) there exists a unique function u ∈

Cs((0, 2π), D(A)) such that Mu ∈ Cs+1((0, 2π), X) and (1.1)–(1.2)
holds for a.e. t ∈ [0, 2π].
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We remark that this result extends and improves [BF, Theorem 2.1]. Finally,
some concrete examples are examined.

2. Preliminaries. Let X,Y be Banach spaces. We denote by B(X,Y )
the space of all bounded linear operators from X to Y . When X = Y , we
write simply B(X). For a linear operator A on X, we denote its domain by
D(A) and its resolvent set by ρ(A). By [D(A)] we denote the domain of A
equipped with the graph norm.

A Banach space X is said to be UMD if the Hilbert transform is bounded
on Lp(R, X) for some (and then all) p ∈ (1,∞). Here the Hilbert transform
H of a function f in S(R, X), the Schwartz space of rapidly decreasing
X-valued functions, is defined by

Hf :=
1
π

PV
(

1
t

)
∗ f.

These spaces are also called HT spaces. It is well known that the set of
Banach spaces of class HT coincides with the class of UMD spaces. This
has been shown by Bourgain [Bo] and Burkholder [Bu].

Definition 2.1. Let X and Y be Banach spaces. A family of operators
T ⊂ B(X,Y ) is called R-bounded if there is a constant C > 0 and p ∈ [1,∞)
such that for all N ∈ N, Tj ∈ T , xj ∈ X and all independent, symmetric,
{−1, 1}-valued random variables rj on a probability space (Ω,M, µ),

(2.1)
∥∥∥ N∑
j=1

rjTjxj

∥∥∥
Lp(Ω,Y )

≤ C
∥∥∥ N∑
j=1

rjxj

∥∥∥
Lp(Ω,X)

.

The smallest such C is called the R-bound of T , denoted by Rp(T ).

We remark that large classes of classical operators are R-bounded (cf.
[GW1] and the references therein). Hence, this assumption is not too re-
strictive for the applications that we consider in this article.

Remark 2.2. Several properties of R-bounded families can be found
in the recent monograph of Denk–Hieber–Prüss [DHP]. For the reader’s
convenience, we here summarize some results from [DHP, Section 3].

(a) If T ⊂ B(X,Y ) is R-bounded then it is uniformly bounded, with

sup{‖T‖ : T ∈ T } ≤ Rp(T ).

(b) The definition of R-boundedness is independent of p ∈ [1,∞).
(c) When X and Y are Hilbert spaces, T ⊂ B(X,Y ) is R-bounded if

and only if T is uniformly bounded.
(d) Let X,Y be Banach spaces and T ,S ⊂ B(X,Y ) be R-bounded. Then

T + S = {T + S : T ∈ T , S ∈ S}
is R-bounded as well, and Rp(T + S) ≤ Rp(T ) +Rp(S).
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(e) Let X,Y, Z be Banach spaces, and T ⊂ B(X,Y ) and S ⊂ B(Y,Z)
be R-bounded. Then

ST = {ST : S ∈ S, T ∈ T }
is R-bounded, and Rp(ST ) ≤ Rp(S)Rp(T ).

(g) Let X,Y be Banach spaces and T ⊂ B(X,Y ) be R-bounded. If
{αk}k∈Z is a bounded sequence, then {αkT : T ∈ T } is R-bounded.

Given 1 ≤ p < ∞, we denote by Lp2π(R, X) the space of all 2π-periodic
Bochner measurable X-valued functions f such that the restriction of f to
[0, 2π] is p-integrable.

For a function f ∈ L1
2π(R, X) we denote by f̂(k), k ∈ Z, the kth Fourier

coefficient of f :

f̂(k) =
1

2π

2π�

0

e−iktf(t) dt.

We need the following lemma.

Lemma 2.3 ([AB1]). Let f, g ∈ Lp2π(R, X), where 1 ≤ p < ∞, and let
A be a closed linear operator on a Banach space X. Then the following
assertions are equivalent:

(i) f(t) ∈ D(A) and Af(t) = g(t) a.e.
(ii) f̂(k) ∈ D(A) and Af̂(k) = ĝ(k), for all k ∈ Z.

The proof of the following lemma is analogous to that of [AB1, Lemma
2.1] and therefore omitted.

Lemma 2.4. Let 1 ≤ p < ∞, let M be a closed linear operator on X,
u ∈ Lp2π(R, [D(M)]) and u′ ∈ Lp2π(R, X). Then the following assertions are
equivalent:

(i)
	2π
0 (Mu)′(t) dt = 0 and there exists x ∈ X such that Mu(t) =
x+

	t
0(Mu)′(s) ds a.e. on [0, 2π];

(ii) (̂Mu)′(k) = ikMû(k) for all k ∈ Z.

We also recall the following definition from [AB1].

Definition 2.5. For 1 ≤ p < ∞, we say that a sequence {Mk}k∈Z ⊂
B(X,Y ) is an Lp-multiplier if, for each f ∈ Lp2π(R, X), there exists u ∈
Lp2π(R, Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.
We finally recall the following results.

Proposition 2.6 ([AB1]). Let X, Y be Banach spaces and let {Mk}k∈Z
⊂ B(X,Y ) be an Lp-multiplier for some 1 ≤ p < ∞. Then the set {Mk :
k ∈ Z} is R-bounded.
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Theorem 2.7 ([AB1]). Let X,Y be UMD spaces and let {Mk}k∈Z ⊆
B(X,Y ). If the sets {Mk}k∈Z and {k(Mk+1−Mk)}k∈Z are R-bounded, then
{Mk}k∈Z is an Lp-multiplier for all 1 < p <∞.

3. A characterization on vector-valued Lebesgue spaces. In this
section we consider the problem

(3.1)


d

dt
(Mu(t)) = Au(t) + f(t), 0 ≤ t ≤ 2π,

Mu(0) = Mu(2π),

where A : D(A) ⊆ X → X and M : D(M) ⊆ X → X are closed linear
operators, D(A) ⊆ D(M) and f ∈ Lp2π(R, X), p ≥ 1. For a given closed
operator M , and 1 ≤ p <∞, we define the set

H1,p
per,M (R, [D(M)])

= {u ∈ Lp2π(R, [D(M)]) : ∃v ∈ Lp2π(R, X), v̂(k) = ikMû(k) for all k ∈ Z}.

If M = I, we write H1,p
per(R, X) (see [AB1]). Next, we introduce the following

definition.

Definition 3.1. We say that a function u ∈ H1,p
per,M (R, [D(M)]) is a

strong Lp-solution of (3.1) if u(t) ∈ D(A) and (3.1) holds for a.e. t ∈ [0, 2π].

Define the M -resolvent set of A by

ρM (A)

= {λ ∈ C : λM −A : D(A)→ X is bijective and (λM −A)−1 ∈ B(X)}.

We begin with the following result.

Proposition 3.2. Let A : D(A) ⊆ X → X and M : D(M) ⊆ X → X
be closed linear operators defined on a UMD space X. Suppose that D(A) ⊆
D(M). Then, for all 1 < p <∞, the following assertions are equivalent:

(i) {ik}k∈Z ⊂ ρM (A) and {ikM(ikM −A)−1}k∈Z is an Lp-multiplier.
(ii) {ik}k∈Z ⊂ ρM (A) and {ikM(ikM −A)−1}k∈Z is R-bounded.

Proof. Define Mk = ikM(ikM −A)−1. Since A is closed, by the identity
Mk = A(ikM −A)−1 + I and the Closed Graph Theorem we conclude that
Mk is a bounded operator for each k ∈ Z. By Proposition 2.6 it follows that
(i) implies (ii). Conversely, by Theorem 2.7 it is sufficient to prove that the
set {k(Mk+1 −Mk)}k∈Z is R-bounded. In fact,
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(3.2) k(Mk+1 −Mk)

= k[i(k + 1)M(i(k + 1)M −A)−1 − ikM(ikM −A)−1]

= kM [i(k + 1)(i(k + 1)M −A)−1 − ik(ikM −A)−1]

= kM(i(k + 1)M −A)−1

· [i(k + 1)(ikM −A)− ik(i(k + 1)M −A)]

· (ikM −A)−1

= kM(i(k + 1)M −A)−1(−iA)(ikM −A)−1

= −ikM(i(k + 1)M −A)−1(ikM(ikM −A)−1 − I),

where in the last equality we use A(ikM − A)−1 = ikM(ikM − A)−1 − I.
Therefore, since the products and sums of R-bounded sequences are R-
bounded, by (d) and (g) of Remark 2.2, the proof is finished.

The following is one of the main results in this paper. It is an extension
of [AB1, Theorem 2.3], which corresponded to M = I.

Theorem 3.3. Let X be a UMD space, and A : D(A) ⊆ X → X and M :
D(M) ⊆ X → X be closed linear operators. Suppose that D(A) ⊆ D(M)
and ikM − A is a closed operator for all k ∈ Z. Then, for all 1 < p < ∞,
the following assertions are equivalent:

(i) For every f ∈ Lp2π(R, X), there exists a unique strong Lp-solution
of (3.1).

(ii) {ik}k∈Z ⊂ ρM (A) and {ikM(ikM −A)−1}k∈Z is an Lp-multiplier.
(iii) {ik}k∈Z ⊂ ρM (A) and {ikM(ikM −A)−1}k∈Z is R-bounded.

Proof. (i)⇒(ii). We follow the same lines of [AB1, Theorem 2.3]. Let
k ∈ Z and y ∈ X be given. Define f(t) = eikty. By hypothesis, there exists
u ∈ H1,p

per,M (R, [D(M)]) such that u(t) ∈ D(A) and (Mu)′(t) = Au(t)+f(t).
Taking the Fourier transform on both sides, we have û(k) ∈ D(A) and

ikMû(k) = Aû(k) + f̂(k) = Aû(k) + y.

Thus, (ikM − A)û(k) = y for all k ∈ Z and therefore ikM − A is sur-
jective. Let x ∈ D(A). If (ikM − A)x = 0, then u(t) = eiktx defines a
periodic solution of (3.1). In fact, (Mu)′(t)−Au(t) = ikeiktMx− eiktAx =
eikt(ikM −A)x = 0. Hence u ≡ 0 by uniqueness, and thus x = 0. Therefore,
ikM − A is bijective. We conclude, from the Closed Graph Theorem, that
ik ∈ ρM (A) for all k ∈ Z. We will see that {ikM(ikM − A)−1}k∈Z is an
Lp-multiplier.

Using again the Closed Graph Theorem, we find that there exists a
constant C > 0 independent of f ∈ Lp2π(R, X) such that

‖(Mu)′‖Lp + ‖Au‖Lp ≤ C‖f‖Lp .
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Note that for f(t) = eitky, y ∈ X, the solution u of (3.1) is given by u(t) =
(ikM −A)−1eikty. Hence,

‖ikM(ikM −A)−1y‖ ≤ C‖y‖.

So, we see that ikM(ikM − A)−1 is a bounded operator for all k ∈ Z. Let
f ∈ Lp2π(R, X). By hypothesis, there exists u ∈ H1,p

per,M (R, [D(M)]) such that
u(t) ∈ D(A) and (Mu)′(t) = Au(t) + f(t). Taking the Fourier transform on
both sides, and using the bijectivity of ikM − A, we have û(k) ∈ D(A)
and û(k) = (ikM − A)−1f̂(k). Now, since u ∈ H1,p

per,M (R, [D(M)]) and by
definition of H1,p

per,M (R, [D(M)]), there exists v ∈ Lp2π(R, X) such that v̂(k) =
ikMû(k) for all k ∈ Z. Therefore, v̂(k) = ikM(ikM −A)−1f̂(k).

(ii)⇒(i). DefineMk = ikM(ikM−A)−1. Suppose that {ik}k∈Z ⊂ ρM (A)
and {Mk}k∈Z is an Lp-multiplier. Let f ∈ Lp2π(R, X). Then there exists
u ∈ Lp2π(R, X) such that û(k) = ikM(ikM − A)−1f̂(k) for all k ∈ Z. Now
by the identity I = ikM(ikM −A)−1 −A(ikM −A)−1 it follows that

û(k) = ikM(ikM −A)−1f̂(k) = (I +A(ikM −A)−1)f̂(k).

So, we obtain ̂(u− f)(k) = A(ikM − A)−1f̂(k). Putting v := u − f , we
have v ∈ Lp2π(R, X), and v̂(k) = A(ikM − A)−1f̂(k). Observe that A−1 is
an isomorphism of X onto D(A) (seen as a Banach space with the graph
norm). Therefore, A−1v̂(k) = (ikM −A)−1f̂(k). Let w := A−1v. Since A−1

is a bounded operator, we deduce that w ∈ Lp2π(R, X), ŵ(k) ∈ D(A) and
ŵ(k) = (ikM −A)−1f̂(k). So,

ikMŵ(k)−Aŵ(k) = ikM(ikM −A)−1f̂(k)−A(ikM −A)−1f̂(k)

= (ikM −A)(ikM −A)−1f̂(k) = f̂(k).

Now, observe that

û(k) = ikM(ikM −A)−1f̂(k) = ikMŵ(k)

for all k ∈ Z. Therefore, w ∈ H1,p
per,M (R, [D(M)]). Moreover Mw(0) =

Mw(2π), since w(0) = w(2π) and w(t) ∈ D(A). Since A and M are closed
operators and (̂Mw)′(k) = ikMŵ(k) = Aŵ(k) + f̂(k) for all k ∈ Z, one
has (Mw)′(t) = Aw(t) + f(t) a.e. by Lemmas 2.3 and 2.4. So w is a strong
Lp-solution of (3.1).

Now, to see the uniqueness, let u ∈ H1,p
per,M (R, [D(M)]) be such that

(Mu)′(t) = Au(t). Then û(k) ∈ D(A), and (ikM −A)û(k) = 0 for all k ∈ Z.
Since ikM − A is bijective for all k ∈ Z, we obtain û(k) = 0 for all k ∈ Z,
and thus u ≡ 0.

(ii)⇔(iii). Proposition 3.2.
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Corollary 3.4. Let H be a Hilbert space, let A : D(A) ⊂ H → H and
M : D(M) ⊂ H → H be closed linear operators satisfying D(A) ⊆ D(M)
and suppose that ikM − A is a closed operator for all k ∈ Z. Then, for all
1 < p <∞, the following assertions are equivalent:

(i) For every f ∈ Lp2π(R, H), there exists a unique strong Lp-solution of
(3.1).

(ii) {ik}k∈Z ⊂ ρM (A) and supk ‖ikM(ikM −A)−1‖ <∞.

Proof. Follows from Theorem 3.3, and the fact that in Hilbert spaces
the concepts of R-boundedness and boundedness are equivalent [DHP].

The solution u(·) given in Theorem 3.3 actually has the following maxi-
mal regularity property.

Corollary 3.5. In the context of Theorem 3.3, if condition (iii) is ful-
filled, we have (Mu)′, Au ∈ Lp2π(R, X). Moreover, there exists a constant
C > 0 independent of f ∈ Lp2π(R, X) such that

(3.3) ‖(Mu)′‖Lp + ‖Au‖Lp ≤ C‖f‖Lp .

Remark 3.6. From the inequality (3.3) we deduce that the operator L
defined by

(Lu)(t) = (Mu)′(t)−Au(t)

with domain

D(L) = H1,p
per,M (R, [D(M)]) ∩ Lp2π(R, [D(A)])

is an isomorphism. Indeed, since A and M are closed, the space

H1,p
per,M (R, [D(M)]) ∩ Lp2π(R, [D(A)])

becomes a Banach space under the norm

|||u||| := ‖u‖p + ‖(Mu)′‖p + ‖Au‖p.
We remark that such isomorphisms are crucial for nonlinear evolution equa-
tions (see [A2]).

4. Maximal regularity on the scale of vector-valued Besov spaces.
In this section we consider solutions in Bs

p,q((0, 2π), X), the vector-valued
periodic Besov space for 1 ≤ p ≤ ∞, s > 0. For the definition and main
properties of these spaces we refer to [AB2] or [KL2]. For the scalar case, see
[BB], [ST]. In contrast to the Lp case, the multiplier theorems established for
vector-valued Besov space are valid for arbitrary Banach spaces X; see [A1],
[AB2] and [GW2]. Special cases here allow one to treat Hölder–Zygmund
spaces. Specifically, we have Bs

∞,∞ = Cs for s > 0. Moreover, if 0 < s < 1
then Bs

∞,∞ is just the usual Hölder space Cs.
We summarize some useful properties of Bs

p,q((0, 2π), X) (see [AB2, Sec-
tion 2] for a proof):
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(i) Bs
p,q((0, 2π), X) is a Banach space.

(ii) If s > 0, then the natural injection Bs
p,q((0, 2π), X) ↪→ Lp((0, 2π), X)

is a continuous linear operator.
(iii) Let s > 0. Then f ∈ Bs+1

p,q ((0, 2π), X) if and only if f is differentiable
a.e. and f ′ ∈ Bs

p,q((0, 2π), X).

We begin with the definition of operator-valued Fourier multipliers in
the context of periodic Besov spaces.

Definition 4.1. Let 1 ≤ p ≤ ∞. A sequence {Mk}k∈Z ⊂ B(X,Y )
is a Bs

p,q-multiplier if for each f ∈ Bs
p,q((0, 2π), X) there exists a function

g ∈ Bs
p,q((0, 2π), Y ) such that

Mkf̂(k) = ĝ(k), k ∈ Z.

The following concept was studied in [KLP].

Definition 4.2. We say that {Mk}k∈Z ⊂ B(X,Y ) is M -bounded if

sup
k
‖Mk‖ <∞, sup

k
‖k(Mk+1 −Mk)‖ <∞,(4.1)

sup
k
‖k2(Mk+1 − 2Mk +Mk−1)‖ <∞.(4.2)

We recall the following operator-valued Fourier multiplier theorem on
Besov spaces.

Theorem 4.3 ([AB2]). Let X,Y be Banach spaces and let {Mk}k∈Z ⊆
B(X,Y ) be an M -bounded sequence. Then for all 1 ≤ p, q ≤ ∞ and s ∈ R,
{Mk}k∈Z is a Bs

p,q-multiplier.

We next prove the following result, which is an analogue to Proposi-
tion 3.2.

Proposition 4.4. Let A : D(A) ⊆ X → X and M : D(M) ⊆ X → X
be closed linear operators. Suppose that D(A) ⊆ D(M). Then, for all 1 ≤
p, q ≤ ∞ and s ∈ R the following assertions are equivalent:

(i) {ik}k∈Z ⊂ ρM (A) and {ikM(ikM −A)−1}k∈Z is a Bs
p,q-multiplier.

(ii) {ik}k∈Z ⊂ ρM (A) and supk∈Z ‖ikM(ikM −A)−1‖ <∞.

Proof. (i)⇒(ii). Follow the proof in [KL1, Proposition 3.4].
(ii)⇒(i). For k ∈ Z, define Mk = ikM(ikM − A)−1. From the identity

(3.2) we obtain

(4.3) sup
k
‖k(Mk+1 −Mk)‖ <∞,
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proving (4.1). To verify (4.2), we notice

k2(Mk+1 − 2Mk +Mk−1)

= k2
[
i(k + 1)M [i(k + 1)M −A]−1 − 2ikM(ikM −A)−1

+ i(k − 1)M(i(k − 1)M −A)−1
]

= k2M [i(k + 1)M −A]−1[i(k + 1)(ikM −A)− 2ik[i(k + 1)M −A]

+ i(k − 1)[i(k + 1)M −A][i(k − 1)M −A]−1(ikM −A)](ikM −A)−1

= k2M [i(k + 1)M −A]−1
[
i(k + 1)(ikM −A)− 2ik(ikM −A)− 2ikiM

+ i(k − 1)[i(k − 1)M −A][i(k − 1)M −A]−1(ikM −A)

+ 2i · i(k − 1)M [i(k − 1)M −A]−1(ikM −A)
]
(ikM −A)−1

= k2M [i(k + 1)M −A]−1

· [(i(k + 1)− 2ik + i(k − 1) + 2iMk−1)[ikM −A]− 2ikiM ]

· (ikM −A)−1

= k2M [i(k + 1)M −A]−1
[
2iMk−1(ikM −A)− 2ikiM

]
(ikM −A)−1

= kM [i(k + 1)M −A]−1
[
2ikMk−1(ikM −A)− 2ikikM

]
(ikM −A)−1

= kM [i(k + 1)M −A]−1
[
2ikMk−1 · I − 2ikikM(ikM −A)−1

]
= kM [i(k + 1)M −A]−1(2ikMk−1 − 2ikMk)

= kM [i(k + 1)M −A]−1[−2ik(Mk −Mk−1)]

= kM [i(k + 1)M −A]−1[−2i(k − 1)(Mk −Mk−1)− 2i(Mk −Mk−1)].

Since we know that {k(Mk+1−Mk)}k∈Z is bounded, and {Mk}k∈Z is bounded
by hypothesis, we conclude from the above identity that

sup
k
‖k2(Mk+1 − 2Mk +Mk−1)‖ <∞.(4.4)

So, {Mk}k∈Z is M -bounded and therefore, by Theorem 4.3, it is a Bs
p,q-

multiplier.

Definition 4.5. Let 1 ≤ p, q ≤ ∞ and s > 0 be given. A function
u ∈ Bs

p,q((0, 2π), [D(A)]) is said to be a strong Bs
p,q-solution of (3.1) if Mu ∈

Bs+1
p,q ((0, 2π), X) and equation (3.1) holds for a.e. t ∈ (0, 2π).

The next theorem is the main result of this section. It extends [AB2,
Theorem 5.1] which corresponds to M = I.

Theorem 4.6. Let 1 ≤ p, q ≤ ∞ and s > 0. Let X be a Banach space
and let A : D(A) ⊆ X → X and M : D(M) ⊆ X → X be closed linear
operators. Suppose that D(A) ⊆ D(M) and ikM − A is a closed operator
for all k ∈ Z. Then the following assertions are equivalent:
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(i) For every f ∈ Bs
p,q((0, 2π), X) there exists a unique strong Bs

p,q-
solution of (3.1).

(ii) {ik}k∈Z ⊂ ρM (A) and {ikM(ikM −A)−1}k∈Z is a Bs
p,q-multiplier.

(iii) {ik}k∈Z ⊂ ρM (A) and supk∈Z ‖ikM(ikM −A)−1‖ <∞.

Proof. (ii)⇔(iii). Follows from Proposition 4.4.
(i)⇒(iii). Suppose that for every f ∈ Bs

p,q((0, 2π), X) there exists a
unique strong Bs

p,q-solution of (3.1). Fix x ∈ X and k ∈ Z. Define f(t) =
eitkx. Then f ∈ Bs

p,q((0, 2π), X). By hypothesis there exist u ∈ Bs
p,q((0, 2π),

[D(A)]) with Mu ∈ Bs+1
p,q ((0, 2π), X) such that u(t) ∈ D(A) and (Mu)′(t) =

Au(t)+f(t) for a.e. t ∈ (0, 2π). By Lemma 2.4 we have ikMû(k) = Aû(k)+x.
Following the proof of Theorem 3.3 we find that ikM −A is bijective for all
k ∈ Z. Let Mk := ikM(ikM −A)−1. We will see that {Mk}k∈Z is bounded.
By the Closed Graph Theorem, there exists a constant C independent of f
such that

‖Mu‖Bs+1
p,q ((0,2π),X) + ‖Au‖Bs

p,q((0,2π),[D(A)]) ≤ C‖f‖Bs
p,q((0,2π),X).

Note that for f(t) = eitkx, the solution u of (3.1) is given by u(t) =
(ikM −A)−1eiktx. Hence,

sup
k
‖ikM(ikM −A)−1x‖ ≤ C‖x‖.

(iii)⇒(i). Suppose that {ik}k∈Z⊂ρM (A) and supk∈Z ‖ikM(ikM−A)−1‖
< ∞. Define Mk := ikM(ikM − A)−1 and Nk := (ikM − A)−1 for k ∈ Z.
Since supk∈Z ‖Mk‖ < ∞, Proposition 4.4 shows that {Mk}k∈Z is a Bs

p,q-
multiplier. Now, we will see that {Nk}k∈Z is an M -bounded sequence. First
note that, since 0 ∈ ρM (A), A is an invertible operator, and hence the
identity ikM(ikM −A)−1 = A(ikM −A)−1 + I implies Nk = A−1(Mk− I).
So, supk∈Z ‖Nk‖ <∞. Now, observe that

k(Nk+1−Nk) = k[(i(k+ 1)M −A)−1− (ikM −A)−1] = A−1k(Mk+1−Mk).

Hence, by (4.3) we get supk∈Z ‖k(Nk+1 − Nk)‖ < ∞. In the same way, we
have

k2(Nk+1 − 2Nk +Nk−1)

= k2[A−1Mk+1 −A−1 − 2[A−1(Mk − I)] +A−1Mk−1 −A−1]

= A−1k2(Mk+1 − 2Mk +Mk−1).

Therefore, using (4.4), we obtain

sup
k
‖k2(Nk+1 − 2Nk +Nk−1)‖ <∞.

So, {Nk}k∈Z is an M -bounded sequence and, by Theorem 4.3, {Nk}k∈Z
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is a Bs
p,q-multiplier. We conclude that {Mk}k∈Z and {Nk}k∈Z are Bs

p,q-
multipliers. Let f ∈ Bs

p,q((0, 2π), X). There exist u, v ∈ Bs
p,q((0, 2π), X)

such that û(k) = ikM(ikM − A)−1f̂(k) and v̂(k) = (ikM − A)−1f̂(k) for
all k ∈ Z. So, we have ikMv̂(k) = û(k) for all k ∈ Z. By Lemma 2.3
we obtain (Mv)′ = u a.e. Since u ∈ Bs

p,q((0, 2π), X) we have (Mv)′ ∈
Bs
p,q((0, 2π), X), and so Mv ∈ Bs+1

p,q ((0, 2π), X). Also, since ikM − A is bi-
jective for all k ∈ Z and v̂(k) = (ikM − A)−1f̂(k), we have v(t) ∈ D(A)
and ikMv̂(k) − f̂(k) = Av̂(k) for all k ∈ Z. So, (Mv)′(t) = Av(t) + f(t)
a.e. t ∈ (0, 2π) by Lemma 2.3. The uniqueness follows as in the proof of
Theorem 3.3.

Remark 4.7. Note that the Besov spaces Bs
∞,∞((0, 2π), X) correspond

to the familiar Hölder spaces Cs if 0 < s < 1. Hence, Theorem 4.6 extends
and improves Theorem 2.1 in [BF] where X was assumed to be a reflexive
Banach space.

Example 4.8. Let us consider the periodic boundary value problem

∂(m(x)u)
∂t

−∆u = f(t, x) in [0, 2π]×Ω,(4.5)

u = 0 in [0, 2π]× ∂Ω,(4.6)
m(x)u(0, x) = m(x)u(2π, x) in Ω,(4.7)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω, m(x) ≥ 0
is a given measurable bounded function on Ω, and f is a function on [0, 2π]
× Ω. The initial value problem (4.5)–(4.6) with m(x)u(0, x) = v0 has been
studied in [FY1], [FY2] both in the spaces H−1(Ω), L2(Ω) and in Lp(Ω),
p > 1. The periodic problem (4.5)–(4.7) has been studied in [BF] in the
spaces H−1(Ω) and L2(Ω).

Let M be the operator of multiplication by m. If we take X = H−1(Ω)
then by [BF, p. 38] (see also references therein), there exists a constant c > 0
such that

‖M(zM −∆)−1‖ ≤ c

1 + |z|

whenever Re z ≥ −c(1 + |Im z|). In particular, on the imaginary axis we
have ‖M(ikM − ∆)−1‖ ≤ c/(1 + |k|) for all k ∈ Z. Therefore, Theorem
4.6 applies immediately, yielding the existence and uniqueness of solutions
of (4.5)–(4.7) in periodic Besov spaces, complementing the results in [BF].
On the other hand, and because H−1(Ω) is a Hilbert space, Corollary 3.4
also applies, showing that for all f ∈ Lp2π(R, H−1(Ω)) the periodic prob-
lem (4.5)–(4.7) has precisely one strong solution u with maximal regular-
ity.
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Example 4.9. Consider, for t ∈ [0, 2π] and x ∈ [0, π], the problem

∂

∂t

(
∂2

∂x2
+ 1
)
u(t, x) = −a ∂

2

∂x2
u(t, x)− ku(t, x) + f(t, x),(4.8)

u(t, 0) = u(t, π) =
∂2

∂x2
u(t, 0) =

∂2

∂x2
u(t, π) = 0,(4.9) (

∂2

∂x2
+ 1
)
u(0, x) =

(
∂2

∂x2
+ 1
)
u(2π, x),(4.10)

where a is a positive constant and −2a < k < 4a. Set X = C0([0, π])
= {u ∈ C([0, π]) : u(0) = u(π)} and let K be the realization of ∂2/∂x2 with
domain

D(K) =
{
u ∈ C2([0, π]) : u(0) = u(π) =

∂2

∂x2
u(0) =

∂2

∂x2
u(π) = 0

}
.

Then we take M = K + I and A = aM + (k − a)I. By [BF, p. 39, Ex. 1.2]
we have, as in the above example,

‖M(ikM −∆)−1‖ ≤ c

1 + |k|
for all k∈Z.Therefore, Theorem 4.6 applies, and hence for all f ∈Bs

p,q((0, 2π),
C0([0, π])), s > 0, 1 ≤ p, q ≤ ∞ the problem (4.8)–(4.10) has a unique strong
solution u with ∂2u/∂x2 ∈ Bs

p,q((0, 2π), C0([0, π])). In particular, because the
class of Besov spaces contains the class of Hölder spaces, our result recovers
and extends Example 1.2 in [BF].

Remark 4.10. Following a similar method of proof, and using the opera-
tor-valued Fourier multiplier theorem stated in [BK, Theorem 3.2], one can
prove a result analogous to Theorem 4.6 for the scale of Triebel–Lizorkin
spaces.
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