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Gagliardo—Nirenberg inequalities in weighted Orlicz spaces
by

AGNIESZKA KALAMAJSKA and
KATARZYNA PIETRUSKA-PALUBA (Warszawa)

Abstract. We derive inequalities of Gagliardo—Nirenberg type in weighted Orlicz
spaces on R", for maximal functions of derivatives and for the derivatives themselves. This
is done by an application of pointwise interpolation inequalities obtained previously by the
first author and of Muckenhoupt-Bloom-Kerman-type theorems for maximal functions.

1. Introduction. Interpolation inequalities for derivatives have been
studied for a long time. Beginning with the pioneering works by Hadamard
[19-21], Kneser [32], Landau [38-40], Hardy, Littlewood and Landau [22-24],
Kolmogorov’s celebrated article [34], and the famous results of Gagliardo [16]
and Nirenberg [45], now there is a large body of literature on this subject
(see e.g. [3, 7, 11, 12, 18, 25, 27, 36, 41-43, 46, 49| and their references).

Despite intensive investigation carried out in this area, there are only a
few articles about interpolation inequalities in Orlicz spaces. The only ones
we know of are contributions by Bang and coauthors [3-6] and our recent
papers [26-28]. Here we continue the research in this direction.

Our main goal is to obtain inequalities of the form

@y §e(v®uldp < (Joa(ul) da+ [oa(V ) du)
and also

k/m k/m
(1.2) VB ull gy < ellull a1V ™l

where ¥, ¥; and ¥, are N-functions satisfying certain consistency conditions,
0 < k < m are positive integers, and p belongs to some class of weighted
Radon measures.
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Our results extend those of Bang [3] who dealt with inequalities (1.2)
for one-variable function and the Lebesgue measure. In our previous pa-
pers [26-28], we have discussed inequalities (1.1), (1.2), together with their
generalizations, for the Lebesgue measure. More precisely, in [26] and [28]
we have obtained variants of (1.1) and (1.2) in various logarithmic Zygmund
spaces (for ;1 = dx) and our paper [27] was devoted to similar inequalities in
general Orlicz spaces, but for the Lebesgue measure and £ = 1, m = 2 only.
They have arisen there as special cases of more general inequalities

(13)  §w(vul)de < (§00(Ra(lul, V@ ul)) dot§ 2a(Ro((ul, VD)) de)
and also

(14)  [Vullzogy < ClRi(ul, IVl I Ba(ul, VO .

where Ry, Rs : [0,00)2 — R were continuous functions such that
Ri(A1; A2) Ra(A1, A2) = At Ag.

Note that inequalities (1.1) and (1.2) for £ = 1,m = 2 and the Lebesgue
measure correspond to Ri(A1,A2) = A1 and Ra(A1, A2) = A2. The results
of [26-28] were based on the crucial observation that for a smooth function
u with bounded support the integral {¥(|Vu|) dz can be estimated by the
quantity § N(|Vu|)|u| |V u|dz (with a certain function N), which was then
the object of further analysis.

Here we also deal with inequalities in the form (1.1) and (1.2), but our
present approach is essentially different and brings new results. Namely, our
starting point is the following pointwise multiplicative inequality expressed
in terms of the Hardy—Littlewood maximal functions, obtained by the first
author in [25]:

MVB f)(@) < Co(Mf(@) ™MV f) ()™,
holding true for every f € W, 1(R”) and almost all x € R™. Then, using

loc
Young inequalities in Orlicz spaces, we obtain counterparts of (1.1) and (1.2)

for maximal functions (see Theorem 3.1):

15) | @CsmVBf)ydu< | S1(siMf)du+ | Sa(s2M(V™ f)) dp
Rn Rn Rn
and

(16) MO f) oy < CHUMPIE DM |1

L%1( LP2(p)’
where @, @1, ®5 are certain functions, p is an arbitrary nonnegative Radon
measure, and s, s1, So are certain positive numbers. Inequality (1.6) requires
&, d1, Py to be N-functions, but (1.5) is valid for some nonconvex functions
as well. In Section 4 inequalities (1.5) and (1.6) are then transformed into
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(1.1) and (1.2). This is done by an application of various Muckenhoupt—
Bloom—Kerman-type direct and reverse inequalities for maximal functions
from [8, 30, 31|, within appropriate classes of measures.

Although inequalities (1.3) and (1.4) do not follow from our new meth-
ods, those derived now extend some of the previously obtained ones (for
uw=dr, k=1, m = 2) to wider classes of admissible functions and mea-
sures. More precisely, when we restrict ourselves to k = 1, m = 2, yu = dx,
then the Gagliardo—Nirenberg inequalities (1.1) and (1.2) are a special case
of (1.3) and (1.4). These are the inequalities that are generalized presently.
See Section 5 for a detailed discussion.

We hope that the results presented here will contribute to the develop-
ment of regularity theory for PDE’s in Orlicz spaces, similarly to the classical
case. For various regularity results in Orlicz—Sobolev spaces and motivations
we refer to the papers [10, 14, 47, 51| and their references.

Acknowledgements. The authors would like to thank Professors: An-
drea Cianchi, Amiran Gogatishvili, Miroslav Krbec and Lubo§ Pick for dis-
cussions.

2. Preliminaries and notation. We start by recalling preliminary
facts about Orlicz spaces, referring e.g. to [35] for details.

Suppose that p is a positive Radon measure on R" and let @
[0,00) — [0,00) be an N-function, i.e. a strictly convex function satisfying
limy_,0 @(\)/A = 0 and limy_,o, (N\)/A = oc.

The weighted Orlicz space L?(y) is the space

L%(p) == {f measurable : S O(|f(z)|/K) du(xz) <1 for some K > 0},
R”
equipped with the Luxemburg norm

|l eey = inf { K > 0: | @(1f(@)|/K) dpu(x) <1}
Rn

This norm is complete and turns L?(yx) into a Banach space. When p is
the Lebesgue measure, it is dropped from the notation. For #(\) = A with
p > 1, the space L?(1) coincides with the usual LP(y) space.

The symbol @* denotes the Legendre transform of an N-function @, i.e.
&*(y) = sup,~glry — @(z)], defined for y > 0. It is again an N-function and
from its definition we get the Young inequality:

(2.1) xy < d(x) + P*(y) for x,y > 0.

@ is said to satisfy the Ag-condition if, for some constant ¢ > 0 and every
A > 0, we have
(2.2) D(2N) < cd(N).
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In the class of differentiable convex functions the As-condition is equiv-
alent to

(2.3) AP () < eP(N),

satisfied for every A > 0, with a constant ¢ independent of A (see e.g.
[35, Theorem 4.1]).

We will need the following two properties of modular functionals (see
[35, formulas (9.20) and (9.4)]): for every f € L?(u) we have

(2.4) 1f oo < § (1f(@)]) dp(a) +1,
R

and also ([35, formula (9.21)])

(2.5) | q;(M) du(z) < 1.
an M llze g
If @ satisfies the Ag-condition, then (2.5) becomes an equality.
The function @4 is said to dominate ®o (symbolically: P9 < Pq) if there
exist two positive constants K7, Ko such that ®$9(\) < K1P1(K3\) for every
A > 0. In that case we have

(2.6) I Wz < Kl - logy  with K = Ko(K; + 1),

Functions @, and @9 are called equivalent (symbolically ¢; =< &3) when
&y < &1 and &1 < Ps. In particular equivalent N-functions give rise to
equivalent Luxemburg norms.

We use the standard notation: C%(IR™) for compactly supported functions
of class C* defined on R", and LP(R"), LF. (R"), WkP(R™), W/P(R™) for

loc loc

the LP and Sobolev spaces respectively. By 60 (R™) we denote the continuous
functions on R” vanishing at infinity, while L%® () stands for the completion
of 50(R") in the space L?(u). By V¥ f we denote the vector (Df)|a)=k>
understood in the classical sense (we assume that f is of class C*). If w is a
vector in Euclidean space then |w| stands for its standard norm.

The letter c¢ is reserved to denote a generic constant, whose value can
change from line to line. The relevant constants are denoted by upper-case
letters.

3. Inequalities involving maximal functions. Let f € L] (R"). The
Hardy-Littlewood maximal function of f is defined as

1
Mf()= sup = |[f(y)ldy,
where the supremum is taken over all cubes S in R™ containing x with edges
parallel to the axes, and |S| denotes their Lebesgue measure (see e.g. [33, 50]).
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For a vector-valued function f, the symbol M f stands for the maximal
function of |f|.
The main result of this section reads as follows.

THEOREM 3.1. Let k,m € Z4+ with 0 < k < m. Suppose that u is an ar-
bitrary positive Radon measure on R™, & : [0, 00) — [0, 00) is a nondecreasing
function, and F : [0,00) — [0,00) an N-function. Set

(3.1) D1(A) = S(F(ANTH™)), Da(N) = D(FF(N)).
Then there exists a constant C' = C(n) > 0 such that for every f € CJ*(R")
and any numbers s, sy, sa > 0 which satisfy s = si_k/msg/m one has

32) | o(CsMVB f))ydp < | D1(s1MF)dut | Bo(s2M(V™ f)) dpa.
R" R"” R"”
Moreover, if @, &1 and Do are N-functions, then also

(83) MYl < CUMAL S IME™ P,

with a constant Cy independent of f € CJ*(R™).

Proof. Our result is based on the following version of the Gagliardo—
Nirenberg inequality obtained by the first author in [25] (see also [41, 42] for
other related inequalities):

(3.4) MBI f)(@) < Co(Mf(a) ™MV f) ()™,
holding for every f € W™ (R") and almost every x (with respect to the

loc
Lebesgue measure), with a constant Cy > 0 depending on dimension only.
It is not hard to show that for f € Co(R"™) one has Mf € Cyp(R"). In
particular, for f € Cg*(R™) all the functions
1

WM(V(k)f)(:E), g1(z) = Mf(x),  ga(x) = M(V™ f)(x)
0

belong to Co(R™), so that the inequality (3.4) holds true for every z € R™.
Let s1,s2 be arbitrary positive numbers, a; = 1 — k/m, ag = k/m,
s =s7's9%, g = sg, g1 = s191, g2 = S2g2. Then (3.4) can be rewritten as

(35) () < 510 Fale),

Since @ is monotone, (3.4) combined with the Young inequality (2.1) implies
that

(35) 2(5(0) < & (5 (@) + F @)

< O(max{F (g1 (z)™), F*(Ga()**)})
< P1(g1(x)) + P2(g2(2)).

g(x) =



54 A. Kalamajska and K. Pietruska-Patuba

Integrating this over R™ with respect to p gives
37 | @(i M(V(k)f)> dy
n 2Cy

<\ dr(siMp)du+ | Sa(s2M(V™ f)) dpe.
R R
For C' = (2C,) 1, this is (3.2).

To prove (3.3), assume that both [[Mf];,(,) and ||M(V(m)f)\|Lq)2(H)
are nonzero. This can be done without loss of generality, as otherwise f = 0.
Then take s; = ([Mf|p2.(,) " and s2 = (HM(V(m)f)Hquz(u))*l. Us-
ing (2.5), from (3.7) we obtain (@ (55 M(V®) f))dy < 2, which further
gives that Séo(ﬁ/\/l(v(k)f)) dp < 1, where we put $o(\) = 1&(\). Conse-
quently, from the very definition of the Luxemburg norm,

(3.8) IM(VE )| oo () < 2Cos™ = 2C0sy ;2.

As equivalent N-functions give rise to equivalent norms, this gives (3.3). More
precisely, one applies (2.6) to get

IMTE 1)l oy < BIMTE Pl oo
which together with (3.8) implies (3.3) with C; = 6Cp. =

The Aj-condition permits to move the constant C' in (3.2) outside the
integral. In this case we have the following result.

COROLLARY 3.1. Let k,m € Z with 0 < k < m. Suppose that u is
an arbitrary nonnegative Radon measure on R", F' : [0,00) — [0,00) is an
N-function, @ : [0,00) — [0,00) is a nondecreasing function, 1 and Py
are giwen by (3.1), and additionally at least one of the functions &, Py, Po
satisfies the Ag-condition. Then there exists a constant C > 0 such that for
every f € Ci"(R™) one has

(39) [ MO du< C(§ M)+ § @AMV 1)) dpe).

R7 R7 R7

Proof. If & satisfies the Ag-condition, then we apply (3.7) with s = s; =
s9 = 1 and then the As-condition. On the other hand, when one of the
functions @1, Py, say Pi, satisfies the Ag-condition, one applies (3.7) for
$1 = (QCO)m/(m*k), s9 = 1, s = 2Cy. To conclude, one uses the As-condition
(2.2) for the function ®;. m

REMARK 3.1. Note that the Radon measure admissible in inequalities
(3.2), (3.3), and (3.9) can be taken arbitrary. In particular it need not be
absolutely continuous with respect to the Lebesgue measure. Also, we do not
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require the function @ to be convex in order for (3.2) and (3.9) to hold. Its
monotonicity is sufficient.

REMARK 3.2. We already know from the proof of Theorem 3.1 that (3.4)
implies (3.2). On the other hand, if (3.2) is satisfied for an arbitrary Radon
measure p and arbitrary @, F, s, s1, s as in the statement of Theorem 3.1,
then (3.2) implies (3.4). Indeed, once we take yu = dy,) to be the Dirac

measure, & = id, s = s; = sp = 1 and F(\) = A™/ (") we arrive at
MW f)(x) < O(Mf(x) + MV f)(x)).

Then (3.4) is obtained by the classical rescaling argument: first substitute
fit(x) = f(tx) in the inequality above and then optimize with respect to
t > 0.

REMARK 3.3. An obvious corollary of (3.4) is the following inequality,
holding for an arbitrary nondecreasing function ¢ and f € C"(R"):

(310) | eMVBf))dp < | (Co(Mf)H MMV 1)E™)) dp,

R™ R
where p is an arbitrary Radon measure, k,m € N, 0 < £ < m, and the
constant C is independent of f. In [26] we have shown that if ¢ satisfies the
“differential” As-condition (2.3) (but is not necessarily convex) and moreover
®(\)/A? is nondecreasing, then for every f € C§°(R™) we have

(3.11) | o(1Vf)do < | &(C\/IF1IVOf]) da.

R” R”
Obviously, as |h| < Mh almost everywhere, we see that both inequalities
(3.10) (considered for p = dz, k =1, m = 2) and (3.11) imply

| (V) de < | B(C\/MF- MV f)) da,
Rn R”
but (3.10) (for p=dz, k=1, m=2) and (3.11) do not seem to be equivalent.

4. Inequalities for derivatives. We now aim at transforming inequal-
ities (3.2) and (3.3) into corresponding inequalities of Gagliardo-Nirenberg
type involving derivatives rather than maximal functions.

As a tool we present below some strong type inequalities for the Hardy—
Littlewood maximal operator between Orlicz spaces. The results summarized
in Section 4.1 are known.

4.1. Strong-type inequalities for maximal functions. Summary of known
results. In this section we deal with positive absolutely continuous Radon
measures on R", u(dz) = w(x)dx, where w(x) is a weight function (a non-
negative, locally integrable function w : R"™ — [0,00)) satisfying certain
conditions described below.
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The following definition and the subsequent theorem are due to Bloom
and Kerman (see [8]).

DEFINITION 4.1 (the class Wg). Suppose that @ : [0,00) — [0, 00) is an
N-function. We say that a weight w : R® — [0,00) of a measure p(dx) =
w(z)dx belongs to the class Wy if for all cubes S C R and all A > 0,

NG N
jo (—CMSW(@) (e) do < BN)u(S) < o0,

with a constant ¢ > 0 independent of S.

If ®(X\) = A, p > 1, then the class Wy coincides with the class of A,-
weights (see e.g. [50] for the definition).

THEOREM 4.1. Suppose that @ is an N-function and let w be a nonneg-
ative weight on R™. Then the following two statements are equivalent:

(a) For all measurable u,

(4.1) S S(Mu(z))w(z)dr < S &(Blu(x)|)w(z) dz,
R™ R™

with some constant B = Bg not depending on u.
(b) @* satisfies the Ay-condition and w € We.

Following (8], if &* satisfies the As-condition, then we write & € AS§.

This theorem completely describes the class of weights for which the in-
equality (4.1) holds. In particular, if @* does not satisfy the Ag-condition,
then there is no weight w for which (4.1) could possibly hold for all mea-
surable functions u. Theorem 4.1 generalizes the Muckenhoupt theorem (see
e.g. [44]), which asserts that the maximal operator is of strong type (p,p)
if and only if the weight considered is an Ap,-weight. After Muckenhoupt,
variants of Theorem 4.1 were addressed also by Kerman and Torchinsky un-
der the assumption that both @ and ®* satisfy the As-condition (see [29]),
Kokilashvili and Krbec (Theorem 8.3.1 on page 339 in [33]) and Lai [37]. See
also the references in those papers.

REMARK 4.1. If 1 < &», then also ¢] < @3, and so the A§-property is
shared by all equivalent functions. It is also easy to see that if &7 < @5 and
&, € AS, then Wg, = Wp,. Indeed, suppose that &1 < @3 and w € Weg,.
Then according to Theorem 4.1 we have

| &1 (Mu(@))w(z)ds < | &1 (Bu(z))w(z)dz,
R R
with a constant B independent of u. This implies
| &2(CrMu(z))w(z) dz < Co | &5(Csu(z))w(z) dz,
R” R?
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with constants C1,Co, (3 independent of u. Substitution u = Cyu leads to
a similar inequality with C; = 1 (and possibly different C3). We may also
assume that Cy > 1. Next, the convexity of @, together with the property
@2(0) =0 give CQ(PQ()\) S @2(02)\), which implies

| Po(Mu(@))w(z)de < | So(Culx))w(x) d,

Rn Rn
with a constant C independent of u. Finally, again from Theorem 4.1, we
get w € Wg, (and ®3 € AS), which is exactly what we claimed.

As it is usually not possible to express @* in a closed form, below we
present a quantitative tool which permits one to decide whether a given
function belongs to the class A§. It is basically taken from [35, Theorem 4.3].
Since slight modifications are needed, the proof is given in the Appendix.

PROPOSITION 4.1. Suppose that & : [0,00) — [0,00) is a continuously
differentiable N -function. Then the following three statements are equiva-
lent:

(D1) @ € AS,

(D2) there exists a constant o > 1 such that for all t > 0 we have
tP'(t)/P(t) > a,

(D3) there exists a constant o > 1 such that P(t)/t“ is nondecreas-
ing.

Results similar to Theorem 4.1 are also available when @* does not satisfy
the As-condition. In this case one has to deal with two distinct Orlicz spaces
Lg and Ly. For related results we refer to [2, 8, 13, 17, 29-31, 33, 37, 48|.

Below (Theorem 4.2) we present two results which were included in Kita’s
papers [30, 31]. For completeness, also the proof of Theorem 4.2 is given in
the Appendix.

To continue, we recall two further classes of weights.

DEFINITION 4.2. We say that a weight function w : R"™ — [0, 00) belongs
to the Aj-class (w € Ay) if there exists a constant C' > 0 such that for every
open cube S C R™ we have

1

5] gw(y) dy < Ceiselélfw(x)

DEFINITION 4.3. We say that a weight function w : R™ — [0, 00) belongs
to the A/ -class (w € ALy) if there exists a constant C' > 0 such that for
every open cube S C R" we have

1
Il S w(y) dy > Cesssupw(z).
‘ ‘ 28 zeSs
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Following Kita, for a weight function w : R” — [0, 00), we write

(4.2)  Ro(w)= {f measurable: S |f(z)|w(x) dz < oo for every t > 0}.
{I71>}
THEOREM 4.2. Suppose that a,b : [0,00) — [0,00) are functions such
that a(s)/s is locally integrable on (0, 00),

1 t
S@dt<oo and b(t)zsﬁds.
0

0 S
Set , ,
(4.3) o(t) =\a(s)ds and W(t)=b(s)ds.
0 0

Then the following two statements hold true:
1. If w € Ay, then for every f € LL N Ro(w),

loc
(4.4) | 2Mf(@)w(z)de < Ky | #(]f(2))w(z) de.
R" R"
2. If we AL, then for every f € LL N Ro(w),
(45) [ (@)l de < Ko | SMF())u() de.
Rn Rn

The constants K1, Ko > 0 do not depend on f nor on @ and ¥, but only on
the weight function w.

Inequality (4.5) is an example of a reverse strong-type inequality for the
Hardy-Littlewood maximal function. Observe that since |u| < [Mu] a.e., it
is always true with @ = ¥ and an arbitrary weight function w. Other results
in this direction, for logarithmic spaces L(log L), were previously obtained
by Favo, Gatto and Gutiérrez [15] and by Anderson and Young [1].

It remains an open problem to describe the class of weights that appear
in (4.4) with @ and ¥ as in (4.3).

4.2. Interpolation inequalities for derivatives. Using Theorems 4.1 and
4.2 we can now obtain the Gagliardo—Nirenberg inequalities for derivatives

in Orlicz spaces.
Our first theorem fits the Bloom—Kerman setting.

THEOREM 4.3. Suppose that @ : [0,00) — [0,00) and F : [0,00) —
[0,00) are two N-functions. Let p(dx) = w(x)dx, where w is a nonnegative
weight on R™. Take k,m € Z, 0 < k < m, and define

(4.6) P1(N) = BFANTHM), - By(N) = (FFA™)).

If @1, P9 are N-functions of class A§ and w € Wg, NWe, (see Definition 4.1),
then for every f € Cg*(R™), and arbitrary positive numbers s, s1, s2 such that
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s = s}_k/msg/m, one has
47 [ osIVP ) du < | @i(s1Bulf]) dp+ | Pa(s2B2 V™ f) dp,
R7 R7 R7
1-k/m k/m
(4.8) IVE fll oy < Ball Fllgar i IV £l

where the constants B; are independent of f and s;.

Proof. As @ is increasing, and for every measurable function u« one has
|u| < Mu a.e., using (3.7) we obtain

S k) S (k)
R&ﬂ@(mo v f!>du§RSn¢<200M(V f))d

< | di(siMmf)dp+ | Pa(s2M (V™ f)) dpe,
Rn R™

where s1,s9 > 0 are arbitrary and s = s} k/m k/m According to Theo-

rem 4.1, for all measurable u we have {3, ®;(Mu) d,u < \gn i(Bg,|ul) du for
1=1, 2, which gives

S @(2%0 rv<k>f\) dp < | S1(s1Ba,|f) dp+ | a(s2Ba, |V ) dp
R’n

R™ R™

Now it suffices to substitute f: 2Cyf in the equation above, which results
in (4.7) with B; = 2CyBg, where Bg, are the constants from Theorem 4.1
and Cj is taken from (3.4).

For the proof of (4.8) first note that the inequality |u| < Mu implies
lullpoy < [[Mulpeq,). Next, it can be derived from Theorem 4.1 that
for an arbitrary measurable function u one has ||[Mul[ e, () < Bil|ul| o, (1)

with B; independent of u, provided ®; € A§ and p € Wg. Now (4.8) follows
directly from (3.3). =

REMARK 4.2.

(i) Choosing s = 51 = so = 1 (resp. s; = B!, s = By ') in (4.7) under
the assumptions of Theorem 4.3 we get, for all f € Cj*(R"),

(4.9) [ o(v®E f)ydp < | o1(Bilfl) dp+ | D2(Bo V™ f]) dpa
R~ Rn Rn
and
(4.10) VoBIvE ydp< | or(1f)dp+ | &2V f]) dp
R R~ R

The constants E, B, Bs do not depend on f.
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(ii) If additionally at least one of the functions &, P or @, satisfies the
As-condition, then

@iy Jeqv®pdu<c( [ a(shdu+ § (9 fl)dp),
R R™ R™

with a constant C independent of f. See the proof of Corollary 3.1.

If either @] or @5 does not satisfy the Ag-condition, then the Bloom-
Kerman theorem is not applicable. Instead, we use Kita’s results summarized
in Theorem 4.2. This leads to the following theorem.

THEOREM 4.4. Let k,m € Zy with 0 < k < m and p(dx) = w(z)dz,
where w € Ay N AL. Suppose that g : [0,00) — [0,00) is an increasing
function of class C'((0,00)) such that $o(0) = ($0)’.(0) = 0, and that F :
[0,00) — [0,00) is an N-function of class C' Set

B (N) = Bo(F(ATH™)), @y(N) = Bo(F*(A/™)).
Assume further that S ( ) dv < 0 fori=0,1,2, and define
(4.12) () = | (‘ﬁi(é”) dv, i=0,1,2.
5oV

Then there exist constants C, K > 0 such that for every f € Cg*(R™) and

.. 1-k k
for any positive numbers s, s1, sz such that s = s, fmg /m one has

(413)  § wo(Cs[V O fl)dp < K (| wi(oal £ dpp+ § W29 f1) dp).
Rn R™ R

Moreover, if W1 and Yo are N-functions, then also

(4.14) IV® f 0y < KISl k/mHV "

L¥1(

k/m
L¥2(n

with the constant K independent of f.

REMARK 4.3. The constant C' in (4.13) is taken from (3.2) and depends
on n only.

Proof. By (3.7), we have

(3.
I::RS <QCOM(v<k>f)) du

< | di(siMf)dp+ | a(s2M(VI ) dp =2 1) + I,
R™ R™

where s1,s9 > 0 are arbitrary and s = s} k/m k/m An easy computation

shows that ¥/(\) = S(/)\(@;(T)/T) dr, and ¥/'(\) = PL(\)/\ for i = 0,1,2.
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Therefore the assumptions of Theorem 4.2 are satisfied for pairs (&;,%;)
with ¢ = 0,1, 2. This implies

| %(i\v(k)ﬂ) dp < Ko,
Bn 2C)h

L<K \ wsilfdp, L <K | @(s V™) dp,
R™ R"
and (4.13) follows with K = Kj; K5, where K; and K3 are the constants
from (4.4) and (4.5). To get (4.14), we assume that both summands on the
right-hand side of (4.13) are nonzero; then we use (4.13), choosing s; =

(Hf”L&”l(u))_l and sy = (Hv(m)fHL%(u))_l. This results in

| S99
— \ &g| ———— <1
9K ) °< 20y )=
R
Clearly %Wo(ﬁ) = Yp(A), and so (4.14) follows directly from (2.6), with
K =2Cy(2K +1). u
REMARK 4.4.

(i) Taking s = so = 1 in (4.13) we get

(415) [ oIV du < K( § (f)da+ | w0V f) du),
R” R” R
where C and K are independent of f.
(ii) If the assumptions of Theorem 4.4 are satisfied, and additionally at
least one of the functions ¥y, ¥; or ¥, satisfies the As-condition, then
(416) [ (VO shdp < [ n(f)du+ | BV d),
R” R R”
with a constant C' independent of f. Arguments are similar to those
in Corollary 3.1 and Remark 4.2.

Examples of triples (¥, ¥, Ws) satisfying (4.13) and (4.14) are given in
Section 6.

5. Further discussion. Comments and remarks

5.1. Additional comments concerning Theorems 4.3 and 4.4. We start
with the following auxiliary observations concerning functions that appear
in Kita’s theorem (Theorem 4.2).

PROPOSITION 5.1. Suppose that @ and ¥ are defined by (4.3), with a
and b satisfying the assumptions of Theorem 4.2. Then we have:

(1) @ is nondecreasing, ¥ is conver, and $(0) = ¥(0) = 0. For every
t > 0 we have ® € WH1(0,t) and ¥ € W21(0,1).
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(2) @ and ¥ can be related through
(5.1) D(t) = tW'(t) — U(t).

If W is strictly convex, then O(t) = ¥*(¥'(t)).
(3) @ and ¥ can also be related through an integral identity

A 1
(5.2) T(\) = A qif;’) dv = | QS(UAQU) dv.
0 0
(4)
(5.3) &(t) < W(2t) for all t > 0.

(5) If a(t) > 0 fort > 0, then ¥* satisfies the Ag-condition if and only

if @(t) > P¥(t) for some 3> 0.

(6) If a(t) > 0 fort > 0, then ¥ € AS if and only if ¢ and ¥ are
equivalent N-functions.

v
(7) If a(t) >0 fort > 0, then @ € AS if and only if ¥ € AS.

Proof. (1) follows directly from the definition and (2) is verified by ele-
mentary differentiation.
Let us prove (3). Reversing the order of integration in the definition of ¥,

we have
At A
i & (u
(5.4) T(N) = gg ) gy at = Ag ) du— B(N).
00 0
As

17 : a(T)
= XSCL(T)dTﬁSTdT
0 0
we see that limy o @(\)/A = 0. Integrating (5.4) by parts we obtain ¥(\) =
A SS‘(@(U)/UQ) du. A simple substitution v = Av in this integral gives (5.2).
To see (4), observe that
2t
D(t) =t¥'(t) —w(t) < S V' (u)du — W(t) = W (2t) — 2¥(t),
t
Le. O(t) +20(t) < ¥(2t).
(5) follows from the identity
tw'(t)  P(t)+ V()
w(t)  w(t) w(t)

and Proposition 4.1.
The “if” part of (6) is obtained directly from (4) and (5). For the converse,
assume that @ < ¥. Since the Lebesgue measure belongs to Ay, from Kita’s
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theorem we get

V(M (@) do < K [ (| f()]) d,
which yields

Je(Mf(2) dv < K1 [@(C|f()]) da.

Next, as for every convex function such that ¢(0) = 0 and for every N > 1
one has ®(N)) > N&()), the constant K; can be incorporated into the
constant C inside the argument of @, and we obtain exactly (4.1). Therefore
from the Bloom-Kerman theorem (Theorem 4.1) we can infer that & € AS.
As @ < ¥, we have ¥ € A§, which follows from (D3) of Proposition 4.1.
So (6) is proven.

To see (7), we only need to show that ¢ € A§ implies ¢ < ¥. But this is
clear: the inequality ®(t) < ¥(2t) is always true, and the reverse domination
follows from Proposition 4.1. Indeed, ¢ € A§ is equivalent to the fact that
@(A)/A* is nondecreasing for some « > 1. Therefore

A A

w(t) 1 . 1
(A=A ——dt < VM TYP(\ dt = —— D(N).
() = AJ 55 g dr AR e = S 9. =

Now we make the following remarks.
REMARK 5.1. The representation (5.2) was used in formula (4.12).

REMARK 5.2. Let du(x) = w(z)dx be a weighted measure and let & € A§
be an increasing function. Then from Proposition 5.1(6), we can infer that ¢
and ¥ are equivalent. According to Kita’s results (Theorem 4.2) we see that
the Hardy-Littlewood maximal operator satisfies an inequality of the form

(5.5) | w(Mf(@)w(z)de < C1 | W(Colf(2))w(w) da
R» Rn
< | w(Cs|f(2))w(x) da,
Rn

with constants C1, Cs, C5 independent of f, provided w € A1 N AL . Theorem
4.1 gives more, namely that (5.5) is satisfied whenever w € Wy.

Note that, as A1 = [y Wy, the class Wy is substantially larger than
Ay N AL . Therefore, when ¥ € A§, Theorem 4.1 extends Theorem 4.2 to a
wider class of measures.

REMARK 5.3. For measures y € AjNA’_, Theorem 4.4 implies the results
of Theorem 4.3.

Indeed, suppose that (@g, P1, P2) and (¥, ¥1, ) are two triples of func-
tions that appear in Theorem 4.4. Assume p(dz) = w(x)dz, w € A3 N AL,
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1—
1<k<m,s;,51>0,58=s5 k/msg/m

§ wo(CsIVO ) du < K § wilsil fl)dp+ | (oo VO f) dpe)
R" R" R"

. Then the inequalities

and
1Y% £l oy < RIFIE IV £ s

L¥1( L2 (u
hold with constants C, K,IN( independent of f. By Proposition 5.1(4), for
every A > 0 one has ®(\) < ¥(2)), and so

{20 (% \V(’“’f!) dp < \(Cs| VP f]) dpe

Suppose additionally that @1,P2 € AS, so that the assumptions of Theo-
rem 4.4 are satisfied. By Proposition 5.1(6) we have ¥; < @;, thus ¥; € A§
as well. Therefore, by Proposition 5.1(5), we get 3;%;(\) < @;(A). These
observations (used for (2/C)f instead of f) lead to the inequalities

Joo(sIV S 1) dpe < K ([@1(51 Bl 1) da + [ @52 B2 9 f]) )

and

~ 1-k/m k/m
||V(k)fHL‘P0(M) < K1||f||L¢1/ ”V fHL/q52 (1)’

which are the same as (4.7) and (4.8), up to multiplicative constants.

REMARK 5.4. For some functions @ for which the assumptions of The-
orem 4.3 fail, Theorem 4.4 can still be applied. For example suppose that
the function @ in Theorem 4.3 does not satisfy the A§-condition. Choose
F(\) = X/ (m=Fk) Then &1(\) = #(\) and Po(\) = 915(0/\) do not satisfy
the AS-condition either. Therefore Theorem 4.3 cannot be applied to obtain
Gagliardo—Nirenberg inequalities within the single Orlicz space L?(j) (the
Landau-Kolmogorov inequalities). But in this case Theorem 4.4 can be used
and yields the desired inequality, at least for measures p € A; N A._.

6. Examples. We start with a single Orlicz space LY (u).

EXAMPLE 6.1 (Kolmogorov-Stein inequalities). Suppose that u(dz) =
w(x)dz and either {¥ € A§ and w € Wy} or {¥ is an arbitrary N-function
and w € A N AL}, Take F(\) = X"/ (™=K 5o that F*()\) = eA™/* with
¢ = ¢km < 1. Then we get ¥;(\) = ¥(A) and ¥p(\) = ¥(cA) with a constant
¢ < 1. Therefore it follows from Theorems 4.3 and 4.4 that in either case we
have

6.1)  §wCsVO ) dp < K( [ (il f)du+ § 09 f) dp)
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for every f € CJ"(R") and arbitrary s, s1, sy > 0 such that s = s} "/ st/™
with constants C, K independent of f. Furthermore,

(6.2) 199 £l < CILALE V0 1115

k/m

with a constant C' independent of f. Inequalities (6.2) for a one-variable
function f and the Lebesgue measure were recently obtained by Bang and
coauthors [3] directly from the classical Kolmogorov inequality, by means of
the convolution technique due to Stein.

EXAMPLE 6.2 (Gagliardo-Nirenberg inequalities). Take @(\) = A9, let
p,r > 1 be such that

and let
1 m p
F(\) ==X th = — =,
(N . wi s mFa

Then
1 .« mr
F*(\) = —=\° d sf=—-
(N e and s b

According to Theorem 4.3 we have @1(A) < AP, @2(A) < A" and all these
functions, together with their Legendre transforms, satisfy the As-condition.
Recalling that for @(\) = |A\|* we have Wy = A, where A, is the Mucken-
houpt class (see e.g. [44]), by Theorem 4.3 and Remark 4.2 we obtain

[ Ivstap<c( §IfPdu+ § IV du)
R R" R

and also

1-k/m m k/m
IV fllzagey < CILe IV FllE,

provided that © € A, N A,, with a constant C independent of f. These and
other general interpolation inequalities in weighted L" spaces equipped with
Muckenhoupt weights were previously obtained by the first author in [25].

Our next example deals with the case when @ € Ay N A§ and it is not
homogeneous.

EXAMPLE 6.3 (logarithmic inequalities). For s > 1 and x € R let
M o (A) = X In(2 + N)".

Suppose that p(dzx) = w(x)dx is a nonnegative weighted measure on R".
Write || - [[ (se,u) = || - H(M(s o)> Where fuis dropped from the notation if it
is the Lebesgue measure. In this case we obtain the following result.
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THEOREM 6.1. Let k,m € Z with 0 < k < m. Suppose that p,q,r > 1
and «, 3,7 € R satisfy the conditions

1 EN1 k1 k k
(6.3) —:(1——)—+——, g:(1——>g+—1,

q m)p mr g m)p  mr
and let p(dr) = w(x)dr be a weighted measure with w € Wy, , N Wy, .
Then for every function f € C§*(R™) we have

64)  JIV® 192+ [VE ) dp
< C(JIAPmE+ 1) du+§ V0D f (2 + (90 1) dg),

and also

1-k/m m k/m
199 g < Ul IV I

with a constant C independent of f.
Proof. Tt is clear that
M, oy © My ey ()‘) = AT (1n(2 + )‘))NH—SWZ = My, 50,01 +522 O‘)

Also, it is elementary to check that M7, =< My« _(s«_2). This is so because
M (X) < A® for X small, and M .(N\) < A(In\)" for large values of A.
Consequently, Mg, (A) < A$" for A small and M7 () = A5 (In X)) ~RG" =D
for X large (see Theorem 7.1 of [35]).

Suppose now that ¢, p,r, «, 3,7 satisfy (6.3). Then one applies Theo-
rem 4.3 for = M, , and F' = M; ,, which is allowed as all the functions
considered belong to the class A§. From the just proven properties of the
functions Mj ,. one verifies that

D1 () = ASATEM (In(2 4 X)) Py(A) < A 9/m (In(2 4 X))o amt =)
and choosing s = LMok = B=a one gets @1 (\) = M, 5()\) and d()) =

m—k’ q
M,.,(X). The theorem is proven. =

When w(xz) = 1 this result, but within a narrower class of parameters,
was obtained in [28], as a special case of more general inequalities of the
form (1.3), (1.4) adapted to logarithmic spaces.

We also refer to that paper for some details about logarithmic-type N-
functions that were only sketched above. Finally, note that for « = p =~

= 0 we get the Gagliardo—Nirenberg inequalities discussed in Example 6.2.

In our next example all the functions @, #; and @5 belong to the class A§,
but none of them satisfies the Ay-condition.

EXAMPLE 6.4 (exponential inequalities). Now we present inequalities for
exponential N-functions.
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THEOREM 6.2. Let k,m € Zy with 0 < k < m. Suppose that p,q,r > 1
and «a, 3,7 > 0 satisfy the following conditions:

1 kN1 k1 1 kN1 k1
(6.5) —z(l——)——l———, —z(l——) + ——.
q m)p mr @ 8 my

Then for every f € C*(R™) one has
(6.6) | IV f|Texp(|V£|) du

Rn
< C( [ 1P exp(@ilfP)du+ | 901 exp(Col V™ £17) dpe )
Rn ]Rn
and also
-~ k/m m k/m
(6.7) 19 fll o < Call It pm

where the constants C,C1,Cs, C are independent of f,
D(A) = Mexp(\Y), P1(N) =N exp()\ﬁ), Do(N) = A exp(A7),
and p(z) = w(z)dzr, where w € We, N W, .

Proof. Take F(A\) = A exp((s2 — s1)In(2 + \)), where the parameters
s1,82 > 1 will be determined later. Then F' is an N-function, and more-
over, F'(A) ~ A%l for A close to 0 and F'(\) ~ A% for A close to co. Hence
F*(X) ~ A1 for A close to 0 and F*(\) ~ A*2 for A close to co. On the other
hand, we have @(\) ~ A7 for A close to 0 and ®(\) ~ exp(A?) for A close
to oo. Therefore if we take sy = p/q(1 — k/m), so = /(1 — k/m)a and use
condition (6.5) we obtain

B1(N) ~ B (N) = BFAITF™M)) By(N) ~ Ba(N) =: B(FF(AF™)).
Next, as w € Wg, N Wg,, according to Remark 4.1, we see that w €
Wg, N Wg,. Moreover, by Proposition 4.1 we have 1,9, € A$§ and there-

fore @1, Py € AS as well. Hence, it suffices to apply Theorem 4.3 with the
functions (@, Py, P2) and again use the fact that &, ~ &5 and Py ~ o. =

REMARK 6.1. In our previous paper (see Example 8.7 in [27]), from
more general inequalities we derived inequalities similar to (6.6) and (6.7)
for k =1, m = 2, but with parameters p, ¢, r, a, (3, 7y satisfying

1 1 1 so s*a 2

P
. 2 2 —_ _— = - = — d = —.
(6.8) ¢>2,a€(0,2), 5 +3, q,ﬂ 5 V=5 ands .

In particular, for those parameters we have
1 1 2-a 1
% + a = on < a
This shows that inequalities (6.6) and (6.7) obtained in Theorem 6.2 (reduced
tok=1m=2, p=dzx,p>2ac (0,2)) are valid for a broader range of

parameters than the exponential inequalities from [27].
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7. Appendix

7.1. Proof of Proposition 4.1. 1t is a slight modification of the proof of
[35, Theorem 4.3], where the Ag-condition was assumed only for large values
of t.

As (%) W(?l—ﬁﬂt) the equivalence (D2)<(D3) is obvious.

Set &'(t) = p(t), (#*)'(s) = q(s) = p~'(s). Then

d(t) = tp(t) — 45*( (t)) fort >0,
and similarly
(7.1) &*(s) = sq(s) — P(q(s)) for s > 0.

To see that (D1)=-(D2), suppose that &* satisfies the Ay-condition, i.e.
there exists G > 0 such that

(7.2) ;Z((Z)) <p for every s > 0.

As @* is strictly convex, we have sq(s) > ®*(s), so that § > 1. Inserting
(7.1) into (7.2) gives
54(5) <5
sq(s) — @(q(s)) —
As for t = ¢(s) one has sq(s) = tp(t), we get

tp(t)
(t) - a0 =
and further 1 (1) 5
s ~p-1 7

It is clear that this reasoning can be reversed, proving also the implication
(D2)=(D1). m

7.2. Proof of Theorem 4.2. We start with two lemmas. For the proof of
the first one we refer for example to [31, Lemma 3.2].

LEMMA 7.1. Suppose w € Ay and p = wdzx. Then for each f € Ro(w)
(see (4.2)) one has

C oo
p{Mf >t} < " S p{|fl > s}tds forall t >0,
t/2
where C' is a constant independent of f.
The other lemma is due to Muckenhoupt [44].

LEMMA 7.2. Suppose w € AL . Then for each f € Ro(u) one has
C oo
p{Mf >t} > — S w{|f| > s}tds  forall t >0,
t
where C' is a constant independent of f.
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Proof of Theorem 4.2. For a measurable f we can write
{ oMmpydp= | &(s)p{Mf > s}ds
R (0,00)
(these integrals are either simultaneously infinite, or both finite and equal).
By Lemma 7.1 this is further equal to

[ (oM > spas < ¢ | 240 CLT utif1> 1y ar) as
(0,00) 0 s

Su{lfl >t}(§ als) )dt
b(Ou{lf] > 1} di

W Op{lf] > thdt = C | w(|f]) du,
R
and (4.4) is proven.
It is clear that for w € AL, this chain of inequalities can be reversed (use
Lemma 7.2 instead of Lemma 7.1), giving (4.5). =

REMARK 7.1. Note that the constants K; and K5 do not depend on &
and V.
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