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Algebraic reflexivity of C(X, E) and Cambern’s theorem

by

Fernanda Botelho and James Jamison (Memphis, TN)

Abstract. The algebraic and topological reflexivity of C(X) and C(X, E) are inves-
tigated by using representations for the into isometries due to Holsztyński and Cambern.

1. Introduction. In [6], Holsztyński established the following repre-
sentation for into isometries between spaces of continuous functions C(X)
and C(Y ), with X and Y compact Hausdorff spaces.

Theorem 1.1. If X and Y are compact Hausdorff spaces and T :
C(X)→ C(Y ) is a linear isometry , then there exist a closed subset Y0 of Y ,
a surjective continuous map ϕ : Y0 → X, and α ∈ C(Y ) with ‖α‖∞ = 1
and |α(y)| = 1 for every y ∈ Y0, such that

(1.1) T (f)(y) = α(y) f(ϕ(y)) for f ∈ C(X), y ∈ Y0.

Holsztyński’s representation for into isometries of C(X) has applications
to the algebraic reflexivity problem for C(X). We show that the isometry
group of the space C(X) of continuous real-valued functions is algebraically
reflexive under mild conditions on X. Our proofs are different from those
presented by Molnár and Zalar in [10]. The fact that Holsztyński’s repre-
sentation works for the space of real-valued functions is an essential step in
our argument. We observe that Molnár and Zalar [10] used the Russo–Dye
theorem to derive the algebraic reflexivity of the isometry group of C(X,C),
the Banach space of all complex-valued continuous functions on X. We note
that the Russo–Dye theorem is not available in the real case.

Holsztyński’s theorem was extended to vector-valued spaces of contin-
uous functions by Cambern. A characterization of into isometries for the
vector-valued function setting is done in [2], provided the range space is
strictly convex. Cambern’s result can be generalized to complex strictly
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convex range spaces. This generalization enables us to prove some new re-
sults about the algebraic reflexivity of the isometry group of C(X,E), also
under this new condition on E. We mention that our hypotheses on E are
weaker than those considered by Jarosz and Rao in [8].

2. Remarks on Holsztyński’s theorem and the algebraic reflex-
ivity of C(X). Holsztyński’s proof is given for complex-valued functions,
however it is mentioned in [6], as a footnote, that the same characteriza-
tion is also valid for real-valued functions. For completeness of exposition
we provide the minor modification to Holsztyński’s proof for the real-valued
case. We first recall some essential notation from [6]:

Sx = {f ∈ C(X) : ‖f‖ = 1 and |f(x)| = 1}, x ∈ X,
Ry = {g ∈ C(Y ) : ‖g‖ = 1 and |g(y)| = 1}, y ∈ Y,
Qx = {y ∈ Y : T (Sx) ⊂ Ry}, x ∈ X.

If C(X) refers to real-valued continuous functions all the six steps (i–vi) in
Holsztyński’s proof are valid with a minor modification necessary to show
step (i). This first step asserts that if f ∈ C(X) vanishes at x ∈ X, then
T (f)(y) = 0 for every y ∈ Qx. Indeed, suppose that there exists f ∈ C(X)
so that f(x) = 0 and T (f)(y) 6= 0 for some y ∈ Qx. We may assume
that f has norm 1. We set g = min{1 + f, 1, 1 − f}. Then g(x) = 1 and
‖g‖∞ = 1. This implies that g and g− f are in Sx. Hence |T (g)(y)| = 1 and
|T (g − f)(y)| = 1. This implies that T (f)(y) = 0, contradicting our initial
assumption.

Holsztyński’s characterization of isometries allows us to establish the
algebraic reflexivity of the isometry group of C(X), for both the real and
complex cases, provided that X satisfies the first countability axiom and an
additional topological property. We first review the definition of algebraic
reflexivity for this particular case.

Definition 2.1. An isometry T of C(X) is said to be locally surjective
if for every f ∈ C(X) there exists a surjective isometry Tf so that T (f) =
Tf (f). The space C(X) is algebraically reflexive if every locally surjective
isometry is surjective.

The following example shows that not every isometry is locally surjective.

Example 2.2. An isometry T of C(X) determines a surjective continu-
ous map ϕ, defined on a subset X0, as stated in Theorem 1.1. For instance,
let T : C([0, 1],R)→ C([0, 1],R) be defined by

T (f)(z) =


f(2z) if 0 ≤ z ≤ 1/2,
−4f(1)(z − 3/4) if 1/2 ≤ z ≤ 3/4,
0 if 3/4 ≤ z ≤ 1.
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In this case, X0 = [0, 1/2] and ϕ : X0 → X is given by ϕ(z) = 2z. The
isometry T is not locally surjective. Indeed, the support of T (1) is equal
to [0, 3/4], where 1 is the constant function equal to 1. However, any sur-
jective isometry maps 1 to a modulus 1 continuous function.

The next proposition characterizes locally surjective isometries of C(X,R)
and C(X,C). Throughout the rest of this paper, C(X) represents either
C(X,R) or C(X,C).

Proposition 2.3. If X is a Hausdorff , compact , first countable topo-
logical space and T is a locally surjective isometry on C(X), then there exist
a closed subset X0 of X, a homeomorphism ϕ : X0 → X, and α ∈ C(X)
with ‖α‖∞ = 1 and |α(z)| = 1 for every z ∈ X0, such that

(2.1) T (f)(z) = α(z)f(ϕ(z)) for f ∈ C(X), z ∈ X0.

Proof. Let T be a locally surjective isometry on C(X). Holsztyński’s
proof in [6] asserts that, for each x ∈ X, Qx is nonempty and

⋃
x∈X Qx is a

closed subset of X; denote it by X0. Furthermore, for every z ∈ X0,

T (g)(z) = α(z)g(ϕ(z))

with α and ϕ as described in Theorem 1.1.
We start by proving that Qx is a singleton. Let y1 and y2 be in Qx and

y1 6= y2. Since X is first countable and compact, there exists f ∈ C(X),
with values in [0, 1], such that f(x) = ‖f‖∞ = 1 and |f(y)| < 1 for all y 6= x
(see [4]). Since T is a locally surjective isometry, there exists a surjective
isometry Tf such that T (f) = Tf (f). The Banach–Stone theorem asserts
that Tf (g)(z) = αf (z)g(τf (z)), with τf a homeomorphism of X and αf a
scalar-valued, modulus 1 continuous map defined on X. In particular, this
implies that

Tf (f)(yi) = αf (yi)f(τf (yi)) = T (f)(yi) = α(yi)f(ϕ(yi)) = α(yi)f(x)

for i = 1, 2 and

f(x) = α(y1)−1αf (y1)f(τf (y1)) = α2(y2)−1αf (y2)f(τf (y2)).

Consequently,
|f(x)| = 1 = |f(τf (y1))| = |f(τf (y2))|

and τf (y1) = τf (y2) = x. Since τf is a homeomorphism, this leads to a
contradiction. Therefore Qx consists of at most a single point. Since Qx is
nonempty, it must be a single point.

In addition, every function f that attains its norm ‖f‖∞ at a single point
(say x ∈ X) determines a surjective isometry and a homeomorphism τf that
satisfies

ϕ(Qx) = τf (Qx).
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The previous considerations also imply that ϕ is injective. Moreover, since
X0 is a closed subset of X, it follows that ϕ is a homeomorphism between
X0 and X.

The next theorem asserts the algebraic reflexivity of the isometry group
of C(X), under some topological constraints on X.

Theorem 2.4. If X is a Hausdorff , compact , first countable topological
space such that either

(1) there exists an injective and continuous real-valued function on X,
or

(2) X is a connected n-dimensional manifold without boundary ,

then C(X) is algebraically reflexive.

Proof. (1) Let T be a locally surjective isometry of C(X). Without loss
of generality we may choose an injective function f with values in the in-
terval [0, 1]. Theorem 1.1 implies the existence of a closed subset X0 of X,
a surjective continuous map ϕ : X0 → X and a modulus 1 complex-valued
continuous function such that

T (f)(z) = α(z)f(ϕ(z)) for every z ∈ X0.

The Banach–Stone theorem states that

T (f)(x) = αf (x)f(τf (x)) for every x ∈ X,
where τf is a homeomorphism on X and αf a complex-valued, modulus 1
continuous function on X. Therefore, for every z ∈ X0 we have f(ϕ(z)) =
f(τf (z)). The injectivity of f implies that ϕ(z) = τf (z), and the surjectivity
of ϕ implies that X = X0. This proves the first statement.

(2) Proposition 2.3 asserts the existence of a subset X0 of X that is
homeomorphic to X. Therefore X0 must be a compact n-manifold. This
implies that the boundary of X0 in X is empty, so X0 is both open and
closed in X. Since X is connected we have X = X0, which concludes the
proof.

Example 2.5. Examples of topological spaces satisfying condition (1)
of Theorem 2.4 are Cantor sets, compact totally disconnected metric spaces,
and one-dimensional manifolds.

Definition 2.6. A Banach space is said to be topologically reflexive pro-
vided that every isometry that is the strong limit of a sequence of surjective
isometries is also a surjective isometry.

Remark 2.7. We observe that C([0, 1],R) is not topologically reflexive.
Let T be defined by T (f)(x) = f(τ(x)) where τ(x) = 0 if 0 ≤ x ≤ 1/2, and
τ(x) = 2x − 1 if 1/2 ≤ x ≤ 1. The isometry T is the strong limit of the
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sequence of surjective isometries Tn(f)(x) = f(τn(x)) with τn(x) = 2
n+1x if

0 ≤ x ≤ (n+ 1)/2n, and τn(x) = 2x− 1 if (n+ 1)/2n ≤ x ≤ 1.
Similar constructions exist for topological spaces containing a point

with a locally Euclidean neighborhood, i.e. homeomorphic to a Euclidean
space.

3. Spaces of continuous vector-valued functions. We consider the
characterization of isometries due to Cambern (see [2]) between two spaces
of vector-valued continuous functions, C(X,E) and C(Y,E1), with X and Y
compact topological spaces, E and E1 Banach spaces, and E1 strictly convex.
These spaces are equipped with the standard norm ‖ · ‖∞. We recall Cam-
bern’s characterization of isometries on spaces of vector-valued continuous
functions, which generalizes a pioneering theorem on surjective isometries
due to Jerison.

Theorem 3.1. (1) (Jerison, [9]) If A is an isometry from C(X,E) onto
C(Y,E), with E strictly convex , then there exists a homeomorphism τ of Y
onto X and a continuous map y 7→ Ay from Y into the space of bounded
operators on E, equipped with the strong operator topology , such that for all
y ∈ Y , Ay is an isometry of E and

A(F )(y) = Ay(F )(τ(y)) for F ∈ C(X,E), y ∈ Y.

(2) (Cambern, [2]) Let E and E1 be Banach spaces with E1 strictly
convex and A an isometry from C(X,E) into C(Y,E1). Then there exists
a subset B(A) ⊂ Y , a continuous function φ : Y → B(E, E1) such that
φ(y) = Ay (B(E, E1) denotes all bounded operators from E into E1 equipped
with the strong operator topology) with ‖Ay‖ ≤ 1 for all y ∈ Y and ‖Ay‖ = 1
for all y ∈ B(A), and there exists a continuous map τ from B(A) onto X
such that

A(F )(y) = Ay(F )(τ(y)) for F ∈ C(X,E), y ∈ B(A).

If E is finite-dimensional then B(A) is a closed subset of Y .

Cambern’s proof follows Holsztyński’s approach for the scalar case. We
can show that Cambern’s characterization also holds for E1 complex strictly
convex. We recall that a Banach space E is said to be complex strictly convex
if whenever x, y ∈ E satisfy ‖x‖ = ‖eiθy+x‖ = 1 for every θ ∈ R, then y = 0.
Equivalently, if x, y ∈ E and ‖x‖ = ‖±iy + x‖ = 1, then y = 0 (cf. [14]).
A Banach space E is said to be strictly convex if whenever x, y ∈ E are
of norm 1 and ‖(x+ y)/2‖ = 1, then x = y. The space L1(µ) is complex
strictly convex but not strictly convex. For many other examples of complex
strictly convex spaces we refer the reader to [7].
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The notation to be used in the remainder of this section follows Cam-
bern’s paper [2]. The operator A : C(X,E)→ C(X,E1) denotes an isometry
so that

A(F )(y) = Ay(F )(τ(y)).

The operators Ay are given by Ay(e) = A(E)(y) with E(x) = e the constant
function in C(X,E). We also set

Fe,x = {F ∈ C(X,E) : F (x) = ‖F‖∞ · e},
B(e, x) = {y ∈ Y : ‖(A(F ))(y)‖ = ‖F‖∞ for all F ∈ Fe,x},

B(x) =
⋃

{e: ‖e‖=1}

B(e, x), B(A) =
⋃
x∈X

B(x).

It requires a fairly straightforward modification of Cambern’s arguments to
prove the following result.

Corollary 3.2. Let E and E1 be Banach spaces with E1 complex
strictly convex and A an isometry from C(X,E) into C(Y,E1). Then
there exists a subset B(A) ⊂ Y, a continuous function φ : Y → B(E, E1)
such that φ(y) = Ay with ‖Ay‖ ≤ 1 for all y ∈ Y and ‖Ay‖ = 1 for all
y ∈ B(A), and a continuous map τ from B(A) onto X such that

A(F )(y) = Ay(F )(τ(y)) for F ∈ C(X,E), y ∈ B(A).

If E is finite-dimensional then B(A) is a closed subset of Y .

We recall that τ(y) = x for y ∈ B(x).
We now have enough machinery to address the algebraic reflexivity of

C(X,E) whenever E is assumed to be strictly convex (or complex strictly
convex). This theorem extends the results of Jarosz and Rao [8].

Theorem 3.3. If X is a compact connected n-manifold without bound-
ary , and E is algebraically reflexive and strictly convex or complex strictly
convex , then C(X,E) is algebraically reflexive.

Proof. If A denotes a locally surjective isometry on C(X,E) then A
has the representation stated in Theorem 3.1(2). Given F ∈ C(X,E) there
exist a homeomorphism ϕF of X and a bounded operator IF defined on X
and with values in the surjective isometries on E, i.e. IF (x) = I(F,x) is a
surjective isometry on E, such that

A(F )(ξ) = I(F,ξ)(F (ϕF (ξ))).

If we assume that there exist distinct points x0 and x1 in B(A) with τ(x0) =
τ(x1) = x, then, given e ∈ E (of norm 1), and F = E ∈ C(X,E) (F (ξ) = e
for every ξ ∈ X) we must have

Ax0(e) = A(F )(x0) = I(F,x0)(F (ϕF (x0))) = I(F,x0)(e)
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and
Ax1(e) = A(F )(x1) = I(F,x1)(e).

It follows that ‖Ax0(e)‖ = ‖I(F,x0)(e)‖ = ‖e‖ = 1 = ‖I(F,x1)(e)‖ = ‖Ax1(e)‖.
Since X is first countable, we select a continuous function β on X and
with values in [0, 1] such that β(x) = 1 and β(y) < 1 for all y 6= x. We
set F (ξ) = β(ξ) · e. We have A(F )(x0) = Ax0(e) = I(F,x0)(F (ϕF (x0))) and
A(F )(x1) = Ax1(e) = I(F,x1)(F (ϕF (x1))). Therefore ϕF (x0) = ϕF (x1) = x,
since

1 = ‖Ax0(e)‖ = ‖I(F,x0)(F (ϕF (x0)))‖ = ‖F (ϕF (x0))‖ = ‖F (ϕF (x1))‖.
This contradiction shows that B(x) reduces to a single point and τ is injec-
tive. As shown in [2], the set B = {(x, y) : τ(y) = x} is closed in X × X,
hence compact, as also is its projection on the second component. This im-
plies that B(A) is compact and τ is a homeomorphism between B(A) and X.
Therefore X = B(A). It remains to show that Ax is a surjective isometry
for every x ∈ X. Given e ∈ E of norm 1, we have

Ax(e) = A(E)(x) = I(E,x)(E(ϕE(x))) = I(E,x)(e),

which implies that Ax is a locally surjective isometry. Since E is algebraically
reflexive, Ax is onto.

References

[1] E. Behrends, M-Structure and the Banach–Stone Theorem, Lecture Notes in Math.
736, Springer, Berlin, 1979.
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