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Simultaneous stabilization in AR(D)
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Raymond Mortini (Metz) and
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Abstract. We study the problem of simultaneous stabilization for the algebra AR(D).
Invertible pairs (fj , gj), j = 1, . . . , n, in a commutative unital algebra are called simulta-
neously stabilizable if there exists a pair (α, β) of elements such that αfj +βgj is invertible
in this algebra for j = 1, . . . , n.

For n = 2, the simultaneous stabilization problem admits a positive solution for any
data if and only if the Bass stable rank of the algebra is one. Since AR(D) has stable rank
two, we are faced here with a different situation. When n = 2, necessary and sufficient
conditions are given so that we have simultaneous stability in AR(D).

For n ≥ 3 we show that under these conditions simultaneous stabilization is not
possible and further connect this result to the question of which pairs (f, g) in AR(D)2 are
totally reducible, that is, for which pairs there exist two units u and v in AR(D) such that
uf + vg = 1.

Introduction. Given a commutative ring (or an algebra) R with unit 1,
we say that a pair (f, g) ∈ R2 is invertible if there exists (α, β) ∈ R2 such
that

αf + βg = 1,

and write (f, g) ∈ U2(R).
We say that n invertible pairs (fj , gj) ∈ U2(R) are simultaneously stabi-

lizable if there exists (α, β) ∈ R2 such that for j = 1, . . . , n,

αfj + βgj ∈ R−1,

where R−1 denotes the set of invertible elements in the ring R.
When n = 2 the notion of simultaneous stabilizability is very close to

the notion of the ring R having Bass stable rank one. Since this notion will
play a role in the proofs, we recall it now. We say that the ring R has Bass
stable rank one if for any invertible pair (f, g) ∈ R2 there exists an h ∈ R
such that

f + hg ∈ R−1.
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Note that this can be rephrased as asking for the existence of α ∈ R−1 and
β ∈ R such that

αf + βg = 1.

A further property, even stronger than having Bass stable rank one,
called the unit-1 stable rank, is to require for every invertible pair (f, g) ∈
U2(R) the existence of α ∈ R−1 and β ∈ R−1 such that

αf + βg = 1.

In the literature, a pair (f, g) having this property is sometimes called
totally reducible. This concept was introduced by P. Menal and J. Mon-
casi [10]. For rings of holomorphic functions on planar domains, this is no
longer of interest, since it is known that no such rings have unit-1 stable
rank whenever they properly contain the constants (R or C). See [11]. A re-
lated concept is called the Godefroid–Goodearl–Menal property (see [7, 8]):
for each x, y ∈ R there exists a unit u ∈ R−1 such that x − u and y − u−1

are invertible in R. It is known that this property implies that R has unit-1
stable rank.

When these concepts are applied to various spaces of analytic functions,
many interesting questions arise. For the disc algebra, A(D), these properties
are well studied. The notion of invertible n-tuples coincides here with the
notion of n-tuples satisfying the Corona condition. See [12, p. 365]. The
stable rank of A(D) was computed by Jones, Marshall and Wolff [9], and the
concept of total reducibility and unit-1 stable rank was studied by Mortini
and Rupp [11], and Blondel, Mortini and Rupp [4].

But, as motivated by control theory, the disc algebra is not physically
meaningful since the functions take complex values. So one introduces a
more useful algebra, and asks similar questions.

0.1. Motivations and main results. We will be interested in the case
where R is a certain ring of analytic functions, namely the real disc algebra
AR(D). The space AR(D) is the set of functions in the disc algebra with the
additional property that

f(z) = f(z) ∀z ∈ D.

This definition is equivalent to the property that a function f ∈ AR(D) has
a Fourier series expansion with real coefficients.

In this context the notion of invertibility is intimately connected with
the Corona Theorem for these algebras. A pair (f, g) is invertible in AR(D)
if and only if

|f(z)|+ |g(z)| ≥ δ > 0 ∀z ∈ D.

The necessity of this condition is immediate, while the sufficiency follows
from a symmetrization of the usual Corona Theorem for A(D). Indeed, for
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functions which satisfy this condition, we can always find α, β ∈ A(D) such
that

αf + βg = 1.

See [12]. One then defines

α̃(z) :=
α(z) + α(z)

2
and β̃(z) :=

β(z) + β(z)
2

.

It is immediate that this is the solution to the Bézout equation in AR(D)
that we seek.

The question of when the Bézout equation αf + βg = 1 associated with
an invertible pair (f, g) in AR(D)2 has a solution (α, β) ∈ AR(D)2 with α−1

also in AR(D) was addressed in [15]. It was shown that the pair (f, g) must
satisfy an additional condition which is both necessary and sufficient for the
existence of (α, β) with the desired properties. This condition will play a
role in later arguments, so we recall the definition.

Given an invertible pair (f, g) in AR(D)2, we will say that f is of constant
sign on the real zeros of g if f has the same sign at all real zeros of g. This
condition arises naturally by examining what happens when you have a
solution to the Corona problem with an invertible element.

In fact, as was shown by the second author in [15], if (f, g) is an invertible
pair in AR(D), then there exists h ∈ AR(D) such that f + hg ∈ AR(D)−1 if
and only if f is of constant sign on the real zeros of g. One calls a pair of
functions which have this property reducible.

We are now going to see that if we have a solution to a simultaneous
stabilization problem in the real disc algebra, then we must have a similar
additional necessary condition that our Corona data must satisfy. Suppose
that (f1, g1) and (f2, g2) are simultaneously stabilizable. Then we can find
functions α, β ∈ AR(D) such that

αf1 + βg1 = 1

and
αf2 + βg2 = u ∈ AR(D)−1.

Using the matricial representation we get(
f1 g1

f2 g2

)(
α

β

)
=

(
1
u

)
.

Then we see that at points x ∈ [−1, 1] where the determinant of the
above matrix is zero, we have (f2(x), g2(x)) = λ(x)(f1(x), g1(x)) for some
λ(x) ∈ R. Hence λ(x) = u(x). Since u is invertible, it has constant sign on
[−1, 1]. Hence λ(x) has the same sign at all the real zeros of the function
f1g2 − f2g1.



226 R. Mortini and B. D. Wick

Definition 0.1. We say that the pairs (f1, g1) and (f2, g2) are sign-
linked if whenever (f2(x), g2(x)) = λ(x)(f1(x), g1(x)) for some x ∈ [−1, 1]
and λ(x) ∈ R, the function λ(x) has constant sign on the set of real singular
points of the matrix

( f1 g1

f2 g2

)
.

Note that for invertible pairs (fj , gj) this notion is symmetric, since
λ(x) 6= 0. We also observe that this is a reasonable (and correct) gener-
alization of the concept of being positive on the real zeros of a function. If
(f1, g1) = (1, 0) and (f2, g2) = (f, g) then these pairs are sign-linked if and
only if f has constant sign on the real zeros of g.

One can also ask for more in terms of the solution to the Corona problem.
For example, we are interested in pairs (f, g) of functions in AR(D) that are
totally reducible. This is motivated by the fact that the ring AR(D) fails to
have the unit-1 stable property, since the invertible pair (z, 1 − z2) is not
even reducible.

In the context of AR(D), it is important to note that if a pair is totally
reducible, then the Corona data must have an additional property. To see
this, suppose that for (f, g) ∈ AR(D)2 it is possible to find u, v ∈ AR(D)−1

such that
uf + vg = 1.

Then f has constant sign on the real zeros of g and similarly g must have
constant sign on the real zeros of f . This condition on the zeros of f and g
is typically called the even interlacing property in the control theory litera-
ture. The counterexample that will be constructed will have this necessary
property as well.

0.1.1. Main results

Theorem 0.2. Invertible pairs (f1, g1) and (f2, g2) of functions in the
algebra AR(D) are simultaneously stabilizable if and only if they are sign-
linked.

We next show that when we consider more than two pairs of Corona data,
any two of them being sign-linked, then they are generally not simultaneously
stabilizable. Of course we must add here the sign-linked condition, since
otherwise we would already have a counterexample for the case of two pairs.

It is enough to show this in the case of three pairs of functions. The
construction is similar to what was done in [4].

Theorem 0.3. There exist three pairs of functions (fj , gj) ∈ U2(AR(D)),
with {(f1, g1), (f2, g2)}, {(f1, g1), (f3, g3)} and {(f2, g2), (f3, g3)} being sign-
linked , that are not simultaneously stabilizable. That is, for j = 1, 2, 3, the
problem

αfj + βgj ∈ AR(D)−1

has no solution with (α, β) ∈ AR(D)2.
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As a corollary to this theorem, we have the following result which says
that the ring AR(D) does not have the unit-1 stable property,

Corollary 0.4. There exists a pair (f, g) ∈ U2(AR(D)) with f being
positive on the real zeros of g and g positive on the real zeros of f , such that
if

αf + βg = 1,

then either α or β is not invertible in AR(D).

We observe at this point that if one wants only one of α or β invertible,
then this is possible and can be found in [15].

Remark. Many of these results have interpretations and motivations
in control theory. The interested reader can see these connections in the
book by V. Blondel [2], which is an excellent reference for the motivations
of the problems of simultaneous stabilization in control theory. Additionally,
the book by Vidyasagar [14] is a good introduction to control theory and
connections to the Bézout equation.

1. Some general facts on invertible n-tuples. Let R be a commu-
tative unital ring, with the unit being denoted by 1. We begin with some
easy facts on invertible n-tuples and the representations of the unit element
of the ring generated by these n-tuples. Denote by Un(R) := {(x1, . . . , xn) ∈
Rn : ∃yj ∈ R :

∑n
j=1 xjyj = 1} the set of invertible n-tuples in Rn. Finally,

for x, f ∈ Rn, let 〈x, f〉 :=
∑n

j=1 xjfj .

Lemma 1.1. Let f, g ∈ Rn and let M be an n×n-matrix over R. Suppose
that g = Mf and g ∈ Un(R). Then f ∈ Un(R). In particular , if M is
invertible and f ∈ Un(R), then also g ∈ Un(R).

Proof. By hypothesis, 1 = 〈g, a〉 for some a ∈ Rn. Hence

1 = 〈Mf, a〉 = 〈f,M⊥a〉.

Proposition 1.2. Suppose that (f1, . . . , fn) is an invertible n-tuple in
Rn and let 1 =

∑n
j=1 xjfj = 〈x, f〉. Then every other representation 1 =∑n

j=1 yjfj =〈y, f〉 of 1 can be deduced from the former by letting y = x+Hf ,
where H is an antisymmetric n×n-matrix over R; that is, H = −H⊥, where
H⊥ is the transpose of H.

Proof. Suppose that 1 = 〈x, f〉 and 1 = 〈y, f〉. Multiply these equations
by yk, respectively xk. Then xk − yk =

∑
j 6=k fj(yjxk − ykxj). Thus y =

x+Hf for some antisymmetric matrix H.
The converse is easy too. In fact, suppose that 1 = 〈x, f〉. Then

〈y, f〉 = 〈x+Hf, f〉 = 〈x, f〉+ 〈Hf, f〉 = 1 + 0 = 1
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because
〈Hf, f〉 =

〈
f,H⊥f

〉
= −〈f,Hf〉 = −〈Hf, f〉 .

The following result is mentioned in the unpublished manuscript [4]. The
proof works along the same lines as that of our Theorem 0.2.

Theorem 1.3. Let R be a commutative unital ring. Then every simulta-
neous stabilization problem αfj +βgj ∈ R−1, j = 1, 2, with (fj , gj) ∈ U2(R)
is solvable if and only if R has Bass stable rank one.

Proof. Assume that R has Bass stable rank one and αf1 + βg1 = 1. By
Lemma 1.2, every other representation of the unit element (with generators
(f1, g1)) has the form

1 = (α+ hg1)f1 + (β − hf1)g1
for some h ∈ R. Consider now the element

u := (α+ hg1)f2 + (β − hf1)g2,

which after some algebra reduces to

u = (αf2 + βg2) + h(g1f2 − f1g2).

Let F = αf2 + βg2 and G = g1f2 − f1g2. One observes that the pair
(F,G) can be written in matrix notation as(

F

G

)
=

(
α β

g1 −f1

)(
f2

g2

)
.

The corresponding 2× 2-matrix has determinant −1 and since the pair
(f2, g2) is invertible, so is (F,G), by Lemma 1.1. But, by our assumption,
R has Bass stable rank one, and hence there exists an element h ∈ R such
that

u = F + hG ∈ R−1.

To show the converse, we just have to note that the simultaneous stabiliza-
tion of the system (1, 0) and (f, g) is nothing other than the existence of an
invertible element α and some β so that αf + βg ∈ R−1.

2. Proofs of main results. Whereas by Theorem 1.3 each 2×2 problem

αfj + βgj ∈ A(D)−1, j = 1, 2,

with Corona data in the disc algebra A(D) is solvable (since A(D) has stable
rank one, see [9]), the situation differs in AR(D). We cannot apply the results
of Theorem 1.3, since by a result of Rupp and Sasane [13], the Bass stable
rank of AR(D) is two. Thus, we will have to impose additional conditions on
the Corona data for solutions to exist.
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Proof of Theorem 0.2. Suppose that

|f1(z)|+ |g1(z)| ≥ δ ∀z ∈ D.
By the Corona Theorem for AR(D) there exists (α, β) ∈ AR(D)2 such that

αf1 + βg1 = 1.

By Lemma 1.2, every other representation of the unit element (with gener-
ators (f1, g1)) has the form

1 = (α+ hg1)f1 + (β − hf1)g1
for some h ∈ AR(D). Consider now the function

u := (α+ hg1)f2 + (β − hf1)g2,

that is,
u = (αf2 + βg2) + h(g1f2 − f1g2).

By [15], there exists h ∈ AR(D) such that u is invertible if (and only if) F :=
αf2+βg2 has constant sign on the real zeros ofG := g1f2−f1g2. We will show
that our hypothesis, that (f1, g1) and (f2, g2) are sign-linked, guarantees this
property. In fact, let G(x) = 0, where −1 ≤ x ≤ 1. Then x is a critical point
of the matrix

( f1 g1

f2 g2

)
. Hence (f2(x), g2(x)) = λ(x)(f1(x), g1(x)) for some

λ(x) 6= 0. So

F (x) = α(x)f2(x) + β(x)g2(x) = λ(x)(α(x)f1(x) + β(x)g1(x)) = λ(x).

Our assumption implies that the sign of these values for λ(x) does not
vary with x. Hence, F has constant sign on the zeros of G. Thus, there is a
joint solution (α̃, β̃) = (α+ hg1, β − hf1) to our problem

α̃fj + β̃gj ∈ AR(D)−1, j = 1, 2.

Remark 2.1. We have the following examples of pairs of functions for
which the simultaneous stabilization problem is solvable:

(1) Let (f1, g1) = (1, 0) and (f2, g2) = (f, g), where (f, g) is any invert-
ible pair in AR(D) such that f > 0 on the real zeros of g.

(2) Let (fj , gj) = (f, g) (j = 1, 2), where (f, g) ∈ U2(AR(D)) is arbitrary.
(3) Let (f, g) ∈ U2(AR(D)), (f1, g1) = (f, g) and (f2, g2) = (g, f), and

suppose that f avoids g on [−1, 1], that is, f(x) 6= g(x) for any
x ∈ [−1, 1]. Then the system{

αf + βg ∈ AR(D)−1,

αg + βf ∈ AR(D)−1,

is solvable in AR(D).

We want to point out the following classes of simultaneous stabilization
problems:
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Proposition 2.2. Let (f1, g1) and (f2, g2) be Corona data in AR(D)2.
Then the system

αf2
j + βgj ∈ AR(D)−1, j = 1, 2,

is solvable.

Proof. Assume that x is a critical point of the matrix

A =

(
f2
1 g1

f2
2 g2

)
.

The vector (f2
2 (x), g2(x)) is a nonzero multiple of the vector (f2

1 (x), g1(x)),
say (f2

2 (x), g2(x))=λ(x)(f2
1 (x), g1(x)). This obviously implies that λ(x)>0.

Hence (f2
2 (x), g2(x)) and (f2

2 (x), g2(x)) are sign-linked. Now use Theorem 0.2
to get the solution.

Remark 2.3. We note that whenever F1 and F2 are outer functions in
AR(D), then every system{

αF1 + βg1 ∈ AR(D)−1,

αF2 + βg2 ∈ AR(D)−1,

of Corona data is solvable. This follows from Proposition 2.2 above and the
fact that outer functions F ∈ AR(D) with F (0) > 0 have a square root in
AR(D).

We shall now prove Theorem 0.3 which deals with the simultaneous
stabilization problem of three pairs of data.

Proof of Theorem 0.3. The construction of this counterexample is very
similar to the one in [4]. Since we are after a little more (namely Corollary
0.4), we modify that construction, but remark that it is possible to use their
examples immediately to prove Theorem 0.3 without the desire to have a
sign-linked counterexample.

Choose the following invertible pairs:

(f1, g1) = (1, 0), (f2, g2) = (1, z2), (f3, g3) = (n2z2, 1).

It is immediate that these three pairs are invertible. But we must show that
{(f1, g1), (f2, g2)}, {(f1, g1), (f3, g3)} and {(f2, g2), (f3, g3)} are sign-linked.
Since f2 is positive on the real zeros of g2, the pair {(f1, g1), (f2, g2)} is
sign-linked. An identical statement holds for the pair {(f1, g1), (f3, g3)}. It
only remains to address why the pair {(f2, g2), (f3, g3)} is sign-linked. First,
a simple computation shows that the matrix corresponding to this pair has
real singular values of ±1/

√
n. If we let λ(x) = n when x = ±1/

√
n, then

(f3(x), g3(x)) = λ(x)(f2(x), g2(x)). So the pair {(f2, g2), (f3, g3)} is sign-
linked.



Simultaneous stabilization in AR(D) 231

Suppose that for every n the triple of pairs above were simultaneously
stabilizable. Then for every integer n ∈ N there exist αn, βn ∈ AR(D) such
that

αn ∈ AR(D)−1,

αn + βnz
2 ∈ AR(D)−1,

n2αnz
2 + βn ∈ AR(D)−1.

One then rewrites this as a system of two conditions, since the first condition
is just the assumption that αn is invertible. Doing so we have

1 + hnz
2 ∈ AR(D)−1,

n2z2 + hn ∈ AR(D)−1.

With this in hand, define the following auxiliary function:

ϕn(z) :=
n2z4 + hn(z)z2

1 + hn(z)z2
= z2 n

2z2 + hn(z)
1 + hn(z)z2

.

These functions are analytic and have no zeros in D \ {0}. Additionally, ϕn

attains the value w = 1 only four times in D, at the points ±1/
√
n,±i/

√
n.

By the generalized Montel normal family criterion, the family of functions
ϕn is normal in D \ {0}. Without loss of generality, we may assume that
the sequence (ϕn) converges uniformly on compact subsets of D \ {0}. Then
there are only two cases.

Case 1: (ϕn) tends locally uniformly to infinity, i.e., (ϕ−1
n ) tends locally

uniformly to 0. For ε > 0 we have∣∣∣∣ 1 + hn(z)z2

n2z2 + hn(z)

∣∣∣∣ ≤ ε|z|2, n ≥ N(ε), |z| = 1/2.

Let ψn(z) := 1+hn(z)z2

n2z2+hn(z)
. Then for n sufficiently large we have

|ψn(z)| ≤ 1/8, |z| = 1/2.

A straightforward calculation shows that
hn(z)
n2

[ψn(z)− z2] =
1
n2
− z2ψn(z).

Using this, we see that for all n sufficiently large,∣∣∣∣hn(z)
n2

∣∣∣∣ ≤ 1
n2 + ε

2
1
4 −

1
8

, |z| = 1/2.

The maximum modulus principle implies the same inequality for all z such
that |z| ≤ 1/2. From the above we know that all the functions un(z) :=
z2 +hn(z)/n2 are invertible in D. But these functions tend uniformly to the
function z2 in |z| ≤ 1/2, which is neither invertible nor identically zero. This
contradicts Hurwitz’s Theorem, and so this case is impossible.
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Case 2: (ϕn) tends locally uniformly to an analytic function ϕ in D\{0}.
In this case the functions ϕn are uniformly bounded on compact subsets of
D \ {0}, say,

|ϕn(z)| ≤M, n ∈ N, |z| = 1/2.

We additionally have

ϕn(z) = 1 +
n2z4 − 1

1 + hn(z)z2
,

which implies that∣∣∣∣ n2z4 − 1
1 + hn(z)z2

∣∣∣∣ ≤M + 1, n ∈ N, |z| = 1/2.

But for n large the following inequality must hold:∣∣∣∣ n2

1 + hn(z)z2

∣∣∣∣ ≤ M + 1
1
16 −

1
n2

.

The maximum modulus principle implies the same inequality for all z such
that |z| ≤ 1/2. Setting z = 0 we obtain a condition which is obviously false
for large n:

n2 ≤ M + 1
1
16 −

1
n2

.

To sum up, for all n large we have shown that it is impossible for the
systems given above to be simultaneously stabilizable. So we are done.

Using Theorem 0.3 we show that it is in general impossible for there to
exist solutions to the Bézout equation in AR(D) that are both invertible.
This addresses Corollary 0.4.

Proof of Corollary 0.4. The proof is by contradiction. Suppose that for
every invertible pair (f, g) in AR(D)2 with f positive on the real zeros of g
and g positive on the real zeros of f one could find invertible elements α
and β in AR(D) such that

1 = αf + βg.

Consider the functions f(z) = z2 and g(z) = 1− n2z4. The pair (f, g) is
clearly invertible, f is positive on the real zeros of g, and g is positive on the
real zeros of f . Thus, there exist invertible functions un and vn in AR(D)
such that

vn = unf + g.

Hence

vn(z) = (un(z)− n2z2 + n2z2)z2 + 1− n2z4 = (un(z)− n2z2)z2 + 1.
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Now let hn(z) := un(z)− n2z2. Then we obtain

1 + hnz
2 ∈ AR(D)−1,

n2z2 + hn ∈ AR(D)−1.

But we know from the proof of Theorem 0.3 that this is impossible for all
integers n. The desired counterexample then follows by taking n sufficiently
large.

3. Totally reducible pairs in AR(D). Recall that a pair (f, g) in
AR(D)2 is said to be totally reducible if there exist u, v invertible in AR(D)
so that uf + vg = 1. Corollary 0.4 above, for example, showed that the pair
(z2, 1−n2z4) is not totally reducible. On the other hand, it is easy to see that
the pair (f, g) is totally reducible if and only if the system (1, 0), (0, 1), (f, g)
of three invertible pairs in AR(D)2 is simultaneously stabilizable. We shall
now show that large classes of pairs are totally reducible. The following is
an analogue of Lemma 4 in [11].

Lemma 3.1. Let f ∈ AR(D) be such that there exist xn ∈ R \ f(D) with
xn → 0. Then for every g ∈ AR(D) such that (f, g) is an invertible pair and
g has constant sign on the real zeros of f there exist invertible functions u
and v in AR(D) such that uf + vg = 1.

Proof. Let g ∈ AR(D) be such that (f, g) is an invertible pair. Since g is
assumed to have constant sign on the real zeros of f , there exist, by [15], a
function h ∈ AR(D) and a unit v ∈ AR(D)−1 such that

(3.1) hf + vg = 1.

Choose M > 0 large enough so that f −M is invertible in AR(D); e.g. let
M = ‖f‖∞ + 1. Multiplying (3.1) by a real number ε to be specified later
and adding on both sides f/(f −M) yields the following equation:

(3.2) εvg +
(

1
f −M

+ εh

)
f = ε+

f

f −M
= (ε+ 1)

1
f −M

(
f − εM

ε+ 1

)
.

Since xn → 0 and xn ∈ R, we may choose εn ∈ R so that xn = εnM/(1 + εn)
and |εn| ≤ 1/(‖f −M‖∞‖h‖∞). Then the functions

1
f −M

+ εnh and (εn + 1)
1

f −M

(
f − εnM

εn + 1

)
are invertible in AR(D). Using (3.2) we conclude that (f, g) is totally re-
ducible.

Remark. Note that the condition on f implies that f has constant sign
on ]−1, 1[, hence on the real zeros of g. In fact, since 0 is a boundary point
of the image of f , f(D) open implies that f cannot have any zero inside D.
Now use the intermediate value theorem on [−1, 1].
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Theorem 3.2. Let f be an outer function in AR(D). Then for every
g ∈ AR(D) such that (f, g) is an invertible pair and g has constant sign on
the real zeros of f there exist invertible functions u and v in AR(D) such
that uf + vg = 1.

Remark. Note that the assumption that g has constant sign on the real
zeros of f is equivalent here to the hypothesis that g(−1)g(1) > 0 whenever
f(−1) = f(1) = 0.

Proof. This works exactly in the same manner as in the disc algebra
case of [11]. We have just to note that if E is the zero set of an outer
function f in AR(D), then E is symmetric with respect to the real axis;
hence if pE is any peak function in A(D) associated with E, then the function
qE(z) = pE(z)pE(z) is a peak function for E that is in AR(D).

4. Concluding remarks. Given what has been shown about the prob-
lem of simultaneous stabilization in AR(D), we propose two problems.

Problem 4.1. Give a complete description of those pairs (fj , gj), j =
1, . . . , n, of Corona data for which the n ≥ 3 simultaneous stabilization
problems are solvable in A(D) or AR(D).

We remark here that this is a well known and extremely challenging
problem in the control theory literature. For example, it is known that con-
ditions on the real axis alone (parity interlacing, sign-linked, etc.) do not
suffice to solve this problem. See [3]. We also note that restricted to rational
data, this problem is known to be rationally undecidable. See [2] and [5] and
the references there for more information concerning what is known.

Problem 4.2. Give a characterization of those pairs of functions (f, g)
in A(D)2 or AR(D)2 for which (f, g) is totally reducible.
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