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Non-hyperreflexive reflexive spaces of operators

by

Roman V. Bessonov (St. Petersburg), Janko Bračič (Ljubljana) and
Michal Zajac (Bratislava)

Abstract. We study operators whose commutant is reflexive but not hyperreflex-
ive. We construct a C0 contraction and a Jordan block operator SB associated with a
Blaschke product B which have the above mentioned property. A sufficient condition for
hyperreflexivity of SB is given. Some other results related to hyperreflexivity of spaces of
operators that could be interesting in themselves are proved.

Introduction. Let X be a complex Banach space and let L(X) be the
algebra of all bounded linear operators on X. For a linear subspace S ⊆ L(X),
the reflexive closure of S is defined by Ref S = {T ∈ B(X); Tx ∈ Sx for
every x ∈ X}, where Sx denotes the closure of the orbit Sx. It is easily seen
that Ref S is a strongly closed and hence also norm closed linear space that
contains S. The space S is said to be reflexive if S = Ref S.

For an operator T ∈ L(X), the usual distance and the Arveson distance
of T to a linear subspace S ⊆ L(X) are given by

d(T,S) = inf
S∈S

sup
‖x‖≤1

‖Tx− Sx‖ and α(T,S) = sup
‖x‖≤1

inf
S∈S
‖Tx− Sx‖ ,

respectively. It is obvious that d(·,S) and α(·,S) are seminorms on L(X)
satisfying α(T,S) ≤ d(T,S) for every T ∈ L(X). The space S is said to
be hyperreflexive if d(·,S) and α(·,S) are equivalent, i.e., if there exists a
constant c ≥ 1 such that

(0.1) d(T,S) ≤ cα(T,S) (T ∈ L(X)).

Let κ(S) be the infimum of all numbers c ≥ 1 satisfying (0.1). Then κ(S)
satisfies (0.1) as well and it is the smallest number with this property. For
a hyperreflexive linear space S ⊆ L(X), the number κ(S) is called the hy-
perreflexivity constant of S.
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Every norm closed hyperreflexive linear space S is reflexive. Indeed,
note that T ∈ Ref S if and only if α(T,S) = 0, and T ∈ S if and only
if d(T,S) = 0. On the other hand, there are reflexive linear spaces of opera-
tors which are not hyperreflexive [10]. However, if S is a finite-dimensional
space, then S is hyperreflexive if and only if it is reflexive (see [11]).

Let W(A) denote the smallest strongly closed (i.e., closed in the strong
operator topology) subalgebra of L(X) containing A ∈ L(X) and the identity
operator I. Note that if X is a Hilbert space, thenW(A) is also weakly closed.
See, e.g. [3, p. 38] for the proof of the well-known fact that any strongly
closed convex set of Hilbert space operators is closed in the weak operator
topology. The operator A is said to be reflexive, respectively hyperreflexive,
if so isW(A). For a hyperreflexive operator A, the hyperreflexivity constant
of W(A) is denoted by κ(A).

The hyperreflexivity concept for operator algebras was introduced by
Arveson in the late 1970’s and it turned out to be useful for some prob-
lems in perturbation theory. Until 1985 it was unknown whether hyper-
reflexivity and reflexivity are equivalent. The first example of a reflexive
algebra of operators which is not hyperreflexive was given by Kraus and
Larson [10].

This paper consists of two parts. Section 1 is devoted to the hyperreflex-
ivity of spaces of operators on general Banach and Hilbert spaces. It is
well known that similarity preserves hyperreflexivity in Hilbert spaces [7].
We extend this fact to Banach spaces. Next, we show that a direct sum
of two spaces of Hilbert space operators is hyperreflexive if and only if the
summands are hyperreflexive (see also [9]). Estimates of the hyperreflexiv-
ity constant of the direct sum are given in terms of the angle between the
underlying Hilbert spaces.

An operator on a two-dimensional space is reflexive, and therefore hy-
perreflexive, if and only if it has two distinct eigenvalues. We express the
hyperreflexivity constant of such an operator in terms of its matrix elements.
This allows us to construct a non-hyperreflexive reflexive operator.

In Section 2 we consider the hyperreflexivity of C0 contractions. An op-
erator A acting on a Hilbert space H is called a C0 contraction if ‖A‖ ≤ 1
and there exists a bounded non-zero analytic function f on D, the unit disk
in the complex plane, such that f(A) = 0 (see [14]). It is well known that
C0 contractions share many properties with finite-dimensional operators.
As mentioned above, each finite-dimensional reflexive operator is hyper-
reflexive. It is a natural question whether each reflexive C0 contraction is
hyperreflexive. We give a negative answer to this question.

We consider a so-called Jordan block, a functional model of a C0 con-
traction A satisfying dim Ran(I −AA∗) = dim Ran(I −A∗A) = 1. First, we
show that a Jordan block is hyperreflexive whenever its minimal function is
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a Blaschke product satisfying the Carleson condition. Next, we construct a
Jordan block S and two-dimensional invariant subspaces Hn of it such that
the orthogonal sum of the operators S|Hn is a non-hyperreflexive reflexive
C0 contraction T satisfying dim Ran(I − TT ∗) = dim Ran(I − T ∗T ) = ∞.
Finally, applying a deep result on Riesz bases due to Vasyunin, we show
that this Jordan block S is itself a non-hyperreflexive reflexive operator.

1. Hyperreflexivity in general Banach and Hilbert spaces

1.1. Hyperreflexivity of similar spaces. It is well known that sim-
ilarity preserves reflexivity and hyperreflexivity in Hilbert spaces. The fol-
lowing proposition extends [7, Proposition 1.3] to general Banach spaces.

Proposition 1.1. Let X and Y be complex Banach spaces and let S ⊆
L(X) be a hyperreflexive subspace. If A ∈ L(X,Y) and B ∈ L(Y,X) are
invertible, then ASB ⊆ L(Y) is a hyperreflexive subspace and

1
‖A‖ ‖B‖ ‖A−1‖ ‖B−1‖

κ(S) ≤ κ(ASB) ≤ ‖A‖ ‖B‖ ‖A−1‖ ‖B−1‖κ(S).

Proof. First we note that {x∈X; ‖x‖≤1} ⊆ {‖B−1‖By; y∈Y, ‖y‖≤1}.
Indeed, if x ∈ X, ‖x‖ ≤ 1, then x = ‖B−1‖B B−1x

‖B−1‖ and
∥∥ B−1x
‖B−1‖

∥∥ ≤ 1. Let
T ∈ L(X) be arbitrary. Then

α(T,S) = sup{inf{‖(T − S)x‖; S ∈ S}; x ∈ X, ‖x‖ ≤ 1}
= sup{inf{‖A−1(ATB −ASB)B−1x‖; S ∈ S}; x ∈ X, ‖x‖ ≤ 1}
≤ sup{inf{‖A−1(ATB −ASB)B−1(‖B−1‖By)‖; S ∈ S}; y ∈ Y, ‖y‖ ≤ 1}
≤ ‖A−1‖ ‖B−1‖ sup{inf{‖(ATB −ASB)y‖; S ∈ S}; y ∈ Y, ‖y‖ ≤ 1}
= ‖A−1‖ ‖B−1‖α(ATB,ASB).

A similar reasoning gives d(T,S) ≤ ‖A−1‖ ‖B−1‖d(ATB,ASB). It is ob-
vious that d(ATB,ASB) ≤ ‖A‖ ‖B‖ d(T,S) as well. Thus, if S is hyper-
reflexive, then

d(ATB,ASB) ≤ ‖A‖ ‖B‖d(T,S) ≤ ‖A‖ ‖B‖κ(S)α(T,S)

≤ ‖A‖ ‖B‖ ‖A−1‖ ‖B−1‖κ(S)α(ATB,ASB)

for every T ∈ L(X). Hence ASB is a hyperreflexive subspace and κ(ASB) ≤
‖A‖ ‖B‖ ‖A−1‖ ‖B−1‖κ(S). The last inequality implies that κ(S)≤‖A‖ ‖B‖
· ‖A−1‖ ‖B−1‖κ(ASB) if we interchange the spaces S and ASB.

Corollary 1.2. Let H be a complex Hilbert space and S ⊆ L(H) be a
hyperreflexive linear space. If U and V are unitary operators on H, then
the space USV is hyperreflexive and κ(USV ) = κ(S).
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Corollary 1.3. Let X, Y be Banach spaces. Assume that A ∈ L(X) and
B ∈ L(Y) are similar, i.e., there exists an invertible S ∈ L(X,Y) such that
B = SAS−1. Then A is hyperreflexive if and only if B is hyperreflexive.

Operators A ∈ L(X) and B ∈ L(Y) are said to be quasi-similar if there
exist injective operators with dense ranges, S ∈ L(X,Y) and T ∈ L(Y,X),
such that SA = BS and TB = AT . Note that, by [16, Example 5.2], quasi-
similarity does not preserve hyperreflexivity.

1.2. Hyperreflexivity of orthogonal sums of hyperreflexive
spaces. Let H1 and H2 be Hilbert spaces and let H = H1 ⊕H2 be their
orthogonal sum. If Si ⊂ L(Hi) (i = 1, 2) are reflexive, then S1 ⊕ S2 ∈
L(H1 ⊕H2) is reflexive as well (see [3, Proposition 56.2]). For hyperreflex-
ivity we have an analogous result.

Proposition 1.4. Let H1,H2 be Hilbert spaces and let H = H1⊕H2 be
their orthogonal sum. Assume that Si ⊂ L(Hi) (i = 1, 2) are closed linear
subspaces and let Ti ∈ L(Hi) (i = 1, 2). Then

(i) max{d(T1,S1),d(T2,S2)} ≤ d(T1 ⊕ T2,S1 ⊕ S2) ≤ d(T1,S1) +
d(T2,S2),

(ii) max{α(T1,S1), α(T2,S2)} ≤ α(T1 ⊕ T2,S1 ⊕ S2) ≤ α(T1,S1) +
α(T2,S2).

(iii) S1 ⊕ S2 is hyperreflexive if and only if both S1 and S2 are, and
max{κ(S1), κ(S2)} ≤ κ(S1 ⊕ S2) ≤ 1 + 2 max{κ(S1), κ(S2)}.

Proof. Most of these assertions are particular cases of those obtained in
[9, Sec. 5]. For the reader’s convenience, we give another proof here.

(i) Since

d(T1 ⊕ T2,S1 ⊕ S2)2 = inf{sup{‖(T1 − S1)x1‖2 + ‖(T2 − S2)x2‖2;

‖x1‖2 + ‖x2‖2 ≤ 1}; S1 ∈ S1, S2 ∈ S2}
≥ inf{sup{‖(Ti − Si)xi‖2; ‖xi‖ ≤ 1}; Si ∈ Si} = d(Ti,Si)2 for i = 1, 2,

one has max{d(T1,S1), d(T2,S2)} ≤ d(T1⊕T2,S1⊕S2). On the other hand,
d(T1⊕T2,S1⊕S2) ≤ d(T1⊕0,S1⊕S2)+d(0⊕T2,S1⊕S2) since d(·,S1⊕S2)
is a seminorm. However,

d(T1 ⊕ 0,S1 ⊕ S2)2 = inf{‖T1 − S1‖2 + ‖S2‖2; S1 ∈ S1, S2 ∈ S2}
= inf{‖T1 − S1‖2; S1 ∈ S1} = d(T1,S1)2,

and similarly d(0 ⊕ T2,S1 ⊕ S2) = d(T2,S2). Thus, d(T1 ⊕ T2,S1 ⊕ S2) ≤
d(T1,S1) + d(T2,S2).
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(ii) One has

α(T1,S1) = sup{inf{‖(T1 − S1)x1‖; S1 ∈ S1}; ‖x1‖ ≤ 1}
= sup{inf{‖(T1 ⊕ T2 − S1 ⊕ S2)(x1 ⊕ 0)‖, S1 ∈ S1, S2 ∈ S2}; ‖x1‖ ≤ 1}
≤ α(T1 ⊕ T2,S1 ⊕ S2) ≤ α(T1 ⊕ 0,S1 ⊕ S2) + α(0⊕ T2,S1 ⊕ S2),

where the last inequality holds as α(·,S1 ⊕ S2) is a seminorm. Again,

α(T1 ⊕ 0,S1 ⊕ S2)2 = sup{inf{‖(T1 − S1)x1‖2 + ‖S2x2‖2;

S1 ∈ S1, S2 ∈ S2}; ‖x1‖2 + ‖x2‖2 ≤ 1}
= sup{inf{‖(T1 − S1)x1‖2; S1 ∈ S1}; ‖x1‖ ≤ 1} = α(T1,S1)2.

Of course, the same inequalities hold if index 1 is replaced by index 2. We
conclude that (ii) holds.

(iii) Assume first that S1 ⊕ S2 is hyperreflexive. Then d(T1,S1) =
d(T1⊕0,S1⊕S2) ≤ κ(S1⊕S2)α(T1⊕0,S1⊕S2) = κ(S1⊕S2)α(T1,S1), and
similarly d(T2,S2) ≤ κ(S1 ⊕ S2)α(T2,S2). This proves the inequality

max{κ(S1), κ(S2)} ≤ κ(S1 ⊕ S2).

On the other hand, if S1 and S2 are hyperreflexive, then κ(S1 ⊕ S2) ≤
1 + 2 max{κ(S1), κ(S2)}, by [9, Corollary 5.4].

It is obvious that Proposition 1.4(iii) implies the following corollary.

Corollary 1.5. Let H be the orthogonal sum of Hilbert spaces Hi

(i ∈ N) and let Si ⊆ L(Hi) be weakly closed subspaces. If S =
⊕

i∈N Si
is hyperreflexive, then each Si is hyperreflexive and κ(Si) ≤ κ(S).

1.3. Hyperreflexivity of a direct sum of hyperreflexive spaces.
Let M and N be closed non-trivial subspaces of a separable complex Hilbert
space H. Recall that the angle between M and N is the number ϕ ∈ [0, π/2]
which is given by

(1.1) cosϕ =
sup{|〈x, y〉|; x ∈M	 (M ∩N), y ∈ N 	 (M ∩N) and ‖x‖ = ‖y‖ = 1}.

From now on we assume that M ∩N = {0} and M + N = H, i.e., H is the
direct sum of M and N, which we briefly write as H = M u N. In this case
(1.1) simplifies to

cosϕ = sup{|〈x, y〉|; x ∈M, y ∈ N and ‖x‖ = ‖y‖ = 1}.
Note that the sum M + N is a closed subspace of H if and only if the
angle between M and N is strictly greater than 0. Thus, from now on it is
assumed that ϕ > 0. We use the symbol ⊕ for the orthogonal direct sum,
i.e., M u N = M⊕N if and only if ϕ = π/2.

Lemmas 1.6 and 1.7 below will be used to estimate the hyperreflexivity
constant of a direct sum of hyperreflexive spaces.
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Lemma 1.6. If x ∈M, y ∈ N and ‖x‖2 + ‖y‖2 = 1, then

(1.2) 1− cosϕ ≤ ‖x+ y‖2 ≤ 1 + cosϕ.

On the other hand, if ‖x+ y‖ = 1 for some x ∈M and y ∈ N, then

(1.3)
1

1 + cosϕ
≤ ‖x‖2 + ‖y‖2 ≤ 1

1− cosϕ
.

Proof. If x = 0 or y = 0, then the statements hold trivially. Assume
therefore that x 6= 0 and y 6= 0. Note that 2‖x‖ ‖y‖ ≤ ‖x‖2 + ‖y‖2 and
Re 〈x, y〉 ≤ |〈x, y〉| for arbitrary vectors x and y.

Assume first that x ∈M, y ∈ N and ‖x‖2 + ‖y‖2 = 1. Then

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2 Re 〈x, y〉 = ‖x‖2 + ‖y‖2

+
2‖x‖ ‖y‖
‖x‖2 + ‖y‖2

Re
〈

x

‖x‖
,
y

‖y‖

〉
≤ 1 +

∣∣∣∣〈 x

‖x‖
,
y

‖y‖

〉∣∣∣∣
≤ 1 + cosϕ

and

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2 Re 〈x, y〉 = ‖x‖2 + ‖y‖2

− 2‖x‖ ‖y‖
‖x‖2 + ‖y‖2

Re
〈
− x

‖x‖
,
y

‖y‖

〉
≥ 1−

∣∣∣∣〈− x

‖x‖
,
y

‖y‖

〉∣∣∣∣
≥ 1− cosϕ.

Let now ‖x+ y‖ = 1. Then

‖x‖2 + ‖y‖2 =
‖x‖2 + ‖y‖2

‖x+ y‖2
=
(

1− Re
(〈
− x

‖x‖
,
y

‖y‖

〉)
2‖x‖ ‖y‖
‖x‖2 + ‖y‖2

)−1

≤
(

1−
∣∣∣∣〈− x

‖x‖
,
y

‖y‖

〉∣∣∣∣)−1

≤ 1
1− cosϕ

and

‖x‖2 + ‖y‖2 ≥
(

1 +
∣∣∣∣〈 x

‖x‖
,
y

‖y‖

〉∣∣∣∣)−1

≥ 1
1 + cosϕ

.

Define K = M⊕N, i.e., the underlying vector space for K is the same as
for H, but the inner product is 〈x1 +y1, x2 +y2〉K = 〈x1, x2〉H +〈y1, y2〉H for
x1, x2 ∈ M and y1, y2 ∈ N. From now on we omit the subscripts indicating
where an inner product is computed. Let Φ : H→ K be given by Φ(x+y) =
x⊕ y for x ∈M, y ∈ N.

Lemma 1.7. Φ is an invertible linear operator with

‖Φ‖ =
1√

1− cosϕ
and ‖Φ−1‖ =

√
1 + cosϕ.
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Proof. It is obvious that Φ is an invertible linear operator. Let x ∈ M

and y ∈ N be such that x+ y ∈ H is a vector of norm 1. Then, by (1.3),

‖Φ(x+ y)‖2 = ‖x⊕ y‖2 = ‖x‖2 + ‖y‖2 ≤ 1
1− cosϕ

,

which shows that ‖Φ‖ ≤ 1/
√

1− cosϕ. Now, let ε > 0. By the definition
of the angle between subspaces, there exist x ∈ M and y ∈ Y of norm 1
such that cosϕ ≤ |〈x, y〉| + ε. We may assume that 〈x, y〉 < 0 (replace, for
instance, x by − |〈x,y〉|〈x,y〉 x). Then∥∥∥∥Φ( x+ y

‖x+ y‖

)∥∥∥∥2

=
‖x‖2 + ‖y‖2

‖x‖2 + ‖y‖2 + 2 Re 〈x, y〉
=

2
2− 2|〈x, y〉|

≥ 1
1− cosϕ+ ε

,

so ‖Φ‖ ≥ 1/
√

1− cosϕ.
The norm of Φ−1 is computed in a similar way. The inequality ‖Φ−1‖ ≤√

1 + cosϕ follows from (1.2). On the other hand, for a given ε > 0, there
exist x ∈ M and y ∈ N with ‖x‖ = ‖y‖ = 1 such that cosϕ ≤ |〈x, y〉| + ε
and 〈x, y〉 > 0. Then 1√

2
(x⊕ y) is a vector of norm 1 in K such that∥∥∥∥Φ−1

(
1√
2

(x⊕ y)
)∥∥∥∥2

=
1
2

(‖x‖2 + ‖y‖2 + 2 Re 〈x, y〉) = 1 + |〈x, y〉|

≥ 1 + cosϕ− ε.

Thus, ‖Φ−1‖ ≥
√

1 + cosϕ.

Let S ⊆ L(M) and T ⊆ L(N) be weakly closed spaces of operators. We
denote by S u T the set of all operators in L(H) which have a block matrix
representation

(
S 0
0 T

)
(S ∈ S, T ∈ T ) with respect to the decomposition

H = M u N. It is obvious that S u T is a weakly closed subspace and it is
not hard to see that it is reflexive if and only if S and T are reflexive.

Proposition 1.8. The space SuT ⊆ L(H) is hyperreflexive if and only
if S and T are hyperreflexive. Moreover,

(1.4)
1
3

1− cosϕ
1 + cosϕ

κ(S u T ) ≤ max{κ(S), κ(T )} ≤ 1− cosϕ
1 + cosϕ

κ(S u T ).

Proof. As before, let K = M ⊕ N. It is obvious that S ⊕ T := {S ⊕ T ;
S ∈ S, T ∈ T } is a linear subspace of L(K). Let Φ : H → K be the linear
operator defined above. Then S ⊕ T = Φ(S u T )Φ−1. Thus, by Proposi-
tion 1.1,
1− cosϕ
1 + cosϕ

κ(S u T ) ≤ κ(S ⊕ T ) = κ(Φ(S u T )Φ−1) ≤ 1 + cosϕ
1− cosϕ

κ(S u T ) .
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Since every hyperreflexivity constant is greater than or equal to 1, we have
(1.4), by Proposition 1.4(iii).

1.4. Hyperreflexivity of 2×2 matrices. Let X be a two-dimensional
complex vector space. It is an easy exercise to show that W(A) = {A}′ for
every operator A ∈ B(X) which is not a scalar multiple of I. Thus, such an
operator is reflexive if and only if its commutant is reflexive, which happens
precisely when A has two distinct eigenvalues (see [5]). Let us identify X

with C2. Then every operator is represented by a 2 × 2 matrix. Let A =(
a b
c d

)
∈ M2×2(C) have distinct eigenvalues. Our aim is to express κ(A) as

a function of a, b, c, d. This will be used to construct an operator with
reflexive but non-hyperreflexive commutant.

Lemma 1.9. If A =
(
λ ω
0 µ

)
∈M2×2(C) with λ 6= µ, then

κ(A) =

√
|ω|2 + |µ− λ|2
|µ− λ|

.

Proof. Since A has two distinct eigenvalues there are precisely two non-
trivial proper A-invariant subspaces. These are complex lines spanned by the
eigenvectors e =

(
1
0

)
with eigenvalue λ and f = (|ω|2 + |µ− λ|2)−1/2 ( ω

µ−λ )
with eigenvalue µ. The angle ϕ between these subspaces is given by cosϕ =
|〈e, f〉| = |ω|/

√
|ω|2 + |µ− λ|2. It follows, by [15], that

κ(A) = sin−1 ϕ =

√
|ω|2 + |µ− λ|2
|µ− λ|

.

If, in Lemma 1.9, A is a diagonal operator, i.e., ω = 0, then W(A) =
{A}′ = D2, the algebra of all diagonal 2 × 2 matrices. Thus, κ(D2) =
κ(A) = 1. Note, however, that the hyperreflexivity constant of D3, the alge-
bra of all 3× 3 diagonal matrices, is

√
3/2 [4, Theorem 2.3].

Let H be a Hilbert space of dimension N ∈ {4, 5, . . .} ∪ {∞} and let
{en}Nn=1 be an orthonormal basis for H. Then the algebra DN ⊂ L(H) of all
operators which are diagonal with respect to {en}Nn=1 can be identified with
D3⊕DN−3, where DN−3 = D∞ if N =∞. It follows from Proposition 1.4(iii)
that κ(DN ) ≥

√
3/2. On the other hand, by [13, Theorem 3.5], κ(DN ) ≤ 2.

Lemma 1.10. Let A =
( α β
γ δ

)
∈ M2×2(C), γ 6= 0, be a matrix with

eigenvalues 0 and 1. Then δ = 1− α, β = α(1− α)γ−1, and

(1.5) κ(A) =

√
|γ|2 + |α− |α|2 − |γ|2|2

|γ|
.

Proof. Since A has eigenvalues 0 and 1 one has α + δ = traceA = 1
and αδ − βγ = detA = 0, which gives δ = 1 − α and β = α(1 − α)γ−1.
Let U = (|α|2 + |γ|2)−1/2

( α −γ
γ α

)
. It is easily seen (by direct computation)

that U is a unitary matrix such that A = UTU∗ (Schur decomposition),
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where T =
(

1 (α−|α|2−|γ|2)γ−1

0 0

)
. Note that {T}′ = U∗{A}′U , which means,

by Corollary 1.2, that κ(A) = κ(T ). By Lemma 1.9, one has (1.5).

Proposition 1.11. Let A =
(
a b
c d

)
∈ M2×2(C) be a matrix with two

distinct eigenvalues λ1,2 = 1
2(a+ d±

√
(a− d)2 + 4bc).

(i) If c = 0, then

κ(A) =

√
|b|2 + |d− a|2
|d− a|

.

(ii) If c 6= 0, then

(1.6) κ(A) =

√
|c|2|λ2 − λ1|2 +

∣∣(a− λ1)(λ2 − λ1)− |a− λ1|2 − |c|2
∣∣2

|c| |λ2 − λ1|
.

Proof. It is obvious that (i) is just Lemma 1.9. Assume therefore that
c 6= 0. The matrix A−λ1I has eigenvalues 0 and λ2−λ1. Dividing by λ2−λ1

we obtain

B =
1

λ2 − λ1
(A− λ1I) =

(
α β

γ δ

)
,

where

α =
a− λ1

λ2 − λ1
, β =

b

λ2 − λ1
, γ =

c

λ2 − λ1
, δ =

d− λ1

λ2 − λ1
.

The matrix B has eigenvalues 0 and 1. The commutants of A and B coincide,
which means κ(A) = κ(B). Thus, by Lemma 1.10, we have (1.6).

Now we use the above results to construct an example of a non-hyper-
reflexive reflexive operator.

Proposition 1.12. There exists a sequence {An}∞n=1 of 2 × 2 complex
matrices having the following properties:

(i) there exists m ≥
√

2 such that ‖An‖ ≤ m for all n ∈ N;
(ii) each An has two eigenvalues µn 6= νn, and if n 6= k, then {µn, νn}∩
{µk, νk} = ∅;

(iii) the operator T =
⊕∞

n=1An is reflexive but not hyperreflexive.

Proof. Put

An =
(

1− 1/n
√
n 1/n

0 1− 1/n
√
n+ 1/n2

)
.

It is obvious that limn→∞ ‖I −An‖ = 0, which gives limn→∞ ‖An‖ = 1 and
therefore {‖An‖}∞n=1 is a bounded sequence. Since ‖A1‖ =

√
2 this proves

assertion (i).
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To prove (ii) it suffices to show that there are no n, k ∈ N for which

1
n
√
n
− 1
n2

=
1

k
√
k
.

The latter can be seen by simple number-theoretical arguments.
By (ii), we have {T}′ =

⊕∞
n=1{An}′, and since W(T ) ⊂ {T}′, also

W(T ) =
⊕∞

n=1W(An). Therefore both {T}′ andW(T ), being direct sums of
reflexive algebras, are reflexive [3, Proposition 56.2]. By Proposition 1.11(i),
the hyperreflexivity constant of An is κ(An) = κ({An}′) =

√
1 + n2, which

means, by Corollary 1.5, that neither T nor {T}′ is hyperreflexive.

The operator T constructed above has norm ‖T‖ ≥
√

2. Dividing T by
its norm we obtain a contraction, which, however, is not in the class C0.
At the end of the paper we shall improve this construction and obtain a C0

contraction which is reflexive but not hyperreflexive.

2. Hyperreflexivity of C0 contractions

2.1. Preliminaries. The content of this subsection is standard and
can be found in several classical monographs, e.g. in [1, 6, 12, 14]. Let H2

and H∞ be the usual Hardy spaces of functions analytic in the unit disk
D = {z ∈ C; |z| < 1}. Recall that a function θ ∈ H∞ is inner if |θ(eit)| = 1
almost everywhere. For an inner function θ ∈ H∞, let Hθ = H2 	 θH2 and
let Pθ be the orthogonal projection from H2 onto Hθ. Of course, if θ is a
constant (of modulus 1), then Hθ = {0}. The Jordan block Sθ associated
with θ is an operator on Hθ given by

(Sθf)(z) = Pθ[zf(z)] (f ∈ Hθ).

It is well known that each C0 contraction T satisfying dim Ran(1− T ∗T ) =
dim Ran(1−T ∗T ) = 1 is unitarily equivalent to a Jordan block. By Sarason’s
theorem [1, Proposition 3.1.21], W(Sθ) = {Sθ}′. It follows that the commu-
tant {Sθ}′ is reflexive, respectively hyperreflexive, if and only if Sθ is re-
flexive, respectively hyperreflexive. The equality W(Sθ) = {Sθ}′ implies the
equality of their invariant subspace lattices. By [1, Proposition 3.1.10(ii)],
every invariant subspace M of Sθ has the form M = θ1H

2 	 θH2 = θ1Hθ/θ1
for an inner divisor θ1 of θ.

For λ ∈ D, let

bλ(z) =
|λ|
λ

λ− z
1− λz

be the corresponding Blaschke factor. Assume that {λn}∞n=1 ⊂ D is a se-
quence of pairwise distinct numbers satisfying the Blaschke condition, i.e.,∑∞

n=1(1−|λn|) <∞. The Blaschke product B(z) =
∏∞
n=1 bλn(z) is an inner
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function with simple zeroes. Let

(2.1) Bλn(z) =
B(z)
bλn(z)

and rn(z) =
√

1− |λn|2
B(z)
z − λn

(n ∈ N).

Then {λn}∞n=1 is the point spectrum of the Jordan block SB, and rn are the
corresponding eigenvectors of norm one. Each invariant subspace M of SB
is the closed linear span of all eigenvectors rn ∈M.

A Blaschke product B(z) is said to satisfy the Carleson condition if

inf
n
|Bλn(λn)| > 0.

For a detailed discussion of Blaschke products satisfying this condition see
[12]. The following lemma is a simple consequence of the Kabaila–Newman
Lemma [12, p. 206 (159 in English transl.)].

Lemma 2.1. For any q ∈ (0, 1) there exists a positive number δ(q) such
that if {λn}∞n=1 ⊂ D is a sequence of pairwise distinct numbers satisfying
1 − |λn+1| ≤ q(1 − |λn|) for n = 1, 2, . . . , then the corresponding Blaschke
product B(z) satisfies the Carleson condition infn |Bλn(λn)| ≥ δ(q) > 0.

Recall that a family {un}∞n=1 of vectors in an infinite-dimensional sep-
arable Hilbert space H is a Riesz basis of H if there exists an invertible
operator T ∈ L(H) such that {Tun}∞n=1 is an orthonormal basis of H. It
is known (see [12, p. 175 (135 in English transl.)]) that B(z) satisfies the
Carleson condition if and only if the family {rn}∞n=1 from (2.1) is a Riesz
basis of HB.

Similarly, a family {Mk}∞k=1 of subspaces of a Hilbert space H is called
a Riesz basis if

(i) Mk ∩Ml = {0} if k 6= l,
(ii) H = M1 u M2 u · · · ,

(iii) the operator T : f1uf2u· · · 7→ f1⊕f2⊕· · · from H to the orthogonal
sum

⊕∞
k=1 Mk and its inverse are bounded. Here, fk ∈Mk for every

k ∈ N.

We shall use the following result due to Vasyunin (for the proof see [12,
pp. 279–287 (217–222 in English transl.)]).

Theorem 2.2. Let θ and {ϑk}∞k=1 be inner functions such that θ =∏∞
k=1 ϑk and denote θk = θ/ϑk. Then the family Hk = Hϑk

is a Riesz basis
in Hθ if and only if

inf
k

inf
z∈D

(|θk(z)|+ |ϑk(z)|) > 0.

2.2. Hyperreflexivity of a Jordan block: a sufficient condition.
For any Blaschke product B with simple zeroes there exists a C0 contraction
T whose commutant W(T ) = {T}′ is hyperreflexive and whose minimal
function is B. Namely, let T be the diagonal operator with the zeroes of
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B(z) along the diagonal. Then {T}′ is the algebra D of all diagonal operators
and therefore, by [13, Theorem 3.5], κ(T ) ≤ 2. The following theorem says
that under a stronger condition on B(z) the associated Jordan block is
hyperreflexive.

Theorem 2.3. If B(z) satisfies the Carleson condition, then W(SB) =
{SB}′ is hyperreflexive.

Proof. We use the notation introduced in (2.1). As mentioned above, the
family {rn}∞n=1 is a Riesz basis for HB because B(z) satisfies the Carleson
condition. Hence, there exists an invertible T ∈ L(HB) such that en = Trn
(n ∈ N) is an orthonormal basis for HB. With respect to the basis {en}∞n=1

the operator TSBT−1 is diagonal with {λn}∞n=1 along the diagonal. Since
these numbers are distinct we have W(TSBT−1) = {TSBT−1}′ = D, the
algebra of all operators which are diagonal with respect to the basis {en}∞n=1.
By [13, Theorem 3.5], D is hyperreflexive with κ(D) ≤ 2. By Proposition
1.1, κ({SB}′) = κ(SB) ≤ 2‖T‖2‖T−1‖2.

2.3. Hyperreflexivity of a Jordan block: a counterexample. Re-
call that the operator T constructed in Proposition 1.12 is not a C0 con-
traction and satisfies dim Ran(1− T ∗T ) = dim Ran(1− T ∗T ) =∞. On the
other hand, dim Ran(1 − SθS∗θ ) = dim Ran(1 − S∗θSθ) = 1 for any Jordan
block Sθ. To improve the result of Proposition 1.12 we are going to show
that there exists a Blaschke product B(z) such that the Jordan block SB is
reflexive but not hyperreflexive. We will need several lemmas. The first one
is proved in [12, p. 280 (218 in English transl.)].

Lemma 2.4. Let B =
∏∞
k=1 bλk

be a Blaschke product with simple zeroes
satisfying the Carleson condition infk |Bλk

(λk)| ≥ δ > 0. If |bλn(µ)| ≤ δ/3
for some n ∈ N and µ ∈ D, then |Bλn(µ)| ≥ δ/2.

Now, for Blaschke factors bµ(z) and bν(z) (µ, ν ∈ D), we estimate the
norm ‖bµ − bν‖∞.

Lemma 2.5. Assume that µ = reiϕ ∈ D and ν = (r + ε)eiψ ∈ D, where
0 < r ≤ r + ε < 1 and 0 ≤ ψ ≤ ϕ. Then

(2.2) sup
z∈D
|bµ(z)− bν(z)| ≤ (ϕ− ψ)(1− r(r + ε)) + 2ε

(1− r)(1− r − ε)
.

Proof. According to the maximum modulus principle,

sup
z∈D
|bµ(z)− bν(z)| = max

|z|=1
|bµ(z)− bν(z)|.

Since
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|bµ(z)− bν(z)| =
∣∣∣∣ |µ|µ z − µ

1− µz
− |ν|

ν

z − ν
1− νz

∣∣∣∣
=
∣∣∣∣ r

reiϕ
z − reiϕ

1− re−iϕz
− r + ε

(r + ε)eiψ
z − (r + ε)eiψ

1− (r + ε)e−iψz

∣∣∣∣
=
|z(eiψ − eiϕ)(1− r(r + ε)) + ε(ei(ϕ+ψ) − z2)|

|1− re−iϕz| |1− (r + ε)e−iψz|

and |ei(ϕ+ψ) − z2| ≤ 2, |1 − re−iϕz| ≥ 1 − r, |1 − (r + ε)e−iψz| ≥ 1 − r − ε
for every z of modulus 1, we have

sup
z∈D
|bµ(z)− bν(z)| = max

|z|=1

|z(eiψ − eiϕ)(1− r(r + ε)) + ε(ei(ϕ+ψ) − z2)|
|1− re−iϕz| |1− (r + ε)e−iψz|

≤ |e
iϕ − eiψ|(1− r(r + ε)) + 2ε

(1− r)(1− r − ε)
.

As |eiϕ − eiψ| = 2 sin ϕ−ψ
2 ≤ ϕ− ψ we conclude that (2.2) holds.

The following lemma plays a central role in our considerations.

Lemma 2.6. There exist two Blaschke sequences {µn}∞n=1, {νn}∞n=1 ⊂ D
and a number δ > 0 such that

(i) the Blaschke products C(z) =
∏∞
n=1 bµn and D(z) =

∏∞
n=1 bνn sat-

isfy the Carleson condition: infn |Cµn(µn)| > δ and infn |Dνn(νn)|
> δ, where Cµn = C/bµn and Dνn = D/bνn, for every n ∈ N;

(ii) supz∈D |bµn(z)− bνn(z)| ≤ δ/4 for every n ∈ N;
(iii) limn→∞ ‖pn − qn‖∞ = 0, where

(2.3) pn(z) =
√

1− |µn|2
C(z)D(z)
z − µn

, qn(z) =
√

1− |νn|2
C(z)D(z)
z − νn

.

If {µn}∞n=1, {νn}∞n=1 ⊂ D are sequences which satisfy (i)–(iii), then

(iv) infn infz∈D(|Cµn(z)Dνn(z)|+ |bµn(z)bνn(z)|) > (δ/6)4.

Proof. Consider a sequence {µn}∞n=1 such that 1 − |µn+1| < q(1 − |µn|)
for some 0 < q < 1. By Lemma 2.1 there exists δ = δ(q) > 0 such that
infk |Cµk

(µk)| > δ. For every n ∈ N, we denote rn = |µn| and ϕn = arg(µn) ∈
[0, 2π). Choose

(2.4) ψn ∈
(

0,
δ

2n+3
(1− |µn|)2

)
and set νn = µne

iψn = rne
i(ϕn+ψn)

for n ∈ N. It is obvious that {νn}∞n=1 is a Blaschke sequence satisfying
|νn| = |µn| = rn. Again by Lemma 2.1, infk |Dνk

(νk)| > δ and (i) is ful-
filled.
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Since |µn − νn| = |νn| |eiψn − 1| = 2rn sin(ψn/2) we have

0 < |µn − νn| < ψn <
δ

2n+3
(1− |µn|)2.

By Lemma 2.5,

sup
z∈D
|bµn(z)− bνn(z)| ≤ ψn

1 + rn
1− rn

and therefore

sup
z∈D
|bµn(z)− bνn(z)| < δ

2n+3
(1− rn)2

1 + rn
1− rn

<
δ

2n+2
(1− rn) ≤ δ

4
,

which means (ii) is also fulfilled.
For (iii), note first that

pn(z) =

√
1− r2n

ei(2ϕn+ψ)

(z − νn)Cµn(z)Dνn(z)
(1− µnz)(1− νnz)

,

qn(z) =

√
1− r2n

ei(2ϕn+ψ)

(z − µn)Cµn(z)Dνn(z)
(1− µnz)(1− νnz)

.

Hence

‖pn − qn‖∞ =
√

1− r2n sup
z∈D

∣∣∣∣(µn − νn)
Cµn(z)Dνn(z)

(1− µnz)(1− νnz)

∣∣∣∣
≤
√

1− r2n
(1− rn)2

|µn − νn| sup
z∈D
|Cµn(z)Dνn(z)|

<

√
1− r2n

(1− rn)2
δ

2n+3
(1− rn)2‖Cµn(z)Dνn(z)‖∞ <

δ

2n+3
,

which gives (iii).
Now take any sequences {µn}∞n=1, {νn}∞n=1 ⊂ D which satisfy (i)–(iii).

For every n ∈ N, let Un = {z ∈ D; |bµn(z)| ≤ δ/3}. Since |Cµn(µn)| > δ we
have, by Lemma 2.4, |Cµn(z)| ≥ δ/2 for every z ∈ Un. Condition (ii) gives

|bνn(z)| ≤ |bµn(z)|+ |bµn(z)− bνn(z)| < δ

3
+
δ

4
=

1
3

7δ
4

for every z ∈ Un. It follows, by Lemma 2.4 again, that |Dνn(z)| ≥ 7δ/8 for
every z ∈ Un. Thus we have

(2.5) |Cµn(z)Dνn(z)|2 ≥ 49
256

δ4 (z ∈ Un).

Assume now that z ∈ D \ Un. Then |bµn(z)| > δ/3. Consequently, using
inequality (ii), we obtain |bνn(z)| ≥ |bµn(z)|−|bµn(z)−bνn(z)| > δ/3−δ/4 =
δ/12. Hence

(2.6) |bµn(z)bνn(z)|2 > (δ/6)4 (z ∈ D \ Un).
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Inequalities (2.5) and (2.6) together give

inf
z∈D

(|bµn(z)bνn(z)|2 + |Cµn(z)Dνn(z)|2) > (δ/6)4,

as required.

In the remainder of this paper we consider the Blaschke products from
Lemma 2.6 and denote

(2.7) θ = CD, ϑn = bµnbνn , θn = θ/ϑn, Hn = θnHϑn , Mn = Sθ|Hn.

Each operator Mn acts on the two-dimensional space Hn =
∨
{pn, qn} and

it has two eigenvalues µn 6= νn. The corresponding unital eigenvectors are
pn and qn given by (2.3). Hence W(Mn) = {Mn}′ and, by [15], κ(Mn) =
1/sinϕn, where ϕn is the angle between pn and qn. It is easy to show that
sinϕn ≤ ‖pn − qn‖∞. By Lemma 2.6(iii), limn→∞ ‖pn − qn‖∞ = 0, and
consequently

(2.8) κ(Mn) n→∞−−−→∞.
Now we can improve Proposition 1.12.

Proposition 2.7. There exists a C0 contraction T which is reflexive but
not hyperreflexive.

Proof. Let H =
⊕∞

n=1 Hn and T =
⊕∞

n=1Mn. Then T is a C0 contrac-
tion and its minimal function is θ, i.e., a Blaschke product having only simple
zeroes. It is well known that then T and {T}′ are reflexive (see, e.g., [1, 8]).
According to (2.8) and Corollary 1.5 the operator T is not hyperreflexive.

The following theorem is the main result of this section.

Theorem 2.8. There exists a Blaschke product such that the associated
Jordan block is reflexive but not hyperreflexive.

Proof. The function θ defined in (2.7) is a Blaschke product with simple
zeroes, which means that the operator Sθ is reflexive. Observe that, for each
n ∈ N, multiplication by the inner function θn is a unitary operator from
Hϑn onto Hn = θHϑn . Therefore, by Theorem 2.2 and Lemma 2.6(iv), the
family {Hn}∞n=1 forms a Riesz basis for Hθ. Hence Sθ is similar to

T =
∞⊕
n=1

Mn,

which, by (2.8) and Corollary 1.5 is not hyperreflexive. By Proposition 1.1,
Sθ is not hyperreflexive.
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