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Analytic semigroups on vector valued
noncommutative Lp-spaces

by

Cédric Arhancet (Besançon)

Abstract. We give sufficient conditions on an operator space E and on a semigroup
of operators on a von Neumann algebra M to obtain a bounded analytic or R-analytic
semigroup (Tt⊗ IdE)t≥0 on the vector valued noncommutative Lp-space Lp(M,E). More-
over, we give applications to the H∞(Σθ) functional calculus of the generators of these
semigroups, generalizing some earlier work of M. Junge, C. Le Merdy and Q. Xu.

1. Introduction. It is shown in [JMX] that whenever (Tt)t≥0 is a non-
commutative diffusion semigroup on a von Neumann algebra M equipped
with a faithful normal state such that each Tt has the Rota dilation prop-
erty, then the negative generator of its Lp-realization (1 < p < ∞) ad-
mits a bounded H∞(Σθ) functional calculus for some 0 < θ < π/2 where
Σθ = {z ∈ C∗ : |arg z| < θ} is the open sector of angle 2θ around the positive
real axis (0,+∞). Our first principal result is an extension of this theorem
to the vector valued case. We use a different approach using R-analyticity
instead of square functions.

In order to describe our result, we need several definitions.

Definition 1.1. Let (M,φ) and (N,ψ) be von Neumann algebras equip-
ped with normal faithful states φ and ψ respectively. A linear map T :M→N
is called a (φ, ψ)-Markov map if

(1) T is completely positive,
(2) T is unital,
(3) ψ ◦ T = φ,

(4) T ◦ σφt = σψt ◦ T for all t ∈ R, where (σφt )t∈R and (σψt )t∈R denote the
automorphism groups of the states φ and ψ respectively.

In particular, when (M,φ) = (N,ψ), we say that T is a φ-Markov map.
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A linear map T : M → N satisfying conditions (1)–(3) above is normal.
If, moreover, condition (4) is satisfied, then it is known that there exists a
unique completely positive, unital map T ∗ : N →M such that

φ(T ∗(y)x) = ψ(yT (x)), x ∈M, y ∈ N.

The next definition is a variation of the one of [AD] (see also [R] and [HM]).

Definition 1.2. A (φ, ψ)-Markov map T : M → N is called QWEP-
factorizable if there exist a von Neumann algebra P with QWEP equipped
with a faithful normal state χ, and ∗-monomorphisms J0 : N → P and
J1 : M → P such that J0 is (φ, χ)-Markov and J1 is (ψ, χ)-Markov, satisfy-
ing, moreover, T = J∗0 ◦ J1. We say that T is hyper-factorizable if the same
property is true with a hyperfinite von Neumann algebra P .

Now, we introduce the following definition (compare [HM, Definition 4.1]
and [A1, Property 4.10])

Definition 1.3. Let M be a von Neumann algebra equipped with a
normal faithful state φ. Let (Tt)t≥0 be a w∗-continuous semigroup of φ-
Markov maps on M . We say that the semigroup is QWEP-dilatable if there
exist a von Neumann algebra N with QWEP equipped with a normal faith-
ful state ψ, a w∗-continuous group (Ut)t∈R of ∗-automorphisms of N , a
∗-monomorphism J : M → N such that each Ut is φ-Markov and J is (φ, ψ)-
Markov satisfying

Tt = E ◦ Ut ◦ J, t ≥ 0,

where E = J∗ : N −→ M is the canonical faithful normal conditional expec-
tation preserving the states associated with J .

Let C∗(F∞) be the full group C∗-algebra of the free group F∞. We say
that an operator space E is locally-C∗(F∞) if

df (E) = sup
F⊂E,finite-dimensional

inf{dcb(F,G) : G ⊂ C∗(F∞)} <∞.

This property is stable under duality and complex interpolation. All natural
examples satisfy df (E) = 1 (see [Pi6, Chapter 21] and [Har] for more infor-
mation on this class of operator spaces). If M is a von Neumann algebra with
QWEP equipped with a normal faithful state and if E is locally-C∗(F∞),
then the vector valued non commutative Lp-space Lp(M,E) is well-defined
and generalizes the classical construction for hyperfinite von Neumann al-
gebras (see Section 2 for more information).

For any index set I, we denote by OH(I) the associated operator Hilbert
space introduced by G. Pisier (see [Pi4] and [Pi6] for the details). Recall
that OUMDp is the operator space analogue of the Unconditional Martin-
gale Differences (UMD) property of Banach spaces (see Section 2 for more
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information). We also use a similar property OUMD′p for QWEP von Neu-
mann algebras. The definition is given in Section 2. Our main result is the
following theorem.

Theorem 1.4. Let M be a von Neumann algebra with QWEP equipped
with a normal faithful state. Let (Tt)t≥0 be a QWEP-dilatable semigroup of
operators on M . Suppose 1 < p, q <∞ and 0 < α < 1. Let E be an operator
space such that E = (OH(I), F )α for some index set I and for some operator
space F with 1/p = (1−α)/2+α/q. Assume one of the following conditions
holds:

1. Each Tt is hyper-factorizable and F is OUMDq.
2. Each Tt is QWEP-factorizable and F is OUMD ′q.

Let −Ap be the generator of the strongly continuous semigroup (Tt⊗ IdE)t≥0

on Lp(M,E). Then for some 0 < θ < π/2, the operator Ap has a completely
bounded H∞(Σθ) functional calculus.

This result can be used for the noncommutative Poisson semigroup or the
q-Ornstein–Uhlenbeck semigroup and for example E = OH(I) for any index
set I. A version of this result for semigroups of Schur multipliers is also given.

A famous theorem of G. Pisier [Pi2] says that a Banach space X is
K-convex (i.e. does not contain `1n’s uniformly) if and only if the vectorial
Rademacher projection P ⊗ IdX is bounded on the Bochner space L2(Ω,X)
where Ω is a probability space. In his proof, Pisier showed that if X is
K-convex then any w∗-continuous semigroup (Tt)t≥0 of positive unital self-
adjoint Fourier multipliers on a locally compact abelian group G induces a
bounded analytic semigroup (Tt ⊗ IdX)t≥0 on the Bochner space Lp(G,X)
where 1 < p < ∞. Moreover, he proved a similar result for general w∗-
continuous semigroups of positive unital contractions on a measure space if
X does not contain, for some λ > 1, any subspace λ-isomorphic to `12. We
give noncommutative analogues of these results. They are crucial steps in
the proof of our Theorem 1.4.

We say that an operator space E is OK-convex if the vector valued
Schatten space S2(E) isK-convex. This notion was introduced in [JP]. Using
the preservation of K-convexity under complex interpolation (see [Pi1]), it
is easy to see that it is equivalent to the K-convexity of the Banach space
Sp(E) for some (equivalently all) 1 < p <∞.

Our second principal result is the following theorem:

Theorem 1.5. Suppose that G is an amenable discrete group or that
G is the free group Fn with n generators (1 ≤ n ≤ ∞). Let (Tt)t≥0 be
a w∗-continuous semigroup of self-adjoint completely positive unital Fourier
multipliers on the group von Neumann algebra VN(G) preserving the canon-
ical trace. Let E be an OK-convex operator space. If G = Fn, suppose that E
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is locally-C∗(F∞) with df (E) = 1. Consider 1 < p <∞. Then (Tt⊗ IdE)t≥0

defines a strongly continuous bounded analytic semigroup on the Banach
space Lp(VN(G), E).

We will show that this result can be used, for example, in the case where
E is a Schatten space Sq or a commutative Lq-space with 1 < q <∞.

The next theorem is an R-analytic version of Theorem 1.5 and it is our
last principal result.

Theorem 1.6. Let M be a von Neumann algebra with QWEP equipped
with a normal faithful state. Let (Tt)t≥0 a w∗-continuous semigroup of op-
erators on M . Suppose 1 < p, q < ∞ and 0 < α < 1. Let E be an operator
space such that E = (OH(I), F )α for some index set I and for some operator
space F with 1/p = 1− α/2 + α/q. Assume one of the following conditions
holds:

1. Each Tt is hyper-factorizable and F is OUMDq.
2. Each Tt is QWEP-factorizable and F is OUMD ′q.

Then (Tt ⊗ IdE)t≥0 defines a strongly continuous R-analytic semigroup on
the Banach space Lp(M,E).

Finally, we also give a version of these two theorems for semigroups of
Schur multipliers.

The paper is organized as follows. Section 2 gives a brief presentation
of vector valued noncommutative Lp-spaces and we introduce some notions
which are relevant to our paper. Section 3 contains the proof of Theorem
1.5. Section 4 is devoted to proving Theorem 1.6. In Section 5, we give
applications to functional calculus. In particular, we prove Theorem 1.4.
Finally, we present some natural examples to which the results of this paper
can be applied.

2. Preliminaries. The readers are referred to [ER], [Pa] and [Pi6] for
details on operator spaces and completely bounded maps and to the survey
[PX] for noncommutative Lp-spaces.

The theory of vector valued noncommutative Lp-spaces was initiated by
G. Pisier [Pi5] for the case where the underlying von Neumann algebra is
hyperfinite and equipped with a faithful normal semifinite trace. Suppose
1 ≤ p <∞. For an operator space E and a hyperfinite von Neumann algebra
M equipped with a faithful normal semifinite trace, we define by complex
interpolation

(2.1) Lp(M,E) = (M ⊗min E,L
1(M) ⊗̂ E)1/p,

where ⊗min and ⊗̂ denote the injective and the projective tensor products
of operator spaces. In [J1] and [J2], M. Junge extended this theory to the
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case where the underlying von Neumann algebra satisfies QWEP using the
following characterization of QWEP von Neumann algebras. It is unknown
whether every von Neumann algebra has this property. See the survey [O]
for more information on this notion.

Proposition 2.1. A von Neumann algebra M is QWEP if and only if
there exist an index set I, a free ultrafilter U on an index set L, a normal
∗-monomorphism

π : M → B(`2I)
U

and a normal conditional expectation

E : B(`2I)
U → π(M)

where B(`2I)
U denotes the ultrapower of B(`2I) associated with U .

Note that, in general, E is not faithful.

Now, we introduce the vector valued noncommutative Lp-spaces asso-
ciated to a von Neumann algebra with QWEP equipped with a normal
faithful state. Let M and β = (π,E,U , I) be as in Proposition 2.1. Suppose
1 < p <∞. Let E be an operator space. Recall that the vector valued non-
commutative Lp-space Lp(M,β,E) is a closed subspace of the ultrapower
SpI (E)U which depends on the choice of β (see [J2] for a precise definition).

However, when E is locally-C∗(F∞), then Lp(M,β,E)’s are all equivalent
allowing the constant df (E)2. Thus, we can still say that Lp(M,β,E) does
not depend on the choice of β, and therefore we will use the more convenient
notation Lp(M,E) instead of Lp(M,β,E).

Note the following vector valued extension property of completely posi-
tive maps between noncommutative Lp-spaces (see [Pi3] and [J2]).

Proposition 2.2. Suppose 1 < p <∞.

1. Let M and N be hyperfinite von Neumann algebras equipped with
normal faithful semifinite traces and let E be an operator space. Let
T : M → N be a trace preserving unital normal completely positive
map. Then the operator T ⊗ IdE extends to a bounded operator from
Lp(M,E) into Lp(N,E) and

‖T ⊗ IdE‖Lp(M,E)→Lp(N,E) ≤ ‖T‖Lp(M)→Lp(N).

2. Let M and N be von Neumann algebras with QWEP equipped with
normal faithful states φ and ψ respectively and let E be a locally-
C∗(F∞) operator space. Let T : M → N be a (φ, ψ)-Markov map.
Then the operator T ⊗ IdE extends to a bounded operator from
Lp(M,E) into Lp(N,E) and

‖T ⊗ IdE‖Lp(M,E)→Lp(N,E) ≤ df (E)‖T‖Lp(M)→Lp(N).
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Suppose that G is a discrete group. We denote by eG the neutral element
of G. We denote by λg : `2G → `2G the unitary operator of left translation
by g, and by VN(G) the von Neumann algebra of G spanned by the λg
where g ∈ G. It is a finite algebra with normalized trace given by

τG(x) = 〈εeG , x(εeG)〉`2G
where (εg)g∈G is the canonical basis of `2G and x ∈ VN(G). For any g ∈ G,
note that

(2.2) τG(λg) = δg,eG .

Recall that the von Neumann algebra VN(G) is hyperfinite if and only if
G is amenable [SS, Theorem 3.8.2]. A Fourier multiplier is a normal linear
map T : VN(G)→ VN(G) such that there exists a function ϕ : G→ C such
that T (λg) = ϕgλg for any g ∈ G. In this case, we denote T by

Mϕ : VN(G)→ VN(G), λg 7→ ϕgλg.

Let M be a von Neumann algebra equipped with a semifinite normal
faithful trace τ . Suppose that T : M → M is a normal contraction. We say
that T is selfadjoint if for all x, y ∈M ∩ L1(M) we have

τ(T (x)y∗) = τ(x(T (y))∗).

In this case, it is not hard to show that the restriction T |M ∩L1(M) extends
to a contraction T : L1(M) → L1(M). By complex interpolation, for any
1 ≤ p ≤ ∞, we obtain a contractive map T : Lp(M) → Lp(M). Moreover,
the operator T : L2(M) → L2(M) is selfadjoint. If T : M → M is actually
a normal selfadjoint complete contraction, it is easy to see that the map
T : Lp(M)→ Lp(M) is completely contractive for any 1 ≤ p ≤ ∞. It is not
difficult to show that a contractive Fourier multiplier Mϕ : VN(G)→ VN(G)
is selfadjoint if and only if ϕ : G → C is a real function. Finally, one can
prove that a contractive Schur multiplier MA : B(`2I) → B(`2I) associated
with a matrix A is selfadjoint if and only if all entries of A are real.

Now, we introduce the operator space version of the Banach space prop-
erty UMD. Let E be an operator space and 1 < p < ∞. We say that E is
OUMDp if there exists a positive constant C such that for any positive in-
teger n, any choice of signs εk = ±1 and any martingale difference sequence
(dxk)

n
k=1 ⊂ Lp(M,E) relative to a filtration (Mk)k≥1 of a hyperfinite von

Neumann algebra M equipped with a normal faithful finite trace we have

(2.3)
∥∥∥ n∑
k=1

εkdxk

∥∥∥
Lp(M,E)

≤ C
∥∥∥ n∑
k=1

dxk

∥∥∥
Lp(M,E)

.

See [M] and [Q] for more information on this property. We also need a variant
of this property for QWEP von Neumann algebras.
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Definition 2.3. Suppose 1 < p <∞. Let E be a locally-C∗(F∞) opera-
tor space with df (E) = 1. We say that E is OUMD′p if there exists a positive
constant C such that for any positive integer n, any choice of signs εk = ±1
and any martingale difference sequence (dxk)

n
k=1 ⊂ Lp(M,E) relative to a

filtration (Mk)k≥1 of a QWEP von Neumann algebra M equipped with a
normal faithful state we have the inequality (2.3).

Suppose 1 < p < ∞. Any OUMD′p-operator space E is OUMDp. Let
1 < q, r <∞ and 0 < θ < 1 be such that 1/p = (1−α)/q+α/r. If (E0, E1)
is a compatible couple of operator spaces, where E0 is OUMDq and E1 is
OUMDr, then the complex interpolation operator space Eθ = (E0, E1)α is
OUMDp. For any index set I and any 1 < p < ∞, the operator Hilbert
space OH(I) is OUMDp. If E is OUMDp then the Banach space Sp(E) is
UMD (hence K-convex). It is easy to see that the same properties are valid
for OUMD′p operator spaces (with the same proofs).

3. Analyticity. Let X be a Banach space. A strongly continuous semi-
group (Tt)t≥0 is called bounded analytic if there exist 0 < θ < π/2 and a
bounded holomorphic extension

Σθ → B(X), z 7→ Tz.

See [KW] and [Haa] for more information on this notion.

We need the following theorem which is a corollary [Pi2, Lemma 4] of a
result of Beurling [Be] (see also [F] and [Hin]).

Theorem 3.1. Let X be a Banach space. Let (Tt)t≥0 be a strongly con-
tinuous semigroup of contractions on X. Suppose that there exists some
integer n ≥ 1 such that for any t > 0,

‖(IdX − Tt)n‖X→X < 2n.

Then the semigroup (Tt)t≥0 is bounded analytic.

Moreover, we will use the following lemma [Pi2, Lemma 1.5].

Lemma 3.2. Let n ≥ 1 be an integer. Suppose that X is a real Ba-
nach space such that, for some λ > 1, X does not contain any subspace
λ-isomorphic to `1n+1. Then there exists a real number 0 < ρ < 2 such
that if P1, . . . , Pn is any finite collection of mutually commuting norm one
projections on X, then∥∥∥ ∏

1≤k≤n
(IdX − Pk)

∥∥∥
X→X

≤ ρn.

Note that it is known that a complex Banach space contains `1n’s uni-
formly if and only if the underlying real Banach space has the same property.
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Finally, we recall the following result (see [DH, Lemma 1] and [K, The-
orem 2.14] for a complete proof).

Lemma 3.3. Let M and N be two von Neumann algebras equipped with
faithful normal finite traces, and let (xi)i∈I ∈M and (yi)i∈I ∈ N be families
of elements of M and N respectively that have the same ∗-distribution. Then
the von Neumann algebras generated respectively by the xi’s and the yi’s are
isomorphic, with a normal ∗-isomorphism sending xi to yi and preserving
the trace.

We will use the result below which is a variant of Fell’s well-known
absorption principle (see [Pi6, Proposition 8.1]). This proposition is a sub-
stitute for the trick of G. Pisier [Pi2, Lemma 1.6].

Proposition 3.4. Let G be a discrete group and 1 ≤ p < ∞. Let E be
an operator space. If G is non-amenable, we assume that VN(G) has QWEP
and that E is locally-C∗(F∞) with df (E) = 1. For any function a : G → E
finitely supported on G, we have

(3.1)
∥∥∥∑
g∈G

λg ⊗
(n)
· · · ⊗ λg ⊗ ag

∥∥∥
Lp(

⊗n

i=1VN(G),E)
=
∥∥∥∑
g∈G

λg ⊗ ag
∥∥∥
Lp(VN(G),E)

.

Moreover, for any completely positive unital Fourier multiplier Mϕ on the
von Neumann algebra VN(G) preserving the canonical trace and any positive
integer n we have

(3.2) ‖Mn
ϕ ⊗ IdE‖Lp(VN(G),E)→Lp(VN(G),E)

≤ ‖M⊗nϕ ⊗ IdE‖Lp(
⊗n

i=1VN(G),E)→Lp(
⊗n

i=1VN(G),E)
.

Proof. Suppose that m is a positive integer and g1, . . . , gm ∈ G. Let
η1, . . . , ηm ∈ {∗, 1} and ε1, . . . , εm ∈ {−1, 1} be the associated signs (i.e.
εi = −1 if and only if ηi = ∗). For any integer n, using (2.2), we see that

τ⊗nG
(
(λgr1 ⊗

(n)
· · · ⊗ λgr1 )η1 · · · (λgrm ⊗

(n)
· · · ⊗ λgrm )ηm

)
= τ⊗nG

(
(λη1gr1

⊗
(n)
· · · ⊗ λη1gr1 ) · · · (ληmgrm ⊗

(n)
· · · ⊗ ληmgrm )

)
= τG(λgε1r1 ···g

εm
rm

)n = τG(λgε1r1 ···g
εm
rm

) = τG(λη1gr1
· · ·ληmgrm ).

We infer that the families (λg ⊗ · · · ⊗ λg)g∈G and (λg)g∈G have the same

∗-distribution with respect to the von Neumann algebras
⊗n

i=1VN(G) equip-
ped with τ⊗nG and VN(G) equipped with τG. We conclude by using Lemma
3.3 and Proposition 2.2.

Now, we prove the “moreover” part. Using (3.1) twice, for any positive
integer n and any function a : G→ E finitely supported on G, we have
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ϕ ⊗ IdE)

(∑
g∈G

λg ⊗ ag
)∥∥∥

Lp(VN(G),E)
=
∥∥∥∑
g∈G

ϕngλg ⊗ ag
∥∥∥
Lp(VN(G),E)

=
∥∥∥∑
g∈G

ϕng λg ⊗
(n)
· · · ⊗ λg ⊗ ag

∥∥∥
Lp(

⊗n

i=1VN(G),E)

=
∥∥∥(Mϕ ⊗

(n)
· · · ⊗Mϕ ⊗ IdE)

(∑
g∈G

λg ⊗
(n)
· · · ⊗ λg ⊗ ag

)∥∥∥
Lp(

⊗n

i=1VN(G),E)

≤ ‖M⊗nϕ ⊗ IdE‖
∥∥∥∑
g∈G

λg ⊗
(n)
· · · ⊗ λg ⊗ ag

∥∥∥
Lp(

⊗n

i=1VN(G),E)

= ‖M⊗nϕ ⊗ IdE‖
∥∥∥∑
g∈G

λg ⊗ ag
∥∥∥
Lp(VN(G),E)

.

Hence (3.2) follows.

Proposition 3.5. Let M be a von Neumann algebra. Let E be an OK-
convex operator space and 1 < p < ∞. Suppose that one of the following
assertions is true.

1. M is hyperfinite and equipped with a normal faithful semifinite trace.
2. M has QWEP and is equipped with a normal faithful state and E is

locally-C∗(F∞).

Then the Banach space Lp(M,E) is K-convex.

Proof. We begin with the second case. By definition, the Banach space
Lp(M,E) is a closed subspace of an ultrapower SpI (E)U of the vector valued
Schatten space SpI (E) for some index set I. The Banach space Sp(E) is
K-convex. Hence the Banach space SpI (E) is also K-convex. Recall that K-
convexity is a super-property [DJT, p. 261], i.e. passes from a Banach space
to all closed subspaces of its ultrapowers. We conclude that the Banach
space Lp(M,E) is K-convex. The first case is similar using [Pi5, Theorem
3.4] instead of ultraproducts.

Now, we are ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. By [R], for any t ≥ 0, the operator Tt = (Tt/2)2

admits a Rota dilation (see [HM, Definition 5.1] and [JMX, p. 124] for a
precise definition)

T kt = QEkπ, k ≥ 1

where Q : M → VN(G) and π : VN(G) → M and where we use a crossed
product

M = Γ−1(`2,T ⊗2 `
2) oα G

equipped with its canonical trace. We infer that

IdLp(VN(G)) − Tt = Q(IdLp(M) − E1)π.



280 C. Arhancet

Let n be a positive integer. We deduce that

(IdLp(VN(G)) − Tt)⊗n = Q(IdLp(M) − E1)⊗nπ.

For any integer 1 ≤ j ≤ n, we let

Πj = IdLp(M) ⊗
(j−1)
· · · ⊗ IdLp(M) ⊗ E1 ⊗ IdLp(M) ⊗

(n−j)
· · · ⊗ IdLp(M).

Recall that the fermion algebra Γ−1(`2,T ⊗2 `
2) is ∗-isomorphic to the hyper-

finite factor of type II1. Moreover, if G is amenable then by [C, Proposition
6.8], M is hyperfinite. If G = Fn, by [A1, Proposition 4.8], the von Neumann
algebra M has QWEP. By Proposition 2.2, we deduce that the Πj ⊗ IdE ’s
are well-defined and form a family of mutually commuting contractive pro-
jections on Lp(M,E). Moreover, we have

(IdLp(M) − E1)⊗n ⊗ IdE =
∏

1≤j≤n
(IdLp(M,E) − (Πj ⊗ IdE)).

Using (3.2), Proposition 2.2 and Lemma 3.2, we obtain

‖(IdLp(VN(G)) − Tt)n ⊗ IdE‖Lp(VN(G),E)→Lp(VN(G),E)

≤ ‖(IdLp(VN(G)) − Tt)⊗n ⊗ IdE‖Lp(
⊗n

i=1VN(G),E)→Lp(
⊗n

i=1VN(G),E)

= ‖Q(IdLp(M) − E1)⊗nπ ⊗ IdE‖Lp(
⊗n

i=1VN(G),E)→Lp(
⊗n

i=1VN(G),E)

≤ ‖(IdLp(M) − E1)⊗n ⊗ IdE‖Lp(M,E)→Lp(M,E)

=
∥∥∥ ∏

1≤j≤n
(IdLp(M,E) − (Πj ⊗ IdE))

∥∥∥
Lp(M,E)→Lp(M,E)

≤ ρn.

We conclude by applying Theorem 3.1.

Now, we pass to general semigroups on QWEP von Neumann algebras.
Note that the class of operator spaces considered in the following theorem
is included in the class of OK-convex operator spaces.

Theorem 3.6. Let M be a von Neumann algebra with QWEP equipped
with a normal faithful state. Let (Tt)t≥0 be a w∗-continuous semigroup of
QWEP-factorizable maps on M . Suppose 1 < p < ∞. Let E be a locally-
C∗(F∞) operator space with df (E) = 1 such that, for some λ > 1, Sp(E)
does not contain any subspace λ-isomorphic to `21. Then (Tt ⊗ IdE)t≥0 de-
fines a strongly continuous bounded analytic semigroup on the Banach space
Lp(M,E).

Proof. Using the fact that each Tt is QWEP-factorizable and [HM, The-
orem 5.3], it is easy to see that each Tt admits a Rota dilation

T kt = QEkπ, k ≥ 1,

where Q : N → M and π : M → N where N is a QWEP von Neumann
algebra. The rest of the proof is similar to the one of Theorem 1.5. The only
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difference is that we do not use Proposition 3.4. We apply Lemma 3.2 with
n = 1.

For instance, if Sp(E) (where 1 < p < ∞) is uniformly convex then for
some λ > 1, Sp(E) does not contain any subspace λ-isomorphic to `12.

Suppose 1 < p, q <∞. Note that if an operator space E is OUMDq then
the Banach space Sq(E) is UMD, hence uniformly convex. Now, we can
write 1/p = (1−α)/q+α/r for some 0 < α < 1 and some 1 < r <∞. Then
we have Sp(E) = (Sq(E), Sr(E))α. Now recall that, by [CR], if (X0, X1) is
a compatible couple of Banach spaces, one of which is uniformly convex,
then for any 0 < α < 1 the complex interpolation space (X0, X1)α is also
uniformly convex. We deduce that the Banach space Sp(E) is uniformly
convex. Hence, we can use in Theorem 3.6 (and also in Theorem 1.5) any
operator space E which is OUMDq for some 1 < q <∞ and locally-C∗(F∞)
with df (E) = 1. This large class contains in particular Schatten spaces Sq

and commutative Lq-spaces for any 1 < q <∞.

Finally, we deal with semigroups of Schur multipliers. Note that the
construction in [R] of the Rota dilation for Schur multipliers on finite-
dimensional B(`2I) is actually true for any index set I. Moreover, the von
Neumann algebra Γ e−1(`2,T ) of [R] is hyperfinite. Hence, the von Neumann
algebra

M = B(`2I)⊗
(⊗
n∈N

(Γ e−1(`2,T ), τ)
)
.

of the Rota dilation of [R] is also hyperfinite. Using the above ideas, one can
prove the following theorem.

Theorem 3.7. Let (Tt)t≥0 be a w∗-continuous semigroup of completely
positive unital selfadjoint Schur multipliers on B(`2I). Suppose 1 < p <∞.
Let E be an operator space such that, for some λ > 1, Sp(E) does not con-
tain any subspace λ-isomorphic to `21. Then (Tt⊗ IdE)t≥0 defines a strongly
continuous bounded analytic semigroup on the Banach space SpI (E).

Remark 3.8. In [A1, Proposition 5.4], the author gives a concrete de-
scription of the semigroups of the above theorem.

4. R-analyticity. Let (εk)k≥1 be a sequence of independent Rade-
macher variables on some probability space (Ω,F ,P). We let Rad(X) ⊂
L2(Ω,X) be the closure of span{εk ⊗ x : k ≥ 1, x ∈ X} in the Bochner
space L2(Ω,X). Thus for any finite family x1, . . . , xn in X, we have∥∥∥ n∑

k=1

εk ⊗ xk
∥∥∥

Rad(X)
=
( �
Ω

∥∥∥ n∑
k=1

εk(ω)xk

∥∥∥2

X
dω
)1/2

.
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We say that a set F ⊂ B(X) is R-bounded provided that there is a constant
C ≥ 0 such that for any finite families T1, . . . , Tn in F and x1, . . . , xn in X,
we have ∥∥∥ n∑

k=1

εk ⊗ Tk(xk)
∥∥∥

Rad(X)
≤ C

∥∥∥ n∑
k=1

εk ⊗ xk
∥∥∥

Rad(X)
.

In this case, we let R(F ) denote the smallest possible C, which is called
the R-bound of F . Note that any singleton {T} is automatically R-bounded
with R({T}) = ‖T‖X→X . If a set F is R-bounded then the strong closure
of F is R-bounded (with the same R-bound). Recall that if H is a Hilbert
space, a subset of B(H) is bounded if and only if it is R-bounded.

R-boundedness was introduced in [BG] and then developed in the fun-
damental paper [CPSW]. We refer to the latter paper and [KW, Section 2]
for a detailed presentation.

The next result is a noncommutative version of the classical result of
Bourgain [Bo] which itself is a vector valued generalization of a result of
Stein [S].

Proposition 4.1. Suppose 1 < p <∞. Let E be an operator space and
let M be a von Neumann algebra. Assume one of the following condition
holds:

1. M is hyperfinite and equipped with a normal faithful semifinite trace
and E is OUMDp.

2. M has QWEP and is equipped with a normal faithful state and E is
OUMD ′p.

Consider an increasing (or decreasing) sequence (E(·|Mi))i∈N of (canonical)
conditional expectations on some von Neumann subalgebras Mi of M . Then
the set {E(·|Mi) ⊗ IdE : i ∈ N} of conditional expectation operators is R-
bounded on Lp(M,E).

Proof. We only prove the decreasing case M1 ⊃ M2 ⊃ · · · and the hy-
perfinite case. The proofs of the other statements are similar. First suppose
that the trace is finite. Let n be a positive integer and fix some positive inte-
gers i1 > · · · > in. We define the σ-algebra Fk = σ(ε1, . . . , εk), k = 1, . . . , n,
and F0 = ∅. We define the family (Nm)2n

m=1 of von Neumann subalgebras of
L∞(Ω)⊗M by

N2k−1 = L∞(Ω,Fk−1,P)⊗Mik , k = 1, . . . , n,

N2k = L∞(Ω,Fk,P)⊗Mik , k = 1, . . . , n.

These subalgebras form an increasing sequence N1 ⊂ · · · ⊂ N2n. For an
element y ∈ Lp(L∞(Ω)⊗M,E), we define the martingale (ym)1≤m≤2n by

ym = (E(·|Nm)⊗ IdE)(y), m = 1, . . . , 2n.
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Let (dm)1≤m≤2n be the associated martingale difference sequence. Then, by
the OUMDp-property of E, we have∥∥∥ n∑

k=1

d2k

∥∥∥
Lp(L∞(Ω)⊗M,E)

=
1

2

∥∥∥ 2n∑
m=1

dm +
2n∑
m=1

(−1)mdm

∥∥∥
Lp(L∞(Ω)⊗M,E)

≤ 1

2

(∥∥∥ 2n∑
m=1

dm

∥∥∥
Lp(L∞(Ω)⊗M,E)

+
∥∥∥ 2n∑
m=1

(−1)mdm

∥∥∥
Lp(L∞(Ω)⊗M,E)

)
.
∥∥∥ 2n∑
m=1

dm

∥∥∥
Lp(L∞(Ω)⊗M,E)

(here and below, we use . to indicate an inequality up to a constant). Now
fix x1, . . . , xn ∈ Lp(M,E) and put y =

∑n
l=1 εl⊗xl. For this choice of y and

any integer 1 ≤ k ≤ n, we have

y2k−1 = (E(·|N2k−1)⊗ IdE)(y)

=

n∑
l=1

(
E(·|L∞(Ω,Fk−1,P)⊗Mik)⊗ IdE

)
(εl ⊗ xl)

=

n∑
l=1

E(εl|L∞(Ω,Fk−1,P))⊗ (E(·|Mik)⊗ IdE)(xl)

=

k−1∑
l=1

εl ⊗ (E(·|Mik)⊗ IdE)(xl)

and similarly for any integer 1 ≤ k ≤ n we have

y2k =
k∑
l=1

εl ⊗ (E(·|Mik)⊗ IdE)(xl).

Therefore, for any 1 ≤ k ≤ n,

d2k = y2k − y2k−1

=

k∑
l=1

εl ⊗ (E(·|Mik)⊗ IdE)(xl)−
k−1∑
k=1

εl ⊗ (E(·|Mik)⊗ IdE)(xl)

= εk ⊗ (E(·|Mik)⊗ IdE)(xk)

and similarly d2k−1 = 0 for any 1 ≤ k ≤ n. Finally, we obtain∥∥∥ n∑
k=1

εk⊗(E(·|Mik)⊗IdE)(xk)
∥∥∥
Lp(L∞(Ω)⊗M,E)

=
∥∥∥ n∑
k=1

d2k

∥∥∥
Lp(L∞(Ω)⊗M,E)

.
∥∥∥ 2n∑
m=1

dm

∥∥∥
Lp(L∞(Ω)⊗M,E)

= ‖y2m‖Lp(L∞(Ω)⊗M,E)
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= ‖(E(·|N2n)⊗ IdE)(y)‖Lp(L∞(Ω)⊗M,E)

. ‖y‖Lp(L∞(Ω)⊗M,E) =
∥∥∥ n∑
k=1

εk ⊗ xk
∥∥∥
Lp(L∞(Ω)⊗M,E)

.

By the Khintchine–Kahane inequalities (e.g. [DJT, p. 211]), we conclude
that∥∥∥ n∑

k=1

εk ⊗ (E(·|Mik)⊗ IdE)(xk)
∥∥∥

Rad(Lp(M,E))
.
∥∥∥ n∑
k=1

εk ⊗ xk
∥∥∥

Rad(Lp(M,E))
.

We deduce the general case of von Neumann algebras equipped with faithful
normal semifinite traces by a straightforward application of the well-known
reduction method of Haagerup [HJX].

Let X be a Banach space. A strongly continuous semigroup (Tt)t≥0 is
called R-analytic if there exist 0 < θ < π/2 and a holomorphic extension

Σθ → B(X), z 7→ Tz,

with R({T (z) : z ∈ Σθ}) < ∞. See [KW] for more information and for
applications to maximal regularity.

The following result is a particular case of [F, Theorem 6.1].

Theorem 4.2. Let (T1,t)t≥0 and (T2,t)t≥0 be two consistent semigroups
given on an interpolation couple (X1, X2) of K-convex Banach spaces. Sup-
pose 0 < θ < 1. Assume that (T1,t)t≥0 is strongly continuous and R-analytic
and that R({T2,t : 0 < t < 1}) < ∞. Then there exists a unique strongly
continuous R-analytic semigroup (Tt)t≥0 on (X1, X2)θ which is consistent
with (T1,t)t≥0 and (T2,t)t≥0.

Now, we prove Theorem 1.6.

Proof of Theorem 1.6. We only prove the hyper-factorizable case. The
QWEP-factorizable case is similar. We can identify OH(I) with `2I com-
pletely isometrically. Fubini’s theorem gives us the isometric isomorphism

L2(M,OH(I)) = `2I(L
2(M)).

Hence the Banach space L2(M,OH(I)) is isometric to a Hilbert space. On
a Hilbert space, recall that any bounded set is R-bounded. By Theorem
3.6, we deduce that (Tt ⊗ IdOH(I))t≥0 defines an R-analytic semigroup on
Lp(M,OH(I)).

Let t1, . . . , tn be rational numbers. We take a common denominator: we
can write ti = si/d for some integers d, s1, . . . , sn. The operator T1/d admits
a Rota dilation:

T k1/d = QEkπ, k ≥ 1.
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Let x1, . . . , xn ∈ F . Using Proposition 4.1 and the fact that any singleton is
R-bounded, we obtain∥∥∥ n∑

i=1

εi ⊗ (Tti ⊗ IdF )(xi)
∥∥∥

Rad(Lp(M,F ))

=
∥∥∥ n∑
i=1

εi ⊗ (QEsiπ ⊗ IdF )(xi)
∥∥∥

Rad(Lp(M,F ))

≤
∥∥∥ n∑
i=1

εi ⊗ (Esiπ ⊗ IdF )(xi)
∥∥∥

Rad(Lp(N,F ))

≤ R({Ek ⊗ IdF : k ≥ 1})
∥∥∥ n∑
i=1

εi ⊗ (π ⊗ IdF )xi

∥∥∥
Rad(Lp(M,F ))

≤ R({Ek ⊗ IdF : k ≥ 1})
∥∥∥ n∑
i=1

εi ⊗ xi
∥∥∥

Rad(Lp(M,F ))
.

By making use of the strong continuity of the semigroup, we conclude that
{Tt ⊗ IdF : t ≥ 0} is an R-bounded subset of B(Lp(M,F )).

Now, we have

Lp(M,E) =
(
L2(M,OH(I)), Lq(M,F )

)
α
.

Furthermore, the operator space F is OUMDp. We deduce that the Banach
space Sp(F ) is UMD, hence K-convex. Thus the operator space F is OK-
convex. By Proposition 3.5, we deduce that Lq(M,F ) is K-convex. Moreover
the Banach space L2(M,OH(I)) is obviously K-convex. We conclude by
using Theorem 4.2.

For example, we can take E = OH(I) in Theorem 1.6.

5. Applications to functional calculus. We start with a little back-
ground on sectoriality and H∞ functional calculus. We refer to [Haa], [KW],
[JMX] and [L] for details and complements. A closed, densely defined linear
operator A : D(A) ⊂ X → X is called sectorial of type ω if its spectrum
σ(A) is included in the closed sector Σω, and for any angle ω < θ < π, there
is a positive constant Kθ such that

‖(λ−A)−1‖X→X ≤ Kθ/|λ|, λ ∈ C−Σθ.
We recall that the sectorial operators of type < π/2 coincide with the neg-
ative generators of bounded analytic semigroups.

For any 0 < θ < π, let H∞(Σθ) be the algebra of all bounded analytic
functions f : Σθ → C, equipped with the supremum norm ‖f‖H∞(Σθ) =
sup{|f(z)| : z ∈ Σθ}. LetH∞0 (Σθ) ⊂ H∞(Σθ) be the subalgebra of bounded
analytic functions f : Σθ → C for which there exist s, c > 0 such that
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|f(z)| ≤ c|z|s(1 + |z|)−2s for any z ∈ Σθ. Given a sectorial operator A of
type 0 < ω < π, a bigger angle ω < θ < π, and a function f ∈ H∞0 (Σθ), one
can define a bounded operator f(A) by means of a Cauchy integral (see e.g.
[Haa, Section 2.3] or [KW, Section 9]); the resulting mapping H∞0 (Σθ) →
B(X) taking f to f(A) is an algebra homomorphism. By definition, A has a
bounded H∞(Σθ) functional calculus provided that this homomorphism is
bounded, that is, there exists a positive constant C such that ‖f(A)‖X→X ≤
C‖f‖H∞(Σθ) for any f ∈ H∞0 (Σθ). In the case when A has a dense range,
the latter boundedness condition allows a natural extension of f 7→ f(A) to
the full algebra H∞(Σθ).

Suppose 1 < p < ∞. We say that an operator A on a vector valued
noncommutative Lp-space Lp(M,E) admits a completely bounded H∞(Σθ)
functional calculus if IdSp⊗A admits a bounded H∞(Σθ) functional calculus
on the Banach space Sp(Lp(M,E)).

We will use the following theorem [KW, Corollary 10.9]:

Theorem 5.1. Let (Tt)t≥0 be a strongly continuous semigroup with gen-
erator −A on a Banach space. If the semigroup has a dilation to a bounded
strongly continuous group on a UMD Banach space, then A has a bounded
H∞(Σθ) functional calculus for some 0 < θ < π.

We also need a particular case of [KaW, Proposition 5.1] which says
that R-analyticity allows one to reduce the angle of a bounded H∞(Σθ)
functional calculus below π/2.

Proposition 5.2. Let (Tt)t≥0 be a strongly continuous semigroup with
generator −A on a Banach space. Suppose that A has a bounded H∞(Σθ0)
functional calculus for some 0 < θ0 < π. If the semigroup (Tt)t≥0 is R-
analytic then A has indeed a bounded H∞(Σθ) functional calculus for some
0 < θ < π/2.

Now, we give the proof of our main result.

Proof of Theorem 1.4. The semigroup (Tt)t≥0 is QWEP-dilatable. This
yields the existence of a dilation of the semigroup (Tt⊗IdE)t≥0 on Lp(M,E)
to a strongly continuous group of isometries on Lp(N,E).

Since the operator Hilbert space OH(I) has OUMD2 and the operator
space F has OUMDq, we see by interpolation that the operator space E
has OUMDp. We infer that the Banach space Sp(E) is UMD. Hence the
Banach space SpI (E) is also UMD for any index set I. Since N has QWEP,
the Banach space Lp(N,E) is a closed subspace of an ultrapower SpI (E)U

of the vector valued Schatten space SpI (E) for some index set I. We deduce
that the Banach space Lp(N,E) is UMD.

By Theorem 5.1, we deduce that Ap has a bounded H∞(Σθ) functional
calculus for some 0 < θ < π. By Theorem 1.6, the semigroup (Tt ⊗ IdE)t≥0
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is R-analytic on Lp(M,E). By Proposition 5.2, these two results imply that
Ap actually admits a bounded H∞(Σθ) functional calculus for some 0 < θ <
π/2, as expected.

Finally, it is not hard to check that the above arguments work as well
with (IdB(`2)⊗Tt)t≥0 in place of (Tt)t≥0. Thus Ap actually has a completely
bounded functional calculus for some 0 < θ < π/2.

Now, we give some natural examples to which the results of this paper
can be applied.

Noncommutative Poisson semigroup. Let n ≥ 1 be an integer. Here
Fn denotes a free group with n generators denoted by g1, . . . , gn. Any g ∈ Fn
has a unique decomposition of the form

g = gk1i1 · · · g
kl
il
,

where l ≥ 0 is an integer, each ij belongs to {1, . . . , n}, each kj is a nonzero
integer, and ij 6= ij+1 if 1 ≤ j ≤ l − 1. The case l = 0 corresponds to the
unit element g = eFn . By definition, the length of g is defined as

|g| = |k1|+ · · ·+ |kl|.
This is the number of factors in the above decomposition of g. For any
nonnegative real number t ≥ 0, we have a normal unital completely positive
selfadjoint map

Tt : VN(Fn)→ VN(Fn), λg 7→ e−t|g|λg.

These maps define a w∗-semigroup (Tt)t≥0 called the noncommutative Pois-
son semigroup (see [JMX] for more information). In [A1, remark following
Proposition 5.5], it is implicitly said that (Tt)t≥0 is QWEP-dilatable. More-
over, using [R] and [A1, Proposition 4.8], we can show each Tt is QWEP-
factorizable.

q-Ornstein–Uhlenbeck semigroup. We use the notations of [BKS].
Suppose −1 ≤ q < 1. Let H be a real Hilbert space and let (at)t≥0 be
a strongly continuous semigroup of contractions on H. For any t ≥ 0, let
Tt = Γq(at). Then (Tt)≥0 is a w∗-semigroup of normal unital completely
positive maps preserving the trace on the von Neumann algebra Γq(H).

In the case where at = e−tIH , the semigroup (Tt)≥0 is the so-called
q-Ornstein–Uhlenbeck semigroup.

Using [R], [N] and the result [KW, Theorem 10.11] on dilation of strongly
continuous semigroups of contractions on a Hilbert space it is not hard
to see that we obtain examples of QWEP-dilatable semigroups of QWEP-
factorizable maps.

We pass to Schur multipliers.
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Theorem 5.3. Let (Tt)t≥0 be a w∗-semigroup of self-adjoint contractive
Schur multipliers on B(`2I). Suppose 1 < p, q < ∞ and 0 < α < 1. Let E
be an operator space such that E = (OH(I), F )α for some index set I and
for some OUMDq-operator space F such that 1/p = (1 − α)/2 + α/q. Let
−Ap be the generator of the strongly continuous semigroup (Tt⊗ IdE)t≥0 on
SpI (E). Then for some 0 < θ < π/2, the operator Ap has a bounded H∞(Σθ)
functional calculus.

Proof. Arguing as in the proof of [A1, Corollary 4.3], we can reduce the
general case to the unital and completely positive case. The proof for semi-
groups of unital completely positive Schur multipliers, using [A1, Proposition
5.5] and [A2], is similar to the one of Theorem 1.4.

Remark 5.4. The results of this paper lead to properties of some square
functions; see [L, Section 7] for more information.

Acknowledgements. The author would like to express his gratitude
to Christian Le Merdy for some useful advices. He also thank Hun Hee Lee
and Quanhua Xu for some valuable discussions on Proposition 2.2, and Éric
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