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Local completeness of locally pseudoconvex
spaces and Borwein—Preiss variational principle

by

J. H. QiU (Suzhou) and S. ROLEWICZ (Warszawa)

Abstract. The notion of local completeness is extended to locally pseudoconvex
spaces. Then a general version of the Borwein—Preiss variational principle in locally com-
plete locally pseudoconvex spaces is given, where the perturbation is an infinite sum
involving differentiable real-valued functions and subadditive functionals. From this, some
particular versions of the Borwein—Preiss variational principle are derived. In particular,
a version with respect to the Minkowski gauge of a bounded closed convex set in a locally
convex space is presented. In locally convex spaces it can be shown that the relevant per-
turbation only consists of a single summand if and only if the bounded closed convex set
has the quasi-weak drop property if and only if it is weakly compact. From this, a new
description of reflexive locally convex spaces is obtained.

1. Introduction. Borwein and Preiss gave a smooth variational princi-
ple in Banach spaces, which has many applications in nonsmooth analysis
and optimization (see [1] and [9]). In terms of @-subgradient, Pallaschke
and Rolewicz presented a general version of the Borwein—Preiss variational
principle in complete metric spaces and gave its interesting applications (see
|7, Chapter 2]|). In this paper, we first extend the notion of local completeness
to locally pseudoconvex spaces. Then we give an extension of the Borwein—
Preiss variational principle to locally complete locally pseudoconvex spaces,
where the perturbation is an infinite sum involving differentiable real-valued
functions and subadditive functionals. From the extension, we deduce sev-
eral versions of the Borwein—Preiss variational principle in various kinds of
locally complete locally pseudoconvex spaces. Any closed convex set in a
locally convex space yields a subadditive functional, the Minkowski gauge
of the set (or of some translation of it). In particular, we give a version of
the variational principle with respect to the Minkowski gauge of a bounded
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closed convex set in a locally convex space. We consider the problem: under
which conditions can the perturbation appearing in the principle consist of
a single summand only? In the framework of quasi-complete locally convex
spaces, we show that this happens exactly when the bounded closed convex
set is weakly compact, or equivalently, has the quasi-weak drop property (on
quasi-weak drop property, see [12, 13]). From this we obtain a characteriza-
tion of reflexive locally convex spaces by using the Borwein—Preiss variational
principle.

2. Locally complete locally pseudoconvex spaces. In this paper,
all the spaces X are assumed to be real Hausdorff topological linear spaces
(briefly called topological linear spaces). Let A be a nonempty subset of the
space X. We say that A is starlike if for all x € Aand 0 <t < 1, txr € A.
The modulus of concavity (see [15]) of a starlike set A is defined by c¢(A) =
inf{s >0: A+ A C sA}, with the convention that the infimum of an empty
set is equal to +00. Obviously ¢(A) > 2 and for a convex set A, ¢(4) = 2.
A starlike set A with a finite modulus of concavity, ¢(4) < oo, is called
pseudoconver.

A topological linear space X is called locally pseudoconver if there is a
basis {Uy} of neighborhoods of zero consisting of pseudoconvex sets. Let
0 < p < 1. We say that a set A C X is absolutely p-convez if for all z,y € A
and 0 < [s]P 4+ [t|P < 1, to + sy € A (see [6]). If p = 1, then A is called
absolutely convexr. Obviously, any intersection of absolutely p-convex sets is
still absolutely p-convex. The absolutely p-conver hull I,(A) of a set A is
the intersection of all the absolutely p-convex sets containing A. We ob-
serve that I,(A) consists of all the elements of the form > | t;z;, where
neN z e Afori =1,...,n, and Y ;" [t;]? < 1 (see [16, p. 298]).
It is easy to see that if A is absolutely p-convex and 0 < p/ < p < 1,
then A is automatically absolutely p’-convex; and hence for any set A,
I'y(A) C I,(A). For a closed (or open) balanced absorbing set U in X, U is
absolutely p-convex if and only if || || is a p-homogeneous F-pseudonorm,
where ||z := inf{\ > 0 : z € A\1/PU} for all z € X. It can be shown (see
for example [16, pp. 90-93]) that for a locally pseudoconvex space X, there
is a family {|| ||o} of pa-homogeneous F-pseudonorms, which determines a
topology equivalent to the original one on X. Thus the sets of the form
U=N{z € X :|z|la, <7} constitute a basis of neighborhoods of zero
in X, where n € N, || ]|a, i$ & pa,-homogeneous F-pseudonorm, 0 < p,, <1
and r; > 0 for ¢ = 1,...,n. Since the set {x € X : ||z|o, < 1} is abso-
lutely pq,-convex, it is also absolutely min{pa,, ..., Pa, }-convex and hence
U=N{zr € X :|z|la, < ri} is absolutely min{p,,,...,pa, }-convex.
Thus for a topological linear space X, the following statements are equiva-
lent:
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(i) X is locally pseudoconvex.
(ii) There is a basis {U,} of neighborhoods of zero consisting of abso-
lutely po-convex sets, where 0 < p, < 1.
(iii) There is a family {|| ||} of pa-homogeneous F-pseudonorms which
determines a topology equivalent to the original one on X.

Let the space X be locally pseudoconvex and let {Uy} be a basis of
neighborhoods of zero which consists of absolutely po-convex sets. If p :=
inf{pn} > 0, then every U, is absolutely p-convex. We say that the space X
is locally p-convez if there is a basis of neighborhoods of zero consisting of ab-
solutely p-convex sets for some fixed p, 0 < p < 1. In particular, if p = 1, then
X is called locally convex. For a locally convex space X, we always denote
by X* the topological dual of X. As is well known, for locally convex spaces
there are various kinds of completeness, for example, completeness, quasi-
completeness, sequential completeness, Y -completeness, [*°-completeness,
local completeness and so on; for details, we refer to [8, pp. 164-165] and [10].
Up to now, local completeness is the weakest known kind of complete-
ness.

Now we extend the notion of local completeness to locally pseudocon-
vex spaces (concerning local completeness of locally convex spaces, see, for
example, [8, Chapter 5]) .

DEFINITION 2.1. A subset B of the space X is called a p-disc (0 < p < 1)
if it is bounded and absolutely p-convex. We denote by Ep the linear span
of B, span[B], endowed with the topology induced by the gauge gp of B,
where gp(z) = inf{\ > 0: 2 € A/PB} for all # € span[B]. If Ep is complete,
we call the p-disc B a self-complete p-disc. A sequence (x,) in X is called
a locally Cauchy sequence if there is a p € (0, 1] and a p-disc B in X such
that (z,) is a Cauchy sequence in Ep. A sequence (z,) in X is said to be
locally convergent to a point zg if there is a p € (0, 1] and a p-disc B such
that x,, — ¢ in Ep. It is easy to see that (x,,) is locally convergent to ¢ if
and only if (z, —xg) is locally convergent to zero. A point xg is called a local
limit point of a set A in X if there is a sequence (z,) in A such that (z,) is
locally convergent to xg. The set A is called locally closed if every local limit
point of A belongs to A. Obviously every sequentially closed set is locally
closed, but the converse is not true (for an example, see [11, Example 3.1]).

PROPOSITION 2.1. Let X be a locally pseudoconver space. Then the fol-
lowing statements are equivalent:

(i) For each p € (0,1] and any p-disc A, there is a p' € (0,1] and a
self-complete p'-disc B such that A C B.
(ii) Ewery locally Cauchy sequence is locally convergent.
(iii) For each p € (0, 1], every closed p-disc is a self-complete p-disc.
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Proof. (i)=-(ii). Let (x,) be a locally Cauchy sequence. Then there is a
p € (0,1] and a p-disc A such that (z,) C span[A4] and (z,) is a Cauchy
sequence in F4. By (i), there is a p’ € (0,1] and a self-complete p’-disc B
such that A C B. For any € > 0, put 1 = eP/P' Then there is ng € N such
that x,, — T, € &ti/pA for all m,n > ng. Since A C B, we have z,, — x,, €
Ei/pB = /P B for all m,n > ng. That is, () is a Cauchy sequence in Ep.
Since Ep is complete, there exists g € Ep such that x,, — xzg in Epg, so
(zy) is locally convergent.

(ii)=-(iii). Let p € (0,1] and A be a closed p-disc and let (z,) be a
Cauchy sequence in E 4. By (ii), (x,,) is locally convergent to some x(. Clearly
Tn — 2o in X. For any ¢ > 0, there is ng € N such that z,, — x,, € el/r 4
for all m,n > ng. If m — oo, then z,, — x¢ in X. And since A is closed, we
have z,, — x¢ € el/PA for all n > ng. This means that x,, — z9 in F4 and
hence A is a self-complete p-disc.

(iii)=-(i). Let A be a p-disc. Then A is also a p-disc. By (iii), 4 is a
self-complete p-disc. By taking B = A, we complete the proof. =

DEFINITION 2.2. A locally pseudoconvex space X is called locally com-
plete if one of the three equivalent statements in Proposition 2.1 is satisfied.

Let X be a locally p-convex space (0 < p < 1). Then a sequence (zy,) in
X locally converges to zero if and only if there is an increasing unbounded
sequence (ay,) of positive real numbers such that (a,zy,) converges to zero
in X (the proof is similar to that of |8, Proposition 5.1.3]). Moreover, X is
locally complete if and only if for every bounded set A in X there is a self-
complete p-disc B such that A C B. We also observe that most statements
(except for those involving topological duals) concerning locally complete
locally convex spaces can be extended to locally complete locally p-convex
spaces. Here we do not discuss this in detail.

Next we consider local completeness of locally pseudoconvex spaces (not
only locally p-convex spaces).

We start with the following obvious

LEMMA 2.1. Let (X,||||) be an F*-space, i.e., a linear space with an
F-norm || || (see [16, p. 5]). Let (x,) be a sequence in X convergent to zero.
Then there is a sequence (by) of positive reals tending to infinity such that
(bnxy) is convergent to zero.

Proof. Without loss of generality we may assume that x, # 0. We put
b, = E(1/y/||zn||), where E(t) denotes the greatest integer not greater
than t. Then by the triangle inequality, (by,) has the required property. m

COROLLARY 2.1. Let X be a topological linear space. Let (xy) be a se-
quence in X locally convergent to zero. Then there is a sequence (by) of
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positive reals tending to infinity such that (bpxy) is locally convergent to
Z€ro.

Proof. Since (x,,) is locally convergent to 0, there is a p € (0,1] and a
p-disc B such that (x,,) is convergent to 0 with respect to the p-homogeneous
norm || || g induced by B. Thus by Lemma 2.1 there is a sequence (by,), b, > 0,
tending to infinity such that (b,x,) is convergent to 0 with respect to the
p-homogeneous norm || || g. Thus, by definition, (b,z,) is locally convergent
to 0. m

PROPOSITION 2.2. A locally pseudoconvex F-space (i.e. complete metriz-
able space) X is locally complete.

Proof. Let (x,) be a locally Cauchy sequence in X. Then there is a
p € (0,1] and a closed p-disc B such that (z,) is a Cauchy sequence in
Ep = (span|[B],qp). That is, for any ¢ > 0, there is n. € N such that
Xy — Ty € B for all n,m > n.. Since B is bounded in X, (z,) is also a
Cauchy sequence in X. And since X is complete, (x,) is convergent to some
o in X. Letting m — oo shows that x, — x¢9 € B for all n > n.. This
means that (z,,) is convergent to xo in Ep, hence (z,,) is locally convergent
to xg and X is locally complete. m

It is of interest to know whether Proposition 2.2 can be reversed. We are
able to do it only in locally p-convex spaces.

PROPOSITION 2.3. A locally complete locally p-convex F*-space (X, || ||)
is complete, i.e. it s an F-space.

Proof. Let (x,) be a Cauchy sequence in X and let U; D Uy D --- be
a 0-neighborhood basis consisting of absolutely p-convex sets. There is a
sequence nj < ng < --- such that

1
Tngpy — Tn; € % U; forallieN.

Obviously the sequence (2°(zp,,, — Zn,))ien is convergent to 0 in X. Let B
be the closed absolutely p-convex hull of the bounded set

{xn172($n2 - xnl)? ) Qi(anl - x”i)? .. }

Then B is a closed p-disc, {Zy,, Zn,, ...} C span[B] and zy, , — zn, € 27'B.
Observe that

Tniyvp — Tng = (xni+k - xni+k71) +eee (ajni“ — Tn,)

1 1 1\’ 1\7]'/"

_ D\ k 1/p
_L (=@, 1 2,
2t \ 1-1/2r 2 (2 —1)/p
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Since p > 0, (xy,)ien is a Cauchy sequence in Ep = (span[B],¢p). By the
hypothesis that (X, ||||) is locally complete, Ep is complete. Hence there is a
point zg in Ep such that (z,,) is convergent to zo in Ep; then clearly (z,,) is
convergent to zo in (X, ||||). Combining this with the assumption that (z,,)
is a Cauchy sequence in (X, || ||), we conclude that (z,) is convergent to xg
in (X, ]||]), i-e. (X,]]]) is complete. =

Unfortunately this proof does not work in locally pseudoconvex F*-spaces
as the following example shows.

EXAMPLE 2.1. Let
X = LY0,1) x LY2[0,1] x - -+ x LY[0,1] x - - -

with topology given by pseudonorms

n 1

Jella = {21 (0, @nt)s o Mo = 3§ (@) .

=10
Take arbitrary p, 0 < p < 1. In a similar way to the proof that there is no
continuous linear functional on L0, 1] for p < 1 we can construct a sequence
(2™)pen C X converging to 0 such that its absolute p-convex hull contains
the subspace

X, = {0} x - x {0} x LY/"[0,1] x LY +D[0,1] x ---
provided 1/n < p. Of course X, is not bounded.
Thus we propose the following open problem to end this section.

PROBLEM 2.1. Is every locally complete locally pseudoconvex F™*-space
X complete?

3. A version of the Borwein—Preiss principle in locally pseudo-
convex spaces. Let X be a locally pseudoconvex space. For any function
f: X — (—o0,00], we always assume that dom f = {z € X : f(x) # oo}
is nonempty. A function f : X — (—o0,00] is called lower semicontinuous
(respectively, sequentially lower semicontinuous) if for any net (z,,) converg-
ing to a (respectively, for any sequence (x,) converging to a) in X, we have
f(a) <liminf, f(x,) (see [5, p. 40] and [18, pp. 149-151]).

As in [14], we call a function f : X — (—o00, 00| locally lower semicon-
tinuous if for any r € R, the set {x € X : f(z) < r} is locally closed in X.
This is equivalent to the condition that for any sequence (z,) locally con-
verging to a, f(a) < liminf, . f(xy). Obviously every (sequentially) lower
semicontinuous function is locally lower semicontinuous, and the converse
is not true. We denote by &g the class of all strictly increasing, continuous
functions ¢ : [0,00) — [0,00) such that ¢(0) = 0, and by @; the class of
all functions ¢ : [0,00) — [0,00) such that ¢(0) = ¢'(0) = 0, ¢/(¢) exists
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and ¢'(t) > 0 on (0,00). Clearly &1 C ®y. Moreover p(co) always means
limy,o (t) (clearly, it may be oo). By modifying the proof of Borwein
and Preiss (see [1| or [9, pp. 66-69]), we first give a general version of the
Borwein—Preiss variational principle in locally pseudoconvex spaces.

THEOREM 3.1. Let X be a locally complete locally pseudoconver space,
and po(+) < p1(-) < p2(-) < --- be a sequence of locally lower semicontinuous,
subadditive, nonnegative functions on X with p;(0) = 0 such that whenever
a sequence (x,) in X satisfies pi(Ty — xn) — 0 (m > n — o0) for each i,
then (xy,) is a locally Cauchy sequence in X. Let g : X — (—o0,00] be a
locally lower semicontinuous function, bounded below, and let xg € domg,
> g(zo) —infg(X), A >0 and {¢; : 1 =0,1,2,...} C Pg. Then there exist
a sequence (vy,) locally converging to some v in X and 0 < p < 1 such that

€ €
(a) 9($)+(p0—()\)9(9€) ZQ(U)JF%—()\)@(”)? vz € X,
where 0(z) = 250 1" (1 — 1) pn(pale — o)) and vo = z0;
(b) po(v —vo) < A, po(vn —v0) < A, pp(v —vp) < A for alln € N, and
pn(v —vn) — 0;
(c) g(v) < e +inf g(X).
Proof. Choose €1 > 0 such that

(1) 0<g(xg) —infg(X) <ey <e.
Choose p > 0 such that
(2) 0<pu<l—e1/e, equivalently, 0<ej/e <1—p.
Put ( )
1—p)e
3 0= —F++.
@) ©o(A)

From (2) and (3), we know that
51/5 < QO[)()\) < 5/5.
For k=1,2,..., choose v, 0 < vy, < p, such that

— _i(mm e —-1( &1

W ;”( " '5)“ %(5)'

Put go = g and vy = . Define g1(2) = go(x) + dpo(po(z — v0)), = € X.
Clearly, g1(x0) = g(z0) < € + inf g(X) < o0, hence dom g1 # (. If g(zp) =
g1(zo) = inf g1 (X), then we set v = vg. If g(z0) = g1(xo) > inf g1 (X), then
m g(xo) + (1 — ) inf g1 (X) > inf g;(X). Hence there exists v; € X such
that g1(vi) < 719(zo) + (1 — v1)inf g1 (X). Thus in any case, there exists
v1 € X such that

g91(v1) < mg(wo) + (1 — ) inf g1 (X).
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In general, define

(5) gn+1(x) = gn(x) + 5Nn90n(pn(x - Un))7 r e X.
Clearly gn+1(vn) = gn(vn) < oo, hence dom g, 41 # 0. Choose v,41 € X
such that
(6) gn-i-l(vn-i-l) < ’Vn-i-lgn(vn) + (1 - 'Vn—i-l) inf gn-i—l(X)'
Put s, = inf g,(X) and a,, = g,(v,). Then
(7) an+1 = gn—‘rl(vn—i-l) < 'Yn—i—lgn(vn) + (1 - 7n+1) inf gn+1(X)

< Yn+19n(vn) + (1 = Ynt1)gn+1(vn)

= Vn-i-lgn(vn) + (1 - 'Vn-i-l)gn(vn)

= gn(Un) = Qp.

Obviously g, < gn+1, hence
5n < 8nt1 < ng1 = Gnr1(Vn1) < Y19 (vn) + (1 = Yng1) inf g1 (X)
= Yn+10n + (1 - ’Yn—l—l)sn—i-l-
From this, we have
(8) 0 < ant1 = Sn+1 < Ynt1(@n = Snt1) < Ynt1(an — ) <o
< Yot 1Yn - 71(a0 — 50) < Ynt1Vn - VIEL
Taking = v,41 in (5), we have
9) an+1 = Gn+1(Vn+1) = gn(Vn+1) + 04" On(Pn(Vnt1 — vn))
> 8n + 04" on(Pn(Vnt1 — vn)).
From (7)—(9), we obtain
5Nn90n(pn(vn+1 - Un)) < Anp4+1 — Sp < ap — S$p < YnYn—-1"""Y1€1-

Therefore,
_ ’yl ... 51
Pu(Vns1 —vn) < 0" (T% ' f)
For each ¢ € N, n >4 and j € N, we have
(10) pi(vnﬂ‘ — ) < P (Unﬂ' — Up)
S pn(vn—l—j - 7)n-l—j—l) 4+ pn(vn—‘rl - Un)

< anrjfl('UnJrj - UnJrjfl) + - +pn(vn+1 - Un)
oo
1Yk €l
<D % (T ' 3)-
k=n
Combining this with (4), we conclude that for each i € N, p;(vy, — v,) — 0

when m > n — oo. This implies that (v,,) is a locally Cauchy sequence in X.
Since X is locally complete, there exists v € X such that (v,) is locally
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convergent to v. Letting j — oo on the left of (10) shows that (v,y;); is
locally convergent to v; and since every p; is locally lower semicontinuous,
we have

Ve €1 1
(1) pn(v—vn) Zcp ( 5><)\ vy <5>, Vn € N.

From (11), we obtain
(12) pn(v_vn) < A and pn(v—vn) — 0 (n—>oo)
Since

dpo(po(v1 — o)) = g1(v1) — go(v1)
< gi(v1) —inf g(X) = a1 —so < ag — s0 < €1,

we have

(13) po(v1 — vo) < @y *(€1/9).

From (11) and (13), we deduce that

(14)  po(v—w0) < po(v—wv1) + po(v1 —vo) < p1(v—w21) + po(v1 — o)
< A=y (e1/8) + @y ' (e1/0) = A

Taking n =i =1 in (10), for any j € N we get

Ve €1 €1
p1(vi4j — v1) <Zcp ( 5><)\ ©o <6>
From this, we have

(15) po(v1+; —vo) < po(vi4j — v1) + po(v1 — vo)
< p1(vi4; — v1) + po(v1 — vo)
<A =@y (e1/8) + g (e1/8) =
By (13)—(15), we conclude that
po(vn, —vp) <A and po(v—wg) < A

Combining this with (12), we see that (b) holds.
From (7), ap > a1 > ag > ---. Since a,, = gn(v,) > inf g,(X) > —o0, we
infer that lim, .~ a, exists and is finite. By (8),

0<ap—8, <7 me1<p'e1r—0 (n— o),

hence lim,, oo $p, = lim,, o a,, exists and is finite. Put

=3 11~ Wpn(pala — va)).
n=0



108 J. H. Qiu and S. Rolewicz

Then for any x € dom g, we have

e _ el— 1\~ n
(16) g(z) + ey 0(z) = g(x) + TO\);%M n(Pn(z —vp))
= g(a:) + 5Z/Ln90n(pn($ - Un))

n=0

= supgn(z) > lim s, = lim a, = lim g,(v,).
n n—oo n—oo n—oo

Let o = sup,,, liminf,, g, (v,). Then for any n > 0, there exists m € N such
that liminf, g (v,) > a — n. Hence there are ny < ny < --- such that
9gm(vn;) > a —n. Take i large enough so that n; > m. Then

Gni(Vn;) = gm(vn,;) > a — .
Also, limy, o0 an, = limy, 00 gn(vy) exists, so we have limy, o gn(v,) > a.
From this and (16), we obtain

e ..
(17) g9(z) + 2000 6(x) 2 o = suplim inf g (vn).

Since gy, is locally lower semicontinuous and (vy,) is locally convergent to v, it
follows that lim inf,, g, (vs) > gm(v). Combining this with (17), we conclude
that

i.e. (a) holds.
Finally, we show that (c¢) holds. Since go(vg) = g(xo) < 1 + inf g(X),

g91(v1) < mg(@o) + (1 — 71) inf g1 (X)
< m9(@o) + (1 = 11)g1(w0) = g(wo) <1 + inf g(X).
By (7), (an) is decreasing, hence for any n € N,
an = gn(vn) < ag < 1 + inf g(X).
Therefore
€
o) < 9(0) +

< sup liminf g, (v,) = a < lim g, (v,) < &1 +inf g(X). =

0(v) = sup gm(v)

As we have seen in Section 2, in a metrizable locally p-convex space
(0 < p <1), a sequence is convergent if and only if it is locally convergent.
Hence a function defined on the space is (sequentially) lower semicontinuous
if and only if it is locally lower semicontinuous. Moreover by Proposition 2.2,
a complete metrizable locally pseudoconvex space is locally complete. Now
let X be a complete metrizable locally pseudoconvex space and || [lo < || |1 <
IIl2 < -+ be a sequence of p,-homogeneous F-pseudonorms determining the
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topology of X (see [16, pp. 90-95]). By substituting the sequence || |0 <
Il < ]2 < --- for the sequence pg < p; < pa < --- in Theorem 3.1, we
immediately obtain the following result, which may be useful in studying the
differentiability of perturbations.

COROLLARY 3.1. Let X be a complete metrizable locally pseudoconvex
space with the topology generated by an increasing sequence |||lo < || |1 <
2 < -+ of pp-homogeneous F-pseudonorms. Let g : X — (—o00, 00| be a
lower semicontinuous function bounded below, let xg, € > 0, and X > 0 be
as in Theorem 3.1, and let {¢, : n = 0,1,2,...} C ®q. Then there exist a
sequence (vy) converging to v in X and 0 < p < 1 such that

€ €
a gx)+ —=6(x) > g9(v)+ —=0(v), VrxelX,
@) (@) + =55 0(0) > 9(0) + =5 000)
where 0(z) = 20 1" (1 = w)pn(lle — valln) and vo = 20
(b) [[lv —wollo < A, |lvn —wollo < A, Ju —vplln < A for all n € N, and
[v = vnlln — 0;
(c) g(v) < e+infg(X).

Let B C X be a p-convex set (i.e. sB+tB C B for all s,t > 0 such that
sP+tP =1) with 0 € B (0 < p < 1). Then B induces in X a Minkowski
gauge qp : X — [0, 00| as follows:

g5 (@)= { inf{A>0:2€A/PB} if there exists A\ >0 such that = € \'/?B:;
00 else.

The Minkowski gauge gp is positive p-homogeneous and subadditive.

COROLLARY 3.2. Let X be a locally complete locally p-convexr space
(0 < p <1),and B C X be a locally closed bounded p-convex set with
0 € B. Let g: X — (—o0,00] be a locally lower semicontinuous function
bounded below and let xg € domg, € > g(xg) —inf g(X), A > 0 and ¢ € Dy.
Then there exist a sequence (vy,) locally converging to v in X and 0 < p <1

such that
5 €
(a) g9(z) + o0) 0(z) > g(v) + =5
where §(x) = Y02 1u™(1 — p)e(gp(z —vy)) and vy = xo;
(b) gg(v —vp) < A, gB(vn —v0) < A, qg(v —vy) < A for all n € N, and
qB(U — Un) — 0;
(c) g(v) < e+infg(X).

0(v), Vze X,

Proof. Clearly, the Minkowski gauge gp of the locally closed bounded
p-convex set B is locally lower semicontinuous and subadditive. Denote the
absolutely p-convex hull of B by D; it is a p-disc. Thus if a sequence ()
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in X satisfies ¢gp(zm — zn) — 0 (m > n — o0), then gp(zm — xn) — 0
(m > n — o0). That is to say, (z,) is a locally Cauchy sequence in X. Now
applying Theorem 3.1, we immediately obtain the result. =

As a special case of Corollary 3.2, we have the following:

COROLLARY 3.3. Let X be a quasi-complete (or sequentially complete,
or locally complete) locally convex space and B C X a bounded closed convex
set with 0 € B. Let g : X — (—00,00] be a lower semicontinuous function
bounded below, and let xy € dom g, € > g(xg) —inf g(X), A > 0 and ¢ € Py.
Then there ezist a sequence (vy) converging to v in X and 0 < u < 1 such

that (a)—(c) in Corollary 3.2 hold.

In fact, in view of |7] we see that in Theorem 3.1 and Corollaries 3.1-3.3,

the function
€ €

——=60(z) or ———0(x)
©o(A)
is a $-subgradient of g at the point v, where @ denotes the appropriate class
of functions according to different cases.

4. Perturbation only consisting of a single summand and reflex-
ivity of locally convex spaces. As mentioned in [9, p. 71|, even in the
framework of Banach spaces, it is not always possible to assume that the
perturbation function € used in the variational principle consists of a single
summand. Borwein and Preiss |1] have shown that this is possible in reflex-
ive Banach spaces and that these are the only spaces with this property.
In this section, we consider the following problem: under which condition,
can 0 appearing in Corollary 3.3 consist of a single summand only? This
problem will be solved in the framework of quasi-complete locally convex
spaces. We shall see that this happens exactly when B is weakly compact.
From this we obtain a criterion for reflexivity of locally convex spaces. In this
section we denote by @9 the class of all functions ¢ : [0,00) — [0, 00) such
that ¢(0) = ¢'(0) = 0, ¢(t) exists and strictly increases on [0, 00). Clearly
Py C D1 C Dy.

THEOREM 4.1. Let X be a locally convex space and B C X be a bounded
closed convex set with 0 € B. If for any lower semicontinuous convez func-
tion g : X — (—00,00] bounded below, any xy € domg, any € > g(xg) —
inf g(X) and any X\ > 0, there exist o € P9 and v € X such that

g(x) + W plan(z —z0)) > g(v) + W plap(v —w0))  for all x € X,

then for any x* € X*, there exists u € B such that (z*,u) = sup(z*, B).

Proof. For any fixed z* € X*, if (x*, B) < 0, we may take u = 0. If not,
there exists b € B such that (z*,b) > 0. Since (z*, B) is bounded, there exists
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a > 0 such that |(z*, B)| < a. Without loss of generality, we may assume
that o < 1, or else we may consider kx*, where k& > 0 is small enough. Put
U:={z € X :|(z* z)| <1}. Then U is a 0-neighborhood in X and B C U,
where U' denotes the interior of U. Define
—(z*,z) fzxel,
o) = { |
00 ifx gU.
Clearly, g : X — (—o00,00] is a lower semicontinuous convex function,
bounded below. Set xg =0, e = 1. Then
e=1>a>g(xg) —inf g(X).
By hypothesis, for A = 1, there exist ¢ € @9 and v € X such that gg(v—x¢) =
gp(v) <1 and
1 1

(18) g(x) + o) e(gs(z)) > g(v) + o)

0 p(gp(v)), wzeX.

It is also clear that = +— ﬁgp(q]g(:v)) is a lower semicontinuous convex func-

tion, bounded below, and ¢ is continuous at = 0. By (18) and the Moreau—
Rockafeller theorem (for example, see [18, Theorem 47.B, pp. 389-390]),

19  oe a(g e w(qB«))) Do(an())lo-

Let z* € dg|,. Then for any = € X,
(2%, 2) — (2%, v) < g(z) — g(v).
In particular, when x € U, we have

(2%, x) — (2%, v) < —(z%, z) + (=", v).

1
C 9gly, + ——
o+ oy

That is,
(20) (z"+a2",x—v) <0, Vrxel.

Since ¢g(v) < 1, we have v € B, which implies that v € U'. Thus U — v is a
0-neighborhood in X. Since the 0-neighborhood U — v contains a balanced
0-neighborhood, combining this and (20), we conclude that z* 4+ z* = 0, i.e.
z* = —z*. Hence Jg|, = {—2*}. Thus (19) becomes

0 {~a}+ ﬁ&o(qm-))rv.

From this,

vt e ﬁaso(qB(-)m.

~—

Hence for any t > 0, we have

(@, 1h) = (2,0 + th) — (2, v) < ﬁ o(a(v + th)) — w(an(v)))
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Thus

1 th)) —
(21) (z*,b) < Celas(v+tb) — ¢lgs(v)
¢(1) t
If gg(v) = 0, then v = 0 since B is bounded. Thus (21) becomes

1 »(gs(tb)) — »(g8(0))

(x*,b) <
¢(1) t
_ 1 elgn(b) 1 e(gp(th)) an(®)

(1) t e(1)  qp(th) '

If t — 0", then
©(g5(th)) /
qpB(tb) 0)=0
Thus we have
(@) <~ ¢ 0)an(b) =0,

which contradicts the assumption that (x*,b) > 0. Hence we conclude that
qp(v) > 0. For any y € B, if there exists t; > 0 such that ¢g(v+t1y) = qp(v),
then

(@5 tiy+v) —{@%v) 1 plgs(v+ty)) — ¢las(v))

(z*,y) = » S 0 =0.
If not, we have
. 1 pgs(v+ ty)) — (gB(v))
S o
1 o(gp(v+ ty)) o(gp(v))
= gp(l) q(v +ty) —qp(v) 450)
< L wlaslv+ty) - vlepv)
= o(1) gp(v+ty) —gp(v)
1
— m ¢ (qg(v)) ast—0T.
In any case, we have
(22) @) < =5 @/ as(v). y € B,

On the other hand, for 0 < ¢ < 1, we have

1 olgs(v —tv)) — p(gB(v))
¢(1) t
_ L elelv—t) —elas)
o) as—w)—gple) B

(x*,—v) <
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Letting t — 07, we obtain

(x*,v) > W .

Put u =v/qp(v). Then v € B and

oy » £lan(0)
e
Combining the above with (22), we conclude that (z*,u) = sup(z*, B). =

THEOREM 4.2. Let X be a locally convex space and B C X be a weakly
compact convex set with 0 € B. Then for any lower semicontinuous convez
function g : X — (—o00,00| bounded below, any xo € domg, any £ >
g(xo) —inf g(X), any ¢ € Py and any X > 0, there exists v € X such that
g(v — o) < X and

g(x) + i) Plap(z — 0)) > g(v) + ﬁ o(qn(v —w0)  for all € X.

P(A

Proof. 1t is easy to verify that = — g(z) + ﬁgp(qg(x — xp)) is a lower

semicontinuous convex function. Since zg + AB is weakly compact, there
exists v € xg + AB such that

g(x) + W lap(z—0)) = g(v) + W p(ap(v—w0)), Va €z + AB.

When x & 29 + AB, we have qg(x — z9) > A. For those x, we have

9(53)4‘@

Thus we see that there exists v € X such that gg(v — x¢) < A and for every
r e X,

(g (r—0)) > inf g(E)+e > g(wo) > g<v>+ﬁ (qp(v—=0)).

g(z) + W (g (@ — 20)) > g(v) + W o(qp(v — z0)). =

For convenience, if a bounded closed convex set B with 0 € B satisfies the
hypothesis in Theorem 4.1, i.e. the perturbation #(x) in the Borwein—Preiss
principle with respect to gg only consists of a single summand, then B is said
to have the simplified Borwein—Preiss principle property (briefly, the s.b.p.
property). The notion can be extended to general bounded closed convex
sets. A bounded closed convex set B is said to have the s.b.p. property if for
some b € B, B — b has the s.b.p. property.

For a locally convex space X, we denote by (X,7(X,X™)) the associ-
ated Mackey space (|5, pp. 260-262]). By the James theorem (see |2, p. 77|
or [4]), for any 7(X, X*)-complete, bounded closed convex set B, every
x* € X* attains its supremum on B if and only if B is weakly com-
pact. Thus in a quasi-complete locally convex space (i.e., one where each



114 J. H. Qiu and S. Rolewicz

bounded closed set is complete, see for example [5, p. 210]), a bounded
closed convex set has the s.b.p. property if and only if it is weakly com-
pact.

This prompts us to recall another property of bounded closed convex
sets, namely the drop property. Since Rolewicz [17] began the study of the
drop property for closed unit balls of Banach spaces, various drop properties
have been introduced and studied. For example, Giles and Kutzarova [3]| de-
fined a bounded closed convex set B to have the weak drop property if for
every weakly sequentially closed set A disjoint from B there exists a point
xo € A such that D(xo, B) N A = {x0}, where D(xo, B) denotes the convex
hull of {zp} U B. In [12], we defined a bounded closed convex set B to have
the quasi-weak drop property if for any weakly closed set A disjoint from B
there exists 9 € A such that D(zg, B) N A = {x0}. Later we investigated
the relationship between the quasi-weak drop property and weak compact-
ness in the framework of locally convex spaces (for details, see [13]). Now,
combining Theorem 4.1, Theorem 4.2 and [13, Theorem 3.2] we have the
following.

THEOREM 4.3. Let X be a quasi-complete locally convez space (or, let
(X,7(X,X™")) be quasi-complete), and B C X be a bounded closed convex
set. Then the following statements concerning B are equivalent:

(i) B is weakly compact.

(ii) For any x* € X*, there exists u € B such that (z*,u) = sup(z*, B).
(iii) B has the s.b.p. property.
(iv) B has the quasi-weak drop property.

From Theorem 4.3 we can deduce the following equivalent descriptions
of semireflexivity and reflexivity of locally convex spaces (concerning semire-
flexive, reflexive and quasi-barrelled spaces, we refer to [5, §23]).

THEOREM 4.4. Let X be a quasi-complete locally convex space. Then the
following statements are equivalent:

(i) X is semireflezive.
(ii) Ewvery bounded closed convex set in X has the quasi-weak drop prop-
erty.
(iii) Ewvery bounded closed convex set in X has the s.b.p. property.

THEOREM 4.5. Let X be a quasi-complete quasi-barrelled space. Then
the following statements are equivalent:

(i) X is reflezive.
(ii) Ewvery bounded closed convex set in X has the quasi-weak drop prop-
erty.
(iii) Every bounded closed convex set in X has the s.b.p. property.
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