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Approximation properties determined by operator ideals
and approximability of homogeneous polynomials and

holomorphic functions

by

Sonia Berrios and Geraldo Botelho (Uberlândia)

Abstract. Given an operator ideal I, a Banach space E has the I-approximation
property if the identity operator on E can be uniformly approximated on compact sub-
sets of E by operators belonging to I. In this paper the I-approximation property is
studied in projective tensor products, spaces of linear functionals, spaces of linear opera-
tors/homogeneous polynomials, spaces of holomorphic functions and their preduals.

1. Introduction. Given Banach spaces E and F , we denote by L(E;F )
the Banach space of all bounded linear operators from E to F endowed with
the usual operator sup norm. The subspaces of L(E;F ) formed by all finite
rank, all compact and all weakly compact operators are denoted by F(E;F ),
K(E;F ) and W(E;F ), respectively. For a subset S of L(E;F ), the symbol
S
τc represents the closure of S with respect to the compact-open topology τc.

By idE we denote the identity operator on E.
Recall that a Banach space E has

• the approximation property (AP for short) if idE ∈ F(E;E)
τc ,

• the compact approximation property (CAP) if idE ∈ K(E;E)
τc ,

• the weakly compact approximation property (WCAP) if idE ∈
W(E;E)

τc .

The AP is a classic in Banach space theory (see [13]) and is one of the
main subjects of Grothendieck [29]. The CAP has been extensively studied in
the last decades (see, e.g., [14, 16, 17]), but it goes back to Banach [4, p. 237].
The WCAP has been studied recently (see [17, 18]). Having in mind that
F , K andW are operator ideals, the properties above are obvious particular
instances of the following general concept:
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Definition 1.1. Let I be an operator ideal. A Banach space E is said
to have the I-approximation property (I-AP for short) if idE ∈ I(E;E)

τc .

The I-approximation property was studied, for instance, by Reinov [51,
52], Grønbæk and Willis [28] and Lissitsin, Mikkor and Oja [37]. Further-
more, several variants of the approximation property, including those closely
related to the I-AP, have been studied recently (see, e.g., [20, 22, 35, 36,
43, 44, 45, 53]). Even approximation properties more general than the I-AP
have already been investigated: see, for instance, Lissitsin and Oja [38].

It is clear that if E has the AP then E has the I-AP for every operator
ideal I. In particular, the Banach spaces with a Schauder basis (e.g., `p,
1 ≤ p <∞, and c0) have the I-AP for every operator ideal I.

Let us stress that different ideals may give rise to different approxima-
tion properties: (i) Willis [55] showed that there are spaces with the CAP
but without the AP; (ii) Szankowski [54] proved that for 1 ≤ p < 2, `p has
a subspace Sp without the CAP, so S3/2 has the WCAP but not the CAP
and S1 has the CC ∩C2-AP but not the CAP, where CC and C2 are the ideals
of completely continuous and cotype 2 operators, respectively. On the other
hand, it is clear that E has the I-AP if E has the I-AP (I meaning the
closure of I). Thus, for example, since F ⊆ Np ⊆ F = A [33, Proposi-
tion 19.7.3], where Np and A are, respectively, the ideals of p-nuclear and
approximable operators, we have Np-AP = AP whereas F 6= Np 6= F = A.

The study of the approximation property and its variants—including the
I-AP—is rich and multifaceted, so to study the I-AP, some choices have to
be made. In this paper we study the I-AP in projective tensor products (Sec-
tion 3) and in spaces of mappings between Banach spaces, namely, spaces
of linear functionals (Section 2), spaces of homogeneous polynomials (Sec-
tion 4) and spaces of holomorphic functions and their preduals (Section 5).
Proposition 4.6 fixes and generalizes a result of [18].

The results we prove in the different sections of the paper seem—at first
glance—to be completely disconnected. However, several such connections
are given in Section 5.

2. Preliminaries. When F is the scalar field K = R or C, we shall write
E′ instead of L(E; K). The compact-open topology or the topology of compact
convergence is the locally convex topology τc on L(E;F ) which is generated
by the seminorms

pK(T ) = sup
x∈K
‖T (x)‖,

where K ranges over all compact subsets of E.
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For a given operator ideal I, let I denote the closure of I, that is,
I(E;F ) = I(E;F ) for any Banach spaces E and F . For the theory of oper-
ator ideals we refer to [48, 19].

The results below are well known (see, e.g., [51] or [28]) or elementary.
The proofs repeat verbatim their AP prototypes.

Proposition 2.1. Let I be an operator ideal. The following statements
are equivalent for a Banach space E:

(a) E has the I-approximation property.
(b) For every Banach F , L(E;F ) = I(E;F )

τc .
(c) For every Banach F , L(F ;E) = I(F ;E)

τc .
(d)

∑∞
n=1 x

′
n(xn) = 0 whenever the sequences (xn) ⊆ E and (x′n) ⊆ E′

are such that
∑∞

n=1 ‖x′n‖ ‖xn‖ < ∞ and
∑∞

n=1 x
′
n(T (xn)) = 0 for

every T ∈ I(E;E).

Just as the AP, also the I-AP is inherited by complemented subspaces
and is stable under the formation of finite cartesian products:

Proposition 2.2. Let I be an operator ideal and E be a Banach space
with the I-approximation property. Then every complemented subspace of E
has the I-approximation property as well.

Proposition 2.3. Let I be an operator ideal, k ∈ N and E1, . . . , Ek
be Banach spaces. Then the finite direct sum (or cartesian product) E =⊕k

n=1En has the I-approximation property if and only if E1, . . . , Ek have
the I-approximation property.

Now we relate the I-AP of E to that of its dual E′. This is a classical topic
in approximation properties, and for the I-AP it was studied, for instance,
in [28, 37].

Given an operator ideal I and Banach spaces E and F , define

Idual(E;F ) = {S ∈ L(E;F ) : S′ ∈ I(F ′;E′)}.
It is well known that Idual is an operator ideal.

Let E be a reflexive Banach space. From Proposition 2.1(a)⇔(d), it is
immediate that the I-AP of E is equivalent to the Idual-AP of E′. This is
used in the proof of the following result.

Theorem 2.4. Let I1 and I2 be operator ideals such that either I2 ⊆
Idual

1 or Idual
2 ⊆ I1 and let E be a reflexive Banach space.

(a) If E′ has the I2-AP then E has the I1-AP.
(b) If E has the I2-AP then E′ has the I1-AP.

Proof. Obviously (a)⇔(b) since E is reflexive. Assume that I2 ⊆ Idual
1 .

Then (a) holds: if E′ has the I2-AP then E′ has the Idual
1 -AP, equivalently,
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E has the I1-AP. Assume that Idual
2 ⊆ I1. Then (b) holds: if E has the

I2-AP, equivalently, E′ has the Idual
2 -AP, then E′ has the I1-AP.

Corollary 2.5. Let I be an operator ideal such that either I ⊆ Idual

or Idual ⊆ I and let E be a reflexive Banach space. Then E′ has the I-
approximation property if and only if E has the I-approximation property.

Given 1 ≤ p <∞, p∗ stands for the conjugate of p, that is 1/p+1/p∗ = 1.
For the definition of the adjoint ideal I∗ of the operator ideal I, see, e.g.,
[24, p. 132].

Example 2.6. Let us see that there are plenty of ideals satisfying the
conditions of Theorem 2.4 and Corollary 2.5.

(i) N dual
1 ⊆ J [19, Ex. 16.9], where J is the ideal of integral operators;

SSdual ⊆ SC and SCdual ⊆ SS [23, 1.18], where SS and SC are, respectively
the ideals of strictly singular and strictly cosingular operators; Γ dual

p = Γp∗

[24, p. 186], where Γp is the ideal of p-factorable operators; Πdual
1 = Γ ∗1

[24, Corollary 9.5], where Πp is the ideal of absolutely p-summing operators;
Tp ⊆ Cdual

p∗ and Cp∗ ◦ KC ⊆ T dual
p for 1 < p ≤ 2 [19, 31.2], where Tp, Cp,KC

are, respectively, the ideals of type p operators, cotype p operators and K-
convex operators (for the latter see [19, 31.1]); N dual

1 ⊆ QN [19, Ex. 9.13(b)],
where QN is the ideal of quasinuclear operators (see [19, Ex. 9.13], [47]);
Πdual
r,p,q = Πr,q,p [48, Theorem 17.1.5], where Πr,p,q is the ideal of absolutely

(r, p, q)-summing operators; Ldual
p,q = Lq,p [12, p. 68], where Lp,q is the ideal

of (p, q)-factorable operators; Kp = QN dual
p [21], where Kp and QN dual

p are,
respectively, the ideals of p-compact operators and quasi p-nuclear operators
(for the latter see [21, 47]).

(ii) The following ideals are completely symmetric (that is, I = Idual):
F ;A;K;W [48, Proposition 4.4.7]; J [19, Corollary 10.2.2]; the ideal SN
of strongly nuclear operators [33, Theorem 19.9.3]; the ideal Up of operators
having approximation numbers belonging to `p, 0 < p < ∞ [48, Theorem
14.2.5]; and KC [19, 31.1].

(iii) The following ideals satisfy I ⊆ Idual: N1 [19, 9.9] and the ideal D
of dualisable operators [48, Proposition 4.4.10].

(iv) The following ideals satisfy Idual ⊆ I: the ideals S of separable
operators [48, Proposition 4.4.8] and DP := W−1 ◦ CC of Dunford–Pettis
operators [23, 1.15].

Our next aim is to show that the implication E′ has the I-AP ⇒ E has
the I-AP holds in some situations not covered by Corollary 2.5.

The weak∗ topology on L(E′;E′)=(E′⊗̂πE)′ is the topology σ(L(E′;E′);
E′ ⊗̂π E). A net (Tα) in L(E′;E′) converges to T ∈ L(E′;E′) if and only if
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∞∑
n=1

(Tα(x′n))xn →
∞∑
n=1

(T (x′n))xn

for every (xn) ⊆ E and (x′n) ⊆ E′ satisfying
∑∞

n=1 ‖x′n‖ ‖xn‖ < ∞. In this
case we write Tα

weak∗−−−−→ T .
Given a Banach space E, we denote by w∗ the weak∗ topology on E′. For

a given operator ideal I, we denote by Iw∗(E′;E′) the set of all operators
belonging to I(E′;E′) which are w∗-to-w∗ continuous. The dual space E′ is
said to have the weak∗ density for I (I-W*D for short) if

I(E′;E′) ⊆ Iw∗(E′;E′)
weak∗

.

Every dual space with the AP has the I-W*D for every operator ideal I.
In fact, it is well known (and an easy consequence of the principle of local
reflexivity) that every dual space has the F-W*D. Therefore if E′ has the AP,
then

L(E′;E′) ⊆ F(E′;E′)
τc ⊆ Fw∗(E′;E′)

weak∗
.

In particular, nonreflexive dual Banach spaces have the I-W*D for every
operator ideal I. So, formally Corollary 2.5 does not apply to dual spaces
having the I-W*D. In this direction we have:

Proposition 2.7. Let E be a Banach space and let I be an operator
ideal such that Idual ⊆ I. If E′ has the I-AP and the I-W*D, then E has
the I-AP.

Proof. Let (xn) ⊆ E and (x′n) ⊆ E′ be sequences with
∑∞

n=1 ‖x′n‖ ‖xn‖
<∞ and

∑∞
n=1 x

′
n(T (xn)) = 0 for every T ∈ I(E;E). We know that idE′ ∈

I(E′;E′)
τc and I(E′;E′) ⊆ Iw∗(E′;E′)

weak∗
. Thus idE′ ∈ Iw∗(E′;E′)

weak∗

and so there is a net (Sα) ⊆ Iw∗(E′;E′) such that Sα
weak∗−−−−→ idE′ . For

each α, since Sα is w∗-to-w∗ continuous, there is Tα ∈ L(E;E) such that
T ′α = Sα. We know that Sα ∈ I(E′;E′), so the condition Idual ⊆ I implies
that Tα ∈ I(E;E) for every α. Since T ′α

weak∗−−−−→ (idE)′ we get
∞∑
n=1

x′n(Tα(xn))→
∞∑
n=1

x′n(idE(xn)) =
∞∑
n=1

x′n(xn).

But
∑∞

n=1 x
′
n(Tα(xn)) = 0 for every α because each Tα ∈ I(E;E), therefore∑∞

n=1 x
′
n(xn) = 0. By Proposition 2.1 it follows that E has the I-AP.

3. Tensor stability. In this section we study the stability of the I-AP
under the formation of projective tensor products. By E1 ⊗̂π · · · ⊗̂π En
we mean the completed projective tensor product of the Banach spaces
E1, . . . , En (⊗̂nπE if E = E1 = · · · = En), and by ⊗̂n,sπ E the completed
n-fold symmetric projective tensor product of the Banach space E.
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Given uj ∈ L(Ej ;Fj), j = 1, . . . , n, we denote by u1⊗ · · · ⊗ un, as usual,
the (unique) continuous linear operator from E1⊗̂π · · ·⊗̂πEn to F1⊗̂π · · ·⊗̂πFn
such that

u1 ⊗ · · · ⊗ un(x1 ⊗ · · · ⊗ xn) = u1(x1)⊗ · · · ⊗ un(xn)

for every x1 ∈ E1, . . . , xn ∈ En. The proof of the stability of the approxi-
mation property with respect to the formation of projective tensor products
relies heavily on the fact that u1⊗· · ·⊗un is a finite rank operator whenever
u1, . . . , un are finite rank operators. Let us see that this does not hold for
arbitrary operator ideals:

Example 3.1. The identity operator id`2 is weakly compact but id`2 ⊗
id`2 = id`2⊗̂π`2 is not because `2 ⊗̂π `2 fails to be reflexive.

In order to settle this difficulty we need the following methods of generat-
ing ideals of multilinear mappings from operator ideals. By L(E1, . . . , En;F )
we denote the space of continuous n-linear mappings from E1 × · · · ×En to
F endowed with the usual sup norm.

Definition 3.2. Let I, I1, . . . , In be operator ideals.

(a) (Factorization method) A mapping A ∈ L(E1, . . . , En;F ) is said
to be of type L[I1, . . . , In] if there are Banach spaces G1, . . . , Gn,
operators uj ∈ Ij(Ej ;Gj), j = 1, . . . , n, and a mapping B ∈
L(G1, . . . , Gn;F ) such that A = B ◦ (u1, . . . , un). In this case we
write A ∈ L[I1, . . . , In](E1, . . . , En;F ). If I = I1 = · · · = In we
simply write L[I].

(b) (Composition ideals) A mapping A ∈ L(E1, . . . , En;F ) belongs to
I ◦L if there are a Banach space G, a mapping B ∈ L(E1, . . . , En;G)
and an operator u ∈ I(G;F ) such that A = u ◦ B. In this case we
write A ∈ I ◦ L(E1, . . . , En;F ).

For details and examples we refer to [6, 7].

Proposition 3.3. Given operator ideals I, I1, . . . , In, the following are
equivalent:

(a) L[I1, . . . , In] ⊆ I ◦ L.
(b) If uj ∈ Ij(Ej ;Fj), j = 1, . . . , n, then

u1 ⊗ · · · ⊗ un ∈ I(E1 ⊗̂π · · · ⊗̂π En;F1 ⊗̂π · · · ⊗̂π Fn).

Proof. Assume (a) and let uj ∈ Ij(Ej ;Fj), j = 1, . . . , n, be given. Con-
sider the canonical n-linear mapping σn : E1 ⊗ · · · × En → E1 ⊗̂π · · · ⊗̂π En
given by σn(x1, . . . , xn) = x1 ⊗ · · · ⊗ xn and observe that

σn ◦ (u1, . . . , un) ∈ L[I1, . . . , In](E1, . . . , En;E1 ⊗̂π · · · ⊗̂π En).
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By assumption we have

σn ◦ (u1, . . . , un) ∈ I ◦ L(E1, . . . , En;E1 ⊗̂π · · · ⊗̂π En).

Denote by T the linearization of σn ◦ (u1, . . . , un). Then by [7, Proposition
3.2(a)] we have T ∈ I(E1 ⊗̂π · · · ⊗̂π En;E1 ⊗̂π · · · ⊗̂π En). For every x1 ∈ E1,
. . . , xn ∈ En,

T (x1 ⊗ · · · ⊗ xn) = σn ◦ (u1, . . . , un)(x1, . . . , xn) = σn(u1(x1), . . . , un(xn))
= u1(x1)⊗ · · · ⊗ un(xn) = u1 ⊗ · · · ⊗ un(x1 ⊗ · · · ⊗ xn).

As both T and u1 ⊗ · · · ⊗ un are linear it follows that T = u1 ⊗ · · · ⊗ un,
hence u1 ⊗ · · · ⊗ un ∈ I(E1 ⊗̂π · · · ⊗̂π En;E1 ⊗̂π · · · ⊗̂π En).

Now assume (b) and let A ∈ L[I1, . . . , In](E1, . . . , En;F ) be given. There
are Banach spaces G1, . . . , Gn, operators uj ∈ Ij(Ej ;Gj), j = 1, . . . , n, and
B ∈ L(G1, . . . , Gn;F ) such that A = B ◦ (u1, . . . , un). By assumption

u1 ⊗ · · · ⊗ un ∈ I(E1 ⊗̂π · · · ⊗̂π En;G1 ⊗̂π · · · ⊗̂π Gn),

so, denoting by BL the linearization of B, the equality

A = B ◦ (u1, . . . , un) = BL ◦ (u1 ⊗ · · · ⊗ un) ◦ σn
shows that A ∈ I ◦ L(E1, . . . , En;F ).

The next result is an extension of [30, Theorem 3]:

Proposition 3.4. Let I, I1, . . . , In be operator ideals with L[I1, . . . , In]
⊆ I ◦L. If Ej has the Ij-AP, for j = 1, . . . , n, then E1 ⊗̂π · · · ⊗̂π En has the
I-AP.

Proof. Let K be a compact subset of E1 ⊗̂π · · · ⊗̂π En. By [19, Corol-
lary 3.5.1] there are compact sets K1 ⊆ E1, . . . ,Kn ⊆ En such that K is
contained in the closure of the absolutely convex hull of K1 ⊗ · · · ⊗Kn :=
{x1 ⊗ · · · ⊗ xn : x1 ∈ K1, . . . , xn ∈ Kn}. Since compact sets are bounded,
there is M > 0 such that ‖xj‖ ≤ M for every xj ∈ Ej , j = 1, . . . , n. Let
ε > 0. As E1 has the I1-AP, there is an operator u1 ∈ I1(E1;E1) such
that ‖u1(x1)− x1‖ < ε/(2nMn−1) for every x1 ∈ K1. As E2 has the I2-AP,
there is u2 ∈ I2(E2;E2) such that ‖u2(x2) − x2‖ < ε/(2nMn−1‖u1‖) for
every x2 ∈ K2. Repeating the procedure we obtain uj ∈ Ij(Ej ;Ej) such
that

‖uj(xj)− xj‖ <
ε

2nMn−1‖u1‖ · · · ‖uj−1‖
for every xj ∈ Kj , j = 1, . . . , n. By Proposition 3.3, u1 ⊗ · · · ⊗ un ∈
I(E1 ⊗̂π · · · ⊗̂π En;E1 ⊗̂π · · · ⊗̂π En). We shall denote the projective norm
of a tensor z ∈ E1 ⊗̂π · · · ⊗̂π En by ‖z‖ instead of π(z). Given x1 ∈ K1,
. . . , xn ∈ Kn,
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‖u1 ⊗ · · · ⊗ un(x1 ⊗ · · · ⊗ xn)− x1 ⊗ · · · ⊗ xn‖
= ‖u1(x1)⊗ · · · ⊗ un(xn)− x1 ⊗ · · · ⊗ xn‖

=
∥∥∥u1(x1)⊗ · · · ⊗ un(xn)−

n−1∑
j=1

u1(x1)⊗ · · · ⊗ uj(xj)⊗ xj+1 ⊗ · · · ⊗ xn

+
n−1∑
j=1

u1(x1)⊗ · · · ⊗ uj(xj)⊗ xj+1 ⊗ · · · ⊗ xn − x1 ⊗ · · · ⊗ xn
∥∥∥

=
∥∥∥ n∑
j=1

u1(x1)⊗ · · · ⊗ uj−1(xj−1)⊗ (uj(xj)− xj)⊗ xj+1 ⊗ · · · ⊗ xn
∥∥∥

≤
n∑
j=1

‖u1(x1)⊗ · · · ⊗ uj−1(xj−1)⊗ (uj(xj)− xj)⊗ xj+1 ⊗ · · · ⊗ xn‖

≤
n∑
j=1

‖u1‖ ‖x1‖ · · · ‖uj−1‖ ‖xj−1‖ ‖uj(xj)− xj‖ ‖xj+1‖ · · · ‖xn‖

<
n∑
j=1

‖u1‖ · · · ‖uj−1‖Mn−1 ε

2nMn−1‖u1‖ · · · ‖uj−1‖
=
ε

2
.

In summary,

(3.1) ‖u1 ⊗ · · · ⊗ un(x1 ⊗ · · · ⊗ xn)− x1 ⊗ · · · ⊗ xn‖ < ε/2

for every x1 ∈ K1, . . . , xn ∈ Kn. Take z in the absolutely convex hull of
K1 ⊗ · · · ⊗Kn. Then z =

∑k
j=1 λjx

1
j ⊗ · · · ⊗ xnj , where k ∈ N, λ1, . . . , λk are

scalars with |λ1|+· · ·+|λk| ≤ 1, and xmj ∈ Km for j = 1, . . . , k,m = 1, . . . , n.
Using (3.1), a routine computation shows that ‖u1 ⊗· · ·⊗un(z)− z‖ < ε/2.
By continuity we have

‖u1 ⊗ · · · ⊗ un(z)− z‖ ≤ ε/2 < ε

for every z in the closure of the absolutely convex hull of K1 ⊗ · · · ⊗ Kn,
hence for every z ∈ K.

As to ideals satisfying the conditions above we have:

Example 3.5.

(a) It is plain that L[F ] ⊆ F ◦ L and L[S] ⊆ S ◦ L.
(b) L[N1] ⊆ N1 ◦ L [31, Theorem 3.7] (see also [33, Proposition 17.3.9]).
(c) L[J ] ⊆ J ◦ L [32, Theorem 2].
(d) Let LK denote the ideal of compact multilinear mappings (bounded

sets are sent to relatively compact sets). Pełczyński [46] proved that
K◦L = LK. Now it follows easily that L[K] ⊆ K◦L. So the projective
tensor product of spaces with the CAP has the CAP too.
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(e) L[L∞,q,γ ] ⊆ L∞,q,γ◦L for 0 < q ≤ 1 and−1/q < γ <∞ [15, Theorem
3.1], where L∞,q,γ is the ideal of Lorentz–Zygmund operators.

(f) L[L1,q] ⊆ L1,q ◦ L for q > 1 and L[K1,p] ⊆ K1,p ◦ L for p ≥ 1 [12,
Theorem 2.1], where K1,p is the ideal of (1, p)-compact operators.

(g) It is unknown if the projective tensor product of Schur spaces is a
Schur space (see, e.g., [8]), so it is unknown if L[CC] ⊆ CC ◦ L.

Here are other concrete situations to which Proposition 3.4 applies:

Example 3.6. Let n ∈ N.

(a) If 1 ≤ p1, . . . , pn < ∞, then L[W, I1, . . . , In] ⊆ W ◦ L where Ij is
either K or Πpj , j = 1, . . . , n (Racher [50]).

(b) L[Π1,J , (n). . . ,J ] ⊆ Π1 ◦ L (Holub [32]).
(c) L[QN ,N1,

(n). . . ,N1] ⊆ QN ◦ L (Holub [32]).
(d) If p1 > pj for j = 2, . . . , n, then L[Up1 ,Up2 , . . . ,Upn ] ⊆ Up1 ◦L (König

[34, p. 79], Pietsch [49]).

Combining Proposition 3.4 and Example 3.6 we get:

Proposition 3.7.

(a) Let E1, . . . , En be Banach spaces, one of which has the WCAP and the
others Ej have either the CAP or the Πpj -AP for some 1 ≤ pj <∞.
Then E1 ⊗̂π · · · ⊗̂π En has the WCAP.

(b) Let E1, . . . , En be Banach spaces, one of which has the Π1-AP and
the others have the J -AP. Then E1 ⊗̂π · · · ⊗̂π En has the Π1-AP.

(c) Let E1, . . . , En be Banach spaces, one of which has the QN -AP and
the others have the AP. Then E1 ⊗̂π · · · ⊗̂π En has the AP.

(d) Let p1, . . . , pn > 0. If E1, . . . , En are Banach spaces, each Ej with the
Upj -AP, then E1 ⊗̂π · · · ⊗̂π En has the Upk-AP if pk > pj for every
j 6= k.

Corollary 3.8. Let I be an operator ideal such that L[I] ⊆ I ◦L. The
following are equivalent for a Banach space E:

(a) E has the I-AP.
(b) ⊗̂nπE has the I-AP for every n ∈ N.
(c) ⊗̂nπE has the I-AP for some n ∈ N.
(d) ⊗̂n,sπ E has the I-AP for every n ∈ N.
(e) ⊗̂n,sπ E has the I-AP for some n ∈ N.

Proof. (a)⇒(b) follows from Proposition 3.4; (b)⇒(c) is obvious; (c)⇒(a)
follows from Proposition 2.2 because E is obviously a complemented sub-
space of ⊗̂nπE; (b)⇒(d) follows from Proposition 2.2 because ⊗̂n,sπ E is a
complemented subspace of ⊗̂nπE via the symmetrization operator; (d)⇒(e) is
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obvious; (e)⇒(a) follows from Proposition 2.2 because E is a complemented
subspace of ⊗̂n,sπ E (see [5, Corollary 4]).

4. Polynomial ideals and the I-AP. The symbol P(nE;F ) stands
for the space of continuous n-homogeneous polynomials from E to F . A poly-
nomial ideal is a subclass Q of the class of all continuous homogeneous poly-
nomials between Banach spaces such that, for every n ∈ N and all Banach
spaces E and F , the component Q(nE;F ) := P(nE;F ) ∩Q satisfies:

(a) Q(nE;F ) is a linear subspace of P(nE;F ) which contains the n-
homogeneous polynomials of finite type.

(b) If T ∈ L(G;E), P ∈ Q(nE;F ) and S ∈ L(F ;H), then S ◦ P ◦ T ∈
Q(nG;H).

There are different ways to construct a polynomial ideal from a given
operator ideal I. Let us see three of such methods (see [6, 7]):

Definition 4.1. Let I be an operator ideal.

(a) (Factorization method) A polynomial P ∈ P(nE;F ) is said to be of
type PL[I] if there are a Banach space G, an operator u ∈ I(E;G)
and a polynomial Q ∈ P(nG;F ) such that P = Q ◦ u. In this case
we write P ∈ PL[I](nE;F ).

(b) (Composition ideals) A polynomial P ∈ P(nE;F ) belongs to I ◦ P
if there are a Banach space G, a polynomial Q ∈ P(nG;F ) and an
operator u ∈ I(E;G) such that P = u ◦ Q. In this case we write
P ∈ I ◦ P(nE;F ).

(c) (Linearization method) A polynomial P ∈ P(nE;F ) is said to be of
type P[I] if the linear operator

P̄ : E → P(n−1E;F ), P̄ (x)(y) = P̌ (x, y, . . . , y),

belongs to I. In this case we write P ∈ P[I](nE;F ).

It is well known that PL[I], I ◦ P and P[I] are polynomial ideals.

Given a polynomial P ∈ P(nE;F ), we denote by P̌ the (unique) continu-
ous symmetric n-linear mapping from En to F such that P (x) = P̌ (x, . . . , x)
for every x ∈ E.

Theorem 4.2. Let I be an operator ideal. The following are equivalent
for a Banach space E:

(a) E has the I-approximation property.
(b) P(nE;F )=PL[I](nE;F )

τc for every n∈N and every Banach space F .
(c) P(nE;F )=PL[I](nE;F )

τc for some n∈N and every Banach space F .
(d) P(nF ;E)=I ◦ P(nF ;E)

τc for every n ∈ N and every Banach space F .
(e) P(nF ;E)=I ◦ P(nF ;E)

τc for some n ∈ N and every Banach space F .
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Furthermore, if L[I] ⊆ I ◦ L, then the conditions above are also equivalent
to:

(f) P(nE;F )=I ◦ P(nE;F )
τc for every n ∈ N and every Banach space F .

(g) P(nE;F )=I ◦ P(nE;F )
τc for some n ∈ N and every Banach space F .

Proof. (a)⇒(b). Let P ∈ P(nE;F ), K be a compact subset of E and
ε > 0. Since P is uniformly continuous on K, there is δ > 0 such that
‖P (y) − P (x)‖ < ε whenever ‖y − x‖ < δ, x ∈ K and y ∈ E. By the
I-AP of E there is an operator T ∈ I(E;E) such that ‖T (x) − x‖ < δ for
every x ∈ K. It follows that ‖P (T (x)) − P (x)‖ < ε for every x ∈ K. But
P ◦ T ∈ PL[I](nE;F ), so P ∈ PL[I](nE;F )

τc .
(c)⇒(a). Let u ∈ L(E;F ), K be a compact subset of E and ε > 0. Let

ϕ ∈ E′, ϕ 6= 0, and a ∈ K be such that ϕ(a) = 1. Define P ∈ P(nE;F ) by
P (x) = ϕ(x)n−1u(x). Since K1 :=

⋃
εi=±1(ε1K + · · · + εnK) is a compact

subset of E, by assumption there is a polynomial Q ∈ PL[I](nE;F ) such
that ‖Q(x)− P (x)‖ < n!ε/n for every x ∈ K1. By the polarization formula,
for every (x1, . . . , xn) ∈ K × · · · ×K we have

‖Q̌(x1, . . . , xn)− P̌ (x1, . . . , xn)‖∥∥∥∥ 1
n!2n

∑
εi=±1

ε1 · · · εn
[
Q
( n∑
i=1

εixi

)
− P

( n∑
i=1

εixi

)]∥∥∥∥ < ε

n
.

From
P̌ (x, a, . . . , a) =

1
n
u(x) +

n− 1
n

ϕ(x)u(a),

it follows that

‖nQ̌(x, a, . . . , a)− u(x)− (n− 1)ϕ(x)u(a)‖

= n

∥∥∥∥Q̌(x, a, . . . , a)−
(

1
n
u(x) +

n− 1
n

ϕ(x)u(a)
)∥∥∥∥ < ε

for every x ∈ K. Considering S = nQ̌(·, a, . . . , a)−(n−1)ϕ(·)u(a) ∈ L(E;F ),
we have ‖S(x)− u(x)‖ < ε for every x ∈ K. Let us check that S ∈ I(E;F ).
Indeed, as Q ∈ PL[I](nE;F ), there are a Banach space G, an operator v ∈
I(E;G) and a polynomial R ∈ P(nG;F ) such that Q = R ◦ v. Define
T : G→ F by T (y) = Ř(y, v(a), . . . , v(a)). Then T ◦ v ∈ I(E;F ) and

T ◦ v(x) = T (v(x)) = Ř(v(x), v(a), . . . , v(a)) = Q̌(x, a, . . . , a)

for every x ∈ E, proving that Q̌(·, a, . . . , a) ∈ I(E;F ). On the other hand,
ϕ(·)u(a) ∈ I(E;F ), being a finite rank operator. Thus S ∈ I(E;F ) and
L(E;F ) = I(E;F )

τc . Proposition 2.1 shows that E has the I-AP.
(a)⇒(d). Let P ∈ P(nF ;E), K be a compact subset of E and ε > 0.

Since P (K) is a compact subset of E and E has the I-approximation prop-
erty, there is an operator T ∈ I(E;E) such that ‖T (z) − z‖ < ε for ev-
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ery z ∈ P (K). Hence ‖T (P (x)) − P (x)‖ < ε for every x ∈ K. Since
T ◦ P ∈ I ◦ P(nF ;E) we have P ∈ I ◦ P(nF ;E)

τc .
(e)⇒(a). The same argument of (c)⇒(a), mutatis mutandis, works in

this case. We just sketch the proof: given u ∈ L(F ;E), a compact set K ⊆ F
and ε > 0, take ϕ ∈ F ′, ϕ 6= 0, and a ∈ K such that ϕ(a) = 1. Defining
P = ϕ(·)n−1u(·) ∈ P(nF ;E) and a compact subset K1 of F as before, by
assumption there is Q ∈ I ◦ P(nF ;E) such that ‖Q(x)− P (x)‖ < n!ε/n for
every x ∈ K1. Define S = nQ̌(·, a, . . . , a) − (n − 1)ϕ(·)u(a) ∈ L(F ;E) and
proceed exactly as above to get ‖S(x) − u(x)‖ < ε for every x ∈ K. Write
Q = v ◦ R with v ∈ I(G;E) and R ∈ P(nF ;G) and define T ∈ L(F ;G) by
T (y) = Ř(y, a, . . . , a). Thus v ◦T = Q̌(·, a, . . . , a) ∈ I(F ;E) and this implies
that S ∈ I(F ;E).

Since (b)⇒(c) and (d)⇒(e) are obvious, the first part of the proof is
complete.

Assume now that L[I] ⊆ I ◦ L.
(a)⇒(f). By assumption, E has the I-AP. Let n ∈ N, P ∈ P(nE;F ),

K be a compact subset of E and ε > 0. Note that P = PL ◦ σn where
σn ∈ P(nE; ⊗̂n,sπ E) is the canonical n-homogeneous polynomial defined by
σn(x) = x ⊗ · · · ⊗ x and PL ∈ L(⊗̂n,sπ E;F ) is the linearization of P , that
is, PL(x ⊗ · · · ⊗ x) = P (x). By Corollary 3.8, ⊗̂n,sπ E has the I-AP, hence
L(⊗̂n,sπ E;F ) = I(⊗̂n,sπ E;F )

τc
by Proposition 2.1. So for the compact subset

σ(K) of ⊗̂n,sπ E there is an operator u ∈ I(⊗̂n,sπ E;F ) such that

‖u ◦ σn(x)− P (x)‖ = ‖u(σn(x))− PL(σn(x))‖ < ε

for every x ∈ K. Since Q = u ◦ σn ∈ I ◦ P(nE;F ), it follows that P ∈
I ◦ P(nE;F )

τc .
The implication (f)⇒(g) is obvious and (g)⇒(a) follows from a repetition

of the arguments for (c)⇒(a) and (e)⇒(a), therefore the proof is complete.

The spaces PL[I](nE;E) and I ◦ P(nE;E) are often different. We have
obtained situations where, however, their τc-closures coincide:

Corollary 4.3. Let I be an operator ideal.

(a) If Banach spaces E and F have the I-approximation property, then
PL[I](nE;F )

τc = P(nE;F ) = I ◦ P(nF ;E)
τc for every n ∈ N.

(b) A Banach space E has the I-approximation property if and only if
PL[I](nE;E)

τc = P(nE;E) = I ◦ P(nE;E)
τc for every n ∈ N.

Example 4.4. It is not difficult to check that neither PL[W](2`1; `1) ⊆
W ◦ P(2`1; `1) nor W ◦ P(2`1; `1) ⊆ PL[W](2`1; `1) (see [6, Examples 27
and 28]). Nevertheless, by Corollary 4.3(b) both subspaces are τc-dense in
P(2`1; `1) because `1 has the approximation property (hence the weakly com-
pact approximation property).
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The following result appears in Çaliskan [18]:

Theorem 4.5 ([18, Theorem 11]). The following are equivalent for a
Banach space E:

(a) E has the weakly compact approximation property.
(b) P(nE;F )=P[W](nE;F )

τc for every n ∈ N and every Banach space F .
(c) P(nE;F )=P[W](nE;F )

τc for some n∈N and every Banach space F .

Unfortunately there is a gap in the proof of this theorem (see the Math-
SciNet review by Boyd [9] and the Erratum of [18]). In this direction we
have:

Proposition 4.6. Let I be a closed injective operator ideal. The follow-
ing are equivalent for a Banach space E:

(a) E has the I-approximation property.
(b) P(nE;F )=P[I](nE;F )

τc for every n∈N and every Banach space F .
(c) P(nE;F )=P[I](nE;F )

τc for some n∈N and every Banach space F .

Proof. Just combine Theorem 4.2 with the fact that P[I] = PL[I] when-
ever the operator ideal I is closed and injective (see [11]).

Recalling that W is closed and injective, Proposition 4.6 fixes Theorem
4.5 and generalizes it to arbitrary closed injective operator ideals.

5. Spaces of holomorphic functions. The approximation property
and its variants in spaces of holomorphic functions and their preduals have
been extensively investigated (see, e.g., [3, 10, 16, 17, 26, 27, 42]). In this sec-
tion we study the I-approximation property in spaces of holomorphic func-
tions of bounded type, spaces of weakly uniformly continuous holomorphic
functions, spaces of bounded holomorphic functions and/or their preduals.
For background on infinite-dimensional holomorphy we refer to [25, 40]. An
important issue of this section is the combination of results from different
sections of the paper.

All spaces in this section are supposed to be complex.
Spaces of holomorphic functions, spaces of bounded holomorphic func-

tions and spaces of weakly uniformly continuous holomorphic functions, as
well as their respective preduals, are locally convex spaces, so we have to
say a few words about the definition of the I-approximation property in the
setting of locally convex spaces. The definition of operator ideals (on Ba-
nach spaces) can be naturally generalized to locally convex spaces (details
can be found in [48, Chapter 29]). We say that an operator ideal U on lo-
cally convex spaces is an extension of an operator ideal I on Banach spaces
if U(E;F ) = I(E;F ) for all Banach spaces E and F . There are several
ways to extend an operator ideal on Banach spaces to one on locally convex
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spaces (see [48, Section 29.5]). In this paper we shall work with the small-
est of such natural extensions, which we describe next. Given an operator
ideal I on Banach spaces, an operator S ∈ L(U ;V ) between locally convex
spaces belongs to the inferior extension of I if there exist Banach spaces
E and F and operators A ∈ L(U,E), T ∈ I(E,F ) and Y ∈ L(F, V ) such
that S = Y ◦ T ◦ A. In this case, for simplicity, we still write S ∈ I(U ;V ).
Of course we can consider the compact-open topology on L(U ;U) for a lo-
cally convex space U , so Definition 1.1 makes sense for an operator ideal I
on Banach spaces and a locally convex space U , hence the I-approximation
property is well defined for locally convex spaces.

Unless explicitly stated otherwise, an operator ideal means an operator
ideal on Banach spaces and a statement like I1 ⊆ I2 means that I1(E;F ) ⊆
I2(E;F ) for all Banach spaces E and F .

Remark 5.1. It is easy to see that the basic facts, including Proposi-
tions 2.2 and 2.3, hold true in the realm of locally convex spaces. Of course,
whenever necessary, ‖T (x)− x‖ should be replaced by p(T (x)− x) where p
is an arbitrary continuous seminorm.

Definition 5.2. A sequence {En}∞n=1 of subspaces of a locally convex
space E is said to be a decomposition of E if any x ∈ E can be written in
a unique way as x =

∑∞
n=1 xn with xn ∈ En for every n and the projection∑∞

n=1 xn 7→
∑m

n=1 xn is continuous for every m ∈ N.
Let S = {(αn)∞n=1 : αn ∈ C and lim supn→∞ |αn|1/n ≤ 1}. A decomposi-

tion {En}∞n=1 of E is S-absolute if:

(1)
∑∞

n=1 xn ∈ E, xn ∈ En for all n and (αn)∞n=1 ∈ S implies
∑∞

n=1 αnxn
∈ E.

(2) If p is a continuous seminorm on E and (αn)∞n=1 ∈ S then

pα

( ∞∑
n=1

xn

)
:=

∞∑
n=1

|αn|p(xn)

defines a continuous seminorm on E.

Further details can be found in [25, Section 3.3].

An obvious modification in the proof of [10, Proposition 1] provides the
following lemma.

Lemma 5.3. Let I be an operator ideal. If {En}∞n=1 is an S-absolute
decomposition of the locally convex space E, then E has the I-approximation
property if and only if each En has the I-approximation property.

Let E be a Banach space. We denote by Pw(nE) the closed subspace of
P(nE) of all continuous n-homogeneous polynomials that are weakly con-
tinuous on bounded sets. Let U be an open subset of a Banach space E.
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A bounded subset A of U is U -bounded if there is a 0-neighborhood V such
that A+V ⊆ U . We denote by Hb(U ;F ) the space of holomorphic functions
f : U → F , where F is a Banach space, of bounded type, that is, f is bounded
on U -bounded sets. If F = C we simply write Hb(U). The symbol Hwu(U)
stands for the space of all holomorphic functions f : U → C that are weakly
uniformly continuous on U -bounded sets. When endowed with the topology
of uniform convergence on U -bounded sets, both Hb(U ;F ) and Hwu(U) are
locally convex spaces.

Proposition 5.4. Let I be an operator ideal, U be a balanced open subset
of a Banach space E, and F be a Banach space.

(a) Hb(U ;F ) has the I-AP if and only if P(nE;F ) has the I-AP for
every n ∈ N.

(b) Hwu(U) has the I-AP if and only if Pw(nE) has the I-AP for every
n ∈ N.

Proof. Just combine Lemma 5.3 with the facts that {P(nE;F )}∞n=1 is an
S-absolute decomposition of Hb(U ;F ) (this follows from an adaptation of
the proof of [25, Proposition 3.36]) and that {Pw(nE)}∞n=1 is an S-absolute
decomposition of Hwu(U) (see the proof of [10, Theorem 9]).

In the following some of our apparently disconnected results will be com-
bined together. A Banach space E is said to be polynomially reflexive if
P(nE) is reflexive for every n ∈ N. For example, Tsirelson’s original space
T ∗ is polynomially reflexive [1].

Proposition 5.5. Let I be an operator ideal such that L[I] ⊆ I ◦L and
either I ⊆ Idual or Idual ⊆ I. The following are equivalent for a polynomially
reflexive Banach space E and a balanced open subset U of E:

(a) E has the I-AP.
(b) P(nE) has the I-AP for every n ∈ N.
(c) P(nE) has the I-AP for some n ∈ N.
(d) Hb(U) has the I-AP.
Proof. (a)⇒(b). Let n ∈ N. By Corollary 3.8 we know that ⊗̂n,sπ E has

the I-AP. Since P(nE) is isomorphic to (⊗̂n,sπ E)′ and these spaces are re-
flexive, Corollary 2.5 shows that P(nE) has the I-AP.

(b)⇒(c). This implication is obvious.
(c)⇒(a). Use the same argument as for (a)⇒(b).
(d)⇔(b). This equivalence follows from Proposition 5.4(a).

To get another connection of results from different sections we consider
the predual of the space of holomorphic functions. Given an open subset U
of a Banach space, Mazet [39] proved the existence of a complete locally
convex space G(U) and of a canonical holomorphic function δU : U → G(U)
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such that for every Banach space F and every holomorphic function f from
U to F there is a unique continuous linear operator Tf from G(U) to F such
that f = Tf ◦ δU .

The following result follows directly from [25, Proposition 3.38], Lemma
5.3 and Corollary 3.8.

Proposition 5.6. Let U be a balanced open subset of the Banach space
E and I be an operator ideal such that L[I] ⊆ I ◦ L. Then E has the I-AP
if and only if G(U) has the I-AP.

The results from Section 4 have not been combined with results from
other sections yet. For results of Section 4 to come into play we investigate the
I-approximation property in the predual of the space H∞(U ;F ) of bounded
holomorphic functions from an open subset U of a Banach space E to a
Banach space F ; H∞(U ;F ) is a Banach space with the sup norm. Let U
be an open subset of a Banach space E. Mujica [41] proved the existence of
a Banach space G∞(U) and of a canonical bounded holomorphic mapping
δU ∈ H∞(U ;G∞(U)) with the following universal property: to every f ∈
H∞(U ;F ) corresponds a unique linear operator Tf ∈ L(G∞(U);F ) such
that f = Tf ◦ δU . He also introduced a very useful locally convex topology
on H∞(U ;F ):

Theorem 5.7 ([41, Theorem 4.8]). Let E and F be Banach spaces, and
let U be an open subset of E. Let τγ denote the locally convex topology on
H∞(U ;F ) generated by the seminorms

p(f) = sup
j
αj‖f(xj)‖,

where (xj) varies over all sequences in U and (αj) varies over all sequences
of positive real numbers tending to zero. Then the mapping

f ∈ (H∞(U ;F ), τγ) 7→ Tf ∈ (L(G∞(U);F ), τc)

is a topological isomorphism.

We denote by I ◦H∞(U ;F ) the collection of all f ∈ H∞(U ;F ) such that
f = u ◦ g, where G is a Banach space, g ∈ H∞(U ;G) and u ∈ I(G;F ). The
next result extends [17, Theorem 5].

Theorem 5.8. Let I be an operator ideal such that L[I] ⊆ I ◦ L. The
following conditions are equivalent for a Banach space E and a bounded open
subset U of E:

(a) E has the I-AP .
(b) H∞(U ;F ) = I ◦ H∞(U ;F )

τγ for every Banach space F .
(c) G∞(U) has the I-AP.
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Proof. (a)⇒(b). Let f ∈ H∞(U ;F ). Let p be a continuous seminorm
on (H∞(U ;F ), τγ). By [41, Proposition 5.2] there are homogeneous poly-
nomials Pj ∈ P (jE;F ), j = 0, 1, . . . , n, such that p(P − f) < ε/2 where
P = P0 + P1 + · · · + Pn. Since E has the I-AP and L[I] ⊆ I ◦ L, it fol-
lows from Theorem 4.2 that P(jE;F ) = I ◦ P(jE;F )

τc for every j ∈ N.
On the other hand, by [41, Proposition 4.9], τγ = τc on P ∈ P (jE;F ) for
every j ∈ N. So there are homogeneous polynomials Qj ∈ I ◦ P(jE;F ) such
that

p(Qj − Pj) <
ε

2(n+ 1)

for every j = 0, 1, . . . , n. Putting Q = Q0 + Q1 + · · · + Qn and mimicking
the argument used in the proof of [2, Theorem 2.4] one can easily prove that
Q = u ◦R where u ∈ I(G;F ), G is a Banach space and R is a finite sum of
homogeneous polynomials from E to G. Then the restriction of Q to U , still
denoted by Q, is a bounded holomorphic function, so Q ∈ I ◦ H∞(U ;F ).
Since

p(Q− P ) = p
( n∑
j=0

Qj −
n∑
j=0

Pj

)
≤

n∑
j=0

p(Qj − Pj) <
ε

2
,

it follows that

p(Q− f) ≤ p(Q− P ) + p(P − f) < ε/2 + ε/2 = ε,

which proves (b).
(b)⇒(c). By [41, Theorem 2.1], δU ∈ H∞(U ;G∞(U)). Taking F =

G∞(U) in (b), we find that δU ∈ I ◦ H∞(U ;G∞(U))
τγ . Hence there is a

net (fα) ⊆ I ◦ H∞(U ;G∞(U)) such that fα
τγ→ δU . For the corresponding

net (Tfα) of linear operators, by Theorem 5.7 we get

Tfα
τc→ TδU = idG∞(U).

But [2, Theorem 3.2] implies that (Tfα) ⊆ I(G∞(U);G∞(U)). Therefore
we obtain idG∞(U) ∈ I(G∞(U);G∞(U))

τc , and Proposition 2.1 shows that
G∞(U) has the I-AP.

(c)⇒(a). By [41, Proposition 2.3], E is topologically isomorphic to a
complemented subspace of G∞(U), which has the I-AP by assumption. It
follows from Proposition 2.2 that E has the I-AP.
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