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Poisson kernel and Green function of balls
for complex hyperbolic Brownian motion

by

ToMASzZ ZAK (Wroctaw)

Abstract. The aim of this paper is to give a description of the Poisson kernel and
the Green function of balls in the complex hyperbolic space. The description is in terms
of the hypergeometric function and unitary spherical harmonics in C".

1. Introduction. The Poisson kernel and Green function are the main
objects in potential theory. Even in the classical context, i.e. for the Laplace
operator A in R", explicit formulas for the Poisson kernel Pp(z,y) and the
Green function Gp(z,y) are known only for a few classes of sets D, includ-
ing balls and half-spaces. Our main goal is to describe the Poisson kernel
and the Green function of balls B,, 0 < r < 1, in the complex hyperbolic
space, that is, in the unit ball in C" equipped with the Bergman metric and
the Laplace-Beltrami operator Arpg. In our computations we use stochastic
analysis, hence we first recall the probabilistic interpretation of the Poisson
kernel and the Green function.

By the general theory, the Laplace—Beltrami operator Arg in the unit
ball of C" is the generator of a diffusion (X¢)¢>0 with trajectories in this ball.
We call this process the complex hyperbolic Brownian motion. For r € (0,1)
let B, = {2z € C": |z| < r}and let 7 = inf{t > 0 : |Xy| = r} be the
first time the process (X¢);>o0, starting from z € B,, exits from B,. Then
the distribution of X, is the Poisson kernel for the ball B,. We denote it
by Pr(z,y). Next consider (X");0, the process starting from z € B, and
killed on exiting B,. Let pp.(t,z,y) be the density of its transition probabil-
ity. Then G,(z,y) = Sgo pB, (t,x,y)dt is the Green function of the ball B,.
Observe that Arp commutes with the action of the unitary group U(n) (|R,
Thm. 4.1.2]). This implies that if (X;)¢>0 starts from = € B, then both
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P.(x,y) and G,(x,y), as functions of y, are invariant with respect to those
g € U(n) that leave z fixed. This property allows us to use unitary spher-
ical harmonics to examine P.(z,y) and G,(z,y). We will provide formulas
for P.(z,y) and G,(z,y) in terms of the hypergeometric function 2F; and
complex unitary spherical harmonics.

In the case of real hyperbolic Brownian motion such formulas have recently
been found by Byczkowski and Matecki [BM]. For the complex hyperbolic
space the Poisson kernel of the whole space (known as the Poisson—Szego
kernel for the unit ball) is well-known ([Kr|, [R], [S]). In 1975 Folland [F] gave
a description of this kernel in terms of spherical harmonics. The problem of
finding the Green function is much harder—knowing the Green function we
can easily compute the Poisson kernel by differentiation in the normal direction
(cf. Theorem 8, p. 174 in [Ch] and Lemma 11 in the Appendix). The potential
of the process (X¢):>0 was computed in 2001 by Matsumoto [M]. Matsumoto
computed the A-potential, that is, G*(z,y) = SSO e Mpi(x,y) dt for all A > 0,
but, as he wrote (p. 554 of [M]), “in order to use stochastic analysis, we adopt
the upper half-space realizations of the hyperbolic spaces”. In this paper we
prefer the ball realization of the complex hyperbolic space because in this
case the hyperbolic Brownian motion is invariant with respect to the group
U(n) of unitary transformations and we can use spherical harmonics. As we
will show, in this model it is also possible to use stochastic analysis.

2. Preliminaries. Consider C" = {z = (21,...,2,) @ z € C,i =
1,...,n} with the Hermitian scalar product: for z = (z1,...,2,) and w =
(wi, ..., wy),

n
(z,w) = Z 2jW;.
j=1

Then |Z|2 = <Z,Z> = E‘?:l |z.7|2

A. Complex hyperbolic space and its isometries. Let By = {z € C" :
|z| < 1} denote the unit ball of C™. This set, equipped with the Bergman
metric, is a model of a complex hyperbolic space. The Bergman metric is
induced by the form h = —499log K(z) with K(z) = 1 — |2|* (cf. [Kr]
or [S]), which means that the metric is given by the matrix [h;;], where for
1,5=1,...,n,

1-— |Z|2)5ij + Ziz;

(1—12?)?

Consider the Laplace—Beltrami operator associated to the Bergman met-
ric on By (we choose a normalization as in [R])

n 2
Arg =4(1 - \Z\Q)j;1(5j — 2%j7k) %azj

h,‘j:(
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If n = 1 then Apg = (1 — |2]?)2A, where A is the ordinary Laplace
operator, and the Bergman metric is the Poincaré metric. In this case the
App-harmonic functions coincide with the functions harmonic in the ordi-
nary sense (see |[R|). Henceforth we assume n > 2.

All transformations of B; that are isometries of the Bergman metric
are described in [R|. Fix a € C", a # 0, and denote by P, the orthogonal
projection of C™ on the complex line lin[a] and by Q, = I — P, the orthogonal
projection on the orthogonal complement to lin[a]. More precisely, for z € C"
put

Z— SaQaZ
1—(z,a)

where s, = (1 — |a|?)"/2. If 4 is any isometry of B; and a = 1~ '(0), then
there exists g € U(n) such that ¢ = g1), (Theorem 2.2.5 in |R]).

P,z = <Z: Zi a and Y,(z) = a

—~

B. Hypergeometric function. For a,b,c € C, ¢ # 0,—1,-2,..., and |z
< 1 the hypergeometric function 9Fi(a,b;c;z) is defined by the following
power series (|E]):

o0

oF1(a,b;c;2) Z kk'k k,
k=0
where (a)g = 1 and (a)y = ala+1)---(a+k—1) for k = 1,2,... is
the Pochhammer symbol. Observe that the roles of ¢ and b are symmet-
ric: 9Fi(a,b;c;2) = oFi(b,a;c;z). The function is also defined for ¢ =

0,—1,-2,... provided a (or b) is also a negative integer and ¢ < a < 0.
Namely, if a is a negative integer, a« = —m, then for ¢ = —m — [ and
1=0,1,2,...,
m
Fi(—m,b; —m —1; z) = kb,
i z O

Let n > 2 be an integer and let p, ¢ be nonnegative integers. We will
use the hypergeometic function for two sets of parameters: a = p, b = g,
c=p+qgq+nanda=1-n—q¢gb=1—-n—p,c=2—-—n—p—4q.
In the first case the hypergeometric function is well defined for all z € C
with |z| < 1. In the second case it is a polynomial, provided ¢ > 0 (or
p > 0), because then 2 —n —p — ¢ < 1 —n — g. Thus we have to define
oFil—n—qg,1—n—p;2—n—p—gq;x) for p =g = 0. In that case we
additionally put ([E])

— - -1
oF1(1—n,1—n Z _1_ <nk >zk+z”_1lnz.

k=0
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If e > Rb > 0 and R(c —a —b) > 0, then the Gauss 2 F identity states

that
I'(c)['(c—a—10)

I'(c—a)l(c—1b)
Moreover, if ¢ < b < a < 0 are integers, the series defining 2F)(a,b;c;2)
terminates and an analogue of the Gauss identity holds true (cf. [V]).
Differentiation of the hypergeometric function gives again the hypergeo-
metric function
d* (a)k ()
ﬁQFl(aabQCSZ) = W2Fl<a+kab+ksc+k;z)
and one of Kummer’s relations (see [E, 2.9]) gives the identity
oF1(a,bic;2) = (1 —2) " F(c—a,c—b;c;2).
The function y(z) = 9 F1(a,b; c; z) satisfies the hypergeometric equation
(1) 2(1=2)y"(2) + (c— (a+ b+ 1)2)y'(2) — aby(z) = 0.
For a = p, b = q, ¢ = n + p + q, the general solution of (1) is given by
the formula ([E])

y(z):cl-gFl(a,b;c;z)—l—f—Q_C-2F1(1+a—c,1+b—c;2—c;z).
z

2Fi(a,bsc;1) =

C. Jacobi polynomials. For o, > —1 and k = 0,1,2,... the Jacob:
polynomial of degree k associated to («, [3) is given by

“1)E(] — ) 2B dk
P]?’ﬁ(x) _ (=1)"(1 kl)zk (1+x) ddxk [(1—$)a+k(1+$)ﬁ+k]
with
a, _F(a+k+l)_ k+a
Pk6<1>—m—< k )

The Jacobi polynomials satisfy the Jacobi equation: for —1 <z <1,
(2)  (1=2)%"(2)+[8—a—(a+B+2)aly () +k(k+a+B+1)y(z) =0.
For fixed a, (8 they form an orthogonal basis in L?([—1, 1], (1—z)®(14-x)%dz):
1
| PP (@) PP (2) (1 - 2)*(1 + 2)? da

-1
298 P+ k+ 1) I(B+k+1)

= Okm Klk+a+B8+2k+ 1)l (a+B+k+1)

D. Spherical harmonics in C*. We can identify the set C" with R?".
Then S; = 0B, the unit sphere in C”, coincides with the unit sphere in R?".
Fix n and let o1 denote the surface measure on the unit sphere in R?”. We
denote by wa, 1 = 27"/I'(n) the area of the unit sphere in R?",

Consider the unitary group U(n) acting on S;. The subgroup of unitary
transformations which leave one point of S; fixed is U(n— 1), and the sphere
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can be identified with the homogeneous space U(n)/U(n — 1). Functions on
S1 invariant under U(n — 1) are called zonal functions. It turns out ([K], see
also Proposition 1 in [F|) that there exists an orthogonal decomposition of
the function space L?(S1,01) into subspaces HP4, p,q¢ = 0,1,2, ..., which
are invariant and irreducible under U(n). The functions belonging to H?*¢
are called spherical harmonics. The zonal harmonics H5? € HP9 are the
following: for z = Re'? € C

D(p.q,n)

—2|p—
WQn—lpg/\q P ql(l)

(3) HPYReY) = ¢ir-af glo—al pr2p=dlop2 _ 1)

where P;Af"p*q' (2R2 — 1) is the appropriate Jacobi polynomial, p A ¢ =

min(p, q) and
ptqg+n—1)(p+n—-2)!(g+n-2)!
Dip,g.n) = | e aape
plgl(n — 1)I(n —2)!
is the dimension of the space HP7. Observe also that Hh(Ret) = HA?(Re™)
and HYY(1) = HPP(1) = D(p, ¢, n)ws ;.

It is also well-known (cf. e.g. [K]) that (Hj'?)5%,— is an orthogonal basis
in L2({(x,y) € R? : 22 +y% < 1}, (1 — 22 — y®)" 2 dz dy).

The orthogonal projections from L?(Sy, o1) onto HP4 were described by
Koornwinder [K]; the formulation below is taken from [F|:

PROPOSITION 1. If f1,..., fp(pqgn) i any orthonormal basis for HP? C
L?(Sy1,01), then for x,y € Sy,
D(p,q;n)

S @B = 2 ().
j=1

Consequently, the orthogonal projection mp 4 : L?(S1,01) — HPY is given by

(4) mpaf (@) = | HYU((2,9)) f(y) dow(y).
S1

Fix © € By,  # 0, and let @ = Re" with R < 1. Put Sza ={2z€ 5
(z,2)/(|z||z|) = a}. Observe that S, , is a sphere in C"~1. In this way we
decompose the unit sphere as S1 = D x S; 4, where D is the unit disc in the
complex plane.

If g, € U(n) is such that g,x = x, then of course g,(S3,4) = Sz,a. Let 044
denote the spherical measure on S, , C R?"=2_ The above decomposition of
Sy induces a decomposition of oy: if z = (a, z,) with a = Re' and z, € Se.as
then

doy(2) = dog o(24) R(1 — R*)" 2 dRd6.

Let f, be a function defined on S, continuous and invariant under those
gz € U(n) which leave z fixed. Such functions f, are uniquely determined
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by their expansions with respect to (Hf?)> . Indeed, if in view of (4) we
define the (p, g)-coefficient of f, as

(Fodpg = | HEU (@, 2)) fo(2) doa(2) = | HIP((z,2)) fu(2) do (2),
S1 S1

then, by the above decomposition of the unit sphere, we have

(§ HE(w, 7)) fal (0, 20)) dona(za) ) ROL— B2)"~2 R0
HPY(Re?) . (Re®)R(1 — R2)""2 dR df,

where fo(Re®) = fo(a) = fu(a,z,) for some (and hence all) z, € Sz.a-
The family of harmonics (Hﬁ’q(Reie))pg:O’Lgm is an orthogonal basis in
L?(D, R(1 — R*)"2dRd#), hence the coefficients (J/”;)p,q, p,g=0,1,2,...,
uniquely determine the values of f, on every S;,, whence on the whole
sphere S7.

If f, is defined on the sphere S, = {z € C" : |z| = r} and 0, denotes the
spherical measure on .S, then we define

(5) (Folpa = | 120 ( (@, 2)

) fu(2) doy(2)

S\l
= ’ (z,2) 2)do,(z
= (g (50 ) do o)

Sr

E. Diffusion: relation between its generator and a stochastic differential
equation. The following fact is well-known. The proof can be found in many
textbooks, e.g. [RW]. Let (X¢)¢>0 be a real-valued diffusion with the following
generator: for f twice differentiable,

Af(z) = o(2) () + b(2) f'(2),

where o, b are continuous functions and o > 0 is locally Lipschitz. Then
(X}) satisfies the stochastic differential equation

dXt =\ O'(Xt) th + b(Xt) dt,

where (W})¢>0 is a real-valued Brownian motion with E(W;) = 2¢.

3. The process Y; = (X;,a)/(|X¢| |a|) and its polar decomposition.
Fix a nonzero point a € B; and consider the isometry 1, of B equipped with
the Bergman metric. From the description of such isometries in item A of
Section 2 we know that, modulo unitary transformations, 1, is a combination
of two orthogonal projections. If we consider 1, (X¢), it turns out that the
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projection

Po(Xy) = (X, a) a= <X ¢ > . |i

(a,a) Vlal/ " al

contains essential information about the behaviour of the process (X3).

More precisely: consider the complex hyperbolic Brownian motion (X¢)¢>0
starting from the point a € By, a # 0. With probability one, this process
does not visit zero. Indeed, consider the projection of X; onto {z € C" : z =
(21,0,...,0)}. Computing the action of Arp on functions f(z1,0,...,0) =
g(z1), depending on z; only, we easily see that the generator of this two-
dimensional process is (1 — |z|?)(1 — |21|?) Agz, hence the process is a time-
changed planar Brownian motion. With probability one, the planar Brownian
motion does not visit zero, hence neither does (X¢)¢>0. This implies that the
process
_ <Xtv a’>

X1 Jal
is well-defined. Observe that Y; is a complex-valued process with values in
the unit disc of the complex plane, hence we can decompose it using polar
coordinates:

Y;

<Xta (I> 0
Y, = — Rye'ft
CX
where
[(X¢, )
(6) Ry = S50+
| Xl lal
is the length of the projection of the vector X;/|X;| onto lin[a], and
] <Xt7 CL>
g e
[(X¢, )

measures the angle (on the plane lin|a|) between this projection and a.

4. The radial process (r):>0 and its generator. We will need one
more process, the length of X;. As the norm is not differentiable at zero,
instead of | X;| we will consider its square:

ry = ‘Xt‘Q.

For z € C" put r = |2]?> = > j—1%jZj. To compute the generator of the
process (1¢)¢>0 it is enough to compute Ay f(r) for twice differentiable real
functions f. Because

or or o 9%r

= = %k A = %) ——F— = 0k
azk ’ aZj I 8Zkazj I

for any function f : (0,00) — R with two continuous derivatives we have
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(8)  Asf(r)

= 41— 127 Y (g — %) gt
4.k=1

n B or  Or 0%
= 4(1 - |z|2) . Z (0K — 2Zk) <f”(7“) 0%k " Dzs +1(r) (‘ﬁkaz-)
Gok=1 ! !

=d4r(L—7)2f"(r) + 41 = r)(n —r) f'(r).

This implies that the process (7¢)¢>0 is a solution of the stochastic differential
equation

(9) dri = 2y/7(1 =) AW + 401 =) (n = 7) dt,

1 . . . S
where (Wt( ))t>0 is a real-valued Brownian motion normalized in such a way

that E(W, ) = 2t.

5. Generators of the processes (R;);>0 and (6;);>0. Fix a # 0 and
put

A={a,z) = Zaﬁj, A= {(za)= szaj.
j=1 j=1

By the formulas (6) and (7) we have

T I Y SR "
|2l]al  lallz] (za)l - la,2)(za)  Vad
hence § = —iln(A/V AA), where Inz denotes the principal branch of the

logarithm, i.e. the continuous branch with In1 = 0.

We will need the partial derivatives of these functions:

(10) 00 ey 00 _ —id; 0% _
0z, 247 0z 24 = 0%Zp0zj

(1) OR _ apA a4 R _ g A zZ|A

0z 2allz| |A] - 2all2l*" 0z 2lal|z][A] - 2]al |2

and

0,

0’R Ok akng
(12) = 92 - 3
0zr0z;  Alal|z]|A]  4a] |2[*]A]
(%]JA‘ B ajZkA 3Zk§j|A’

20al[2l*  dlal|2PP|A] © 4la][z>

Let f be a twice differentiable real function. We compute the action of

Arg on f(R):
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(13)  Auf(R)

- & f(R)
=4(1 — |22 Sk — 2%p) et
(L=12F%) D (G Zfzk)azkazj
7,k=1
= _ OR OR O’R
=401 - 1) 3 (e~ 257 (#1(0) g g+ 7)o
k=1 k ©<j kU=j
Using (11), we get
= OR OR
(14)  4(1 — |z — 2iZk)
];1 I bz 82]
o = _ apA 2k Al
S )j%::l(éj’“ ~ <2|a| [<TIA] ~ 2al [2P

X< G;A 2ij|>
2lal [z |A]  2]a] [2]?

1— 2 AQ 1— 2
SR O e

|22 al?|z|? |22

and using (12) we obtain

" %R
(15)  4(1 - IZIQ)%;(% — 2jZk) 540,
=4<1—|z|2>i<6jk—zﬁk>( L R 7
Pyt dlal |z| |A]  4la]|z]3]A]
B 5]k|A| B ajZkA 3Zk§j‘A|)
2lal 23 4lal|z|A] © 4]a] 2[5

1—1z12/1

1— |z

16 dus) = (@ R+ (- o DR) ).

This means that the real-valued process Ry is a diffusion, described by the
stochastic equation

1—7"t (2) 1—7"t 1
1 dR; = 1— R%2d - (=—-(2n-1 dt.
(1) dre= L maw® (- e o)

In a similar way, computing the action of Arp on ¢(f) and using (10),
we find that

hence
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— |22
(18) Bung(0) = 5 (75 - 1))

hence

(19) th A / ﬂ | —5 Rt — Tt th

6. Independence of W), W2 and W®). Now we will show that the
Brownian motions Wt( ), Wt(Q) and Wt( ) can be chosen to be independent.
We are interested in the martingale parts of the processes r, R; and 6;; for
convenience denote them by superscript m. For instance, ()™ will denote
the martingale part of ry, i.e. the stochastic integral Sé 2\/rs(1 —1y) dngl).

The group U(n) acts transitively on the unit sphere, so we may assume
that a = (a1,0,...,0). Then (6), (7) and the definition of ; imply that X (),
the first coordinate of the hyperbolic Brownian motion X (), is \/ERtewt.
First we will show the independence of Wt(l) and Wt(Q), the Brownian motions
from formulas (9) and (17).

On the one hand, as shown in Section 3, the process X (¢) has the gen-
erator

(20) (1 —7)(1 — R*r)Age.

This implies that the process |Xi(t)|, being a time-changed Bessel process
of dimension two, has the following bracket:

(21) (X1, 1 X1])e = 2(1 = 7o) (1 — Rire).

On the other hand, | X(t)| = /¢ Ry, thus (9) and (17) give another way
to compute the bracket of | X1 (¢)|. By the It6 formula,

d(|X1(0))™ = Ry d(/r)™ + /re d(R)™,
hence first we have to find the stochastic equation describing the martingale
part of the process \/r;. We make use of the It6 formula once again to get

d(/ro)™ = (1 =) dW(l). From this and (17), we get
d(1X: (1)) = RBe (1 = 7o) WV +fd(Rt)
=Ry (1—r) dWY + VT =1 /1 - B2 dW,?
We can now compute the bracket of | X (¢)|:
(Xa], X))o = 2(RE(1 = 7e)* + (VI = 1)* (V1 - R})?)
+m¢LmeFEWWmem
=2(1 = 1)1 — e R?) + Ren/1 = RI(VI — 1) 2(WH, W)y,
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Comparing this with (21) we see that (W1, W), = 0, hence the Brownian
motions W) and W are independent.

We know that X;(t) = \/r—thewt and X is a two-dimensional Brownian
motion with random clock, because its generator, given in (20), is the Laplace
operator in R?, multiplied by a function.

Let (u,#) denote the polar coordinates on the plane, 0 < u < oo, 0 <
0 < 27. The polar decompositon of the Laplace operator on the plane,

_0* 19 107

T ou? T wou | u?de?’

implies a representation of X (t) as a skew-product of a radial part (which is
a Bessel process) and an angular (spherical) part (cf. [PR| or [IMcK, Chap-

ter 7.15]). More precisely, if (B,gl),Bt@)) is the standard two-dimensional
Brownian motion then there exist a Bessel process Bes(t) and a real Brow-
nian motion W (t), independent of Bes(t), such that

Age

(B, B7) £ [Bes(), ™ A0,

where A(t) = Sé Bes 2(s) ds. The same applies in our situation, because our
process X (t) is a time-changed two-dimensional Brownian motion.

As we have already described the process /r; Ry, which is the radial part
of X1(t), we now focus on the spherical part. In our case u = Ry/r, hence
the spherical part of (20) is

1 9 1-r(1 9?
— — 2 - = - -
U=r =B o 52 = <R2 T) 262’

which gives the following representation for the process et: there exists a
real Brownian motion W), independent of W) and W&, such that

1-— Tt 1 (3)
d9 = 1/ - — dW .
t T't R? rt t

This is precisely equation (19), computed there by use of the generator.

REMARK. Independence of W), W2 and W®) can also be obtained by
computing the action of Arg on the product f(r)g(R)h(6), but this requires
extensive computations.

7. A martingale. Our main tools in computing the Poisson kernel and
Green function of the balls B;, 0 < r < 1, are unitary spherical harmonics
and killing X; when it reaches the boundary of B,.. In order to use unitary
spherical harmonics we must have a complex-valued process; by analogy
to the real case we consider HP((Xy,a)/(|X¢||al|)). For this reason in this
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section we examine the properties of the process
t
Xt a)
Zt:Hq’p<< . )~exp(Qr ds),
P\l ) Q)

where (X¢)¢>0 is the complex hyperbolic Brownian motion, a = Xy # 0 is
its starting point and Q(r) is a function to be defined later.

We will find a positive, continuous function Q(|z|?) (a potential in the
sense of [ChZ]) such that

(22 (au - Q=) (37 (570) ) =

It turns out (see e.g. [W, I11.39, p. 159]) that for such a @ the process Z; is
a martingale.

Finding () by analytical methods requires tedious computations so we
prefer using stochastic calculus and the It6 formula, which makes the calcu-
lations a little shorter.

Let 2z = Re" be a complex number with modulus R < 1. Recall that
by (3),
Hﬁ’q(Reie) = C'ei(p_qu‘p_q‘P(ZR2 - 1),

n—2,/p—q|

where C'is some constant and P = P, denotes the appropriate Jacobi

polynomial. This implies that HIP(Re?) = Cella-PVRIP-dP(2R? — 1) =
HE(Re'?).
Forn=2,3,... and p,q =0,1,2,... consider the process

t
— Ceila—p)o: R\P q‘P(2Rt —1)- exp(SQ(TS)dS).
0

To simplify notation, write

t
g(0) = C PP f(Ry) = RFIPEEE - 1), Vi = exp([QUrs) ds).
0

Then
(23) Zi =90 f(R)Va,  Zo=g(0)f(1)Vo = HEI(1) = D(p, g 1) wyy,—y
and we have the following.

THEOREM 2. Set

o) = a0 —n[FEEZD(roa)]

r
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1 _
47, = Vt{g(e)t)f’(Rt),/ rt”,/1 — R2aw,?

R 00\ | -
t

hence (Zi)i>0 is a martingale and

t
1—7r
(24)  Z=HPU( +(§]vtg<et>f’<Rt>\/ 1 REaw
t

1-— 1
F(R)g' (6:)4/ r—trt\ | 77—t aw®.
t

Proof. Observe that @ is always positive, because r € (0,1) and n > 2.
Below we use the It6 formula several times. Because V; is a process of
bounded variation, we have dV; = Q(r:)V; dt and (g(0:) f(R:), Vi) = 0. Thus,
differentiating Z; given by (23), we obtain

dzy = d(g(0:) f(R)Vi) = d(g(00) f (Re)) - Vi + 9(00) f (Re) - V.

Then

Now

(26)  d(g(6)f(Re)) = d(g(0:)) f(Re) + d(f(Re))g(0r) + d(g(6r), f(Re))-
By the It6 formula and (17),

(1) d(f(R) = (R AR, + 5 [ (Re) d{R, )

F(Ry) {\/7 ﬂ aw?

+ f”(Rt)[

(1 )al

L. R%)] dt,
Tt

because d(Wt(Q), Wt(2)> = 2t dt.

In a similar way, using (19), we get

(28)  dlg(60) = o (6)d0: + ég”wt) 401,00

1—7"75 ) 1—7"t 1
0 W — dW 0;) - | = = dt.
t - (t) T (Rf Tt)

Both g(6;) and f(R;) are continuous semimartingales, so that

(9(0n), f(Re)) = (g™ (00), f™(Re)),
where the superscript “m” denotes the martingale part of the process (|[RW,
p. 58)).
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Moreover, because W2 and W®) in (17) and (19) are independent, we

have (g(6:), f(R:)) =
Substituting (27) and (28) into (26) and next (26) to (25), we get

(29)  dZ; = Vi{d(g(0,)) f(R:) + g(6)d )+ 9(6:) f(R)Q(re) }

—Vt{ F(Ry)g Htr‘/ —rtdWB)
- <ﬁ_ >dt
9(00) f'(Ry) {Fﬁdﬂf - (Rt (n—1)Rt>dt}

(00 f" (R {1 T R%)} dt + 9(0) F(R)Q(r) dt}.

Tt
The right-hand side of (29) is a sum of two martingales,

1—7r 1
MY = Vif(Re)g'(00)y) L aw?,
Tt Rt
1—r 2
dMP = Vig(0,) ' (Ry)y | —21/1 — R2aw®
t tg( t)f ( t) T t t o

and the following quantity:

e v srg ) (7 )

Tt

+ f(Rt)g ”(et)

(30)

+g(0) f (R =" (i ~(2n— 1)Rt>

1-—

Tt

+ 9(0:) f"(Ry)
Observe now that

g"(0) = (Cel TP = _C(q —p)2e 0P = _(p — q)2g(0),

hence Jy, the quantity in braces in (31), is equal to

"R+ g<9t)f(Rt)Q(n)}dt V-t

32 h= ") 0= R + (3 - n- DR (R

Tt t

—(p—q)? (Rit - 7“t> J(Ry) +
But f(R) = RIP~4P(2R? — 1), hence

(33)  fU(R)=p—q|RP I P(2R* — 1) + ARPTUIT P/(2R? — 1),

QAR



Poisson kernel and Green function for Brownian motion 175

(34) f"(R)=Ip—dl(lp—al = DRV I?P2R* ~ 1)

+ (8]p — ¢| + 4)RP~UP'(2R? — 1) + 16RP~1+2P"(2R? — 1).
We want to find @ that makes J; = 0. Substituting (33) and (34) into (32)
we get a quantity which turns into the left-hand side of (2) if we put

Q) = 4(1 _rt)[%(%:n_ 1) (p;q>2}

Indeed,
1 - .
Ty = —rt” g(6,)RY q{16(R§ ~ RHP'(2R? - 1)

+8[L+|p—q| — (]p — q| + n)RF]P'(2R} — 1)

T [—|p—q|2 —(@n—2)lp—dl + (p— @)%

+4rt<%(% -l <p_q>2>}P(2Rf - 1)}

Tt 2

1—7“15

—4. g(6:) R {4(R? — RHP"(2R? — 1)

Tt
+2[lp — gl + 1 — (Ip — g +n)R{]P'(2R} — 1)
+[pq + (n — 1) min(p, q)] P(2R} — 1)}.
Substituting 2 = 2R? — 1 in the last braces above, we get
(1 —2*)P"(x) +[lp —al = n+ 2~ (Ip - ¢ + n)2]P'(x)
+ [min(p, ¢)(min(p, g) +n — 1+ |p — q|)| P(z).
But this is precisely the left-hand side of (2), with y(z) being the Jacobi poly-

— n_27|p_q|
= Fong

1—r [ 1
dZt = th(Rt)g’(Ot) e ¢ ﬁ — T th(?,)
t

1—-r
+ Vig(00) ' (Ro)y | = /T = R aw?

is a martingale and Zy = HI’((Xo,a)/(|Xo|la])) = HEP(1), because
X[) =a. n

nomial P(x) (). This implies that J; = 0, hence the quantity

(31) is zero,

8. Expectation of H?((Xy,z)/(|X¢| |z])). Fix 0 <7 < 1 and let B, =
{z € C": |z| < r}. Let (X¢)t>0 be the complex hyperbolic Brownian motion
with Xo = z # 0. Recall that r; = | X¢|? and Z; = HiP((Xy, z) /(| Xe| |2])) Vs
Let h : R — R be Borel measurable and bounded.
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THEOREM 3. Under the above assumptions,

w gy ()| < vy B [ (- @0 )]
0

Proof. The process Z; is a martingale, hence its expectation is constant.

In order to get Z; we multiply HP((Xy, x)/(|X¢| |z|)) by 1 = V;V; L
e g (e )| =B peomee ({55 v

t

= ]Ex[h(rt)ZtX/fl] =FE" [h(rt)Zt exp(— S Q(rs) ds)} )
0

But we know the structure of Z;: by (24) we have

E” (1) Z, exp(—iQ(rs) ds )| = E*{h(ro) Vi HEP (1)
0

O (§ Vig(6

s /1-R? dWs(2)>]
0

+E° [h(rt)‘/;”(g \/—\/RQ rs dW

where V,! = exp(— Sg Q(rs) ds). The process h(r:)exp(—\,Q(rs)ds) de-
pends only on (rs)o<s<¢, hence it is measurable with respect to the filtra-
tion of the Brownian motion W) . The stochastic integrals in the last two
terms of the right-hand side are integrals with respect to the Brownian mo-
tions W) and W), respectively, and these Brownian motions are indepen-

dent of W), Hence the last two terms in the above sum are zero (cf. also
Lemma 2.4 in |[BM]|) and we finally have

E” [h(rt)Hg’pGj;:” @)] = B (D [h(r,) exp(—S}Q(rs) as)|. =

An analogue of Theorem 3 holds true if, instead of ¢, we take 7., the first
time the process (X)¢>0 exits from B,.

COROLLARY 4. Letr € (0,1) and 7, =inf{t > 0:|Xy| =r}. If Xo =2z
with |z| < r, then

£ [Hq P (%ﬂ = HZP(1) - EF [GXP(— :S) Q(rs) dS)} :

Proof. Let T}, = inf{t > 0 : r, < 1/k}. Because 1 > 0 for all t > 0
a.s. and this process has continuous trajectories, T, — oo as k — o0. To
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simplify notation write 7(¢, k,r) = t A Ty A 7. Because Z; is a martingale,
arguing as in the proof of Theorem 3, for h = 1 and the bounded stopping
time 7(t, k,7) we get

T(t7k7T)

e[ (e )] = e fen (=] etras)]
T(t,k,r 0

The function exp(— Sé Q(rs) ds) is bounded, because @ is positive. If k — oo,
then T, — oo. If we also let ¢ — oo, using the dominated convergence
theorem, we get the assertion. =

9. Poisson kernel of a ball. Now we can compute the coefficients of
the expansion of P,(z,y), the Poisson kernel of a ball B,. If Xy = z, then
P.(x,-) is the density (with respect to o,) of the distribution of X, . This
fact and formula (5) give

(Pooa = § 13200 )Pt ) =132 ()

The theorem below determines the coefficients (]3,~)/p7q.

THEOREM 5. Let x # 0 be the starting point of the complex hyperbolic
Brownian motion (X¢)i>o. For |x| <,

"\ Xq ] 2] " r 2F1(p,qip+q+mn;r?)
Proof. By Corollary 4 we have

()| = e fowo (- § A ds)]

Observe that the process under the last expectation is real-valued. Let x be
a real number, 0 < 2 < 1. The function ¢(z) = E*[exp(— {; Q(rs) ds)] is the
so-called gauge function (see [ChZ, 4.3]) for the Schrédinger operator based
on the generator of r; and potential —(@Q), hence, by the general Feynman—Kac
theory for the Schrodinger equation [ChZ]|, ¢ is a solution of the appropriate
Schrodinger equation (cf. (8) and definition of Q):

(35)  4a(l—x)*¢"(x) + 4(1 — 2)(n — 2)¢'(x)
p+q (pt+q 2

T 2

If we divide both sides of (35) by 4(1 — z) and next substitute ¢(z) =
PT0/2y(x), we get

z(1—z)y"(z)+ [p+q+n—(p+q+zly (z) — pgy(z) = 0.
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This is the hypergeometric equation (1), hence the general solution of (35)
is given in terms of the hypergeometric function 9 F; and is the following:

(36) y(x) = g P+0)/2 a1 o1 (p,g;p+q+n;x)

oFil-n-¢l-n-p;2-n—p—gq;z)
' rptg+n—1

+ 2

When # — 0, the expectation El**[exp(— §o” Q(rs) ds)] remains bounded
(because @ is positive), so that we are interested in a solution of (36) which
is bounded in the neighbourhood of zero. This implies co = 0 in the formula

(36) and
$(z) = c1a® V2P (p,q;p+ g+ 0 ).
If X, starts from = with || = r then 7. = 0, hence ¢(?) = 1 and this implies
1
TP SR (pgip )
Finally, for x € B,, we get

¢(|$|2) _ ’:L.|p+q . 2F1(p,Q§p+Q+n§ |ZE’2)
rPTa SFi(p,qip+q+mn;r?)

&1

and the proof is finished. m

REMARK. If Xy = 0 then, by the unitary invariance of the distribution of
the complex hyperbolic Brownian motion, the distribution of X is a unitary
invariant probability measure on the sphere S,. By [R, 1.4.7|, 0,/wo,—1 is
the only measure with this property.

Knowing the coefficients, we can give the expansion of the Poisson kernel.

THEOREM 6 (Poisson kernel). Let 0 # xz € B, and y € S,. Then

- Pt o : o2
Po(z,y) = > (M) 2F1(p,q;p+q+n;|zl )Hﬁ’q<<y,x))'

ron=t L= \r 2Fi(p.asp+q+mn;r?) lyl ||

For every fized x € B, the series is convergent absolutely and uniformly for
ally € Sy.

REMARK. It is possible to get the same expansion by the purely ana-
lytical method of Folland ([F]). This method is even shorter, but depends
heavily on the fact that P.(z,y), as a function of z, is App-harmonic on the
whole B,.. Our method, exploiting the It6 calculus, seems to be more general
and also gives the description of the Green function G, (z,y), which is not
continuous on B, (it tends to infinity as y — ).
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Proof of Theorem 6. We will show that the series

(37) i <m>p+qu1(p,q;p+q+n;\Hff) Hg,q<<y7w>>
ST 2Fi(p.qsp+q+n;r?) [yl []

is convergent absolutely and uniformly for all z € B, and y € S,.. The proof
is a slight modification of that given by Folland [F] for the case r = 1. We
give it here for completeness.

By Proposition 1, for any orthonormal basis fi,..., fp(pqn) of HP? C
L?(S1,01) and any z,y € S,

D(p,q,n) D(p,q,n) D(p . n)
Z f] (<$ y>) Z ’f](x)‘Q = Hqu(l) — ﬁ
j=1 n—

Orthogonahty of f;’s implies

D(p,q;n)
VIR () Pdoi(y) = Y V1) Pl dor(y)
Sl j:l Sl
D(p,q.:n)
D(p,q,n)
= |fj(2)? = —==—= = HE"(1).
— Won—1
j=1
Moreover, changing variables, we get
2 2
S Hpq(<y7 >)' dUr(y) _ S Hp,q<<y7x>) d01(y): D(pvqan)
yllzl /| r2nt "\ yll=| Won—1

Sr S1

= HP(1).

Because HY({x,y)) is Hermitian symmetric in 2 and y, and for fixed z it is
in HP? as a function of y, by the Schwarz inequality we obtain

(g, )| = | § B9 (g, 2) HE9((2,2)) don (2)] < Db, g, m)er .
S1
Now,
_(p+rgt+n—-Dp+n-2)(g+n—2)
D(p.g;n) = Plgl(n — Dl(n — 2)!
_(ptagtn—Upp+1.. . (p+n-2)qq+1)...(g+n—2)

(n—1)l(n—2)!
- ((2 - (11)'+(: - 21))! (p+n—2""(g+n-2)""
= 1 (p+qg+n—1)""1

(n—1)l(n—2)!
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Because n is fixed, we have

-1
<w§n—l for all p,g=0,1,2,...,
pt+qg+1

which implies that

n — 2n
D(p,q,n) < 0 E 1)!(171)_ ) (P+a+ 1) =calp+q+1)>"

The function o1 (p, q;p+ q+n;|x|?) is positive and increasing for |z| €
(0,1) so that

<

(M)“q 2F1(pgip+atnilal?) _ (@)pﬂ

r 2Fi(p,qip+q+mn;r?)

thus

2Fi(p,q;p+q+n;r?) yl|z|

(M)”q 2F1(p,q;p+q+n;zf?) ’Hp,q(<w7y>>‘
r n

P,q=0
9] 00 k
<o S (ENY " i gz = S () et 2 < o0
— r r )

p,q=0 k=0

because p + ¢ = k for k + 1 different values of p, and |z| < r.
The functions (HL?(+))pg=0,1,... are orthogonal, hence it is easy to com-

pute the (p, q)-coefficient of P,(x,y). We have (recall that H?(-) = HY(-))

(Bpg = | H(<y ‘”>)PT<a:, y) do (y)

3\ ol Te]
a

- <|yr |a:r> (r?i—l > (T)M

3, p,g=0
F
2 1(p,q;p+q+mn; |xL)H5 <<y’x>>>d0r(?/)
oF1(p,q;p+q+mn;r?) lyl |z
_ (M)Hq oFi(p,q;p+q+n;|z)?)

r o F1(p,q;p+q+n;r?)
> SHg’p<<y’$>>H£’q<<y’m>>dUT(y)
lyl || lyl x| ) r2n—t

Sr
i )<|ﬂfl)p T9F(p,q;p+q+n;|z)?)

— HP4 .
" oFi(p,q;p+q+mn;r?)

These coefficients are the same as the (p, ¢)-coefficients of the distribution
of X, computed in Theorem 5. This implies that the series described in

Theorem 6 represents the Poisson kernel of B,.. m

r
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10. Green function of a ball. In order to compute the Green func-
tion of a ball we use the method of Byczkowski and Matecki [BM]. We will
compute G,(z,y), the Green function of the ball B,, on all spheres Sg, that
is, for fixed x € B, and all y € Sg, 0 < R < r. Moreover, because the Green
function is symmetric: Gy (z,y) = Gr(y, z), it is enough to consider the case
|z| < R.

Below we will use several semigroups and Green operators. Recall that
(X;) denotes the complex hyperbolic Brownian motion and r; = |X4|?. Let

Pt(r) denote the semigroup of transition probabilities for the process XtB T,
the hyperbolic Brownian motion killed at the boundary of B,. Similarly, let

(rgr)) be the process (r;) killed on exiting the interval (0,72). Because X;

does not hit 0, (r;) exits (0,72) through the point 2. We denote by Tt(r) the
Feynman—Kac semigroup based on the process r; and potential —@), with
its Feynman—Kac functional exp(— Sé Q(rs) ds) stopped at the first time the
process () reaches the point r2. Let G, denote the Green operator for
the process X; and the set B,, and let G,(x,y) be the Green function,
i.e. the kernel of G,. Finally, V(") will denote the (—Q)-Green operator for

the semigroup Tt(r). For the details of the above definitions the reader may
consult [ChZ].

~

Let (G})pq(x, R) denote the (p, g)-coefficient of G, (z,y), defined as in (5),
considered as a function of y € Sg, with fixed z € B,.. Observe that two such

coefficients are equal if |z1| = |z2|. For this reason we will use the notation
(Gr)pg(|z], R). By formula (5) we have

. , T
3 @opallel )= § (26w dontr)

SR

Now we compute these coefficients explicitly. To simplify the formulation of
the next theorem, write

Foq(x) =2Fi(p,q;p+q+n;z),
Gpglz)=2Fi(l-n—¢,1-n—p;2—n—p—gq;x).

THEOREM 7. Let Gy(z,y) be the Green function for the process (X¢)i>o0
and ball B,. Then

(@r)p,q(|$|’ R)

_ Hg’q(l)’$|p+qu,q(|x|2) RPta Gp,q(RQ) . Gp,q(r2) .Fp,q(RQ)
2(p+q+n—1) R2ptatn=1)  p2ptatn—1)  F, o (r2) )

Proof. In terms of semigroups of operators Theorem 3 reads as follows:
for bounded measurable A : R — R,

(39) (P RHEP) () = HEP(1)(Th)(|2)?).
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Integrating (39) with respect to time, we get
o0 [ee]
V(PR () dt = HEP () § (T h) () dt
0 0

which, in the language of potential operators, is

(40) (GrhHE)(x) = HEP(1)(VOR)(|2]).

Using the fact that G,(x,y) denotes the kernel of the operator G, and
integrating in polar coordinates in C™, we can write the left-hand side of

(40) as
o (82 g
(i oo

B
= gh(RQ)O H”<<y x>>Gr(w,y) dUR(y)> dR.

ERNI

(41)  (GhHEP)(z) = | h(ly*)H,

3

The quantity (Vh)(|z|?) on the right-hand side of (40) equals

»

T

(42) (VOr)(|2?) = § y)V (2, y) dy

h(RHV ") (2%, R?) 2R dR,

-
s

where V") (|z|2,y) is the kernel of the operator V(7).
Substituting (42) into the right-hand of (40) and then comparing the
right-hand sides of (40) and (41), we get, for measurable bounded functions h,
H2P(1) | h(R*)V)(|2]?, R?) 2RdR
0

- §h<R2>( § g (L)) donte) ) ar

0 . [yl ||

This implies

2117 RV o, 1) = | 127 (120G (2.9) dony).
S\ e
This in turn, together with (38), gives
(43) (Gr)pallzl, B) = 2HEP(RV O (|2, B?).

The (—Q)-Green function V(") (y, R?) is (—Q)-harmonic in y, for 0 < y < R
and for R < y < r (cf. [ChZ]|), hence it has to be a solution of (35), the
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Schrédinger equation based on the generator of the process (1¢):>0 and poten-
tial —@Q. We have already found this solution: it is given by the formula (36),
hence

44) V(2% R?)
= |z[Pta [cl(p, ¢, R) - 2Fi(p,q;p+q+mn;|z)?)

C2(p7 q, R)

ek A . . 2
|z 2 +a+n—1) 2Fil—g=n1-p-n;2—p—q-—n;z )}

c2\p, q, R
= o7 (10, RO gl loF) + HEE G o) )

Because limj,2_,,» V) (|z]?, R?) = 0, we have

02(p) q, R) . Gp,q(TQ)

C1 (pv q, R) = _T2(p+q+nfl) Fp,q(rz)
and
(45)  VO(j2*, R?)
Gpq(|z[*) Gpg(r?)  Fpq(|z?)
_ p+q P.q __Gpa Lpg
= c2(p ¢, R)|z] <|$’2(p+q+n—l) P2ptanD) " F (72) )

By virtue of (43) and (45),
(@r)p,q(‘x‘aR)

Cpalla) — Cpglr®)  Fralle])
_ q,p . p+q b,q _ b,q .2 pa
- 2Hn (1)R 62(p7 Q’ R)|$| <|x|2(p+q+n_1) 1"2(P+q+n_1) Fp,q(TZ) .

~

The Green function is symmetric so that (G,),4(|z|, R) also has this
property. Changing the roles of |z| and R, we get

~

(46) (Gr)p,q(R,||)

Gy o(R2) Gpo(r?)  Fpo(R2)
— P . + p.q _ p,q . p,q
=203 (1)lz] - c2(p, ¢, |2 B q(RQ(p+q+n—1) r2tatn=1) [ (r2) )’

Now we compute the constant ca(p, g, |z|), showing first the following:
LEMMA 8. Let
w@) = (n+p+q—1)Fpq(2)Gpg(®) + 2(F () Gpq(@) — Fpg(2)G (2)).
Then u(z) = (n+p+q—1)(1 —z)" L
Proof. Recall that, by (1) and the definition, F), ;, satisfies the equation
z(1—=2)F"(x) + (p+q+n—(p+q+1)2)F () - pgF(z) = 0,
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while G, , satisfies the equation
z(1-2)G"(z)+(2-n—-p—q—(3—p—q—2n)z)G ()
—(1-p—n)(1—-q—n)G(z)=0.
Let us compute the derivative
u'(z) =(n+p+q-— 1)(F;,>,q($)Gp,q(x) + Fp,q(CC)G;;,q(x)) + F;g,q(ﬁ)Gp,q(ff)
— Fp ()G () + 2(Fy (1) Gpg(7) — Fpg(2)Gy 4(2))-
We can calculate (1 — x)F) (r) and (1 — 2)Gy ,(z) from the above-cited
equations. Substituting these quantities, we get
(1 —2)u/(z) = (L=n)[(n+p+q+1)Fpq(2)Gpg(x)
+ 2(F) o (2)Gypq(®) = Fpq(2)G) 4(2))]
= (1 —n)u(x).
Solving the equation (1 —x)u/(z) = (1 —n)u(x), we get u(x) = C(1 —x)
For x — 0 the asymptotics of the hypergeometric function and its derivative
is well-known [E|; using this asymptotics we get lim, o4 u(x) = n+p+q—1,
hence finally u(z) = (n+p+q¢—1)(1—2)" 1. =

n—1

Using Lemma 8 we can compute the derivative of the function

RP+a Gp,q(RQ) _ Gp,q(r2) .Fp,q(RQ)
R2(p+a+n—1)  p2(p+g+n—1) vaq(rz)

with respect to R:

(47) _a RP+a Gpq(R?) _ Gpq(r?) ‘Fp,q(RQ)
dR|p_, R2(ptatn=1)  p2(ptqtn=1) [ (r2)

2(p+q+n—-1)(1—r})"!
Tp+q+2”_1Fp7q(7’2) ’

On the other hand, by the Green formula (see Lemma 11 in the Ap-
pendix), for y € S; we have

(—% R:T) Gr(z, Ry) = (1 — )" 1 P.(z,7y).

From this fact and (38), for |y| = 1 and |z| < r we obtain
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_ —7”2 n—1 q,p <y,$> z,r o
== (22 P donto

O Hq,p<<y,x>
7«2n—1 3 n

(1 o T2)n_1
- 21 Hy? (1)

[z[P+ Fpq(l2]?)
rPta Fpg(r?)
where in the last equality we have used Theorem 6.

Now we can compare the derivatives: formula (48) gives

d ~ (1—r)t |z[PH9 Fpq(|]?)
- r - 7 Hq7p . pq
( dR R:T) (G )p;q<’x|7R) TQn ( ) Terq Fp}q(r2) )
while (46) and (47) imply
d .
(_E Rr) (Gr)p,q(lz], R)

2(ptq+n—-1A—r)"t

= 2Hg’p(1)|$’62(p7 q, “TD ’ T,p+q+2n—1F (r2)
p.q

Comparing the right-hand sides of the last two expressions, we get
(1 — )" HRP ()] P T Fp (2 ])
r2n=lpptaf, (r2)
_Ap+atn— DHI(D)|zlea(p, g, 21 = r)" "
rp+‘1+2”—1Fp,q (7«2) ’

hence 5
2P Fp g (|2]7)

4dp+qg+n—-1)

’$|Cg(p,q, |‘T|) =
which, by (46), finally gives

(Gr)p.q(R, |2])
_ Hg’p(1)|$’p+qu,q(’x‘2)Rp+q Gp,q(Rz) . Gp7q(7’2) ) Fp,q(Rz) .
2p+qg+n—1) R2(p+g+tn—1)  p2(p+g+n—1) Fp7q(r2) )
Having the coefficients, we can write down the expansion of the Green
function.

THEOREM 9 (Green function). Let x,y € B,. If x # 0 and |z| < |y|,
then

| [Py [Pt Gpa(lyl)
Gr(z,y) = 2r2”12p+q—|—n 1pq(H W

__Gpa?) p,q(|y|)>Hﬁ,q(M>'

rapratn=l) By 4(r?) || |y]
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For fized x the series is uniformly convergent on every sphere Sp with |x| <
R <.

Proof. To show the uniform convergence, we can estimate the series as
follows:

|z [PHafy|Pra
> p— Fpq(l2[?)

P ><< Gpq(ly*) _ Gpa(r?) .Fp’q(’m?))ffﬁ’q(@’w)’

|y|2(p+q+n_l) r2(pratn—1) Fp,q(T2) |lz| |y]

[+
< L > g R Fyg(22)G ()

p,q=0
’x|p+q|y|p+q
r2n 2 Z 1"2 p+q) £7q(]‘)‘Fpaq(“r|2)GP7q(T2)|7
p,q=0

because F,, is positive and increasing on (0,1), which implies that
Fpq(|2?)/Fpq(r?) < 1.

Below in Lemma 10 we will show that, except for the case pg = 0, G;,q <0
on (0,1) and G, 4(1) = 0. These facts immediately imply that G, , > 0 on
(0,1) and x(F, ,(2)Gpq(z) — Fpqe(x)G), (7)) > 0, hence by Lemma 8 we
have

0 < Fpq(z)Gpq(z) < (1— :C)"_l <1 forze(0,1).

This, together with the fact that F), ; is positive and increasing, yields

’Fp,q(’x‘Q)Gp,q(‘yF” < Fp,q(’yP)GnqﬂyF) <1
|Fp7q(|$|2)Gp,q(7°2)| < Fp,q(rz)Gp,q(7°2) <1l

By the definition, G 4 is bounded on every interval [e, 1] and Fp 4 = 1, hence
Fy 4Go,q is also bounded on [g, 1].

Recall that 0 < |z| < |y| < r by our assumption and put ¢ = |z|/|y| in
the case of the first series and o = |z||y|/r? for the second. In the proof of
Theorem 5 we showed that for any 0 < ¢ < 1 we have > o?T7HL(1) < oo,
hence both series are absolutely and uniformly convergent.

The family (Hp?(-))p%,=o is orthogonal, hence we can compute (just as
we did for the Poisson kernel in the proof of Theorem 6) the (p, ¢)-coefficients
of the function defined by the series. Because the coefficients are equal to
those computed in Theorem 7 for the Green function, the series given in
Theorem 9 represents G, (x,y), the Green function of B,. =

Now we will prove the above-mentioned properties of G 4.
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LEMMA 10. For non-negative integers p, q and n > 2 let
Gpg(z) =2F1(1-n—ql-—n—p;2—n—p—gq;z).
If pg > 0 then G, ,(x) < 0 for x € (0,1) and Gp4(1) = 0.

Proof. We can assume that ¢ < p. The Kummer relation mentioned in
the Preliminaries implies that

2Fi(1-n—q,1-n—p;2—n—p—q;z) = (1-z)"2F1(1-p,1—¢;2—n—p—q; z).
Since f(z) = (1 —x)" is decreasing on (0,1), f(1) =0 and 2F1(1 —p,1 —q;
2—n—p—q;x)is a polynomial, it follows that G 4(1) = 0 and it is enough to
show that hp4(z) = 2F1(1—p,1—¢q;2—n—p—q;z) has negative derivative
for 0 < x < 1.

The function hyq(x) is a polynomial in z of degree ¢ — 1 (recall that we
assumed 0 < ¢ < p) and for k =1,...,¢ — 1 its kth derivative is

d* 1—p)(l—

In [V, computations of Cy on p. 132], the following formula was proved:
~ (n+p-Dln+qg-1)!
(n+E)!(n+p+qg—2+k)!

(1-p)i (=gl ya-1
(2—pni(p—¢;l): )j—y has

Now observe that for fixed n, ¢ and p the sequence (
alternating signs. Indeed, let ¢ > 0 be even. Then

dq—l (1) _ (]‘ _p)q—l(l B q)q—l
daa=t P (2=n—p—q)g1

because there are an odd number of terms in the denominator, they are all
negative and 2 Fy (¢—p,0;1—n—p;1) = 1. This implies that d9=2h,, ,/dz9~2
is decreasing and since its value at « = 1 is positive by (49), this derivative
is positive. This implies that the derivative of order ¢ — 3 is decreasing, and
as its value at x = 1 is positive, dq_3hp7q/d:vq_3 is positive. By induction we
infer that dh, ,/dx is negative, so that h,, , is decreasing, as required.

If ¢ is odd then j;Tillhp,q(l) > 0 and the analogous reasoning gives the
same result. m

REMARK. The formula in Theorem 9 is very similar to the one obtained
by Byczkowski and Matecki [BM] for the case of the real hyperbolic space D,.
Instead of our F),, their representation uses the hypergeometric function
oF1(p,(2—n)/2;p+ n/2;x) and for even n this function is a polynomial.
Using this fact they managed to find sums of the analogous series describing
P (z,y) and G,(z,y) for n = 4 and n = 6. It seems hard to get such compact
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formulas in the complex hyperbolic case, because for all n > 2 the functions
F), 4 are given by infinite series.

Appendix: gradient of a function and directional derivative in
the complex hyperbolic space. Consider the unit ball By = {z € C" :
|z| < 1} with the Bergman (Hermitian) metric, given by the matrix with
entries
s |21%)8ij + Ziz;

CA (R
(cf. [K] or [S], where the second exponent in (1 — |z]?)? is missing).
The inverse matrix [h%] is given by the formula [S]
h9 = (1— 205 — Ziz), G.j=1,...,n.
Because we want to use the Green formula, involving derivatives in the nor-
mal direction, we describe this metric in the language of the Riemannian

metric in the unit ball of R?". By the well-known identification between the
structures of C" and R?" ([KN], [R]) we have the following:

1) If z=(z1,...,2n) € C" and 2, = zy + iy then

,7=1,...,n

C"3 2z (Tl ., T, Yl -5 Yn) € R

2) Let Mcn be the matrix of a linear transformation of C". If Mcn =
RMcn + iSMen = A+ 4B then
5l
MR2TL =
-B A

is the matrix of the corresponding transformation of R?",

Length of a tangent vector. Now we want to look at the unit ball in C™
with its Hermitian metric as a subset of R?" with the Riemannian metric.
By the above, the Riemannian metric g;5, ¢,7 = 1,...,2n, in the unit ball of
R?” is given by the matrix [le f ], where

(1—12*)di; + R(Ziz))

- 0,7 =1,...
al] (1 _ |Z|2)2 I 1”] Y 7n’
szzm, Z,]zl,...,n.
Let Tz, .. wpyi,.yn) denote the tangent space at the point (z1,...,y,
Y1,---,Yyn) and let v € Ty, 2,41, y.)- Lhen the form determining the
length of v = (v1,...,v2,) is given by the formula
A B
d52 = [Ul e Ugn]|: B A :|[’U1 e ’Uzn]T.
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In particular we get (after a long computation)

A B
d52:[x1...xnyl...yn][_B A}[xl...xnyl.,,yn]T
(1—a2— - —a2 —yd—-- —y2)2
so that
ml?"'ax s Yly e v oy E
@1 Ty syl = mttlle
L—(x1, oy Zns Y15 - Un) |

where |v|g denotes the Euclidean and |v|p the Riemannian length of a vec-
tor v.

The same result can be obtained without computations: the Bergman
metric is invariant with respect to unitary transformations of the unit ball
and the group U (n) acts transitively on the spheres S,, 0 < r < 1. Let z € C"
with |z|g = r < 1 and choose A, € U(n) such that A,(z) = (r,0,...,0)
€ C". This implies that the length of any vector v in T, = T(4, 20 v1.yn)
is the same as the length of A,(v) in T{,.¢ . o). In particular the length
of z = (x1,...,Zn,Y1,...,Yn) is the same as the length of (r,0,...,0) in
Tir0,..0)- But we can identify (r,0,...,0) € C" with r € C!. The form of
the Bergman metric h;; implies that both vectors have the same length and
in the case n = 1 the Bergman metric in the unit disc of C is the same as
the Poincaré metric, so that

|(r,0,...,0)|g
r,0,...,0)|p = —————.

Deriwvative in the normal direction. Let 0 < r < 1 and fix a point
(Z1y. ..y Tn, Y1, ..., Yn) with Euclidean norm r, i.e. a point from the sphere
Sy. For a differentiable function f we want to compute the directional deriva-
tive f /On, where n is the normal vector at (z1,...,Zn,y1,...,yn) and has
Euclidean length 1. In order to use the formula

of
8_1'1 = <grad f7 Il>,

we have to know grad f and the length of n (which we have already com-
puted). Now we compute the gradient of f. Let [¢”/] be the matrix inverse
to [gi;] and let (U, (z1,...,x2,)) be a local coordinate system. Then by the
well-known formula for Riemannian manifolds ([KN], [Ch])

2n
0 0
grad f = 2(9” aj)amw
7 A

ij=1

where (0/0x;)i=1,...2n is a basic vector field. In the case we consider, the
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inverse matrix [¢¥] at (z1,...,%n, Y1, .-, Yn) is
g C D
[97]ij=1...2n = [ D }

where -
=120 — RZiz)), j=1,...,n,
d7 = (1 — |2*)(=S(ziz))), ij=1,...,n.
PUttlng Rk = Tk "‘Z?/k, kj - 1, e ,n, Wlth |Z|2 = Z?:l(J}ZQ—f—y?) e 1"2, we get’
fori,j=1,...,n,
¢ = (1 - in - Zy%>(5ij — wiwy — yiy;) = (1= 1) (855 — ziwj — yiy;),
k=1 k=1

n n
@7 = (1= 3 af = D0 )~y + i) = (1= 1) (—aiy; + 2300).
k=1 k=1

Let n be the normal vector at (x1,...,Zn,y1,---,Yn) € Sr. Then n =
(1, Tn,Y1,---,Yn). By the previous computation its length is equal to
In|gr = [n|g/(1 —r?). Thus
(grad f,n) = 2 (grad f, (x1,...,Tn, Y1, -+, Yn))

L << ~ 5 0f N m+-3f>2”
= g — + g J— )(xl7"'a$n)y17"°7yn)
1—1r2 ; ox; ; Yy ) iy

= ZCZ of | D@ of
i=1 O 1 Oyi-

Now we compute the coefficients C; and D;, using the form of the matrix
[gV] = [—CD g] For i =1,...,n we have

n n
Ci= > (8ji — mjmi — yjyi)a; + (w59 — wiy;)y;
j=1 j=1

—azz(l—Zx —Zyj) 1—7")1131',

n
= Y (—wjyi + @iz + Z(% — T — YjYi)V;
7j=1 7j=1
n

—yz<1—2x?—2y]) (1 —r)y;.
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Finally, the above formulae give

<gradfv I'l> = (1 - T2)<va (xlv <oy Tns Y1, - ayn)>

In the space R?" we have () denotes here the Lebesgue measure):

T
AB(0,7)) = wan_10*" "V do = 2=t 20,
0 2n
whence the measure of the sphere S, which is the derivative of A(B(0,r)),
: 2n—1
is wop—17 .
In the unit ball of R?" equipped with the Riemann metric (inherited from

the Bergman metric in the unit ball of C™) we have the following Riemannian
volume V of the ball (cf. [R, Thm. 2.2.6(ii)]):

r 2n—1
0
V(B(0,r)) = \wap—1 ————— dp.
(B(0,7)) §) 2n—1 (1 — p2)n+1

This implies that the Riemannian measure of the sphere S, is equal to

. V(B(0,r+¢)) —V(B(0,r)) r2n—1
50 Alr)y=1 = Wiy 1 ———=—,
(50) (r) = lim, e/(1—r2) =)

because the interval (in the unit ball of C™) with endpoints (r,0,...,0) and
(r+¢,0,...,0) has length /(1 — r?)+o0(¢). Thus the measure on S,., induced
by the Riemannian measure, is equal to the Euclidean measure divided by
(1—7r2)m,

LEMMA 11. Consider By, the unit ball in C", equipped with the Bergman
metric and let Arg be the Laplace—Beltrami operator on this Riemannian
manifold. Fix r € (0,1) and denote by P,(x,y) the Poisson kernel, and by
G.(x,y) the Green function of B, with respect to App. Then, in the above
notation,

d _
TR (Gr(m,Ry))E = (1 _7,2)11 1Pr(x,ry),
dR|p_,
where the subscript E in (Gy(x, Ry))g denotes that this quantity is computed
with respect to the Fuclidean metric.

Proof. By Theorem 8 of [Ch, p. 174], for u harmonic in B, and u €
C1(B,),

oG
—u(z) = S ( T) (z,w)u(w) dA(w),
0w )
0B

where now the subscript R denotes that the derivative is computed with
respect to the Riemannian metric. We want to use the Euclidean metric and
then, by (50), for w € S, we have
do,(w)

dA(w) = m,
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and the Riemannian directional derivative is 1 — 72 times the Euclidean one,
hence

1 oG

—u(x) = — < ) (z, w)u(w) doy(w).
(1 —r2)n-t 8JSBT Oy ) "

Because the function 0G/dv,, reproduces harmonic functions, it has to be

the Poisson kernel. This gives

—% R:T(GD(QJ,Ry))E =(1—r>)" 1 P.(x,17y). u

Acknowledgments. The results of this paper were presented during
the conference “Stochastic Processes with Jumps”, May 2-9, 2006, Angers,
France. The author is grateful to the organizers, especially Professor Piotr
Graczyk, for this oportunity.

The author also expresses his gratitude to the referee, whose hints how
to shorten the proof of the independence of the processes W1, W2 and
WG improved the paper.

References

[BM] T. Byczkowski and J. Malecki, Poisson kernel and Green function of the ball in
real hyperbolic spaces, Potential Anal. 27 (2007), 1-26.

[Ch] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, London, 1984.

[ChZ] K. L. Chung and Z. X. Zhao, From Brownian Motion to Schrédinger’s Equation,
Grundlehren Math. Wiss. 312, Springer, Berlin, 1995.

[E] A. Erdélyi et al., Higher Transcendental Functions, Vol. I, McGraw-Hill, 1953.

[F] G. B. Folland, Spherical harmonic expansion of the Poisson—Szegd kernel for the
ball, Proc. Amer. Math. Soc. 47 (1975), 401-408.

[IMcK] K. Ité and H. P. McKean, Diffusion Processes and their Sample Paths, Grund-
lehren Math. Wiss. 125, Springer, Berlin, 1965.

[KN] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II,
Interscience Publ., 1969.

K] T. H. Koornwinder, The addition formula for Jacobi polynomials II, Math. Cen-
trum Amsterdam Afd. Toegep. Wisk. Report TW 133, 1972; http: //staff.science.
uva.nl/“thk/art/1972/addition2.pdf.

[Kr] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York,
1982.
[M] H. Matsumoto, Closed form formulae for the heat kernels and the Green func-

tions for the Laplacians on the symmetric spaces of rank one, Bull. Sci. Math.
125 (2001), 553-581.

[PR] E. J. Pauwels and L. C. G. Rogers, Skew-product decompositions of Brownian
motion, in: Contemp. Math. 73, Amer. Math. Soc., 1988, 237-262.

[RW] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales.
Volume 2: It6 Calculus, Wiley, Chichester, 1987.

[R] W. Rudin, Function Theory in the Unit Ball of C", Springer, 1980.

[S] E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex
Variables, Math. Notes 11, Princeton Univ. Press, 1972.



Poisson kernel and Green function for Brownian motion 193

[V] R. Vidunas, Degenerate Gauss hypergeometric function, Kyushu J. Math. 61
(2007), 109-135.
[W] D. Williams, Diffusions, Markov Processes and Martingales. Volume 1. Founda-

tions, Wiley, Chichester, 1979.

Institute of Mathematics and Computer Science
Wroctaw University of Technology

Wybrzeze Wyspianskiego 27

50-370 Wroctaw, Poland

E-mail: Tomasz.Zak@pwr.wroc.pl

Received January 6, 2007
Revised version July 23, 2007 (6081)



