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Approximation of the Euclidean ball by polytopes
by

MonikA LupwiG (Wien), CARSTEN SCHUTT (Kiel)
and ELISABETH WERNER (Cleveland, OH, and Lille)

Abstract. There is a constant ¢ such that for every n € N, there is an N,, so that
for every N > N,, there is a polytope P in R" with IV vertices and

voln (BY A P) < evol, (BY)N ™ w1

where By denotes the Euclidean unit ball of dimension n.

1. Main results. Let C' and K be two convex bodies in R”. The Eu-
clidean ball with center 0 and radius r is denoted by B (r). The ball B (1)
is denoted by BZ. Let K be a convex body in R with C?-boundary 0K
and everywhere strictly positive curvature x. Then

. inf{vol, (K \ P) | P C K and P has at most N vertices}
(1) lim 5

N—o0 N n1

n+1

1 1 n—1
=3 del,,—1 ( S K(x)n+T duaK(fv))
oK

where pgx denotes the surface measure of K. This theorem gives asymp-
totically the order of best approximation of a convex body K by polytopes
contained in K with a fixed number of vertices. It was proved by McClure
and Vitale [McV] in dimension 2 and by Gruber [Gr2] for general n. The
constant del,,_; is positive and depends on the dimension n only. Its order
of magnitude can be computed by considering the case K = B%. This has
been done in [GRS1] and [GRS2] by Gordon, Reisner and Schiitt, namely
there are numerical constants a and b such that

an < del,—1 < bn.
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The constant del,_; was determined more precisely by Mankiewicz and
Schiitt [MaS1], [MaS2]. They showed that

(2)

n—1
n+1

(volo—1(B3 ™)) 7T

2

(volo—1 (B3~ 1) "=1

n n+1

<del, | < <1+ clnn)n— 1

where c¢ is a numerical constant. In particular,
deln_l 1

lim = —
n—oo n 2me
What happens if we drop the condition that the polytopes have to be
contained in the convex body and allow all polytopes have at most N ver-
tices? How much better can we approximate the Euclidean ball?
In [Lud] it was shown that for all convex bodies K whose boundary is
twice continuously differentiable and whose curvature is everywhere strictly

positive,
. inf{vol, (K A P) | P is a polytope with at most N vertices}
im
N—o0 N_%

n+1

1 1 n—1
= —ldel,,_1 ( X K(z)n+1 duaK(m)) )
2 0K
The constant ldel,,—; is positive and depends only on n. Clearly, from the
above mentioned results it follows that ldel,_1 < cn. On the other hand, it
has been shown in [B6] that for a polytope P with at most N vertices,

1 __2
—vol,(By)N 1.

vol,(By A P) > ot

Thus between the upper and lower estimate for 1del,,_; there is a gap of
order n?. In this paper we narrow this gap by showing that ldel,_; < ¢
where c is a numerical constant.

THEOREM 1. There is a constant ¢ such that for every n € N there is
an Ny, so that for every N > N, there is a polytope P in R™ with N vertices
such that

(3) vol,(By A P) < cvoln(Bg)N_%.
Gruber [Gr2] also showed

inf{vol, (K AP) | K CP and P is a polytope with at most N facets}
m
N—o0 N_%

n+1

- %divn_l (§ (@) dpoxe()) ™
oK
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where div,,_1 is a positive constant that depends on n only. It is easy to
show [Lud, MaS1] that there are numerical constants a and b such that
an < div,—1 < bn.

Ludwig [Lud] showed that for general polytopes

inf{vol,,(K A P) | P is a polytope with at most N facets}

lim 2
N—oo N_n—l
n+1
1 . _1 n—1
= 3 Idiv,,_1 ( S K(z)n+1 dﬂaK(QU))
0K

where ldiv,,_; is a positive constant that depends on n only. Clearly, 1div,,_;
< cn and Boroezky [Bo] showed that for polytopes P with N facets,

1 2
voln(B A P) > g~ vol, (BE)N w1,

e“mn

Thus again, there is a gap between the upper and lower estimates for 1div,,_1
of order n?. We narrow this gap by a factor of n.

THEOREM 2. There is a constant ¢ such that for every n € N and for
every M > 10"=D/2 gnd all polytopes P in R™ with M facets we have

(4) vol,(BE A P) > evol, (BY)M 1.
For additional information on asymptotic approximation see [Grl], [Gr3],
[Sch].
2. Proof of Theorem 1. We need the following lemmas.
LEMMA 3 (Stirling’s formula). For all x > 0,
Vorzate ™ < Iz +1) < V2rza®e e/,
The following lemma is due to J. Miiller [Mii].

LEMMA 4 ([Mi]). Let E(OBY, N) be the expected volume of a random
polytope of N points that are independently chosen on the boundary of the
FEuclidean ball By with respect to the normalized surface measure. Then
vol,(BY) —E(0BY,N)

_2
n—1

lim
N—oo N~

n+1 n41
n—1

(n— 1)wT (voly_1 (8By)) i1 I(n+1+ -27)
(vol,_o(@By 1))t 2(n + 1)!

The following lemma can be found in [Mil], [SW, p. 317], and [Z&]. Let
[Zn, ..., 2n] be the convex hull of x1, ..., z),.




4 M. Ludwig et al.

LeMMA 5 ([Mil]).
(5)  duopy(z1)- - duopp(zn)

vol,_1(|x1,...,Zn
= (n—1)! (11(£ ;Q)n/Q D dpopynm (1) -+ - dpopynm (Tn) dp dpopy (§)
where & is the normal to the plane H through x1,...,x, and p is the distance

of the plane H to the origin.
LEMMA 6 ([Mil]).

(6) S S (voln([z1,. .. >$n+1]))2 dﬂaBg(r)<$1) ' "dMaBg(r)(fan)
oBy(r) 9Bz (r)
n242n—1

= U (ol (0B3).

For a given hyperplane H that does not contain the origin we denote

by H* the halfspace containing the origin and by H~ the halfspace not

containing the origin. A cap C of the Euclidean ball BY is the intersection

of a halfspace H~ with Bj. The radius of such a cap is the radius of the
(n — 1)-dimensional ball B N H.

LEMMA 7 ([SW]). Let H be a hyperplane, p its distance from the origin
and s the normalized surface area of 0By N H™, i.e.
_ vol,_1(0By N H™)
- VOln_l (833)

Then
dp 1 vol,,_1(0BY)
(7) d_ = n=3 n—1y"
S (1—-p?)= Voln_g(aB2 )
LEMMA 8 ([SW, Lemma 3.13]). Let C be a cap of a Euclidean ball with
radius 1. Let u be the surface area of this cap and r its radius. Then

U

®) (vl—w))_ ~ T (1?3))—

5

u n—1 u nil
—¢C n—1 S r(u) S n—1
VOln_1(32 ) VOln_1(32 )

where ¢ is a numerical constant.

The right hand inequality is immediate, since u > r"~'vol,_1(By ™).

Proof of Theorem 1. The approximating polytope is obtained in a proba-
bilistic way. We consider a Euclidean ball that is slightly bigger than the ball
with radius 1, by a carefully chosen factor. We choose N points randomly in
the bigger ball and we take their convex hull. With large probability there
is a random polytope that fits our requirements.
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For technical reasons we choose random points in a Euclidean ball of
radius 1 and we approximate a slightly smaller Fuclidean ball, say with
radius 1 — ¢ where ¢ = ¢,y depends on n and N only.

We now compute the expected volume difference between B% (1 — ¢)
and a random polytope [z1,...,zy]| whose vertices are chosen randomly
from the boundary of Bj. Note that random polytopes are simplicial with
probability 1. We want to estimate the expected volume difference

(9)  Evol, (B3 (1 —c¢) A Py)

= | - | volu(BY(1 =) A [m1,...,an]) dP(21) - - dP(z )
0By OB}

where [P denotes the uniform probability measure on 0B%. Since the volume
difference between B% (1 — ¢) and a polytope Py = [z1,...,2n] is

vol, (B5 (1 —¢) A Py)
= vol,(By \ BY(1 —¢)) — vol,(BY \ Pn) + 2vol,(B5(1 —¢) N Py),
the above expression equals
vol, (B3 \ By (1 —¢))
= | o | volu(BE [, an]) dP(2n) - - dP ()

OBy OBy
+2 | o | voln(BE(L =) N [z, an]®) dP(21) - - dP(z).
OBy OBy

For given N we choose ¢ such that
(10)  voln (B3 \ By (1 —c))

- S S vol, (B3 \ [z1,...,2zN]) dP(21) - - - dP(zN).
8By OBy

For this particular ¢ we have

| - | voln(BE(1—0) Az, 2n]) dP(z1) - - - dP(2n)

0By OBy
=2 S S vol, (B3 (1 —c) N [xq,...,2N]|) dP(z1) - - - dP(xN).
oBy OB

By Lemma 4 the quantity c is for large N asymptotically equal to

n+

(11) N ai(n— 1)1 (

vol,_1(9BY) ) T D(n+ 1+ -25)
vol,_o(0By 1) 2(n+1)!
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In particular, for large enough N,

(12) c< (1+%>N AT (- 1)1

n

« ( vol,_1(9BY) )— L(n+1+ %)
vol,_9(0By 1) 2(n+1)!

n+1

and
1 n+1

(13) (1 - $>N_%(n ~ 1)
" ( vol,,_1(0BY) )n 1F(n+1+ —22)
voln_z(aBg_l)
Thus there are constants a and b such that
(14) aN~"T < ¢ < N1
We continue the computation of the expected volume difference:

| - | vola(B(1—0) Az, ..., 2n]) dP(z1) - - dP(2n)
0By 9By

<ec.
2(n+ 1)! -

=2 | - | vol(By(1 =) [21,...,25]%)

OBy  OBY
X X{0€[z1,....en]o} AP(21) - - dP(zN)
+2 S S vol,(By (1 —¢)Nz1,...,zN]%)
0By OB
X X{0¢[z1,...wnlo} AP(21) - - - dP(2N)
<2 | - | vol(B¥(1— )Nz, ..., 2n]%)
oB% oB%

X X{0€[z1,....zn]°} AP(21) - - - dP(2N)

+volo(BY) | - | Xpogtor,.one) AP(21) -+ dP(2 ).
oBy OBy

By a result of [Wen]| the second summand equals
n—1 N—1
vol, (By)2~ N+ Z < ) < vol,(By)2 N tinN™,
k=0 k

so it is of much smaller order (essentially 27%) than the first summand,
which, as we shall see, is of the order of N =2/(n=1) " Therefore, in what
follows we consider the first summand.

We introduce @;, . ;. : 0By x -+ x 0B} — R where

Pjy,.u (X1, 2N) =0
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if [zj,,...,2;,] is not an (n — 1)-dimensional face of [z1,...,2zN] or if 0 is
not in [z1,...,xN], and
Py v (X1, ZN)
=vol,(By(1 —¢)N[z1,...,zN]° Ncone(zj,, ... ,xjn))X{OE[th@N}o}
if [zj,,...,2;,] is a facet of [z1,...,2n] and if 0 € [x1,...,zN]. Here
n
cone(xy,...,xTn) = {Zaixi Vi:a; > 0}.
i=1
For all random polytopes [z1, ...,z ] that contain 0 as an interior point,
R" = U cone(xj,...,xj,).
[©jq 5T, ] is a facet of [x1,...,xn]
Then
| oo | vola(BR(L =) N 21, 2n]) X 0efon,.ono) AP(21) - - dP(2)
oB} OBy
= S S Z ¢j17”.7jn($1,...,$]\[) dP(CEl)dP(ﬂﬁN)
0B% OB% {j1,....jn }C{1,...,.N}
where we sum over all different subsets {ji,...,J,}. The latter expression
equals

" oBy 0By

Let H be the hyperplane containing the points 1, ..., z,. The set of points
where H is not well defined has measure 0 and
IP’N_"({(:L““H, ooy xN) | [71, ..., xn) is a facet of [z1,...,2N]
vol, 1 (8By N HH)\ V"
voln_l (833)

and 0 € [x1,...,2N]}) = (
Therefore the above expression equals
(N> S S (voln_l(aBg NHT) ) N=n
"/ oms  oBy vol,—1(0BY)
x volp (B3 (1 —¢) N H™ Ncone(z1, . .., Tn))X{oe[z1,....ay]o} AP(21) - - - dP(2n).

Since H~ does not contain 0 this can be estimated by
(N> S S (mnl(aBg N H+))N—”
n oBy  oBp vol,—1(0BY)
x vol,(By (1 —¢) N H™ Ncone(zy,...,xy)) dP(x1) - - - dP(zy,).
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By Lemma 5 the latter expression equals

1

(Yl g} g e ()
n/ (voln1(9B3))" OBy 0OBYNH — OBYNH voln—1(053)

x vol,(By (1 —¢) N H™ Ncone(zy,...,Ty))

volp—1([@1, ..., 2n])
(1 _ p2)n/2

This in turn can be estimated by

N (n—1)!
(15) (n) (vol, 1 (0B5))"

: vol,_1(8By N HH)\ V™"
ST N ( Vol 1 (055) )

dpopynm (1) -+ - dpopynm (Tn) dp duopy (§).

OBy 1-1/ndByNH  OBPNH
x vol,(By (1 —¢) N H™ Ncone(zy,...,T,))

vol,—1([x1, ..., %n
(i<£ 21?2)n/2 1) dpoppnm (T1) -+ - dpopypnm (Tn) dp dpspy (§)

times a factor that is less than 2 provided that NNV is sufficiently large. Indeed,
forp<1-—1/n,

vol,_1(8By N HH)\ V™"
vol,—1(0BY)

< eXp<—(N —n) vol,—1(9By N H—)>

vol,—1(0BY)

2 1 >"T_1voln_1(Bg—1)>

< eXp<—(N ) (5 ") Tavon D)

< N —n
= P\ T2

and the rest of the expression is bounded. We have

vol, (B3 (1 —¢)NH™ Ncone(xy,...,Ty,))

1 _ n
< gmax{(), < C> —1}voln1([a:1,...,:cn]).
n p

This holds since By (1 —¢) N H™ Ncone(zy, ..., T,) is contained in the cone
cone(x1,...,Zy,), truncated between H and the hyperplane parallel to H at
distance 1 — ¢ from 0. Therefore, as p < 1 the above is at most
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N (n—1)! : vol,_1(0By N HH)\ Y
<n>(VO1n—1(5BS))” I T S ( vol,—1(9B7) >

OB} 1-1/ndBRNH  OBYNH

< Lina {0, (%) - 1} <voln(11<[ic;2.).n./,2xn]>>2

X dpoppnm (1) - - - dpopynn (Tn) dp duopy ()
By Lemma 6 this equals

N\ (vol,_o(dB2 )" n ¢ (volu_1(0Br N HH)\ V™
(n> (vol,,—1(0B3))" (n—l)”‘18 ) ( vol,—1(0B3) )

8By 1-1/n

1 1—c\" =2
0 (57) G s @

where r denotes the radius of By N H. Since the integral does not depend
on the direction ¢ and 72 + p? = 1 this is

(V) ot al0B
n ) (vol,—1(0By))"~1 (n—1)n~1

1 + N—n n
(0B 1— o
=y vol,—1(0BY) n D

This equals
(vol,—2(0B5~ 1)) n
(16) ( )(Voln 1(0BY)»=1 (n—1)n—1

y T vol, 1 (0B NHI)\ V"1 (1—c SRR (T
vol,—1(0BY) n p b

1-1/n

Since p > 1 — 1/n and c is of the order N~2/(n=1) " we have, for sufficiently

large N,
1 1—c\"
—{( C) —1}§3(1—c—p).
n p

Therefore, the previous expression can be estimated by an absolute constant
times

(vol,_2(9By~1))" n
{17) ( )<voln \OBT (n =1

y T <v01n_1(aBgmH+)
-1/ VOln_l(aBg)

N 2
> (1—c—p)r" " 2dp.
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We choose
B vol,—1(0By N H™)
N VOln_l (833)

as our new variable under the integral. We apply Lemma 7 in order to change
the variable under the integral

N\ (vol,_o(dBy~1))n1 n
w  (3) S e
1/2
X S (1—s)N""(1—-c— p)r("*l)2 ds
s(1—c)

where the normalized surface area s of the cap is a function of the distance
p of the hyperplane to 0. Before we proceed we want to estimate s(1 — ¢).
The radius r and the distance p satisfy 1 = p? + r2. We have

n—1 n—1
n—1 Vol,—1(By ™) <s(v/1-12) < 1 n1 Volp—1(By ")
VOln_l(aBg)

=12 Vol 1(0B})

To show this, we compare s with the surface area of the intersection By N H
of the Euclidean ball and the hyperplane H. We have

vol,_1(B¥NH) . yvol, 1(By™1)
=r" .
VOln_l(aBg) VOln_1<aB§L)

Since the orthogonal projection onto H maps 0B85 N H~ onto By N H the
left hand inequality follows.

The right hand inequality follows again by considering the orthogonal
projection onto H. The surface area of a surface element of 0By NH ™ equals
the surface area of the one it is mapped to in By N H divided by the cosine
of the angle between the normal to H and the normal to 0Bj at the given
point. The cosine is always greater than /1 — r2.

For p = 1 — ¢ we have r = v/2¢ — ¢2 < v/2c. Therefore by (12) we get

et/ vol,_1(By™1)
1 1—c)< ek
(19)  s(l-0)= 1—c vol,_1(0BY)

1

_2 2 n_21
. {2N—%(n—1)z—*}( vol,1(953) >n—1F(n+1+n 1>} :

vol,_9(0By 1) 2(n+1)!
e 1 (M(n+14 27—\ "
Cl-c N{ (n+1)! } '

The quantity c is of the order N=2/("=1) therefore 1/(1 — ¢) is as close to 1
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as we desire for N large enough. Moreover, for large n,

n—1
n—1Y) 2
n+1

is asymptotically equal to 1/e. Therefore, for both n and N large enough,

Fn+1+29) "z
8(1 o C) < 61/12 L ( nfl) )
eN n!
For n sufficiently large,
2 )y 252
{F(”+;'+ =) } ? < 112y,

Indeed, by Lemma 3,

2 n+3 = N S
F(n+1+n71)< 1+L 2 n_‘_i le*%eIQ(n-‘—n—zI)
n! - n(n—1) n—1

and

n—1

(F(n—l—l—i—%))T

n!
1 2\ "z () 2\ gl
< —<1+7> <n+ >e24<"+n—1>.
T e n(n —1) n—1

The right hand expression is asymptotically equal to ne’/2*. Altogether,

_o < 1/6i_
(20) s(l—c)<e N

Since p = V1 — r2 we get, for all r with 0 < r <1,
1
l—c—pzl—c—\/l—r2§57'2—1—7'4—6.

(The estimate is equivalent to 1 — %T‘Q — 7% < /1 —r2. The left hand side is
negative for r > .9 and thus the inequality holds for » with .9 < r < 1. For
r with 0 <r < .9 we square both sides.) Thus (18) is smaller than or equal
to
(21) N\ (vol,_o(dBy~ 1))t n
n) (vol,—1(0B%))"=2 (n— 1)1
1
1
X S (1—s)Nm (5 r2 4t — c) r=1? g,
s(l—c)

Now we evaluate the integral. We use Lemma 8. By differentiation we
verify th 12 4 o)pn=D? i
y that (27’ +r c)r is a monotone function of r. Here we use
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the fact that %7“2 + r* — ¢ is nonnegative. Hence
1

=¥ (Gt =) as
s(1—c)

1 N { voln_1(9By) \" T
1 G I
0 n—1 2
1 n—14-4-
n— By n-
F] (1Y (s SO )T,
0 volu_1 (9By) \ "
-|a _S)N_nc< Lﬁ) ds
0 VOln 1(B )
s(1—c) 1
l,—1(0BY
] Y5 XL g
0 vol,,_1(By 1)
By (13),
1 1 ]
S (1- S)N_n<§7"2 +rt - c>r(”_1) ds
s(1—c)
2
< (lenrloBy) YT LN DT 5
2 \volp—1(By ™) I'(N+1+-2%)
(a0 YR TN )
V01n71(B£L*1) F(N'f— 1+ m)
B (1 B i) < vol,,_1(0BY) >”1F(N —n+1)I(n)
n? ) \vol,_1(By~') I'(N+1)
ntl 2
" (n—1)n1 (voln,l(aBg))nfl F(n +1+ =% ) N
(vol,_o(dBy 1)1 2(n+1)!
VOln—l(aBg) )nl N-n_n—1
+es(l - T oniy 1—s s
o= <V01n1(331) se[(ﬂ?f{—cn( )
Thus

IN

L ( vol,—1(9BY) >+ [(N=n+1DI(n+ 7%)
2 \volp—1(B3 ™) r(N+1+-%)
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N (Volnl(aBg) )H_H_% I'(N=n+1)I'(n+ ;%)
vol,—1(By™1) I'(N+1+-%)

n n—1+—2+
_1<1_i> n—1 (Volnl(aBQ)) n—T
2 n? ) (n+1)n \vol,_i(By~1)
I'(N-n+1)I(n+1+ %)N,L
I'(N+1)

n n—1
+es(l—c) <—V01n1(aB_21) )
VOln_l(Bg )

max (1 —s)V mgn L,

s€[0,s(1—c)]
The second summand is asymptotically equal to

vol,_1 (0B3) \" 7T (N — n)l(n — 1)lna-t
(23) 1  [pn—1y 4
voln,—1(By ™) NI(N 4 1)1

B (voln_l(aBg) )”—”ﬁ n” AT
vol, 1 (B}~ 1) (MY(N 4+ 1)7 T

This 2summand is of the order N = while the others are of the order
N n-T,
We consider the sum of the first and third summands:
1/ vol,_1(8B}) \" 71 (N —n+ 1) (n+ %)
_<voln_1(Bg—1)> I(N+1+ ;%)

y <1_(1_%)(n—l)F(n+1+%)F(N+l+%)>

n(n+1)0(n+ 2) (N + 1)Nw1

Since F(n + 1+ %) = (n + n2 1)F(n + 5 ) the latter expression equals

b (ka0 Y LY D g
vol,—1(By ™) I'(N+1+-%)

X<1_<1_i>(n—1( 2r (N+1+%)>'

n(n+ 1) (N + )Nt

Since I'(N + 1 + %) is asymptotically equal to (N + 1)%F(N + 1) the
sum of the first and third summands is for large N of the order
1 < vol,_1(dBY) >”1+n31 I(N—n+1)(n+ 52)

24
(24) vol,_1(By™1) I'(N+1+-%)
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which in turn is of the order
1 ( vol, 1(9By) \" a1 (N !

L (mm Yy
n= \vol,_1(By ™) n

We now consider the fourth summand. By (14) and (20) it is less than
n n—1

(26) bN T < VOln_l(anl) ) max (1 —s)V "L

ed/SN \ vol,,_1(By™1) s€[0,5(1—c)]

The maximum of the function (1 —s)V~"s""! is attained at (n—1)/(N —1)
and the function is increasing on the interval [0, (n —1)/(N — 1)]. Therefore,
by (20) we have s(1 —¢) < (n —1)/(N — 1) and the maximum of this
function over the interval [0, s(1 —c¢)] is attained at s(1—¢). By (20) we have
s(1 —¢) < e/ and thus for N sufficiently large

N—n n—1
_ O N-ngn-1 ~ . n 1/6
se[(ﬂ?lx—c)](l 5) s - <1 65/6]\7) (e eN
<o n—1 nN-n)\/n nl
=P\ 7 SN ) \eN

<en(-5) (&)

Thus we get for (26) the bound, with a new constant b,
bN_% < vol,_1(0BY) >n16n/6 n”e‘”.
vol,_1(By™1) N7

This is asymptotically equal to

__2 [ vol,_1(0BY) )"—1 e L
27 pN w1 ( Yomn=1l9D2) . —
27) (VOln_l(Bg_l) c (N)\/27Tn

n

Altogether, (15) for N sufficiently large can be estimated by

(N> (vol,_o(9By~1))n1 n
n) (vol,—1(0By))"=2 (n—1)»"1

ny N\ n—14+-—2- -1
% {i( voln_1(8B21) ) +n—1 <N) N_%
n? \vol,_1(By ) n

_2 voln1(833)>”_1 e }
4N T () ) /6= L
(VOln_l (B;L_l) (N) V21N

n
This can be estimated by a constant times

n 1 __2 ——2_ /6 1
(28) (VOlnl(aBQ))TL{EN n—1 —|—bN n—1e /\/ﬁ}
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Finally, it should be noted that we have been estimating the approximation
of BY(1 — ¢) and not that of BY. Therefore, we need to multiply (28) by
(1-¢)~". By (14),
1-c">1-b—"
N7-1
n—1

so that for all N with N > (2bn) 2 we have (1 —¢)™ < 2. u

3. Proof of Theorem 2. We need another lemma.

LEMMA 9. Let Py be a polytope with M facets Iy, ..., Fy that is best
approzimating for a conver body K in R™ with respect to the symmetric
difference metric. For k=1,..., M, let

Fl = F,NK, F}=F,NK°.
Then, for allj=1,..., M,
VOln_l(F]i-) = Voln_l(F]‘f").

Proof. Let Hj, 5 =1,..., M, be the hyperplane containing the face F.
Then

M
Py = ﬂ H}.
j=1

Suppose Hy = H(xg, &), i.e. Hy is the hyperplane containing x; and or-
thogonal to &,. We consider

P =()HS ﬂH+<xk+ H;—knxkgk>
Jj#k
We have
vol,_1(P; A K) = vol,_1(Py A K) + t(vol,_1 (F{) — vol,_1(F}.)) + t(t)
where 1(t)/t? is a bounded function. m

Proof of Theorem 2. Let Py be a best approximating polytope with M
facets Fy,..., Fy for By with respect to the symmetric difference metric.
For k=1,..., M, let

Fy=F,NBy,  F=Fn(DBy),

let Hj be the hyperplane containing the facet Fj and let C) be the cap of
B3 with base Hj, N By. (There are actually two caps, we take the one whose
interior has empty intersection with Pys.) For k =1,..., M we put

height of the cap C) if Fj, N (BY)° # 0,
k pr—
0, it Fy N (B)° = 0.
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Then

(29) vol,_1(Py & BY) th vol,_1(FL).
k 1

Let 7, be such that VOln_l(TkB;_l) = VOln_1<F]i€). Thus

< vol,_1(F}) >—
Tk = n—1 :
voln_l(BQ )

Let Ek be the height of the cap of Bf with base rkBgfl. Then
(30) hie < by, for all k,

and

. 2

~ i prn

hi, > 1 2> L (—VOln_l(Fli)l ) "
2 2 VOln_l(B721 )

Thus from (29) with (30) we get

1 L (vol,_y (Fl))wT
2
2n = 1 (vol,—1(By 1))
M
1
VOln ]_ Fk’ + .
k=1

(31) vol,—1(Py A BY) > —

Z -
8me

We consider two cases. The first case is

M M
(32) > voln 1 (Fy) + > voly 1(Ff) > cvol, _1(9B3),
k=1 k=1

where M > 10"=1/2 and ¢ = 9/10. It then follows from Lemma 9 that

(33) 3 volu1(F}) > g vol,_1(0BY).

By Hoélder’s inequality

M B M ; 1/p ’

3 vol,_1(F}) < (Z(Vdn_l(p,;))p) MV
= k=1
ith p =

n+1

Therefore from (31) and (33) w = L we get
ntl

2)n 1 ntl
vol,—1(Py A& By) > (6/8) — (n voln(Bg))nﬂ >
T M1 {M n—1
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The second case is that (32) does not hold. Thus

M
Zvoln 1(Fy) = Zvoln 1(Fl) —|—Zvoln 1(Ff) < evol,—1(0B3).
k=1 k=1

Then, by the isoperimetric inequality,

M _n_
l,—1(F; n—1 n_
vol, (Py) < (Z\I’:ll V?(aé;)k)) vol, (By) < ¢n—1 vol,(BY)

and thus

vol,(Py A By) > (1 — ¢n- 1)V01n(Bg).

Since ¢ = 9/10, this last expression is greater than M = vol,, (Bg), pro-
vided M > 10nT_1, which holds by assumption. =
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