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Diameter, extreme points and topology

by

J. C. Navarro-Pascual and M. G. Sanchez-Lirola (Almeŕıa)

Abstract. We study the extremal structure of Banach spaces of continuous functions
with the diameter norm.

1. Introduction. Let X be a Banach space. The closed unit ball of X
and the set (maybe empty) of its extreme points will be denoted by BX and
EX , respectively. As usual, we denote by co(EX) the convex hull of EX and
by co(EX) its closure, that is, the closed convex hull of EX .

From now on, K will stand for a compact Hausdorff space and C(K) will
be the space of continuous functions from K into R. For every f ∈ C(K),
%(f) will denote the diameter of f(K):

%(f) = max{|f(t)− f(t′)| : t, t′ ∈ K}.
It is clear that % is a seminorm on C(K) and, given f ∈ C(K), %(f) = 0 if,
and only if, f is a constant function. The quotient of C(K) by the constant
functions becomes a Banach space with respect to the diameter by defining
%([f ]) = %(f) for every f ∈ C(K).

Alternatively, we can fix a point t0 in K and consider the following
subspace of C(K):

X = {f ∈ C(K) : f(t0) = 0}.
Below we will work with this subspace, which is—for the diameter norm—a
Banach space isometric to the above-mentioned quotient. In order to avoid
the trivial case we will suppose that K has at least two points. The diameter
norm on X is equivalent to the uniform norm. In fact,

‖f‖∞ ≤ %(f) ≤ 2‖f‖∞ for every f ∈ X.

In recent years, several authors have been considering the diameter to get
Banach–Stone type theorems. In this connection, we mention the first work
on diameter preserving linear bijections by M. Győry and L. Molnár [2].
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However, our purpose is different. We will obtain Krein–Milman type theo-
rems in spaces of continuous functions with the diameter norm.

2. The results. We start with a useful description of extreme points of
the unit ball of X.

Lemma 1. The extreme points of BX are the functions e ∈ X such that
e(K) = {0, 1} or e(K) = {−1, 0}.

Proof. Let e be in X such that e(K) = {0, 1} or e(K) = {−1, 0} and
take f, g ∈ X with %(f) ≤ 1, %(g) ≤ 1 and e = (f + g)/2. Given t ∈ K with
|e(t)| = 1, it is obvious that e(t) = f(t) = g(t). Suppose that e(t) = 0 and
fix a point t′ ∈ K such that |e(t′)| = 1. Then e(t′) = f(t′) = g(t′) and

e(t′) = e(t′)−e(t) =
f(t′) + g(t′)

2
− f(t) + g(t)

2
=
f(t′)− f(t)

2
+
g(t′)− g(t)

2
.

Taking into account that |e(t′)| = 1 and |f(t′)− f(t)| ≤ 1, |g(t′)− g(t)| ≤ 1,
it follows that

e(t′) = f(t′)− f(t) = g(t′)− g(t),

and consequently e(t) = 0 = f(t) = g(t).
Conversely, let e be an extreme point of the unit ball of X. For each t

in K define
α(t) = max{|e(t)− e(t′)| : t′ ∈ K}

and choose a point t1 ∈ K. Suppose, to obtain a contradiction, that α(t1) < 1
and let ε be in ]0, (1− α(t1))/2[. Let us consider a continuous function ϕ :
K → [0, 1] such that

ϕ(t) =
{

1 if |e(t)− e(t1)| ≤ ε,
0 if |e(t)− e(t1)| ≥ 1− α(t1)/2,

and let t, t′ be in K. First suppose that |e(t)− e(t1)| ≤ (1− α(t1))/2. Then∣∣∣∣(e(t)± 1− α(t1)
2

ϕ(t)
)
−
(
e(t′)± 1− α(t1)

2
ϕ(t′)

)∣∣∣∣
=
∣∣∣∣e(t)− e(t′)± 1− α(t1)

2
(ϕ(t)− ϕ(t′))

∣∣∣∣
≤ |e(t)− e(t′)|+ 1− α(t1)

2
≤ |e(t)− e(t1)|+ |e(t1)− e(t′)|+ 1− α(t1)

2

≤ 1− α(t1)
2

+ α(t1) +
1− α(t1)

2
= 1.

Of course, the same holds if |e(t′) − e(t1)| ≤ (1− α(t1))/2. On the other
hand, if |e(t)− e(t1)| ≥ (1− α(t1))/2 and |e(t′)− e(t1)| ≥ (1− α(t1))/2, we
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have∣∣∣∣(e(t)± 1− α(t1)
2

ϕ(t)
)
−
(
e(t′)± 1− α(t1)

2
ϕ(t′)

)∣∣∣∣ = |e(t)− e(t′)| ≤ 1.

This proves that %
(
e± 1−α(t1)

2 ϕ
)
≤ 1 and contradicts, since ϕ 6= 0, the fact

that e is an extreme point of the unit ball of X.
Consequently, since t1 was arbitrary in K, α(t) = 1 for every t ∈ K. In

particular, α(t0) = 1, and thus e(K) ∩ {−1, 1} 6= ∅. If 1 ∈ e(K) it is clear
that 0 ≤ e(t) ≤ 1 for each t ∈ K and, according to the above, there is not
a point t in K such that 0 < e(t) < 1. Therefore, e(K) = {0, 1}. A similar
argument proves that e(K) = {−1, 0} if −1 ∈ e(K).

As an immediate consequence, we have

Corollary 2. EX 6= ∅ if , and only if , K is not connected.

It is worth noting that, in general, the geometry of X with the diameter
norm is different from its geometry with the uniform norm. For instance, if K
does not have isolated points and it is not connected, then EX is nonempty
by the previous lemma but the unit ball of X with the uniform norm does
not contain extreme points.

On the other hand, the preceding corollary emphasizes that the extremal
structure of X depends on the degree of disconnectedness of K.

Let us recall that a topological space is totally disconnected if every
element has a neighbourhood base of closed and open sets.

Theorem 3. The following assertions are equivalent :

(i) For each x ∈ BX there is a sequence {λn} in [0, 1] with
∑∞

n=1 λn = 1
and a sequence {en} of extreme points of the unit ball of X such that
x =

∑∞
n=1 λnen.

(ii) BX = co(EX).
(iii) K is totally disconnected.

Proof. It is clear that (i) implies (ii).
In order to prove that (ii) implies (iii), let t1 be an element of K with

t1 6= t0. Let U and V be open and disjoint neighbourhoods of t0 and t1,
respectively. Select two continuous functions x, y : K → [0, 1] such that
x(t0) = 0 and x(t) = 1 for every t ∈ K\U, and y(t1) = 1 and y(t) = 0 for each
t ∈ K\V. Obviously x, y ∈ BX and, by (ii), there are f, g ∈ co(EX) such that
%(f−x) < 1/2 and %(g−y) < 1/2. Taking into account that f(K) and g(K)
are finite, the sets U1 = {t ∈ K : f(t) ≤ 1/2} and V1 = {t ∈ K : g(t) ≥ 1/2}
are open and closed. Furthermore, t0 ∈ U1 ⊂ U and t1 ∈ V1 ⊂ V. Thus,
every point in K has a neighbourhood base of closed and open sets, so K is
totally disconnected.
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Next, we prove that (iii) implies (i). Let f be in X with f(K) ⊂ [0, 1].
Given t in K, we can choose an open and closed neighbourhood Vt of t
satisfying

Vt ∩ f−1({1}) = ∅ if f(t) 6= 1,

Vt ∩ f−1({0}) = ∅ if f(t) = 1.

Since {Vt : t ∈ K} is an open (and closed) covering of K there are t1, . . . , tn
in K such that K =

⋃n
j=1 Vtj . The sets

Ut1 = Vt1 , Ut2 = Vt2 \ Vt1 , . . . , Utn = Vtn \
n−1⋃
j=1

Vtj

are open and closed, pairwise disjoint, and they are also a covering of K.
Define J = {j ∈ {1, . . . , n} : Utj ∩ f−1({0}) 6= ∅} and U =

⋃
j∈J Utj . Ob-

viously U is open and closed. Now, let us pick arbitrarily a point t ∈ K and
let j in {1, . . . , n} be such that t ∈ Utj . If f(t) = 0 then Utj ∩ f−1({0}) 6= ∅,
and so j ∈ J. Therefore t ∈ U. If f(t) = 1, then Vtj ∩ f−1({1}) 6= ∅ and
necessarily Vtj ∩ f−1({0}) = ∅ (since every Vt is disjoint from f−1({1})
or f−1({0})). Thus j /∈ J and consequently t ∈ K \ U. This proves that
f−1({0}) ⊂ U and f−1({1}) ⊂ K \ U. Since U is open and closed, the
function e : K → {0, 1} defined by

e(t) =
{

0 if t ∈ U ,
1 if t ∈ K \ U ,

is continuous. In fact, e ∈ X. Furthermore, given t ∈ K,
f(t) = 0 ⇒ e(t) = 0, f(t) = 1 ⇒ e(t) = 1.

Let y in X satisfy %(y) ≤ 1 and suppose for the time being that y(t) ≥ 0
for each t ∈ K. Let us select three real numbers λ, ε1, ε2 such that 0 < λ <
ε1 < ε2 < 1/2 and a continuous function ϕ : [0, 1]→ [0, 1] satisfying

ϕ(s) =
{

0 if s ≤ ε1,
1 if s ≥ ε2.

Then it is clear that the function f : K → R defined by

f(t) =


0 if y(t) ≤ ε1,
ϕ(y(t))y(t)/ε2 if ε1 ≤ y(t) ≤ ε2,
1 if y(t) ≥ ε2,

is continuous. Actually, f ∈ X and f(K) ⊂ [0, 1]. According to the above
argument there is a continuous mapping e : K → {0, 1} such that e(t) = 0
if f(t) = 0 and e(t) = 1 if f(t) = 1. Now, we define h = (y − λe)/(1− λ).

If y(t) ≤ ε1 then f(t) = 0 and so e(t) = 0. It follows that h(t) =
y(t)/(1− λ) ∈ [0, 1].
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If ε1 ≤ y(t) ≤ ε2 we have

0 ≤ ε1 − λe(t)
1− λ

≤ y(t)− λe(t)
1− λ

≤ y(t)
1− λ

≤ ε2
1− λ

< 1.

Therefore, in this case also h(t) ∈ [0, 1].
Finally, if y(t) ≥ ε2, then f(t) = 1 and so e(t) = 1. We thus have

h(t) =
y(t)− λ

1− λ
∈ [0, 1].

In this way, it is clear that h belongs to X and %(h) ≤ 1. Moreover, from
the definition of h it follows that

y = λe+ (1− λ)h.

Note that e is an extreme point of the unit ball of X and that, in case
y(t) ≤ 0, for every t in K, the previous reasoning applied to −y provides
the same representation of y by means of an extreme point e and a point h
of the unit ball of X such that e(K) = {0,−1} and h(K) ⊂ [−1, 0].

It remains to treat the case where there are two real numbers a and b,
with a < 0 < b and b− a = 1, such that a ≤ y(t) ≤ b for every t in K.

Under this assumption let us consider the functions y1, y2 : K → R given
by

y1(t) =
{
y(t)/b if y(t) ≥ 0,
0 if y(t) ≤ 0,

y2(t) =
{

0 if y(t) ≥ 0,
−y(t)/a if y(t) ≤ 0,

which are elements of X with 0 ≤ y1(t) ≤ 1 and −1 ≤ y2(t) ≤ 0 for every
t in K. Moreover, it is easy to see that y = by1 − ay2. By the above, given
λ ∈ ]0, 1/2[ there exist e ∈ EX with e(K) = {0, 1} and h ∈ BX with
h(K) ⊂ [0, 1] such that y1 = λe+ (1− λ)h. Thus

y = b(λe+ (1− λ)h)− ay2 = bλe+ b(1− λ)h− ay2

= bλe+ (1− bλ)
b(1− λ)h− ay2

1− bλ
.

Set

g =
b(1− λ)h− ay2

1− bλ
and let t be in K. If y(t) ≥ 0,

a

1− bλ
≤ 0 ≤ b(1− λ)h(t)

1− bλ
= g(t) ≤ b(1− λ)

1− bλ
.

On the other hand, if y(t) ≤ 0, we have (using the fact that y(t) ≥ a)
a

1− bλ
≤ y(t)

1− bλ
≤ b(1− λ)h(t) + y(t)

1− bλ

=
b(1− λ)h(t)− ay2(t)

1− bλ
= g(t) ≤ b(1− λ)

1− bλ
.
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Therefore, g(K) ⊂
[

a
1−bλ ,

b(1−λ)
1−bλ

]
, and hence

%(g) ≤ b(1− λ)
1− bλ

− a

1− bλ
=

1− bλ
1− bλ

= 1.

Of course, the previous argument may be performed in an analogous way
with the use of a representation of y2 (instead of y1) in the form λe+(1−λ)h,
with e(K) = {−1, 0} and h(K) ⊂ [−1, 0]. Taking into account that λ can
be chosen in the interval ]0, 1/2[ and max{−a, b} ≥ 1/2, we have proved in
fact that for every α in ]0, 1/4[ and y in BX , there are an extreme point e
and an element g in the unit ball of X such that y = αe+ (1− α)g.

To conclude, let α be in ]0, 1/4[ and x in BX . According to the above,
there are e1 ∈ EX and g1 ∈ BX such that x = αe1 + (1−α)g1. For the same
reason, g1 = αe2 + (1− α)g2 for certain e2 ∈ EX and g2 ∈ BX . Proceeding
in this manner, we obtain a sequence {en} of extreme points and a sequence
{gn} of elements of the unit ball of X such that gn = αen+1 + (1− α)gn+1

for every n in N. Consequently,

x = αe1 + (1−α)αe2 + (1−α)2αe3 + · · ·+ (1−α)nαen+1 + (1−α)n+1gn+1

for each n ∈ N. From this, it follows immediately that

x =
∞∑
n=1

(1− α)n−1αen.

Since
∑∞

n=1(1 − α)n−1α = 1, it is sufficient to define λn = (1 − α)n−1α for
every n ∈ N.

In [1] R. M. Aron and R. H. Lohman introduced the following interesting
concepts:

A Banach space X is said to have the λ-property if, for every y ∈ BX ,
there are λ ∈ ]0, 1], e ∈ EX and z ∈ BX such that y = λe + (1 − λ)z. If it
is possible to find a common λ for all y in BX , then Y is said to have the
uniform λ-property.

In view of the preceding proof, it is clear that the space X we have
considered has the uniform λ-property if, and only if, K is totally discon-
nected. In the last paragraph of the above proof it has been proved that
the uniform λ-property implies the statement (i). This fact is valid for every
Banach space (see [1]) and it has been included for the sake of completeness.

To conclude, we note that the previous theorem also holds for spaces
of type C0(L), where L is a noncompact, locally compact Hausdorff space.
Under these conditions the diameter is a norm (equivalent to the uniform
norm) and if K = L∪{∞} is the one-point compactification of L, it suffices
to define t0 =∞ to observe that C0(L), with the diameter norm, is nothing
other than the space X defined in the introduction, for such a selection of t0.
On the other hand, L is totally disconnected if, and only if, so is its one-point
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compactification. It is perhaps worth remarking that the local compactness
of L is important for this last fact. The existence of totally disconnected
(not locally compact) spaces whose one-point compactification is connected
is well known (see [3]).

Taking into account the above results and comments, we have:

Corollary 4. Let L be a noncompact locally compact Hausdorff space
and C0(L) the space of real continuous functions vanishing at infinity , equip-
ped with the diameter norm. The following statements are equivalent :

(i) For every x in the unit ball of C0(L) there is a sequence {λn} in
[0, 1] with

∑∞
n=1 λn = 1 and a sequence {en} of extreme points of

BC0(L) such that x =
∑∞

n=1 λnen.
(ii) BC0(L) = co(EC0(L)).

(iii) L is totally disconnected.

In particular, let us observe that c0, provided with the diameter norm,
has the properties (i) and (ii) of this corollary.
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