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Almost everywhere convergence of
Marcinkiewicz means of Fourier series on the

group of 2-adic integers

by

I. Blahota and G. Gát (Nýıregyháza)

Abstract. We prove the almost everywhere convergence of the Marcinkiewicz means
of integrable functions σnf → f for every f ∈ L1(I2), where I is the group of 2-adic
integers.

We apply the standard notions of dyadic analysis as introduced by
F. Schipp, P. Simon, W. R. Wade (see e.g. [7]) and others. Set N := {0, 1, . . .},
P := N \ {0}, and I := [0, 1). Denote by λ(B) = |B| the Lebesgue measure
of B ⊂ I, by Lp(I) the usual Lebesgue spaces and ‖ · ‖p the corresponding
norms (1 ≤ p ≤ ∞). Let

I :=
{[

p

2n
,
p+ 1

2n

)
: p, n ∈ N

}
be the set of dyadic intervals, and for given x ∈ I let In(x) ∈ I denote the
interval of length 2−n which contains x (n ∈ N). Also set In := In(0) (n ∈ N).
Let

x =
∞∑
n=0

xn2−(n+1)

be the dyadic expansion of x ∈ I, where xn = 0 or 1, and if x is a dyadic
rational number (x ∈ {p/2n : p, n ∈ N}) we choose the expansion which
terminates in 0’s.

The 2-adic (or arithmetic) sum of a, b ∈ I is a + b :=
∑∞

n=0 rn2−(n+1)

where qn, rn ∈ {0, 1} (n ∈ N) are defined recursively as follows: q−1 := 0 and
an + bn + qn−1 = 2qn + rn for n ∈ N. (Since qn, rn take on only the values
0, 1, these equations determine them uniquely.) The group (I,+) is called
the group of 2-adic integers. Set

ε(t) := exp(2πıt) (t ∈ R),
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where ı = (−1)1/2. Set

v2n(x) := ε

(
xn
2

+ · · ·+ x0

2n+1

)
(x ∈ I, n ∈ N)

and

vn :=
∞∏
n=0

v
nj
2j

for n =
∞∑
i=0

ni2i (ni ∈ {0, 1}, i ∈ N).

It is known [4] that the system (vn : n ∈ N) is the character system of
(I,+). Denote by

f̂(n) :=
�

I

fvndλ, Dn :=
n−1∑
k=0

vk, Kn :=
1
n

n∑
k=0

Dk

the Fourier coefficients, the Dirichlet kernels and the Fejér kernels, respec-
tively. We will also use the notation

Ka,b :=
a+b−1∑
k=a

Dk.

It is known [5, 6, 1] that for n ∈ N and x ∈ I,

D2n(x) =
{

2n if x ∈ In,
0 if x /∈ In,

and also that

Dn(x) = vn(x)
∞∑
k=0

D2k(x)nk(−1)xk .

Next we introduce some notation for two-dimensional Fourier series on
the group of 2-adic integers. The normalized Haar measure is just as in the
one-dimensional case.

The two-dimensional Fourier coefficients, the rectangular partial sums of
the Fourier series, the Marcinkiewicz means and the Marcinkiewicz kernels
are defined as follows:

f̂(n1, n2) :=
�

I2

f(x1, x2)vn1(x1)vn2(x2) dx,

Sn1,n2f(x1, x2) :=
n1−1∑
k1=0

n2−1∑
k2=0

f̂(k1, k2)vk1(x1)vk2(x2),

σnf(x1, x2) :=
1
n

n∑
j=1

Sj,jf(x1, x2), Kn(x1, x2) =
1
n

n∑
j=1

Dj(x1)Dj(x2).



Almost everywhere convergence of Marcinkiewicz means 217

It is well known that for y ∈ I2,

σnf(y) =
�

I2

f(x)Kn(y − x) dx.

The next notation will prove very useful:

Ka,b(x1, x2) :=
a+b−1∑
k=a

Dk(x1)Dk(x2).

Theorem 1. σnf → f for every f ∈ L1(I2), where I is the group of
2-adic integers.

This result for the trigonometric system was proved by Grünwald [2],
and for some more general Nörlund means by Herriot [3]. See also the paper
of Zhizhiashvili [8].

For n, j ∈ N let n(j) :=
∑∞

i=j ni2
i, for 2B ≤ n < 2B+1 let |n| := B, and

define Jτ := Iτ \ Iτ+1.

Lemma 2. Let t1 ≤ t2. Then
m−1∑
t1=0

m−1∑
t2=t1

�

Jt1×Jt2

sup
A≥m

sup
|n|=A

1
2A

A∑
s=t1+1

|Kn(s),2s(x
1, x2)| dx < c

where c is an absolute constant.

Proof. If z ∈ Jτ then

Kn(s),2s(z) =
n(s)+2s−1∑
k=n(s)

vk(z)
[τ−1∑
j=0

kj2j + kτ2τ (−1)
]
.

Define k̃τ :=
∑τ−1

j=0 kj2
j − kτ2τ . Then |k̃τ | ≤ 2τ .

In the two-dimensional case, if xi ∈ Jti (i = 1, 2) and t1 ≤ t2 then

Kn(s),2s(x
1, x2) =

n(s)+2s−1∑
k=n(s)

v
k(t1+1)(x1)v

k(t2+1)(x2)k̃t1 k̃t2 .

Assume s > t1. Consider the following integral:
�

Jτ

vk(x)vl(x) dx =
�

Iτ\Iτ+1

τ−1∏
j=0

v
kj
2j

(x)vlj
2j

(x)(−1)k
τ+lτ

∞∏
j=τ+1

v
kj
2j

(x)vlj
2j

(x) dx

= (−1)k
τ+lτ

�

Iτ+1(lτ )

vkτ+1(x)vlτ+1(x) dx

=
{

(−1)kτ+lτ /2τ+1 if k(τ+1) = l(τ+1),
0 otherwise.
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From the Cauchy–Buniakovski inequality we have
�

Jt1×Jt2

|f | =
�

I2

1Jt1×Jt2 · 1Jt1×Jt2 |f | ≤ ‖1Jt1×Jt2‖2
√ �

I2

12
Jt1×Jt2

|f |

=

√√√√ 1
2t1+t2

�

Jt1×Jt2

|f |2.

On the other hand, supn |Kn(s),2s(x
1, x2)| depends only on ns, ns+1, . . . , nA

(for |n| = A fixed).
Applying these facts we get

�

Jt1×Jt2

sup
n
|Kn(s),2s(x

1, x2)| dx ≤

√√√√ 1
2t1+t2

�

Jt1×Jt2

sup
n
|Kn(s),2s(x1, x2)|2 dx

≤

√√√√ 1
2t1+t2

�

Jt1×Jt2

∑
ns,...,nA∈{0,1}

|Kn(s),2s(x1, x2)|2 dx

=
(

1
2t1+t2

∑
ns,...,nA∈{0,1}

n(s)+2s−1∑
k=n(s)

n(s)+2s−1∑
l=n(s)

�

Jt1×Jt2

v
k(t1+1)(x1)v

l(t
1+1)(x1)

· v
k(t2+1)(x2)v

l(t
2+1)(x2)k̃t1 l̃t1 k̃t2 l̃t2 dx

)1/2

These integrals are either zeros or can by estimated in absolute value by

1
2t1+t2

|k̃t1 l̃t1 k̃t2 l̃t2 | ≤ 2t
1+t2 .

The latter happens if k(t1+1) = l(t
1+1) and k(t2+1) = l(t

2+1), that is, exactly
in case k(t1+1) = l(t

1+1), because t1 ≤ t2.
Let us count the number of such (k, l) pairs. Since k ∈ [n(s), n(s) + 2s)

and k(t1+1) = l(t
1+1), for every k (their number is 2s) the number of l’s

satisfying the condition above is 2t
1+1. This yields altogether 2s+t

1+1 pairs
(k, l).

So we get
�

Jt1×Jt2

sup
n
|Kn(s),2s(x

1, x2)| dx

≤
(

1
2t1+t2

∑
ns,...,nA∈{0,1}

2s+t
1+12t

1+t2
)1/2

= (2s+t
1+12A−s+1)1/2 ≤ c

√
2A+t1 .



Almost everywhere convergence of Marcinkiewicz means 219

Using this inequality it follows that

m−1∑
t1=0

m−1∑
t2=t1

�

Jt1×Jt2

sup
A≥m

sup
|n|=A

1
2A

A∑
s=t1+1

|Kn(s),2s(x
1, x2)| dx

≤ c
m−1∑
t1=0

m−1∑
t2=t1

∞∑
A=m∨t2

A∑
s=t1+1

√
2t1−A ≤ c

m−1∑
t1=0

m−1∑
t2=t1

∞∑
A=m∨t2

(A− t1)
√

2t1−A

≤ c
m−1∑
t1=0

m−1∑
t2=t1

(m ∨ t2 − t1)
√

2t1−m ≤ c
m−1∑
t1=0

(m− t1)2
√

2t1−m ≤ c.

Moreover,

m−1∑
t1=0

∞∑
t2=m+1

�

Jt1×Jt2

sup
t2>A≥m

sup
|n|=A

1
2A

A∑
s=t1+1

|Kn(s),2s(x
1, x2)| dx

≤
m−1∑
t1=0

∞∑
t2=m+1

1
2t2

�

Jt1

sup
t2>A≥m

sup
|n|=A

1
2A

A∑
s=t1+1

|Kn(s),2s(x
1, 0)| dx1

≤ c
m−1∑
t1=0

∞∑
t2=m+1

1
2t2

t2∑
A=m

1
2A

A∑
s=t1

�

Jt1

∣∣∣n(s)+2s−1∑
k=n(s)

v
k(t1+1)(x1)k̃t1k dx

1
∣∣∣

≤ c
m−1∑
t1=0

∞∑
t2=m+1

1
2t2

t2∑
A=m

1
2A

A∑
s=t1

(
1

2t1

)1/2( 1
2t1

2s+t
1+2t1+2A

)1/2

≤ c
m−1∑
t1=0

∞∑
t2=m+1

1
2t2

t2∑
A=m

√
2A+t1 ≤ c

m−1∑
t1=0

∞∑
t2=m+1

√
2t1−t2 ≤ c.

Denote by I2
m the complement of I2

m.

Lemma 3. �

I2m

sup
|n|≥m

|Kn| ≤ c.

Proof. Using trivial estimations we get

|Kn(s),2s | ≤
n(s)+2s−1∑
k=n(s)

|Dk| ≤
n(s)+2s−1∑
k=n(s)

|k̃t1 k̃t2 | ≤ 2s+t
1+t2∧|n|,

so
t1∑
s=0

|Kn(s),2s | ≤ c2
2t1+t2∧|n|.
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From this inequality we obtain

m−1∑
t1=0

m−1∑
t2=t1

�

Jt1×Jt2

sup
A≥m

sup
|n|=A

1
2A

t1∑
s=0

|Kn(s),2s(x
1, x2)| dx

≤ c
m−1∑
t1=0

m−1∑
t2=t1

�

Jt1×Jt2

sup
A≥m

22t1+t2∧A

2A
dx

≤ c
m−1∑
t1=0

m−1∑
t2=t1

1
2t1+t2

22t1+t2

2m
+ c

m−1∑
t1=0

∞∑
t2=m

1
2t1+t2

22t1

≤ c
m−1∑
t1=0

(m− t1)2t
1−m + c

m−1∑
t1=0

∞∑
t2=m

2t
1−t2 ≤ c

and from this
m−1∑
t1=0

m−1∑
t2=t1

�

Jt1×Jt2

sup
|n|≥m

|Kn| ≤ c.

Similarly,
m−1∑
t2=0

m−1∑
t1=t2

�

Jt1×Jt2

sup
|n|≥m

|Kn| ≤ c.

Because, a.e.,

I2
m ⊆

(m−1⋃
t2=0

m−1⋃
t1=t2

Jt1 × Jt2
)
∪
(m−1⋃
t1=0

m−1⋃
t2=t1

Jt1 × Jt2
)

the inequalities above imply �

I2m

sup
|n|≥m

|Kn| ≤ c.

This lemma leads to the following corollary:

Corollary 4.

‖Kn‖1 ≤ c for all n ∈ N.

The next step is to prove the quasi-local property of the maximal oper-
ator σ∗f := supn |σnf |.

Lemma 5. Let f ∈ L1(I2) with
	
f = 0 and supp f ⊆ Im(u1) × Im(u2)

for some u = (u1, u2) ∈ I2. Then�

Im(u1)×Im(u2)

σ∗f ≤ c‖f‖1.



Almost everywhere convergence of Marcinkiewicz means 221

Proof. From the shift invariance of the Haar measure we can suppose
that u1 = u2 = 0.

In the case of |n| < m the situation is simple, because

σnf(y) =
�

I2

f(·)Kn(y − ·) = Kn(y)
�

I2m

f = 0.

So we can suppose that |n| ≥ m. In this case
�

I2m

σ∗f =
�

I2m

sup
|n|≥m

∣∣∣ �
I2m

f(x)Kn(·, x) dx
∣∣∣

≤
�

I2m

|f(x)|
�

I2m

sup
|n|≥m

|Kn| ≤ c‖f‖1.

Proof of Theorem 1. From Corollary 4 we deduce that the maximal
operator σ∗ is of type (∞,∞). Lemma 5 shows that this sublinear opera-
tor is quasi-local. Using the standard method (see e.g. [7]) it follows that
it is of weak type (1, 1). We get the statement of the theorem from the
density of the 2-adic polynomials in L1(I2). The proof of Theorem 1 is com-
plete.
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