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Lie algebras generated by Jordan operators

by

Peng Cao and Shanli Sun (Beijing)

Abstract. It is proved that if Ji is a Jordan operator on a Hilbert space with the
Jordan decomposition Ji = Ni+Qi, where Ni is normal and Qi is compact and quasinilpo-
tent, i = 1, 2, and the Lie algebra generated by J1, J2 is an Engel Lie algebra, then the
Banach algebra generated by J1, J2 is an Engel algebra. Some results for normal operators
and Jordan operators on Banach spaces are given.

1. Introduction. Let X be a Banach space, and H be a Hilbert space.
The Banach algebra of all bounded linear operators on X is denoted by
B(X ). It is a Lie algebra with the Lie product [T1, T2] = T1T2 − T2T1 for
T1, T2 ∈ B(X ). Let M ⊂ B(X ). The Lie algebra generated by M , denoted
by ε(M), is the smallest Lie algebra containing M . Let A(M) denote the
associative algebra generated by M , M the closure of M in B(X ), and
Ker(T ) the kernel of an operator T .

Recall that T ∈B(X ) is hermitian if ‖exp(itT )‖=1 for every t∈R, and
hermitian-equivalent if supt∈R ‖exp(itT )‖<∞. An operatorN ∈B(X ) is nor-
mal (resp., normal-equivalent) ifN = A+iB, whereA,B are hermitian (resp.,
hermitian-equivalent), and [A,B] = 0. Some basic properties of hermitian
operators can be found in [8]; for hermitian-equivalent operators, see [4], [1].

We will also make use of the theory of decomposable operators. One
can find the concepts of “spectral operator”, “scalar operator”, “generalized
scalar operator”, and “decomposable operator” in [6]. We will denote by
Bad N (F ) the maximal spectral subspace of B(X ) associated with adN and
a closed subset F ⊂ C. It is well known that if N is a normal-equivalent
operator, then so is adN by [4, §14, Proposition 4]. Then N and adN are
generalized scalar operators by [4, §14, Remark 6]. The following lemmas
are useful.
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Lemma 1.1 ([4, §14, Theorem 6]). If N ∈ B(X ) is normal-equivalent
and σ(N) = {0}, then N = 0.

Lemma 1.2 ([4, §14, Corollary 4]). If N ∈ B(X ) is normal-equivalent ,
then

BN ({λ}) = Ker(N − λI) = Ker(A− Reλ) = Ker(B − Imλ)

for each λ in σ(N).

If N is normal-equivalent, then by [6, Lemma 4.4.4] we have

Lemma 1.3.

Bad N ({0}) = {S ∈ B(H ) | lim
n→∞

‖(adN)nS‖1/n = 0}.

We can also define an involution on normal-equivalent operators in B(X ),
namely for a normal-equivalent operator N ∈ B(X ) with N = A+iB, define
N∗ = A− iB.

Lemma 1.4 ([2, Theorem]). If N1, N2 ∈ B(X ) are normal-equivalent
and N1S = SN2 for some S ∈ B(X ), then N∗1S = SN∗2 .

For a Lie algebra L ⊂ B(X ), L is the closure of L in B(X ). For every
T ∈ L, adT : L → L is quasinilpotent (i.e., lim ‖(adT )n‖1/n = 0) if and
only if adT : L → L is quasinilpotent if and only if ‖(adT )n(S)‖1/n → 0
as n → ∞ for any S ∈ L. A Volterra operator is a compact quasinilpotent
operator.

Recall that if L is a normed Lie algebra, then L is called ad-compact
if the operator ad a on L is compact for every a ∈ L; L is an Engel Lie
algebra if ad a is quasinilpotent for every a ∈ L; and L is called E-solvable
if every nonzero quotient of L by a closed ideal has a nonzero Engel ideal.
Every finite-dimensional E-solvable Lie algebra is solvable by [13, Theo-
rem 6.19].

2. Jordan operators. Recall that T ∈ B(X ) is a Jordan operator if
there exists a normal-equivalent operator S ∈ B(X ) and a quasinilpotent
operator Q ∈ B(X ) such that [S,Q] = 0 and T = S +Q. This last formula
is called the Jordan decomposition of T . It is known that every Jordan
operator is a completely regular generalized spectral operator (cf. [4, §14,
Corollary 5]).

Lemma 2.1 ([4, §14, Theorem 7]). Let T ∈ B(X ) be a Jordan operator
with the Jordan decomposition T = S + Q. Moreover let A,B ∈ B(X ) be
hermitian-equivalent operators such that S = A+ iB and [A,B] = 0. Then
A, B and Q belong to the bicommutant of T . Moreover , Bad T (F ) = Bad S(F )
for every closed subset F of C.
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The last statement of Lemma 2.1 is in the proof of [4, §14, Theorem 7].
Recall that if L is a Lie algebra, then A(L) denotes the associative

algebra generated by L, A(L) the Banach algebra generated by L, and
Rad(A(L)) the Jacobson radical of A(L). A Banach algebra B is called En-
gel if ad a : B → B is quasinilpotent for every a ∈ B. It is well known that if
B is an Engel algebra, then B/RadB is commutative (see [13, Proposition
5.21] or [3, Proposition]).

The following lemma can be found in [10].

Lemma 2.2. If A is a Banach algebra and A/RadA is commutative,
then QA = Rad(A), where QA is the set of all quasinilpotent elements in A.

The following lemma can be found in [14].

Lemma 2.3. If L ⊂ B(X ) is a nilpotent (or finite-dimensional solvable)
Lie algebra, then A(L)/Rad(A(L)) is commutative.

If L is an Engel Lie algebra, will A(L) be an Engel algebra? This question
was posed by Yu. V. Turovskĭı and V. S. Shulman in [16], and a partial
answer can be found in [13].

Lemma 2.4 ([13, Theorem 5.22]). Let L ⊂ K1(X ) be an Engel Lie al-
gebra, where K1(X ) is the linear space generated by the compact operators
and the identity operator on X . Then A(L) is an Engel algebra.

Now we begin the study of Lie algebras generated by Jordan operators.
First, note that if a Lie algebra generated by normal operators in a

Hilbert space is finite-dimensional solvable, then it is commutative ([5, The-
orem 2.1]). We will generalize this result to normal operators on Banach
spaces. The following proposition is the pivotal step.

For two hermitian operators N1, N2, i[N1, N2] is a hermitian operator.
In fact, since

exp([N1, N2])

= lim
n→∞

(
exp

(
1
n
N1

)
exp

(
1
n
N2

)
exp
(
− 1
n
N1

)
exp
(
− 1
n
N2

))n2

,

we have ‖exp(t[N1, N2])‖ = ‖exp(−t[iN1, iN2])‖ ≤ 1 for every t ∈ R. But
1 = ‖exp(t[N1, N2]) exp(−t[N1, N2])‖ ≤ 1, so ‖exp(t[N1, N2])‖ = 1 for every
t ∈ R. Hence i[N1, N2] is hermitian (cf. [4, §14, Remark 5]).

Proposition 2.1. If N1, N2 ∈ B(X ) are hermitian, and ε(N1, N2) is
an ad-compact E-solvable Lie algebra, then N1N2 = N2N1.

Proof. Let L = ε(N1, N2). Because L is ad-compact E-solvable, [L,L] is
an Engel Lie algebra by [13, Theorem 6.15]. So ad(i[N1, N2]) is quasinilpo-
tent on [L,L]. Since i[N1, N2] is hermitian, ad(i[N1, N2]) is normal. By
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Lemma 1.3, [L,L] ⊂ Bad(i[N1,N2])({0}), so ad([N1, N2]) = 0 on [L,L] by
Lemma 1.2. Because [[N1, N2], N1] ∈ [L,L], we have

ad([N1, N2])([[N1, N2], N1]) = ad2([N1, N2])(N1) = 0.

Now N1 ∈ Bad([N1,N2])({0}), by Lemma 1.3. So ad([N1, N2])(N1) = 0 by
Lemma 1.2. That is, ad2(N1)(N2) = 0. Again N2 ∈ Bad N1({0}), so that
[N1, N2] = 0.

Corollary 2.1. If N1, N2 ∈ B(X ) are hermitian, and ε(N1, N2) is a
finite-dimensional solvable Lie algebra, then N1N2 = N2N1.

Proof. This is evident by Proposition 2.1 and [13, Theorem 6.19].

Theorem 2.1. If N1, N2 ∈ B(X ) are normal , and ε(N1, N2) is finite-
dimensional solvable, then it is commutative, that is, [N1, N2] = 0.

Proof. With Lemma 1.4 replacing the Fuglede–Putnam theorem in Hil-
bert space, the proof is similar to the proof of Theorem 2.1 in [15], so we
omit it. See [5] for the details.

Lemma 2.5. For Jordan operators Ji with the Jordan decomposition Ji =
Ni + Qi, i = 1, 2, if ε(J1, J2) is an Engel Lie algebra, then [N1, N2] = 0,
[N1, Q2] = 0 and [N2, Q1] = 0.

Proof. Since ε(J1, J2) is an Engel Lie algebra, ad J1 is a quasinilpotent
operator on ε(J1, J2). So J2 ∈ Bad J1({0}). By Lemma 2.1, J2 ∈ Bad N1({0}),
and by Lemma 1.2, [N1, J2] = 0. Note that J2 is a Jordan operator, so
[N1, N2] = 0 and [N1, Q2] = 0 by Lemma 2.1. Similarly, [N2, Q1] = 0.

It is known that if G is a finite-dimensional solvable Lie algebra in B(X ),
then the set of Jordan operators inG is an ideal ofG (cf. [4, §28, Theorem 3]).
Now we will give another property of Jordan operators in finite-dimensional
solvable Lie algebras.

Proposition 2.2. For Jordan operators Ji with the Jordan decomposi-
tion Ji = Ni + Qi, i = 1, 2, suppose that N1, N2 are normal operators, and
the Lie algebra ε(J1, J2) is finite-dimensional solvable. Then [N1, N2] = 0
and Q1, Q2 ∈ Rad(A({N1, N2, Q1, Q2})).

Proof. Let L = ε(J1, J2) and {λ1, . . . , λn} = σ(adL J1), so adL J1 has
finite rank and L = BadL J1(λ1)⊕ · · ·⊕BadL J1(λn). By Lemmas 2.1 and 1.2,
we have

L = Ker(adLN1 − λ1)⊕ · · · ⊕Ker(adLN1 − λn).

It is easy to see that span(N1,L) is a Lie algebra and

[span(N1,L), span(N1,L)] ⊂ [L,L].

Since L is finite-dimensional solvable, it follows that [L,L] is nilpotent, hence
also [span(N1,L), span(N1,L)] is nilpotent, and therefore span(N1,L) is
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finite-dimensional solvable. Similarly, span(N1, N2,L) is finite-dimensional
solvable. So also is ε(N1, N2). Therefore, [N1, N2] = 0 by Theorem 2.1.
Since Q1, Q2 ∈ span(N1, N2,L), Lemmas 2.2 and 2.3 show that Q1, Q2 ∈
Rad(A({N1, N2, Q1, Q2})).

Recall that for T ∈ L, adT : L → L is quasinilpotent if and only if
adT : L → L is quasinilpotent if and only if ‖(adT )n(S)‖1/n → 0 as n→∞
for any S ∈ L. A Volterra ideal is an ideal consisting of Volterra opera-
tors.

Recall that a Jordan operator J on a Hilbert space H has the Jordan
decomposition J = N + Q, where N ∈ B(H ) is normal, Q ∈ B(H ) is
quasinilpotent and [N,Q] = 0.

Theorem 2.2. For Jordan operators Ji on a Hilbert space with the Jor-
dan decomposition Ji = Ni +Qi, i = 1, 2, suppose that ε(J1, J2) is an Engel
Lie algebra, and Q1, Q2 are Volterra operators. Then A({N1, N2, Q1, Q2})
is an Engel algebra, as also is A(ε(J1, J2)).

Proof. By Lemma 2.5, [N1, N2] = 0, [N1, Q2] = 0 and [N2, Q1] = 0. Let
L = span(N1, N2, ε(J1, J2)).

Claim 1. L is an Engel Lie algebra.

Note that [N1, J1] = 0 = [N1, J2], so adN1 = 0 on L. Similarly, adN2 = 0
on L. For every T in ε(J1, J2), since ε(J1, J2) is an Engel Lie algebra,
limn→∞ ‖(adT )n(S)‖1/n = 0 for every S ∈ ε(J1, J2). As

L = span(N1, N2, ε(J1, J2)),

it follows that limn→∞ ‖(adT )n(S)‖1/n = 0 for every S ∈ L. That is, adT
is a quasinilpotent operator on L. For every T ′ ∈ L we have T ′ = λ1N1 +
λ2N2 + T , where T ∈ ε(J1, J2). So adT ′ = adT on L is a quasinilpotent
operator. That is, L is an Engel Lie algebra.

Claim 2. A(ε(Q1, Q2)) consists of quasinilpotent operators.

ε(Q1, Q2) is an Engel Lie algebra since it is contained in L. As Q1, Q2

are compact operators, so is every operator in ε(Q1, Q2). So by [13, Theo-
rem 5.22], A(ε(Q1, Q2)) is an Engel algebra. Hence A(ε(Q1, Q2)) consists of
quasinilpotent operators by Lemmas 2.2 and 2.3.

Let A = A(N1, N2, Q1, Q2).

Claim 3. I := span(p(N1, N2)q(Q1, Q2)) is a Volterra ideal of A, where
p(x1, x2) and q(x1, x2) run through polynomials such that q(0, 0) = 0.

First, we show that I is an ideal of A. Note that [N1, N2] = 0 = [Ni, Qj ]
for every i, j = 1, 2. Every S ∈ A has the form

∑n
i=1 pi(N1, N2)qi(Q1, Q2),

where pi(x1, x2), qi(x1, x2) are polynomials and pi(0, 0)qi(0, 0) = 0. So it is
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easy to see that SI, IS ⊂ I. Note that I is closed, so AI, IA ⊂ I. That is,
I is an ideal of A.

Next we show that I consists of Volterra operators. Note that an oper-
ator p(N1, N2)q(Q1, Q2) ∈ I is compact and quasinilpotent, since q(Q1, Q2)
is compact and quasinilpotent, and [p(N1, N2), q(Q1, Q2)] = 0. For any n
operators pi(N1, N2)qi(Q1, Q2) ∈ I, where qi(0, 0) = 0, i = 1, . . . , n, since
A(Q1, Q2) consists of quasinilpotent operators and [A(N1, N2),A(Q1, Q2)]
= {0}, the semigroup generated by pi(N1, N2)qi(Q1, Q2) consists of Volterra
operators. Hence so does the algebra generated by pi(N1, N2)qi(Q1, Q2),
i = 1, . . . , n ([15, Theorem 4]). That is, span(p(N1, N2)q(Q1, Q2)) consists
of Volterra operators, where p(x1, x2), q(x1, x2) run through polynomials
such that q(0, 0) = 0.

Finally, since the limit of Volterra operators is a Volterra operator, I
consists of Volterra operators.

By the definition of Jacobson radical, I ⊂ Rad(A), so Q1, Q2 ∈ Rad(A).

Claim 4. For every S ∈ A, adS : A → A is quasinilpotent.

Since S =
∑n

i=1 pi(N1, N2)qi(Q1, Q2), where pi(x1, x2), qi(x1, x2) are
polynomials and pi(0, 0)qi(0, 0) = 0, we have S = S1 + S2, where S1 ∈
A(N1, N2) and S2 ∈ I. Note that adNi(A) = {0}, and I consists of Volterra
operators by Claim 3, so adS = adS2 is a quasinilpotent operator on A, by
Rosenblum’s theorem.

Claim 5. A ⊂ C∗(N1, N2)+K(H ), where C∗(N1, N2) is the C∗-algebra
generated by N1, N2, and K(H ) is the set of compact operators on H .

It is well known that the sum of a C∗-algebra and K(H ) is closed in
B(H ) [7]. So C∗(N1, N2) +K(H ) is closed. Note that A ⊂ A(N1, N2) + I,
and I consists of Volterra operators, so A ⊂ C∗(N1, N2) + K(H ). As
C∗(N1, N2) +K(H ) is closed, it follows that A ⊂ C∗(N1, N2) +K(H ).

Now, for every S′ ∈ A, by Claim 5, there exist N ′ ∈ C∗(N1, N2) and
Q′ ∈ K(H ), such that S′ = N ′ + Q′. Note that [Ni,A] = {0} and Ni is
normal, so [N∗i ,A] = {0}, i = 1, 2. Therefore, adS′ = adN ′+ adQ′ = adQ′

onA. But Q′ is a compact operator, so adQ′ = adS′ has countable spectrum
on A. Since S′ ∈ A, there is a sequence {Sn} ⊂ A such that limn→∞ Sn = S′.
Hence, limn→∞ adSn = adS′. By Claim 4, adSn is quasinilpotent on A; as
adS′ has countable spectrum on A, it is quasinilpotent on A by Newburgh’s
result [11]. That is, A is an Engel algebra.

The last statement of the theorem is clear because A(ε(J1, J2)) is a
subalgebra of A.

Now we turn to Jordan operators on Banach spaces. We adopt the no-
tation of the proof of Theorem 2.2.
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Corollary 2.2. For Jordan operators Ji with the Jordan decomposition
Ji = Ni + Qi, i = 1, 2, suppose that ε(J1, J2) is an Engel Lie algebra, and
Q1, Q2 are Volterra operators. Then A/Rad(A) is commutative.

Proof. Note that Claim 3 in the proof of Theorem 2.2 holds for Jordan
operators on Banach spaces, and A ⊂ A(N1, N2) + I with [Ni,A] = {0},
i = 1, 2. So [A,A] ⊂ I ⊂ Rad(A) by Claim 3. As Rad(A) is closed, also
[A,A] ⊂ Rad(A).

Corollary 2.3. For Jordan operators Ji with the Jordan decomposition
Ji = Ni + Qi, i = 1, 2, suppose that ε(J1, J2) is an Engel Lie algebra,
and Q1, Q2 are compact quasinilpotent operators. Then every operator in
ε(J1, J2) is a Jordan operator.

Proof. It is easy to see that every scalar multiple of a Jordan operator is
a Jordan operator. By Corollary 2.2, Q1+Q2 and the commutator of any two
operators in ε(J1, J2) are quasinilpotent operators. It remains to prove that
J1 +J2 is a Jordan operator. But by Lemma 2.5, [N1, N2] = 0, so by [4, §14,
Corollary 6], N1+N2 is a normal operator. Note that [N1+N2, Q1+Q2] = 0,
and Q1 +Q2 is quasinilpotent, so J1 + J2 is a Jordan operator.

Corollary 2.4. For Jordan operators Ji with the Jordan decomposition
Ji = Ni + Qi, i = 1, 2, suppose that ε(J1, J2) is an Engel Lie algebra, and
Q1, Q2 are Volterra operators. Then A is reduced.

Proof. By Claim 3 in the proof of Theorem 2.2, I is a nonzero Volterra
ideal of A. So A has a nontrivial hyperinvariant subspace by Shulman’s
result [14].

Remark 2.1. Because there is a nil algebra of operators on a Hilbert
space with semisimple norm closure, there is a Lie algebra L generated by
Jordan operators which is an Engel Lie algebra, but A(L) is not an Engel
algebra (see [9]).
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[5] P. Cao and S. L. Sun, Finite dimensional solvable Lie algebras generated by normal

operators are commutative, J. Math. Anal. Appl. 337 (2008), 928–931.
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