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Gagliardo�Nirenberg inequalities in weighted Orli
z spa
esby
Agnieszka Kałamajska and

Katarzyna Pietruska-Pałuba (Warszawa)Abstra
t. We derive inequalities of Gagliardo�Nirenberg type in weighted Orli
zspa
es on R
n, for maximal fun
tions of derivatives and for the derivatives themselves. Thisis done by an appli
ation of pointwise interpolation inequalities obtained previously by the�rst author and of Mu
kenhoupt�Bloom�Kerman-type theorems for maximal fun
tions.1. Introdu
tion. Interpolation inequalities for derivatives have beenstudied for a long time. Beginning with the pioneering works by Hadamard[19�21℄, Kneser [32℄, Landau [38�40℄, Hardy, Littlewood and Landau [22�24℄,Kolmogorov's 
elebrated arti
le [34℄, and the famous results of Gagliardo [16℄and Nirenberg [45℄, now there is a large body of literature on this subje
t(see e.g. [3, 7, 11, 12, 18, 25, 27, 36, 41�43, 46, 49℄ and their referen
es).Despite intensive investigation 
arried out in this area, there are only afew arti
les about interpolation inequalities in Orli
z spa
es. The only oneswe know of are 
ontributions by Bang and 
oauthors [3�6℄ and our re
entpapers [26�28℄. Here we 
ontinue the resear
h in this dire
tion.Our main goal is to obtain inequalities of the form\

Ψ(|∇(k)u|) dµ ≤
(\

Ψ1(|u|) dµ +
\
Ψ2(|∇

(m)u|) dµ
)(1.1)and also

‖∇(k)u‖LΨ (µ) ≤ c‖u‖
1−k/m

LΨ1(µ)
‖∇(m)u‖

k/m

LΨ2 (µ)
,(1.2)where Ψ, Ψ1 and Ψ2 are N-fun
tions satisfying 
ertain 
onsisten
y 
onditions,

0 < k < m are positive integers, and µ belongs to some 
lass of weightedRadon measures.2000 Mathemati
s Subje
t Classi�
ation: Primary 26D10; Se
ondary 46E35, 46E30.Key words and phrases: Gagliardo�Nirenberg inequalities, Orli
z spa
es, maximalfun
tion.This resear
h was done while A.K. was visiting the Institute of Mathemati
s of thePolish A
ademy of S
ien
es, Warsaw. This author would like to thank IM PAN for hospi-tality.The work of both authors is supported by a KBN grant no. 1-PO3A-008-29.[49℄



50 A. Kaªamajska and K. Pietruska-PaªubaOur results extend those of Bang [3℄ who dealt with inequalities (1.2)for one-variable fun
tion and the Lebesgue measure. In our previous pa-pers [26�28℄, we have dis
ussed inequalities (1.1), (1.2), together with theirgeneralizations, for the Lebesgue measure. More pre
isely, in [26℄ and [28℄we have obtained variants of (1.1) and (1.2) in various logarithmi
 Zygmundspa
es (for µ = dx) and our paper [27℄ was devoted to similar inequalities ingeneral Orli
z spa
es, but for the Lebesgue measure and k = 1, m = 2 only.They have arisen there as spe
ial 
ases of more general inequalities
(1.3)

\
Ψ(|∇u|) dx ≤

(\
Ψ1(R1(|u|, |∇

(2)u|)) dx+
\
Ψ2(R2(|u|, |∇

(2)u|)) dx
)

and also
(1.4) ‖∇u‖LΨ (µ) ≤ C‖R1(|u|, |∇

(2)u|)‖
1/2

LΨ1(µ)
‖R2(|u|, |∇

(2)u|)‖
1/2

LΨ2(µ)
,where R1, R2 : [0,∞)2 → R+ were 
ontinuous fun
tions su
h that

R1(λ1, λ2)R2(λ1, λ2) = λ1λ2.Note that inequalities (1.1) and (1.2) for k = 1, m = 2 and the Lebesguemeasure 
orrespond to R1(λ1, λ2) = λ1 and R2(λ1, λ2) = λ2. The resultsof [26�28℄ were based on the 
ru
ial observation that for a smooth fun
tion
u with bounded support the integral TΨ(|∇u|) dx 
an be estimated by thequantity TN(|∇u|)|u| |∇(2)u| dx (with a 
ertain fun
tion N), whi
h was thenthe obje
t of further analysis.Here we also deal with inequalities in the form (1.1) and (1.2), but ourpresent approa
h is essentially di�erent and brings new results. Namely, ourstarting point is the following pointwise multipli
ative inequality expressedin terms of the Hardy�Littlewood maximal fun
tions, obtained by the �rstauthor in [25℄:

M(∇(k)f)(x) ≤ C0(Mf(x))1−k/m(M(∇(m)f)(x))k/m,holding true for every f ∈ Wm,1
loc (Rn) and almost all x ∈ R

n. Then, usingYoung inequalities in Orli
z spa
es, we obtain 
ounterparts of (1.1) and (1.2)for maximal fun
tions (see Theorem 3.1):
(1.5)

\
Rn

Φ(CsM(∇(k)f)) dµ ≤
\

Rn

Φ1(s1Mf) dµ +
\

Rn

Φ2(s2M(∇(m)f)) dµand
‖M(∇(k)f)‖LΦ(µ) ≤ C1‖Mf‖

1−k/m

LΦ1(µ)
‖M(∇(m)f)‖

k/m

LΦ2(µ)
,(1.6)where Φ, Φ1, Φ2 are 
ertain fun
tions, µ is an arbitrary nonnegative Radonmeasure, and s, s1, s2 are 
ertain positive numbers. Inequality (1.6) requires

Φ, Φ1, Φ2 to be N-fun
tions, but (1.5) is valid for some non
onvex fun
tionsas well. In Se
tion 4 inequalities (1.5) and (1.6) are then transformed into



Gagliardo�Nirenberg inequalities 51(1.1) and (1.2). This is done by an appli
ation of various Mu
kenhoupt�Bloom�Kerman-type dire
t and reverse inequalities for maximal fun
tionsfrom [8, 30, 31℄, within appropriate 
lasses of measures.Although inequalities (1.3) and (1.4) do not follow from our new meth-ods, those derived now extend some of the previously obtained ones (for
µ = dx, k = 1, m = 2) to wider 
lasses of admissible fun
tions and mea-sures. More pre
isely, when we restri
t ourselves to k = 1, m = 2, µ = dx,then the Gagliardo�Nirenberg inequalities (1.1) and (1.2) are a spe
ial 
aseof (1.3) and (1.4). These are the inequalities that are generalized presently.See Se
tion 5 for a detailed dis
ussion.We hope that the results presented here will 
ontribute to the develop-ment of regularity theory for PDE's in Orli
z spa
es, similarly to the 
lassi
al
ase. For various regularity results in Orli
z�Sobolev spa
es and motivationswe refer to the papers [10, 14, 47, 51℄ and their referen
es.A
knowledgements. The authors would like to thank Professors: An-drea Cian
hi, Amiran Gogatishvili, Miroslav Krbe
 and Lubo² Pi
k for dis-
ussions.2. Preliminaries and notation. We start by re
alling preliminaryfa
ts about Orli
z spa
es, referring e.g. to [35℄ for details.Suppose that µ is a positive Radon measure on R

n and let Φ :
[0,∞) → [0,∞) be an N -fun
tion, i.e. a stri
tly 
onvex fun
tion satisfying
limλ→0 Φ(λ)/λ = 0 and limλ→∞ Φ(λ)/λ = ∞.The weighted Orli
z spa
e LΦ(µ) is the spa
e

LΦ(µ) :=
{
f measurable :

\
Rn

Φ(|f(x)|/K) dµ(x) ≤ 1 for some K > 0
}
,equipped with the Luxemburg norm

‖f‖LΦ(µ) = inf
{

K > 0 :
\

Rn

Φ(|f(x)|/K) dµ(x) ≤ 1
}
.This norm is 
omplete and turns LΦ(µ) into a Bana
h spa
e. When µ isthe Lebesgue measure, it is dropped from the notation. For Φ(λ) = λp with

p > 1, the spa
e LΦ(µ) 
oin
ides with the usual Lp(µ) spa
e.The symbol Φ∗ denotes the Legendre transform of an N-fun
tion Φ, i.e.
Φ∗(y) = supx>0[xy − Φ(x)], de�ned for y ≥ 0. It is again an N-fun
tion andfrom its de�nition we get the Young inequality :

xy ≤ Φ(x) + Φ∗(y) for x, y ≥ 0.(2.1)
Φ is said to satisfy the ∆2-
ondition if, for some 
onstant c > 0 and every

λ > 0, we have
Φ(2λ) ≤ cΦ(λ).(2.2)



52 A. Kaªamajska and K. Pietruska-PaªubaIn the 
lass of di�erentiable 
onvex fun
tions the ∆2-
ondition is equiv-alent to
λΦ′(λ) ≤ cΦ(λ),(2.3)satis�ed for every λ > 0, with a 
onstant c independent of λ (see e.g.[35, Theorem 4.1℄).We will need the following two properties of modular fun
tionals (see[35, formulas (9.20) and (9.4)℄): for every f ∈ LΦ(µ) we have

‖f‖LΦ(µ) ≤
\

Rn

Φ(|f(x)|) dµ(x) + 1,(2.4)and also ([35, formula (9.21)℄)\
Rn

Φ

(
f(x)

‖f‖LΦ(µ)

)
dµ(x) ≤ 1.(2.5)If Φ satis�es the ∆2-
ondition, then (2.5) be
omes an equality.The fun
tion Φ1 is said to dominate Φ2 (symboli
ally: Φ2 ≺ Φ1) if thereexist two positive 
onstants K1, K2 su
h that Φ2(λ) ≤ K1Φ1(K2λ) for every

λ > 0. In that 
ase we have
‖ · ‖LΦ

2 (µ) ≤ K‖ · ‖LΦ
1 (µ) with K = K2(K1 + 1).(2.6)Fun
tions Φ1 and Φ2 are 
alled equivalent (symboli
ally Φ1 ≍ Φ2) when

Φ2 ≺ Φ1 and Φ1 ≺ Φ2. In parti
ular equivalent N-fun
tions give rise toequivalent Luxemburg norms.We use the standard notation: Ck
0 (Rn) for 
ompa
tly supported fun
tionsof 
lass Ck de�ned on R

n, and Lp(Rn), Lp
loc(R

n), W k,p(Rn), W k,p
loc (Rn) forthe Lp and Sobolev spa
es respe
tively. By C̃0(R

n) we denote the 
ontinuousfun
tions on R
n vanishing at in�nity, while L0,Φ(µ) stands for the 
ompletionof C̃0(R

n) in the spa
e LΦ(µ). By ∇(k)f we denote the ve
tor (Dαf)|α|=k,understood in the 
lassi
al sense (we assume that f is of 
lass Ck). If w is ave
tor in Eu
lidean spa
e then |w| stands for its standard norm.The letter c is reserved to denote a generi
 
onstant, whose value 
an
hange from line to line. The relevant 
onstants are denoted by upper-
aseletters.3. Inequalities involving maximal fun
tions. Let f ∈ L1
loc(R

n). TheHardy�Littlewood maximal fun
tion of f is de�ned as
Mf(x) = sup

S : x∈S

1

|S|

\
S

|f(y)| dy,where the supremum is taken over all 
ubes S in R
n 
ontaining x with edgesparallel to the axes, and |S| denotes their Lebesgue measure (see e.g. [33, 50℄).



Gagliardo�Nirenberg inequalities 53For a ve
tor-valued fun
tion f , the symbol Mf stands for the maximalfun
tion of |f |.The main result of this se
tion reads as follows.Theorem 3.1. Let k, m ∈ Z+ with 0 < k < m. Suppose that µ is an ar-bitrary positive Radon measure on R
n, Φ : [0,∞) → [0,∞) is a nonde
reasingfun
tion, and F : [0,∞) → [0,∞) an N-fun
tion. Set

Φ1(λ) = Φ(F (λ1−k/m)), Φ2(λ) = Φ(F ∗(λk/m)).(3.1)Then there exists a 
onstant C = C(n) > 0 su
h that for every f ∈ Cm
0 (Rn)and any numbers s, s1, s2 > 0 whi
h satisfy s = s

1−k/m
1 s

k/m
2 one has

(3.2)
\

Rn

Φ(CsM(∇(k)f)) dµ ≤
\

Rn

Φ1(s1Mf) dµ+
\

Rn

Φ2(s2M(∇(m)f)) dµ.Moreover , if Φ, Φ1 and Φ2 are N-fun
tions, then also
‖M(∇(k)f)‖LΦ(µ) ≤ C1‖Mf‖

1−k/m

LΦ1(µ)
‖M(∇(m)f)‖

k/m

LΦ2(µ)
,(3.3)with a 
onstant C1 independent of f ∈ Cm

0 (Rn).Proof. Our result is based on the following version of the Gagliardo�Nirenberg inequality obtained by the �rst author in [25℄ (see also [41, 42℄ forother related inequalities):
M(∇(k)f)(x) ≤ C0(Mf(x))1−k/m(M(∇(m)f)(x))k/m,(3.4)holding for every f ∈ Wm,1

loc (Rn) and almost every x (with respe
t to theLebesgue measure), with a 
onstant C0 > 0 depending on dimension only.It is not hard to show that for f ∈ C0(R
n) one has Mf ∈ C̃0(R

n). Inparti
ular, for f ∈ Cm
0 (Rn) all the fun
tions

g(x) =
1

2C0
M(∇(k)f)(x), g1(x) = Mf(x), g2(x) = M(∇(m)f)(x)belong to C̃0(R

n), so that the inequality (3.4) holds true for every x ∈ R
n.Let s1, s2 be arbitrary positive numbers, α1 = 1 − k/m, α2 = k/m,

s = sα1
1 sα2

2 , g̃ = sg, g̃1 = s1g1, g̃2 = s2g2. Then (3.4) 
an be rewritten as
g̃(x) ≤

1

2
g̃1(x)α1 g̃2(x)α2 .(3.5)Sin
e Φ is monotone, (3.4) 
ombined with the Young inequality (2.1) impliesthat

Φ(g̃(x)) ≤ Φ

(
1

2
(F (g̃1(x)α1) + F ∗(g̃2(x)α2))

)(3.6)
≤ Φ(max{F (g̃1(x)α1), F ∗(g̃2(x)α2)})

≤ Φ1(g̃1(x)) + Φ2(g̃2(x)).



54 A. Kaªamajska and K. Pietruska-PaªubaIntegrating this over R
n with respe
t to µ gives

(3.7)
\

Rn

Φ

(
s

2C0
M(∇(k)f)

)
dµ

≤
\

Rn

Φ1(s1Mf) dµ +
\

Rn

Φ2(s2M(∇(m)f)) dµ.

For C = (2C0)
−1, this is (3.2).To prove (3.3), assume that both ‖Mf‖LΦ1 (µ) and ‖M(∇(m)f)‖LΦ2(µ)are nonzero. This 
an be done without loss of generality, as otherwise f ≡ 0.Then take s1 = (‖Mf‖LΦ1(µ))

−1 and s2 = (‖M(∇(m)f)‖LΦ2(µ))
−1. Us-ing (2.5), from (3.7) we obtain TΦ(

s
2C0

M(∇(k)f)
)
dµ ≤ 2, whi
h furthergives that TΦ0

(
s

2C0
M(∇(k)f)

)
dµ ≤ 1, where we put Φ0(λ) = 1

2Φ(λ). Conse-quently, from the very de�nition of the Luxemburg norm,
‖M(∇(k)f)‖LΦ0(µ) ≤ 2C0s

−1 = 2C0s
−α1
1 s−α2

2 .(3.8)As equivalent N-fun
tions give rise to equivalent norms, this gives (3.3). Morepre
isely, one applies (2.6) to get
‖M(∇(k)f)‖LΦ(µ) ≤ 3‖M(∇(k)f)‖LΦ0(µ),whi
h together with (3.8) implies (3.3) with C1 = 6C0.The ∆2-
ondition permits to move the 
onstant C in (3.2) outside theintegral. In this 
ase we have the following result.Corollary 3.1. Let k, m ∈ Z with 0 < k < m. Suppose that µ isan arbitrary nonnegative Radon measure on R

n, F : [0,∞) → [0,∞) is anN-fun
tion, Φ : [0,∞) → [0,∞) is a nonde
reasing fun
tion, Φ1 and Φ2are given by (3.1), and additionally at least one of the fun
tions Φ, Φ1, Φ2satis�es the ∆2-
ondition. Then there exists a 
onstant C̃ > 0 su
h that forevery f ∈ Cm
0 (Rn) one has\

Rn

Φ(M(∇(k)f)) dµ ≤ C̃
( \

Rn

Φ1(Mf) dµ +
\

Rn

Φ2(M(∇(m)f)) dµ
)
.(3.9)

Proof. If Φ satis�es the ∆2-
ondition, then we apply (3.7) with s = s1 =
s2 = 1 and then the ∆2-
ondition. On the other hand, when one of thefun
tions Φ1, Φ2, say Φ1, satis�es the ∆2-
ondition, one applies (3.7) for
s1 = (2C0)

m/(m−k), s2 = 1, s = 2C0. To 
on
lude, one uses the ∆2-
ondition(2.2) for the fun
tion Φ1.Remark 3.1. Note that the Radon measure admissible in inequalities(3.2), (3.3), and (3.9) 
an be taken arbitrary. In parti
ular it need not beabsolutely 
ontinuous with respe
t to the Lebesgue measure. Also, we do not



Gagliardo�Nirenberg inequalities 55require the fun
tion Φ to be 
onvex in order for (3.2) and (3.9) to hold. Itsmonotoni
ity is su�
ient.Remark 3.2. We already know from the proof of Theorem 3.1 that (3.4)implies (3.2). On the other hand, if (3.2) is satis�ed for an arbitrary Radonmeasure µ and arbitrary Φ, F , s, s1, s2 as in the statement of Theorem 3.1,then (3.2) implies (3.4). Indeed, on
e we take µ = δ{x} to be the Dira
measure, Φ = id, s = s1 = s2 = 1 and F (λ) = λm/(m−k), we arrive at
M(∇(k)f)(x) ≤ C(Mf(x) + M(∇(m)f)(x)).Then (3.4) is obtained by the 
lassi
al res
aling argument: �rst substitute

ft(x) = f(tx) in the inequality above and then optimize with respe
t to
t > 0.Remark 3.3. An obvious 
orollary of (3.4) is the following inequality,holding for an arbitrary nonde
reasing fun
tion Φ and f ∈ Cm

0 (Rn):\
Rn

Φ(M(∇(k)f)) dµ ≤
\

Rn

Φ(C0(Mf)1−k/m(M(∇(m)f))k/m)) dµ,(3.10)where µ is an arbitrary Radon measure, k, m ∈ N, 0 < k < m, and the
onstant C0 is independent of f . In [26℄ we have shown that if Φ satis�es the�di�erential� ∆2-
ondition (2.3) (but is not ne
essarily 
onvex) and moreover
Φ(λ)/λ2 is nonde
reasing, then for every f ∈ C∞

0 (Rn) we have\
Rn

Φ(|∇f |) dx ≤
\

Rn

Φ(C
√

|f | |∇(2)f |) dx.(3.11)Obviously, as |h| ≤ Mh almost everywhere, we see that both inequalities(3.10) (
onsidered for µ = dx, k = 1, m = 2) and (3.11) imply\
Rn

Φ(|∇f |) dx ≤
\

Rn

Φ(C
√

Mf · M(∇(2)f)) dx,but (3.10) (for µ = dx, k = 1, m = 2) and (3.11) do not seem to be equivalent.4. Inequalities for derivatives. We now aim at transforming inequal-ities (3.2) and (3.3) into 
orresponding inequalities of Gagliardo�Nirenbergtype involving derivatives rather than maximal fun
tions.As a tool we present below some strong type inequalities for the Hardy�Littlewood maximal operator between Orli
z spa
es. The results summarizedin Se
tion 4.1 are known.4.1. Strong-type inequalities for maximal fun
tions. Summary of knownresults. In this se
tion we deal with positive absolutely 
ontinuous Radonmeasures on R
n, µ(dx) = w(x)dx, where w(x) is a weight fun
tion (a non-negative, lo
ally integrable fun
tion w : R

n → [0,∞)) satisfying 
ertain
onditions des
ribed below.



56 A. Kaªamajska and K. Pietruska-PaªubaThe following de�nition and the subsequent theorem are due to Bloomand Kerman (see [8℄).Definition 4.1 (the 
lass WΦ). Suppose that Φ : [0,∞) → [0,∞) is anN-fun
tion. We say that a weight w : R
n → [0,∞) of a measure µ(dx) =

w(x)dx belongs to the 
lass WΦ if for all 
ubes S ⊂ R
n and all λ > 0,\

S

Φ∗

(
Φ(λ)µ(S)

cλ|S|w(x)

)
w(x) dx ≤ Φ(λ)µ(S) < ∞,with a 
onstant c > 0 independent of S.If Φ(λ) = λp, p > 1, then the 
lass WΦ 
oin
ides with the 
lass of Ap-weights (see e.g. [50℄ for the de�nition).Theorem 4.1. Suppose that Φ is an N-fun
tion and let w be a nonneg-ative weight on R

n. Then the following two statements are equivalent :(a) For all measurable u,\
Rn

Φ(Mu(x))w(x) dx ≤
\

Rn

Φ(B|u(x)|)w(x) dx,(4.1)
with some 
onstant B = BΦ not depending on u.(b) Φ∗ satis�es the ∆2-
ondition and w ∈ WΦ.Following [8℄, if Φ∗ satis�es the ∆2-
ondition, then we write Φ ∈ ∆c

2.This theorem 
ompletely des
ribes the 
lass of weights for whi
h the in-equality (4.1) holds. In parti
ular, if Φ∗ does not satisfy the ∆2-
ondition,then there is no weight w for whi
h (4.1) 
ould possibly hold for all mea-surable fun
tions u. Theorem 4.1 generalizes the Mu
kenhoupt theorem (seee.g. [44℄), whi
h asserts that the maximal operator is of strong type (p, p)if and only if the weight 
onsidered is an Ap-weight. After Mu
kenhoupt,variants of Theorem 4.1 were addressed also by Kerman and Tor
hinsky un-der the assumption that both Φ and Φ∗ satisfy the ∆2-
ondition (see [29℄),Kokilashvili and Krbe
 (Theorem 8.3.1 on page 339 in [33℄) and Lai [37℄. Seealso the referen
es in those papers.Remark 4.1. If Φ1 ≍ Φ2, then also Φ∗
1 ≍ Φ∗

2, and so the ∆c
2-property isshared by all equivalent fun
tions. It is also easy to see that if Φ1 ≍ Φ2 and

Φ1 ∈ ∆c
2, then WΦ1 = WΦ2 . Indeed, suppose that Φ1 ≍ Φ2 and w ∈ WΦ1 .Then a

ording to Theorem 4.1 we have\

Rn

Φ1(Mu(x))w(x) dx ≤
\

Rn

Φ1(Bu(x))w(x) dx,with a 
onstant B independent of u. This implies\
Rn

Φ2(C1Mu(x))w(x) dx ≤ C2

\
Rn

Φ2(C3u(x))w(x) dx,



Gagliardo�Nirenberg inequalities 57with 
onstants C1, C2, C3 independent of u. Substitution ũ = C1u leads toa similar inequality with C1 = 1 (and possibly di�erent C3). We may alsoassume that C2 > 1. Next, the 
onvexity of Φ2 together with the property
Φ2(0) = 0 give C2Φ2(λ) ≤ Φ2(C2λ), whi
h implies\

Rn

Φ2(Mu(x))w(x) dx ≤
\

Rn

Φ2(Cu(x))w(x) dx,with a 
onstant C independent of u. Finally, again from Theorem 4.1, weget w ∈ WΦ2 (and Φ2 ∈ ∆c
2), whi
h is exa
tly what we 
laimed.As it is usually not possible to express Φ∗ in a 
losed form, below wepresent a quantitative tool whi
h permits one to de
ide whether a givenfun
tion belongs to the 
lass ∆c

2. It is basi
ally taken from [35, Theorem 4.3℄.Sin
e slight modi�
ations are needed, the proof is given in the Appendix.Proposition 4.1. Suppose that Φ : [0,∞) → [0,∞) is a 
ontinuouslydi�erentiable N -fun
tion. Then the following three statements are equiva-lent :(D1) Φ ∈ ∆c
2,(D2) there exists a 
onstant α > 1 su
h that for all t > 0 we have

tΦ′(t)/Φ(t) ≥ α,(D3) there exists a 
onstant α > 1 su
h that Φ(t)/tα is nonde
reas-ing.Results similar to Theorem 4.1 are also available when Φ∗ does not satisfythe ∆2-
ondition. In this 
ase one has to deal with two distin
t Orli
z spa
es
LΦ and LΨ . For related results we refer to [2, 8, 13, 17, 29�31, 33, 37, 48℄.Below (Theorem 4.2) we present two results whi
h were in
luded in Kita'spapers [30, 31℄. For 
ompleteness, also the proof of Theorem 4.2 is given inthe Appendix.To 
ontinue, we re
all two further 
lasses of weights.Definition 4.2. We say that a weight fun
tion w : R

n → [0,∞) belongsto the A1-
lass (w ∈ A1) if there exists a 
onstant C > 0 su
h that for everyopen 
ube S ⊆ R
n we have

1

|S|

\
S

w(y) dy ≤ C ess inf
x∈S

w(x).

Definition 4.3. We say that a weight fun
tion w : R
n → [0,∞) belongsto the A′

∞-
lass (w ∈ A′
∞) if there exists a 
onstant C > 0 su
h that forevery open 
ube S ⊆ R

n we have
1

|S|

\
2S

w(y) dy ≥ C ess sup
x∈S

w(x).
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tion w : R
n → [0,∞), we write

(4.2) R0(w) =
{
f measurable: \

{|f |>t}

|f(x)|w(x) dx < ∞ for every t > 0
}
.

Theorem 4.2. Suppose that a, b : [0,∞) → [0,∞) are fun
tions su
hthat a(s)/s is lo
ally integrable on (0,∞),
1\
0

a(t)

t
dt < ∞ and b(t) =

t\
0

a(s)

s
ds.Set

Φ(t) =

t\
0

a(s) ds and Ψ(t) =

t\
0

b(s) ds.(4.3)Then the following two statements hold true:
1. If w ∈ A1, then for every f ∈ L1

loc ∩R0(w),\
Rn

Φ(Mf(x))w(x) dx ≤ K1

\
Rn

Ψ(|f(x)|)w(x) dx.(4.4)
2. If w ∈ A′

∞, then for every f ∈ L1
loc ∩R0(w),\

Rn

Ψ(|f(x)|)w(x) dx ≤ K2

\
Rn

Φ(Mf(x))w(x) dx.(4.5)The 
onstants K1, K2 > 0 do not depend on f nor on Φ and Ψ , but only onthe weight fun
tion w.Inequality (4.5) is an example of a reverse strong-type inequality for theHardy�Littlewood maximal fun
tion. Observe that sin
e |u| ≤ |Mu| a.e., itis always true with Φ = Ψ and an arbitrary weight fun
tion w. Other resultsin this dire
tion, for logarithmi
 spa
es L(log L)k, were previously obtainedby Favo, Gatto and Gutiérrez [15℄ and by Anderson and Young [1℄.It remains an open problem to des
ribe the 
lass of weights that appearin (4.4) with Φ and Ψ as in (4.3).4.2. Interpolation inequalities for derivatives. Using Theorems 4.1 and4.2 we 
an now obtain the Gagliardo�Nirenberg inequalities for derivativesin Orli
z spa
es.Our �rst theorem �ts the Bloom�Kerman setting.Theorem 4.3. Suppose that Φ : [0,∞) → [0,∞) and F : [0,∞) →
[0,∞) are two N-fun
tions. Let µ(dx) = w(x)dx, where w is a nonnegativeweight on R

n. Take k, m ∈ Z+, 0 < k < m, and de�ne
Φ1(λ) = Φ(F (λ1−k/m)), Φ2(λ) = Φ(F ∗(λk/m)).(4.6)If Φ1, Φ2 are N-fun
tions of 
lass ∆c

2 and w ∈ WΦ1∩WΦ2 (see De�nition 4.1),then for every f ∈ Cm
0 (Rn), and arbitrary positive numbers s, s1, s2 su
h that
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s = s

1−k/m
1 s

k/m
2 , one has

(4.7)
\

Rn

Φ(s|∇(k)f |) dµ ≤
\

Rn

Φ1(s1B1|f |) dµ +
\

Rn

Φ2(s2B2|∇
(m)f |) dµ,

(4.8) ‖∇(k)f‖LΦ(µ) ≤ B3‖f‖
1−k/m

LΦ1(µ)
‖∇(m)f‖

k/m

LΦ2(µ)
,where the 
onstants Bi are independent of f and si.Proof. As Φ is in
reasing, and for every measurable fun
tion u one has

|u| < Mu a.e., using (3.7) we obtain\
Rn

Φ

(
s

2C0
|∇(k)f |

)
dµ ≤

\
Rn

Φ

(
s

2C0
M(∇(k)f)

)
dµ

≤
\

Rn

Φ1(s1Mf) dµ +
\

Rn

Φ2(s2M(∇(m)f)) dµ,

where s1, s2 > 0 are arbitrary and s = s
1−k/m
1 s

k/m
2 . A

ording to Theo-rem 4.1, for all measurable u we have T

Rn Φi(Mu) dµ ≤
T
Rn Φi(BΦi

|u|) dµ for
i = 1, 2, whi
h gives\

Rn

Φ

(
s

2C0
|∇(k)f |

)
dµ ≤

\
Rn

Φ1(s1BΦ1 |f |) dµ +
\

Rn

Φ2(s2BΦ2 |∇
(m)f |) dµ.

Now it su�
es to substitute f̃ = 2C0f in the equation above, whi
h resultsin (4.7) with Bi = 2C0BΦi
where BΦi

are the 
onstants from Theorem 4.1and C0 is taken from (3.4).For the proof of (4.8) �rst note that the inequality |u| ≤ Mu implies
‖u‖LΦ(µ) ≤ ‖Mu‖LΦ(µ). Next, it 
an be derived from Theorem 4.1 thatfor an arbitrary measurable fun
tion u one has ‖Mu‖LΦi (µ) ≤ B̃i‖u‖LΦi(µ),with B̃i independent of u, provided Φi ∈ ∆c

2 and µ ∈ WΦ. Now (4.8) followsdire
tly from (3.3).Remark 4.2.(i) Choosing s = s1 = s2 = 1 (resp. s1 = B−1
1 , s2 = B−1

2 ) in (4.7) underthe assumptions of Theorem 4.3 we get, for all f ∈ Cm
0 (Rn),\

Rn

Φ(|∇(k)f |) dµ ≤
\

Rn

Φ1(B1|f |) dµ +
\

Rn

Φ2(B2|∇
(m)f |) dµ(4.9) and \

Rn

Φ(B̃|∇(k)f |) dµ ≤
\

Rn

Φ1(|f |) dµ +
\

Rn

Φ2(|∇
(m)f |) dµ.(4.10)

The 
onstants B̃, B1, B2 do not depend on f .
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tions Φ, Φ1 or Φ2 satis�es the
∆2-
ondition, then\

Rn

Φ(|∇(k)f |) dµ ≤ C
( \

Rn

Φ1(|f |) dµ +
\

Rn

Φ2(|∇
(m)f |) dµ

)
,(4.11) with a 
onstant C independent of f . See the proof of Corollary 3.1.If either Φ∗

1 or Φ∗
2 does not satisfy the ∆2-
ondition, then the Bloom�Kerman theorem is not appli
able. Instead, we use Kita's results summarizedin Theorem 4.2. This leads to the following theorem.Theorem 4.4. Let k, m ∈ Z+ with 0 < k < m and µ(dx) = w(x)dx,where w ∈ A1 ∩ A′

∞. Suppose that Φ0 : [0,∞) → [0,∞) is an in
reasingfun
tion of 
lass C1((0,∞)) su
h that Φ0(0) = (Φ0)
′
+(0) = 0, and that F :

[0,∞) → [0,∞) is an N-fun
tion of 
lass C1 Set
Φ1(λ) = Φ0(F (λ1−k/m)), Φ2(λ) = Φ0(F

∗(λk/m)).Assume further that T10 Φi(v)
v2 dv < ∞ for i = 0, 1, 2, and de�ne

Ψi(λ) =

1\
0

Φi(λv)

v2
dv, i = 0, 1, 2.(4.12)Then there exist 
onstants C, K > 0 su
h that for every f ∈ Cm

0 (Rn) andfor any positive numbers s, s1, s2 su
h that s = s
1−k/m
1 s

k/m
2 one has\

Rn

Ψ0(Cs|∇(k)f |) dµ ≤ K
( \

Rn

Ψ1(s1|f |) dµ +
\

Rn

Ψ2(s2|∇
(m)f |) dµ

)
.(4.13)Moreover , if Ψ1 and Ψ2 are N-fun
tions, then also

‖∇(k)f‖LΨ0(µ) ≤ K̃‖f‖
1−k/m

LΨ1(µ)
‖∇(m)f‖

k/m

LΨ2(µ)
,(4.14)with the 
onstant K̃ independent of f .Remark 4.3. The 
onstant C in (4.13) is taken from (3.2) and dependson n only.Proof. By (3.7), we have

I :=
\

Rn

Φ0

(
s

2C0
M(∇(k)f)

)
dµ

≤
\

Rn

Φ1(s1Mf) dµ +
\

Rn

Φ2(s2M(∇(m)f)) dµ =: I1 + I2,

where s1, s2 > 0 are arbitrary and s = s
1−k/m
1 s

k/m
2 . An easy 
omputationshows that Ψ ′

i(λ) =
Tλ
0(Φ′

i(τ)/τ) dτ , and Ψ ′′
i (λ) = Φ′

i(λ)/λ for i = 0, 1, 2.



Gagliardo�Nirenberg inequalities 61Therefore the assumptions of Theorem 4.2 are satis�ed for pairs (Φi, Ψi)with i = 0, 1, 2. This implies\
Rn

Ψ0

(
s

2C0
|∇(k)f |

)
dµ ≤ K2I,

I1 ≤ K1

\
Rn

Ψ1(s1|f |) dµ, I2 ≤ K1

\
Rn

Ψ2(s2|∇
(m)f |) dµ,and (4.13) follows with K = K1K2, where K1 and K2 are the 
onstantsfrom (4.4) and (4.5). To get (4.14), we assume that both summands on theright-hand side of (4.13) are nonzero; then we use (4.13), 
hoosing s1 =

(‖f‖LΨ1(µ))
−1 and s2 = (‖∇(m)f‖LΨ2(µ))

−1. This results in
1

2K

\
Rn

Φ0

(
s|∇(k)f |

2C0

)
dµ ≤ 1.Clearly 1

2K Ψ0(
λ

2C0
) ≍ Ψ0(λ), and so (4.14) follows dire
tly from (2.6), with

K̃ = 2C0(2K + 1).Remark 4.4.(i) Taking s1 = s2 = 1 in (4.13) we get\
Rn

Ψ0(C|∇(k)f |) dµ ≤ K
( \

Rn

Ψ1(|f |) dµ +
\

Rn

Ψ2(|∇
(m)f |) dµ

)
,(4.15) where C and K are independent of f .(ii) If the assumptions of Theorem 4.4 are satis�ed, and additionally atleast one of the fun
tions Ψ0, Ψ1 or Ψ2 satis�es the ∆2-
ondition, then\

Rn

Ψ0(|∇
(k)f |) dµ ≤ C

( \
Rn

Ψ1(|f |) dµ +
\

Rn

Ψ2(|∇
(m)f |) dµ

)
,(4.16) with a 
onstant C independent of f . Arguments are similar to thosein Corollary 3.1 and Remark 4.2.Examples of triples (Ψ0, Ψ1, Ψ2) satisfying (4.13) and (4.14) are given inSe
tion 6.5. Further dis
ussion. Comments and remarks5.1. Additional 
omments 
on
erning Theorems 4.3 and 4.4. We startwith the following auxiliary observations 
on
erning fun
tions that appearin Kita's theorem (Theorem 4.2).Proposition 5.1. Suppose that Φ and Ψ are de�ned by (4.3), with aand b satisfying the assumptions of Theorem 4.2. Then we have:(1) Φ is nonde
reasing , Ψ is 
onvex , and Φ(0) = Ψ(0) = 0. For every

t > 0 we have Φ ∈ W 1,1(0, t) and Ψ ∈ W 2,1(0, t).
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an be related through
Φ(t) = tΨ ′(t) − Ψ(t).(5.1) If Ψ is stri
tly 
onvex , then Φ(t) = Ψ∗(Ψ ′(t)).(3) Φ and Ψ 
an also be related through an integral identity

Ψ(λ) = λ

λ\
0

Φ(v)

v2
dv =

1\
0

Φ(λv)

v2
dv.(5.2)(4)

Φ(t) ≤ Ψ(2t) for all t > 0.(5.3)(5) If a(t) > 0 for t > 0, then Ψ∗ satis�es the ∆2-
ondition if and onlyif Φ(t) ≥ βΨ(t) for some β > 0.(6) If a(t) > 0 for t > 0, then Ψ ∈ ∆c
2 if and only if Φ and Ψ areequivalent N-fun
tions.(7) If a(t) > 0 for t > 0, then Φ ∈ ∆c

2 if and only if Ψ ∈ ∆c
2.Proof. (1) follows dire
tly from the de�nition and (2) is veri�ed by ele-mentary di�erentiation.Let us prove (3). Reversing the order of integration in the de�nition of Ψ ,we have

Ψ(λ) =

λ\
0

t\
0

Φ′(u)

u
du dt = λ

λ\
0

Φ′(u)

u
du − Φ(λ).(5.4)As

Φ(λ)

λ
=

1

λ

λ\
0

a(τ) dτ ≤

λ\
0

a(τ)

τ
dτ,we see that limλ→0 Φ(λ)/λ = 0. Integrating (5.4) by parts we obtain Ψ(λ) =

λ
Tλ
0(Φ(u)/u2) du. A simple substitution u = λv in this integral gives (5.2).To see (4), observe that

Φ(t) = tΨ ′(t) − Ψ(t) ≤

2t\
t

Ψ ′(u) du − Ψ(t) = Ψ(2t) − 2Ψ(t),i.e. Φ(t) + 2Ψ(t) ≤ Ψ(2t).(5) follows from the identity
tΨ ′(t)

Ψ(t)
=

Φ(t) + Ψ(t)

Ψ(t)
= 1 +

Φ(t)

Ψ(t)and Proposition 4.1.The �if� part of (6) is obtained dire
tly from (4) and (5). For the 
onverse,assume that Φ ≍ Ψ . Sin
e the Lebesgue measure belongs to A1, from Kita's
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Φ(Mf(x)) dx ≤ K1

\
Ψ(|f(x)|) dx,whi
h yields \

Φ(Mf(x)) dx ≤ K̃1

\
Φ(C|f(x)|) dx.Next, as for every 
onvex fun
tion su
h that Φ(0) = 0 and for every N > 1one has Φ(Nλ) ≥ NΦ(λ), the 
onstant K̃1 
an be in
orporated into the
onstant C inside the argument of Φ, and we obtain exa
tly (4.1). Thereforefrom the Bloom�Kerman theorem (Theorem 4.1) we 
an infer that Φ ∈ ∆c

2.As Φ ≍ Ψ , we have Ψ ∈ ∆c
2, whi
h follows from (D3) of Proposition 4.1.So (6) is proven.To see (7), we only need to show that Φ ∈ ∆c

2 implies Φ ≍ Ψ . But this is
lear: the inequality Φ(t) ≤ Ψ(2t) is always true, and the reverse dominationfollows from Proposition 4.1. Indeed, Φ ∈ ∆c
2 is equivalent to the fa
t that

Φ(λ)/λα is nonde
reasing for some α > 1. Therefore
Ψ(λ) = λ

λ\
0

Ψ(t)

tα
1

t2−α
dt ≤ λ1−αΦ(λ)

λ\
0

1

t2−α
dt =

1

α − 1
Φ(λ).

Now we make the following remarks.Remark 5.1. The representation (5.2) was used in formula (4.12).Remark 5.2. Let dµ(x) = w(x)dx be a weighted measure and let Ψ ∈∆c
2be an in
reasing fun
tion. Then from Proposition 5.1(6), we 
an infer that Φand Ψ are equivalent. A

ording to Kita's results (Theorem 4.2) we see thatthe Hardy�Littlewood maximal operator satis�es an inequality of the form\

Rn

Ψ(Mf(x))w(x) dx ≤ C1

\
Rn

Ψ(C2|f(x)|)w(x) dx(5.5)

≤
\

Rn

Ψ(C3|f(x)|)w(x) dx,

with 
onstants C1, C2, C3 independent of f , provided w ∈ A1∩A′
∞. Theorem4.1 gives more, namely that (5.5) is satis�ed whenever w ∈ WΨ .Note that, as A1 =

⋂
Ψ WΨ , the 
lass WΨ is substantially larger than

A1 ∩ A′
∞. Therefore, when Ψ ∈ ∆c

2, Theorem 4.1 extends Theorem 4.2 to awider 
lass of measures.Remark 5.3. For measures µ ∈ A1∩A′
∞, Theorem 4.4 implies the resultsof Theorem 4.3.Indeed, suppose that (Φ0, Φ1, Φ2) and (Ψ0, Ψ1, Ψ2) are two triples of fun
-tions that appear in Theorem 4.4. Assume µ(dx) = w(x)dx, w ∈ A1 ∩ A′

∞,
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1 < k < m, s1, s1 > 0, s = s

1−k/m
1 s

k/m
2 . Then the inequalities\

Rn

Ψ0(Cs|∇(k)f |) dµ ≤ K
( \

Rn

Ψ1(s1|f |) dµ +
\

Rn

Ψ2(s2|∇
(m)f |) dµ

)

and
‖∇(k)f‖LΨ0(µ) ≤ K̃‖f‖

1−k/m

LΨ1(µ)
‖∇(m)f‖

k/m

LΨ2(µ)
,hold with 
onstants C, K, K̃ independent of f . By Proposition 5.1(4), forevery λ > 0 one has Φ0(λ) ≤ Ψ0(2λ), and so\

Φ0

(
Cs

2
|∇(k)f |

)
dµ ≤

\
Ψ0(Cs|∇(k)f |) dµ.Suppose additionally that Φ1, Φ2 ∈ ∆c

2, so that the assumptions of Theo-rem 4.4 are satis�ed. By Proposition 5.1(6) we have Ψi ≍ Φi, thus Ψi ∈ ∆c
2as well. Therefore, by Proposition 5.1(5), we get βiΨi(λ) ≤ Φi(λ). Theseobservations (used for (2/C)f instead of f) lead to the inequalities\

Φ0(s|∇
(k)f |) dµ ≤ K1

(\
Φ1(s1B̃1|f |) dµ +

\
Φ2(s2B̃2|∇

(m)f |) dµ
)

and
‖∇(k)f‖LΦ0(µ) ≤ K̃1‖f‖

1−k/m

LΦ1(µ)
‖∇(m)f‖

k/m

LΦ2(µ)
,whi
h are the same as (4.7) and (4.8), up to multipli
ative 
onstants.Remark 5.4. For some fun
tions Φ for whi
h the assumptions of The-orem 4.3 fail, Theorem 4.4 
an still be applied. For example, suppose thatthe fun
tion Φ in Theorem 4.3 does not satisfy the ∆c

2-
ondition. Choose
F (λ) = λm/(m−k). Then Φ1(λ) = Φ(λ) and Φ2(λ) = Φ(cλ) do not satisfythe ∆c

2-
ondition either. Therefore Theorem 4.3 
annot be applied to obtainGagliardo�Nirenberg inequalities within the single Orli
z spa
e LΦ(µ) (theLandau�Kolmogorov inequalities). But in this 
ase Theorem 4.4 
an be usedand yields the desired inequality, at least for measures µ ∈ A1 ∩ A′
∞.6. Examples. We start with a single Orli
z spa
e LΨ (µ).Example 6.1 (Kolmogorov�Stein inequalities). Suppose that µ(dx) =

w(x)dx and either {Ψ ∈ ∆c
2 and w ∈ WΨ} or {Ψ is an arbitrary N-fun
tionand w ∈ A1 ∩ A′

∞}. Take F (λ) = λm/(m−k), so that F ∗(λ) = cλm/k with
c = ck,m < 1. Then we get Ψ1(λ) = Ψ(λ) and Ψ2(λ) = Ψ(cλ) with a 
onstant
c < 1. Therefore it follows from Theorems 4.3 and 4.4 that in either 
ase wehave \

Rn

Ψ(Cs|∇(k)f |) dµ ≤ K
( \

Rn

Ψ(s1|f |) dµ +
\

Rn

Ψ(s2|∇
(m)f |) dµ

)(6.1)
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0 (Rn) and arbitrary s, s1, s2 > 0 su
h that s = s

1−k/m
1 s

k/m
2 ,with 
onstants C, K independent of f . Furthermore,

‖∇(k)f‖LΨ (µ) ≤ C̃‖f‖
1−k/m

LΨ (µ)
‖∇(m)f‖

k/m

LΨ (µ)
(6.2)with a 
onstant C̃ independent of f . Inequalities (6.2) for a one-variablefun
tion f and the Lebesgue measure were re
ently obtained by Bang and
oauthors [3℄ dire
tly from the 
lassi
al Kolmogorov inequality, by means ofthe 
onvolution te
hnique due to Stein.Example 6.2 (Gagliardo�Nirenberg inequalities). Take Φ(λ) = λq, let
p, r > 1 be su
h that

1

q
=

(
1 −

k

m

)
1

p
+

k

m

1

r
,and let

F (λ) =
1

s
λs with s =

m

m − k

p

q
.Then

F ∗(λ) =
1

s∗
λs∗ and s∗ =

m

k

r

q
.A

ording to Theorem 4.3 we have Φ1(λ) ≍ λp, Φ2(λ) ≍ λr and all thesefun
tions, together with their Legendre transforms, satisfy the ∆2-
ondition.Re
alling that for Φ(λ) = |λ|κ we have WΦ = Aκ where Aκ is the Mu
ken-houpt 
lass (see e.g. [44℄), by Theorem 4.3 and Remark 4.2 we obtain\

Rn

|∇f |q dµ ≤ C
( \

Rn

|f |p dµ +
\

Rn

|∇(2)f |r dµ
)

and also
‖∇(k)f‖Lq(µ) ≤ C‖f‖

1−k/m
Lp(µ) ‖∇(m)f‖

k/m
Lr(µ),provided that µ ∈ Ap ∩ Ar, with a 
onstant C independent of f . These andother general interpolation inequalities in weighted Lκ spa
es equipped withMu
kenhoupt weights were previously obtained by the �rst author in [25℄.Our next example deals with the 
ase when Φ ∈ ∆2 ∩ ∆c

2 and it is nothomogeneous.Example 6.3 (logarithmi
 inequalities). For s > 1 and κ ∈ R let
Ms,κ(λ) = λs ln(2 + λ)κ.Suppose that µ(dx) = w(x)dx is a nonnegative weighted measure on R

n.Write ‖ · ‖(s,κ,µ) = ‖ · ‖(M(s,κ),µ), where µ is dropped from the notation if itis the Lebesgue measure. In this 
ase we obtain the following result.



66 A. Kaªamajska and K. Pietruska-PaªubaTheorem 6.1. Let k, m ∈ Z+ with 0 < k < m. Suppose that p, q, r > 1and α, β, γ ∈ R satisfy the 
onditions
1

q
=

(
1 −

k

m

)
1

p
+

k

m

1

r
,

α

q
=

(
1 −

k

m

)
β

p
+

k

m

γ

r
,(6.3)and let µ(dx) = w(x)dx be a weighted measure with w ∈ WMp,β

∩ WMr,γ .Then for every fun
tion f ∈ Cm
0 (Rn) we have

(6.4)
\
|∇(k)f |q ln(2 + |∇(k)f |)α dµ

≤ C
(\

|f |p ln(2 + |f |)β dµ +
\
|∇(m)f |r ln(2 + |∇(m)f |)γ dµ

)
,and also

‖∇(k)f‖(q,α,µ) ≤ C‖f‖
1−k/m
(p,β,µ) ‖∇

(m)f‖
k/m
(r,γ,µ),with a 
onstant C independent of f .Proof. It is 
lear that

Ms1,κ1 ◦ Ms2,κ2(λ) ≍ λs1s2(ln(2 + λ))κ1+s1κ2 = Ms1s2,κ1+s2κ2(λ).Also, it is elementary to 
he
k that M∗
s,κ ≍ Ms∗,−κ(s∗−2). This is so be
ause

Ms,κ(λ) ≍ λs for λ small, and Ms,κ(λ) ≍ λs(lnλ)κ for large values of λ.Consequently, M∗
s,κ(λ) ≍ λs∗ for λ small and M∗

s,κ(λ) ≍ λs∗(lnλ)−κ(s∗−1)for λ large (see Theorem 7.1 of [35℄).Suppose now that q, p, r, α, β, γ satisfy (6.3). Then one applies Theo-rem 4.3 for Φ = Mq,α and F = Ms,κ, whi
h is allowed as all the fun
tions
onsidered belong to the 
lass ∆c
2. From the just proven properties of thefun
tions Ms,κ one veri�es that

Φ1(λ) ≍ λsq(1−k/m)(ln(2 + λ))α+κq, Φ2(λ) ≍ λs∗qk/m(ln(2 + λ))α−qκ(s∗−1),and 
hoosing s = p
q

m
m−k , κ = β−α

q one gets Φ1(λ) ≍ Mp,β(λ) and Φ2(λ) ≍

Mr,γ(λ). The theorem is proven.When w(x) ≡ 1 this result, but within a narrower 
lass of parameters,was obtained in [28℄, as a spe
ial 
ase of more general inequalities of theform (1.3), (1.4) adapted to logarithmi
 spa
es.We also refer to that paper for some details about logarithmi
-type N-fun
tions that were only sket
hed above. Finally, note that for α = µ = γ
= 0 we get the Gagliardo�Nirenberg inequalities dis
ussed in Example 6.2.In our next example all the fun
tions Φ, Φ1 and Φ2 belong to the 
lass ∆c

2,but none of them satis�es the ∆2-
ondition.Example 6.4 (exponential inequalities). Now we present inequalities forexponential N-fun
tions.



Gagliardo�Nirenberg inequalities 67Theorem 6.2. Let k, m ∈ Z+ with 0 < k < m. Suppose that p, q, r > 1and α, β, γ > 0 satisfy the following 
onditions:
1

q
=

(
1 −

k

m

)
1

p
+

k

m

1

r
,

1

α
=

(
1 −

k

m

)
1

β
+

k

m

1

γ
.(6.5)Then for every f ∈ Cm

0 (Rn) one has
(6.6)

\
Rn

|∇(k)f |q exp(|∇(k)f |α) dµ

≤ C
( \

Rn

|f |p exp(C1|f |
β) dµ +

\
Rn

|∇(m)f |r exp(C2|∇
(m)f |γ) dµ

)
;and also

‖∇(k)f‖LΦ(µ) ≤ C̃3‖f‖
1−k/m

LΦ1(µ)
‖∇(m)f‖

k/m

LΦ2(µ)
,(6.7)where the 
onstants C, C1, C2, C3 are independent of f ,

Φ(λ) = λq exp(λα), Φ1(λ) = λp exp(λβ), Φ2(λ) = λr exp(λγ),and µ(x) = w(x)dx, where w ∈ WΦ1 ∩ WΦ2 .Proof. Take F (λ) = λs1 exp((s2 − s1) ln(2 + λ)), where the parameters
s1, s2 > 1 will be determined later. Then F is an N-fun
tion, and more-over, F (λ) ∼ λs1 for λ 
lose to 0 and F (λ) ∼ λs2 for λ 
lose to ∞. Hen
e
F ∗(λ) ∼ λs∗1 for λ 
lose to 0 and F ∗(λ) ∼ λs∗2 for λ 
lose to ∞. On the otherhand, we have Φ(λ) ∼ λq for λ 
lose to 0 and Φ(λ) ∼ exp(λα) for λ 
loseto ∞. Therefore if we take s1 = p/q(1 − k/m), s2 = β/(1 − k/m)α and use
ondition (6.5) we obtain

Φ1(λ) ∼ Φ1(λ) =: Φ(F (λ1−k/m)), Φ2(λ) ∼ Φ2(λ) =: Φ(F ∗(λk/m)).Next, as w ∈ WΦ1 ∩ WΦ2 , a

ording to Remark 4.1, we see that ω ∈
WΦ1

∩ WΦ2
. Moreover, by Proposition 4.1 we have Φ1, Φ2 ∈ ∆c

2 and there-fore Φ1, Φ2 ∈ ∆c
2 as well. Hen
e, it su�
es to apply Theorem 4.3 with thefun
tions (Φ,Φ1, Φ2) and again use the fa
t that Φ1 ∼ Φ2 and Φ2 ∼ Φ2.Remark 6.1. In our previous paper (see Example 8.7 in [27℄), frommore general inequalities we derived inequalities similar to (6.6) and (6.7)for k = 1, m = 2, but with parameters p, q, r, α, β, γ satisfying

(6.8) q > 2, α ∈ (0, 2),
1

2p
+

1

2r
=

1

q
, β =

sα

2 − α
, γ =

s∗α

2 − α
and s =

2p

q
.In parti
ular, for those parameters we have

1

2β
+

1

2γ
=

2 − α

2α
<

1

α
.This shows that inequalities (6.6) and (6.7) obtained in Theorem 6.2 (redu
edto k = 1, m = 2, µ ≡ dx, p > 2, α ∈ (0, 2)) are valid for a broader range ofparameters than the exponential inequalities from [27℄.



68 A. Kaªamajska and K. Pietruska-Paªuba7. Appendix7.1. Proof of Proposition 4.1. It is a slight modi�
ation of the proof of[35, Theorem 4.3℄, where the ∆2-
ondition was assumed only for large valuesof t.As (Φ(t)
tα

)′
= tΦ′(t)−αΦ(t)

tα+1 , the equivalen
e (D2)⇔(D3) is obvious.Set Φ′(t) = p(t), (Φ∗)′(s) = q(s) = p−1(s). Then
Φ(t) = tp(t) − Φ∗(p(t)) for t > 0,and similarly
Φ∗(s) = sq(s) − Φ(q(s)) for s > 0.(7.1)To see that (D1)⇒(D2), suppose that Φ∗ satis�es the ∆2-
ondition, i.e.there exists β > 0 su
h that

sq(s)

Φ∗(s)
≤ β for every s > 0.(7.2)As Φ∗ is stri
tly 
onvex, we have sq(s) > Φ∗(s), so that β > 1. Inserting(7.1) into (7.2) gives

sq(s)

sq(s) − Φ(q(s))
≤ β.As for t = q(s) one has sq(s) = tp(t), we get

tp(t)

tp(t) − Φ(t)
≤ β,and further

tΦ′(t)

Φ(t)
≥

β

β − 1
=: α > 1.It is 
lear that this reasoning 
an be reversed, proving also the impli
ation(D2)⇒(D1).7.2. Proof of Theorem 4.2. We start with two lemmas. For the proof ofthe �rst one we refer for example to [31, Lemma 3.2℄.Lemma 7.1. Suppose w ∈ A1 and µ = ωdx. Then for ea
h f ∈ R0(µ)(see (4.2)) one has

µ{Mf > t} ≤
C

t

∞\
t/2

µ{|f | > s} ds for all t > 0,where C is a 
onstant independent of f .The other lemma is due to Mu
kenhoupt [44℄.Lemma 7.2. Suppose w ∈ A′
∞. Then for ea
h f ∈ R0(µ) one has

µ{Mf > t} ≥
C

t

∞\
t

µ{|f | > s} ds for all t > 0,where C is a 
onstant independent of f .



Gagliardo�Nirenberg inequalities 69Proof of Theorem 4.2. For a measurable f we 
an write\
Rn

Φ(Mf) dµ =
\

(0,∞)

Φ′(s)µ{Mf > s} ds

(these integrals are either simultaneously in�nite, or both �nite and equal).By Lemma 7.1 this is further equal to\
(0,∞)

a(s)µ{Mf > s} ds ≤ C

∞\
0

a(s)

s

(∞\
s

µ{|f | > t} dt
)

ds

= C

∞\
0

µ{|f | > t}

( t\
0

a(s)

s
ds

)
dt

= C

∞\
0

b(t)µ{|f | > t} dt

= C

∞\
0

Ψ ′(t)µ{|f | > t} dt = C
\

Rn

Ψ(|f |) dµ,and (4.4) is proven.It is 
lear that for w ∈ A′
∞ this 
hain of inequalities 
an be reversed (useLemma 7.2 instead of Lemma 7.1), giving (4.5).Remark 7.1. Note that the 
onstants K1 and K2 do not depend on Φand Ψ .
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