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Optimal domains for kernel operators on [0,∞) × [0,∞)

by

Olvido Delgado (Huelva)

Abstract. Let T be a kernel operator with values in a rearrangement invariant Ba-
nach function space X on [0,∞) and defined over simple functions on [0,∞) of bounded
support. We identify the optimal domain for T (still with values in X) in terms of in-
terpolation spaces, under appropriate conditions on the kernel and the space X. The
techniques used are based on the relation between linear operators and vector mea-
sures.

Introduction. Let T : E → X be a continuous linear operator between
function spaces. The problem of determining the optimal domain for T
within a class F of spaces consists in identifying the “largest” space Y ∈ F
with E ⊂ Y to which T can be extended as a continuous operator, still
with values in X. The space Y is the largest in the sense that if T can be
extended to F ∈ F then F is continuously embedded into Y . A procedure
for solving this problem is to associate to T a vector measure ν, defined by
ν(A) = T (χA), and to study the space L1(ν) of integrable functions with
respect to ν. In the case when E and X are Banach function spaces over
a finite measure space, optimal domains for classical operators have been
studied in [7], [8], [9] and [19]. In this setting, the space L1(ν) turns out to
be the optimal domain for T within the class of Banach function spaces with
absolutely continuous norm provided T satisfies an appropriate “monotone
weak convergence” property. This identification allows one to deduce prop-
erties of the optimal domain for T from those of T (and so of ν) and X; see
[4], [5], [6], [10], [13], [18], [20], [21].

For operators T defined on Banach function spaces over an infinite mea-
sure space, the associated vector measure ν may not be defined for measur-
able sets of infinite measure (e.g. if T is the Hilbert transform on the real
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line). Thus, we are led to consider ν defined on a structure weaker than a
σ-algebra (e.g. bounded measurable subsets of the real line).

In this paper, we consider operators T defined over simple functions with
respect to a δ-ring R. We consider the associated vector measure ν on R.
Under appropriate conditions, L1(ν) is the optimal domain for T within a
certain class of Banach function spaces containing the simple functions with
respect to R (Theorem 2.5). In this case, the integration operator f 7→

T
f dν

extends T to L1(ν).
An important class of operators between function spaces are kernel oper-

ators, defined as T (f) =
T∞
0 f(y)K(·, y) dy, whereK is a measurable function

on [0,∞) × [0,∞). If the kernel K is nonnegative and satisfies some inte-
grability and monotonicity conditions, then we give a precise description,
as in [8], of the optimal domain for T as an interpolation space of weighted
L1-spaces (Theorems 3.5, 3.8 and 3.9).

1. Preliminaries. Given a σ-finite measure space (Ω,Σ, µ), a Banach

function space (abbreviated B.f.s.) X is a Banach space of (classes of) mea-
surable functions which are integrable over sets of finite measure, such that
X contains the simple functions supported on sets of finite measure and
satisfies the condition that g ∈ X with ‖g‖X ≤ ‖f‖X whenever f ∈ X and
|g| ≤ |f | µ-a.e. [15, Definition 1.b.17]. Note that a B.f.s. is a Banach lattice
for the µ-a.e. order. A Banach lattice has absolutely continuous (abbreviated
a.c.) norm if order bounded, increasing sequences are norm convergent. A
B.f.s. X has the Fatou property if for every sequence (fn) ⊂ X of nonneg-
ative functions with supn ‖fn‖X < ∞ that increases µ-a.e. to f , we have
f ∈ X and ‖fn‖X → ‖f‖X .

Consider [0,∞) with Lebesgue measure m. A rearrangement invariant

(r.i.) space X on [0,∞) is a B.f.s. on [0,∞) which has the Fatou property
and f ∈ X implies that its decreasing rearrangement f∗ also belongs to X
with ‖f∗‖X = ‖f‖X . The decreasing rearrangement f∗ of a function f is
the left continuous inverse of its distribution function mf (λ) := m({t ∈ Ω :
|f(t)| > λ}). Relevant r.i. spaces on [0,∞) are L1 ∩ L∞, with norm
‖f‖L1∩L∞ = max{‖f‖1, ‖f‖∞}, and the space L1 + L∞ of all functions f
such that f = g + h for some g ∈ L1 and h ∈ L∞, endowed with the
norm ‖f‖L1+L∞ =

T1
0 f

∗(s) ds. Moreover, if X is a r.i. space on [0,∞), then
L1 ∩ L∞ ⊂ X ⊂ L1 + L∞ continuously. For issues related to r.i. spaces, see
[1, Chp. 2].

We briefly recall the integration theory of real functions with respect to
vector measures defined on δ-rings, due to Lewis [14] and Masani and Niemi
[16], [17]. Let R be a δ-ring of subsets of a set Ω, that is, a ring closed under
countable intersections, and Rloc the σ-algebra of all subsets A of Ω such
that A∩B ∈ R for all B ∈ R. We denote by M the space of measurable real
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functions on (Ω,Rloc) and by S(R) the space of R-simple functions, that
is, simple functions supported in R. Let λ : R → R be a countably additive
measure, that is,

∑
λ(An) converges to λ(

⋃
An) for (An) a family of disjoint

sets in R with
⋃
An ∈ R. The variation of λ is the nonnegative countably

additive measure on Rloc given by

|λ|(A) = sup
{ ∑

|λ(Ai)| : (Ai) finite disjoint sequence in R∩ 2A
}
.

A function f ∈ M is integrable with respect to λ if |f |1,λ =
T
|f | d|λ| <∞. If

we identify functions which are equal |λ|-a.e., the space L1(λ) of integrable
functions with respect to λ is a Banach space with norm |·|1,λ, in which
S(R) is dense. The integral of an R-simple function f =

∑n
i=1 aiχAi

is
defined by

T
f dλ :=

∑n
i=1 aiλ(Ai). For f ∈ L1(λ) the integral is defined

by
T
f dλ := lim

T
fn dλ, where (fn) is a sequence in S(R) converging to f

in L1(λ).

Let X be a real Banach space and ν : R → X a vector measure, that
is, ν has the property that

∑
ν(An) converges to ν(

⋃
An) in X, for (An)

disjoint sets in R with
⋃
An ∈ R. A set A ∈ Rloc is ν-null if ν(B) = 0 for all

B ∈ R∩2A. A property holds ν-almost everywhere (ν-a.e.) if it holds except
on a ν-null set. Let X∗ be the dual space of X, and |x∗ν| the variation of
the measure x∗ν : R → R. A function f ∈ M is integrable with respect to ν
if it is integrable with respect to |x∗ν| for all x∗ ∈ X∗ and for each A ∈ Rloc

there is a vector, denoted by
T
A
fdν ∈ X, such that

x∗
(\
A

f dν
)

=
\
A

f dx∗ν for all x∗ ∈ X∗.

We denote by L1(ν) the space of integrable functions with respect to ν,
where functions which are equal ν-a.e. are identified. An R-simple function
f =

∑n
i=1 aiχAi

is in L1(ν) with
T
A
f dν =

∑n
i=1 aiν(Ai ∩ A) for A ∈ Rloc.

The space L1(ν) is a Banach lattice for the ν-a.e. order and the a.c. norm
given by

‖f‖ν = sup
{\

|f | d|x∗ν| : x∗ ∈ X∗, ‖x∗‖ ≤ 1
}
.

The R-simple functions are dense in L1(ν). Moreover, L1(ν) is an ideal
of measurable functions, that is, g ∈ L1(ν) whenever |g| ≤ |f | ν-a.e. for some
f ∈ L1(ν). The integration operator defined by f ∈ L1(ν) 7→

T
f dν ∈ X is

continuous with ‖
T
f dν‖X ≤ ‖f‖ν . Also, each f ∈ L1(ν) satisfies

(1)
1

2
‖f‖ν ≤ sup

{∥∥∥
\
A

fdν
∥∥∥
X

: A ∈ R
}
≤ ‖f‖ν .

For results concerning the space L1(ν) when ν is defined on a δ-ring, see [11].



134 O. Delgado

2. Optimal domain for operators on a B.f.s. on a δ-ring. Let R be
a δ-ring of sets andX a Banach space. Given a linear operator T : S(R) → X
we consider the finitely additive set function ν : R → X defined by ν(A) =
T (χA). In this section we show that if ν is a vector measure (i.e. is countably
additive in X over R) then T can be extended to L1(ν) as a continuous
operator with values still in X. Indeed, L1(ν) is the optimal domain for T
within a certain class of spaces (see below).

The next definition extends that of B.f.s. by considering a δ-ring R in
the role played by sets of finite measure in the classical setting.

Definition 2.1. Let R be a δ-ring of sets in Ω and µ : R → [0,∞]
a countably additive measure. A Banach function space over (Ω,R, µ) is
a Banach space E of (classes of) functions in M (i.e. Rloc-measurable)
satisfying:

(i) If g ∈ M, f ∈ E and |g| ≤ |f | µ-a.e., then g ∈ E and ‖g‖E ≤ ‖f‖E.
(ii) χA ∈ E for every A ∈ R.

Note that a B.f.s. over (Ω,R, µ) is a Banach lattice with the µ-a.e. order,
in which the convergence in norm of a sequence implies the convergence
µ-a.e. for some subsequence.

Example 2.2.

(a) A B.f.s. with respect to a σ-finite measure space (Ω,Σ, µ) is a B.f.s.
over (Ω,R, µ), where R is the δ-ring of sets inΣ with finite measure.
In this case, Rloc = Σ.

(b) Let ν : R → X be a vector measure and λ : R → [0,∞] a local

control measure for ν, that is, a countably additive measure which
has the same null sets as ν. For the existence of such a measure,
see [2, Theorem 3.2] and [17, Proposition 3.6]. As noted before,
the space L1(ν) is an ideal of measurable functions containing the
R-simple functions. Since the ν-a.e. order is equivalent to the λ-a.e.
order, L1(ν) is a B.f.s. over (Ω,R, λ); see [11].

The next proposition extends Theorem 3.1 of [8] to the setting of δ-rings.

Proposition 2.3. Let E be a B.f.s. over (Ω,R, µ), X a Banach space

and T : E → X a linear operator satisfying :

(i) If fn, f ∈ E with 0 ≤ fn ↑ f µ-a.e., then Tfn converges weakly in X
to Tf .

(ii) If A ∈ Rloc with χA ∈ E and x∗ ∈ X∗, we have

sup
B∈R∩2A

|x∗T (χB)| = 0 ⇒ x∗T (χA) = 0.

Then the set function ν : R → X given by ν(A) = T (χA) is a vector measure

and for each f ∈ E we have f ∈ L1(ν) with
T
f dν = Tf . Even more, if µ and
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ν are equivalent , that is, they have the same null sets, then E is continuously

embedded into L1(ν) and the integration operator extends T .

Proof. Let (An) be disjoint sets in R with
⋃
An ∈ R. For any subse-

quence (Anj
), from (i) we see that T (χ⋃N

j=1
Anj

) =
∑N

j=1 ν(Anj
) converges

weakly in X to T (χ⋃
Anj

) = ν(
⋃
Anj

). From the Orlicz–Pettis theorem,

it follows that
∑
ν(An) is unconditionally convergent to ν(

⋃
An); see [12,

Corollary I.4.4]. Thus, ν is a vector measure on R.
Suppose that for simple functions ψ ∈ E we have ψ ∈ L1(ν) and

T
ψ dν =

T (ψ). Consider 0 ≤ f ∈ E and let (ψn) be a sequence of simple functions
increasing to f . Then ψn ∈ E and so ψn ∈ L1(ν). Since R-simple functions
are dense in L1(ν), we can take ϕn ∈ S(R) such that ‖ψn−ϕn‖ν → 0. Then
there is a subsequence such that ϕnk

→ f ν-a.e. Let x∗ ∈ X∗. If we prove
that (

T
A
ϕnk

dx∗ν) converges for every A ∈ Rloc, applying [11, Proposition
2.3] to the measure x∗ν : R → R, we will deduce that f is integrable with
respect to x∗ν and

T
A
f dx∗ν = limk→∞

T
A
ϕnk

dx∗ν for A ∈ Rloc.
Note that∣∣∣

\
A

ϕnk
dx∗ν −

\
A

ψnk
dx∗ν

∣∣∣ ≤
\
A

|ϕnk
− ψnk

| d|x∗ν|

≤ ‖x∗‖ ‖ϕnk
− ψnk

‖ν → 0.

Then from condition (i) it follows that

x∗T (fχA) = lim
k→∞

x∗T (ψnk
χA) = lim

k→∞

\
A

ψnk
dx∗ν = lim

k→∞

\
A

ϕnk
dx∗ν.

So, f is integrable with respect to x∗ν and\
A

fdx∗ν = lim
k→∞

\
A

ϕnk
dx∗ν = x∗T (fχA).

Hence, f ∈ L1(ν) and
T
f dν = T (f). Since a µ-null set is ν-null, the map that

takes the class of E represented by f to the class of L1(ν) represented by f
is well defined. In the case µ and ν are equivalent, this map is one-to-one,
that is, it is the identity map. In this case, E is embedded in L1(ν) and
the embedding is continuous since it is a positive linear operator between
Banach lattices; see [15, p. 2].

Therefore, we only have to prove that if χA ∈ E then χA ∈ L1(ν)
with

T
χA dν = T (χA). If A ∈ Rloc with χA ∈ E, then |x∗ν|(A) < ∞

for every x∗ ∈ X∗. Suppose not; then for some x∗ ∈ X∗ we can find, via
a standard procedure, an increasing sequence of sets Bn ∈ R ∩ 2A such
that |x∗ν(Bn)| > n. But from (i), ν(Bn) = T (χBn) is weakly convergent to
T (χ⋃

Bn
) ∈ X. The contradiction establishes the claim.

Let B ∈Rloc and x∗ ∈X∗. Then |x∗ν|(B ∩ A) < ∞. Since |x∗ν|(B ∩ A)
= sup{|x∗ν|(H) : H ∈ R ∩ 2B∩A}, there exists an increasing sequence
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(Hn) of sets in R∩ 2B∩A with |x∗ν|((B ∩A)\Hn) converging to zero. Thus,
χHn ↑ χA∩B x∗ν-a.e. and so\

B

χA dx
∗ν = lim

n→∞

\
χHn dx

∗ν = lim
n→∞

x∗ν(Hn)

= lim
n→∞

x∗T (χHn) = x∗T (χB∩A).

The last equality is obtained from condition (ii), since (B∩A)\
⋃
Hn is a x∗ν-

null set and so x∗T (χ(B∩A)\
⋃
Hn

) = 0. Hence, χA ∈ L1(ν) and
T
B
χA dν =

T (χA∩B) for every B ∈ Rloc.

An important consequence for applications follows.

Corollary 2.4. Let E be a B.f.s. over (Ω,R, µ) with a.c. norm, X a

Banach space and T : E → X a continuous linear operator such that B is

µ-null whenever B ∈ Rloc with T (χA) = 0 for every set A ∈ R ∩ 2B. Then

E is continuously embedded into L1(ν) and the integration operator extends

T , where ν : R → X is the vector measure given by ν(A) = T (χA).

Proof. Since the condition satisfied by T means that µ and ν are equiv-
alent, we only have to show that conditions (i) and (ii) in Proposition 2.3
hold. From the absolute continuity of the norm of E and the continuity of T ,
(i) follows. For (ii), since T is continuous it suffices to show S(R) is dense
in E. Let {Aα : α ∈ ∆} be a maximal family of sets Aα ∈ R with µ(Aα) > 0
and µ(Aα ∩Aβ) = 0 for α 6= β. Observe that the maximality of this family
implies that if B ∈ Rloc satisfies µ(B ∩Aα) = 0 for every α ∈ ∆, then B is
a µ-null set. Given f ∈ E, for any sequence (αj) ⊂ ∆ we have

n∑

j=1

|f |χAαj
= |f |χ⋃n

j=1
Aαj

↑ |f |χ⋃
Aαj

µ-a.e.

Since E has a.c. norm,
∑

j≥1 |f |χAαj
converges in E. Thus,

∑
α∈∆ |f |χAα

satisfies the Cauchy condition. So, fχAα = 0 µ-a.e. except for a countable set
{αj}. Hence, f = fχ⋃

Aαj
µ-a.e. Suppose f ≥ 0 and let (ψn) be a sequence

of simple functions with 0 ≤ ψn ↑ f . Then ϕn = ψnχ⋃n
j=1

Aαj
are R-simple

functions and 0 ≤ ϕn ↑ f µ-a.e. Hence, (ϕn) converges to f in E.

The next result identifies, under very mild conditions, the optimal do-
main for an operator.

Theorem 2.5. Let R be a δ-ring , X a Banach space and T : S(R) → X
a linear operator such that T (χAn) is weakly convergent to T (χA) in X for

every increasing sequence (An) ⊂ R with A =
⋃
An ∈ R. Then the set

function ν : R → X given by ν(A) = T (χA) is a vector measure and L1(ν)
is the optimal domain for T within the class of B.f.s.’s over (Ω,R, µ) with

a.c. norm and µ equivalent to ν.
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Proof. Note that the required condition on T is necessary and sufficient
for ν being a vector measure. The space L1(ν) is a B.f.s. over (Ω,R, λ) with
a.c. norm and λ a local control measure for ν, that is, λ is equivalent to ν.
Moreover, the integration operator extends T . Suppose now that T̃ : F → X
is a continuous linear extension of T , where F is a B.f.s. over (Ω,R, µ) with

a.c. norm and µ equivalent to ν. Let B ∈ Rloc be such that T̃ (χA) = 0 for

all A ∈ R ∩ 2B. Since T̃ (χA) = T (χA) = ν(A), it follows that B is ν-null,
equivalently B is µ-null. Hence, the hypotheses of Corollary 2.4 are satisfied
by T̃ and so F is continuously embedded in L1(ν̃), where ν̃ : R → X is

the vector measure given by ν̃(A) = T̃ (χA). Since ν̃ is equal to ν, we have
L1(ν̃) = L1(ν).

Again, an important consequence for applications follows.

Corollary 2.6. Let E be a B.f.s. over (Ω,R, µ) with a.c. norm, X a

Banach space and T : E → X a continuous linear operator such that B is

µ-null whenever B ∈ Rloc with T (χA) = 0 for all A ∈ R ∩ 2B. Then the

optimal domain for T within the class of B.f.s.’s on (Ω,R, λ) with a.c. norm

and λ equivalent to ν is the space L1(ν) with ν : R → X the vector measure

given by ν(A) = T (χA).

The required condition on T in Corollary 2.6 is necessary for the operator
integration being an extension of T to L1(ν), that is, for E being embedded
injectively in L1(ν).

Example 2.7. Let R be the δ-ring of all bounded Borel subsets of R

and m the Lebesgue measure. Note that Rloc is the Borel σ-algebra of R.
For 1 ≤ p < ∞, the space Lp(R) is a B.f.s. over (R,R,m) with a.c. norm.
An isomorphism T : Lp(R) → Lp(R) satisfies the hypothesis of Corollary
2.6, in particular m-null and ν-null sets coincide. Then, for the vector mea-
sure ν : R → Lp(R) given by ν(A) = T (χA), it follows that L1(ν) is the
optimal domain for T within the B.f.s.’s over (Ω,R, µ) with a.c. norm and
µ equivalent to ν, in particular µ = m. Also, it is known that L1(ν) is order
isomorphic to Lp(R); see [11, Example 4.1].

3. Optimal domains for kernel operators. Throughout this section,
B is the σ-algebra of the Borel subsets of [0,∞) and Bb the δ-ring of bounded
sets of B. Note that Bloc

b = B. Lebesgue measure on [0,∞) is denoted by m.
Let K : [0,∞)× [0,∞) → [0,∞) be a measurable function such that, for

every x ∈ [0,∞), the function Kx defined by Kx(y) = K(x, y) is integrable
over sets in Bb. We say that K is an admissible kernel. Associated to K we
have the finitely additive set function ν defined over Bb by

ν(A) =
\
A

K(· , y) dy,
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and the linear operator T given by

T (f) =

∞\
0

f(y)K(· , y) dy,

provided the integral exists.

Proposition 3.1. Let X be a B.f.s. on [0,∞), K an admissible kernel ,
T the operator associated to K and ν the associated set function. Suppose

that ν takes values in X, that is, ν : Bb → X is well defined.

(a) If X has a.c. norm, then ν : Bb → X is countably additive.

(b) If ν : Bb → X is countably additive, then f ∈ L1(ν) implies T (f) ∈
X and T (f) =

T
f dν.

(c) If ν : Bb → X is countably additive, then L1(ν) is the optimal domain

for T : S(Bb) → X within the class of B.f.s.’s over ([0,∞),Bb, µ)
with a.c. norm and µ equivalent to ν.

Proof. (a) Let (An) ⊂ Bb be such that
⋃
An ∈ Bb. As K is nonneg-

ative, ν(
⋃n
j=1Aj) ↑ ν(

⋃
Aj) ∈ X. Since X has a.c. norm,

∑n
j=1 ν(Aj) =

ν(
⋃n
j=1Aj) converges in X to ν(

⋃
Aj).

(b) Suppose ν : Bb → X is countably additive. Let 0 ≤ f ∈ L1(ν) and
(ψn) be a sequence of simple functions with 0 ≤ ψn ↑ f . The functions
ϕn = ψnχ[0,n] are Bb-simple and 0 ≤ ϕn ↑ f . Since L1(ν) has a.c. norm,

ϕn converges to f in L1(ν), so
T
ϕn dν →

T
f dν inX. Consider a subsequenceT

ϕnk
dν = T (ϕnk

) converging a.e. to
T
f dν. Since K is nonnegative, 0 ≤

Tϕnk
=
T∞
0 ϕnk

(y)K(· , y) dy increases to
T∞
0 f(y)K(· , y) dy. Hence, T (f) =T

f dν ∈ X.
(c) If ν : Bb → X is countably additive, then T : S(Bb) → X satisfies the

hypothesis of Theorem 2.5.

In view of Proposition 3.1, we will focus our attention on the problem of
determining conditions on the admissible kernel K and the B.f.s. X so that
ν : Bb → X is a vector measure. LetX be a r.i. space on [0,∞). Since L1∩L∞

is continuously embedded in X, a vector measure with values in L1 ∩ L∞

is also a vector measure with values in X. Thus, we look for conditions
on K guaranteeing the associated set function ν : Bb → L1 ∩L∞ is a vector
measure.

Proposition 3.2. Given an admissible kernel K, the set function ν : Bb

→ L1 ∩ L∞ associated to K is a vector measure if and only if K satisfies:

(i) The maps Ky defined by Ky(x) = K(x, y) are integrable for m-a.e.

y ∈ [0,∞).
(ii) The map y 7→

T∞
0 Ky(x) dx is integrable over sets in Bb.

(iii) For every A ∈ Bb, we have ess supx≥0

T
A
K(x, y) dy <∞.

(iv) For every A∈Bb, we have limm(B)→0 ess supx≥0

T
A∩BK(x, y) dy=0.
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Proof. Clearly ν(A) ∈ L∞ for every A ∈ Bb if and only if K satisfies
(iii). The condition that ν(A) ∈ L1 is precisely

∞\
0

\
A

K(x, y) dy dx =
\
A

∞\
0

K(x, y) dx dy <∞.

This holds for every A ∈ Bb if and only if K satisfies (i) and (ii). Thus, ν is
well defined if and only if K satisfies (i)–(iii). Since L1 has a.c. norm, from
Proposition 3.1(a) it follows that ν : Bb → L1 ∩ L∞ is countably additive if
and only if ν : Bb → L∞ is countably additive.

Suppose K satisfies (iv). Let (An) be disjoint sets in Bb, with A =⋃
An ∈ Bb. Since m(A) < ∞, we have m(

⋃
j>nAj) → 0. From (iv), it

follows that ‖ν(
⋃
j>nAj)‖∞ = ess supx≥0

T
⋃

j≥nAj
K(x, y) dy converges to

zero. So, ν : Bb → L∞ is countably additive.

Conversely, suppose ν : Bb → L∞ is countably additive. If (iv) does
not hold for some A ∈ Bb, then there exists δ > 0 and sets (Bn) with
m(Bn) ≤ 1/2n such that

δ < ess sup
x≥0

\
Bn∩A

Kx(y) dy = ‖ν(Bn ∩A)‖∞ ≤ ‖χBn∩A‖ν ≤ ‖χHn‖ν ,

where Hn =
⋃
j≥nBj ∩ A. Since χHn are Bb-simple functions decreasing

to zero m-a.e., so ν-a.e., absolute continuity of the norm in L1(ν) implies
‖χHn‖ν → 0. We have arrived at a contradiction.

Example 3.3. Let φ : [0,∞) → [0,∞) be a measurable function and
define K on [0,∞) × [0,∞) by K(x, y) = φ(x− y)χ[0,x](y). The function K
is an admissible kernel satisfying (i)–(iv) in Proposition 3.2 if and only if
φ is integrable. In this case, ν : Bb → L1 ∩ L∞ is a vector measure. These
kernels were considered in [7] for the interval [0, 1].

We also focus our attention on the problem of identifying the optimal
domain for T , the associated operator to an admissible kernel K, which
under the conditions of Proposition 3.1(c) corresponds to identifying the
space L1(ν), where ν is the vector measure associated to K. For this, we
consider decreasing kernels K, that is, satisfying Kx1

(y) ≥ Kx2
(y), for every

y ∈ [0,∞), whenever x1 ≤ x2. Decreasing admissible kernels K satisfy (iii)
and (iv) in Proposition 3.2. Thus, for these kernels, ν : Bb → L1 ∩ L∞ is
a vector measure if and only if K satisfies (i) and (ii) in Proposition 3.2.
Observe that increasing kernels (Kx1

(y) ≤ Kx2
(y), for every y ∈ [0,∞),

whenever x1 ≤ x2) do not satisfy (i) in Proposition 3.2.

Example 3.4. The kernel K(x, y)=exp (−λ(y − x))χ[x,∞)(y) with λ∈R

is admissible and satisfies conditions (i)–(iv) in Proposition 3.2. Thus, the
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associated set function ν : Bb → L1 ∩ L∞ is a vector measure. Moreover,
K is decreasing whenever λ ≤ 0.

For each decreasing admissible kernel K satisfying (i) and (ii) in Propo-
sition 3.2, we consider the functions ω and ξ given by

ω(y) =

∞\
0

Ky(x) dx, ξ(y) = K(0+, y) = lim
x→0+

K(x, y), for y ∈ [0,∞).

Note that ω and ξ are integrable over sets in Bb. Denote by L1
ω the space of

integrable functions with respect to Lebesgue measure with density ω and
by ‖ · ‖ω its norm; similarly for L1

ξ .

We first consider the smallest r.i. space L1 ∩ L∞.

Theorem 3.5. Let K be a decreasing admissible kernel satisfying (i) and

(ii) in Proposition 3.2. Then ν : Bb → L1 ∩ L∞ is a vector measure and the

space L1(ν) is order isomorphic to L1
ω ∩ L1

ξ.

Proof. The hypothesis and the monotonicity of K imply, by Proposition
3.2, that ν : Bb → L1∩L∞ is a vector measure. Let L1

ω∩L
1
ξ be endowed with

the norm ‖f‖ω,ξ = max{‖f‖ω, ‖f‖ξ} and the mψ-a.e. order, where mψ is the
Lebesgue measure with density ψ = max{ω, ξ}. Note that from Proposition
3.1(b), for f ∈ L1(ν) we have

T
f dν =

T
f(y)K(· , y) dy. Given a Bb-simple

function f , we have
T
|f | dν ∈ L1 ∩ L∞. Then

‖f‖ω =

∞\
0

|f(y)|ω(y) dy =

∞\
0

∞\
0

|f(y)|K(x, y) dy dx(2)

=

∞\
0

(\
|f | dν

)
(x) dx =

∥∥∥
\
|f | dν

∥∥∥
1
.

Since K is decreasing,

‖f‖ξ =

∞\
0

|f(y)|ξ(y) dy = ess sup
x≥0

∞\
0

|f(y)|K(x, y) dy =
∥∥∥
\
|f | dν

∥∥∥
∞
.

Hence, ‖f‖ω,ξ = ‖
T
|f | dν‖L1∩L∞ . In particular, mψ-null and ν-null sets co-

incide. From (1) it follows that 1
2‖f‖ν ≤ ‖f‖ω,ξ ≤ ‖f‖ν . Hence, L1(ν) is

order isomorphic to L1
ω ∩ L1

ξ .

Remark 3.6. If a kernel K is decreasing in the weaker sense that Kx1
(y)

≥ Kx2
(y) for m-a.e. y ∈ [0,∞) whenever x1 ≤ x2, then there exists a

decreasing kernel K̃ (in the strong sense) which satisfies K̃(x, y) = K(x, y)

for m ⊗ m-a.e. (x, y), and so K̃ and K produce the same operator T . It

is enough to take K̃(x, y) = supr∈Q, r>xK(r, y) and notice that, for every

x > 0, we have K̃(x, y) ≤ K(x, y) ≤ K̃(x−, y) for m-a.e. y ∈ [0,∞).
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Remark 3.7. Under the conditions of Theorem 3.5, ν : Bb → L1 is a
vector measure. Moreover, for a Bb-simple function f , from (1) and (2)
it follows that 1

2‖f‖ν ≤ ‖f‖ω ≤ ‖f‖ν . Thus, L1(ν) is order isomorphic
to L1

ω. Also, for all f ∈ L1
ω, we find that ‖f‖ω = ‖

T
|f | dν‖1. Similarly,

ν : Bb → L∞ is a vector measure such that L1(ν) is order isomorphic to L1
ξ

and ‖f‖ξ = ‖
T
|f | dν‖∞ for all f ∈ L1

ξ .

Now we consider the largest r.i. space L1 + L∞. A further monotonicity
property is needed.

Theorem 3.8. Let K be a decreasing admissible kernel satisfying (i)
and (ii) in Proposition 3.2. Suppose K satisfies the following condition:
there exists a constant C > 0 such that

(3)

1\
0

Ky(x) dx ≥ Cmin
{∞\

0

Ky(x) dx, K(0+, y)
}

for all y ≥ 0.

Then ν : Bb → L1 + L∞ is a vector measure and the space L1(ν) is order

isomorphic to L1
ω + L1

ξ.

Proof. Consider the space L1
ω + L1

ξ of measurable functions f such that

f = g + h for some g ∈ L1
ω and h ∈ L1

ξ , endowed with the norm

‖f‖ω,ξ = inf{‖g‖ω + ‖h‖ξ : f = g + h with g ∈ L1
ω, h ∈ L1

ξ}

=

∞\
0

|f(y)|min{ω(y), ξ(y)} dy

(see [3, (3.1.39), p. 307]), and the mψ-a.e. order, where ψ = min{ω, ξ}.

Let f be a Bb-simple function. Then ‖f‖ω,ξ ≥ ‖
T
|f | dν‖L1+L∞ . To see

this, let f = g + h for g ∈ L1
ω and h ∈ L1

ξ . From Remark 3.7 we have

‖g‖ω = ‖
T
|g| dν‖1 and ‖h‖ξ = ‖

T
|h| dν‖∞. Then

‖g‖ω + ‖h‖ξ ≥
∥∥∥
\
(|g| + |h|) dν

∥∥∥
L1+L∞

≥
∥∥∥
\
|f | dν

∥∥∥
L1+L∞

.

On the other hand, from (3) we have

∥∥∥
\
|f | dν

∥∥∥
L1+L∞

=

1\
0

(\
|f | dν

)∗
(s) ds ≥

1\
0

(\
|f | dν

)
(x) dx

=

∞\
0

|f(y)|

1\
0

Ky(x) dx dy

≥ C

∞\
0

|f(y)|min{ω(y), ξ(y)} dy = C‖f‖ω,ξ.
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Thus, (1) implies C‖f‖ω,ξ ≤ ‖f‖ν ≤ 2‖f‖ω,ξ. In particular mψ and ν have

the same null sets. So, L1(ν) and L1
ω + L1

ξ are order isomorphic.

Let now X be a r.i. space on [0,∞). Recall that if a set function ν : Bb →
L1 ∩ L∞ is a vector measure, so is ν : Bb → X. In order to describe the
space L1(ν) we need to recall the K-method of interpolation of Peetre. If
(X0, X1) are Banach spaces continuously embedded in a common Hausdorff
topological vector space, then the K-functional of f ∈ X0 +X1 is, for t > 0,

K(t, f ;X0, X1) = inf{‖f0‖ + t‖f1‖ : f = f0 + f1, f0 ∈ X0, f1 ∈ X1}.

Assume X0 ∩ X1 is dense in X0. Let X be a r.i. space on [0,∞). Then
(X0, X1)X is the space of all functions f ∈ X0 + X1 such that K′, the
derivative of the K-functional, satisfies K′(·, f ;X0, X1) ∈ X. Endowed with
the norm ‖f‖(X0,X1)X

:= ‖K′(·, f ;X0, X1)‖X , the space (X0, X1)X is an
interpolation space between X0 and X1; see [1, Chp. V]. A r.i. space X on
[0,∞) can be generated by this procedure as (L1[0,∞), L∞[0,∞))X .

Now we can prove the main result.

Theorem 3.9. Let X be a r.i. space on [0,∞) with a.c. norm and K
a decreasing admissible kernel satisfying (i) and (ii) in Proposition 3.2.
Suppose K satisfies the following condition: there exists a constant C > 0
such that

(4)

t\
0

Ky(x) dx ≥ Cmin
{∞\

0

Ky(x)dx, tK(0+, y)
}

for all t, y ≥ 0.

Then ν : Bb → X is a vector measure and the space L1(ν) is order isomor-

phic to (L1
ω, L

1
ξ)X .

Proof. For every f ∈ L1
ω + L1

ξ , from [3, (3.1.39), p. 307], we have

(5) K(t, f ;L1
ω, L

1
ξ) =

∞\
0

|f(y)|min{ω(y), tξ(y)} dy.

The space (L1
ω, L

1
ξ)X is a B.f.s. on ([0,∞),Bb,mψ), with ψ = min{ω, ξ}.

Moreover, (L1
ω, L

1
ξ)X has a.c. norm since X has a.c. norm (see Lemma 3.10

below). So, Bb-simple functions are dense in (L1
ω, L

1
ξ)X .

Let f be a Bb-simple function. Applying condition (4) to (5) we have

K(t, f ;L1
ω, L

1
ξ) ≤

1

C

∞\
0

|f(y)|

t\
0

Ky(x) dx dy

=
1

C

t\
0

∞\
0

|f(y)|K(x, y) dy dx ≤
1

C

t\
0

(\
|f | dν

)∗
(s) ds.
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Moreover, K(t, f ;L1
ω, L

1
ξ) ≥

Tt
0(
T
|f | dν)∗(s) ds, since for every g ∈ L1

ω and

h ∈ L1
ξ with f = g + h, from Remark 3.7, we have

‖g‖ω + t‖h‖ξ =
∥∥∥
\
|g| dν

∥∥∥
1
+ t

∥∥∥
\
|h| dν

∥∥∥
∞

≥ K
(
t,
\
(|g| + |h|) dν ;L1, L∞

)
≥

t\
0

(\
|f | dν

)∗
(s) ds,

where we have used the fact that K(t, f ;L1, L∞)=
Tt
0 f

∗(s) ds for f ∈L1+L∞;
see [1, Theorem V.1.6]. From [1, Theorem II.4.7], it follows that

∥∥∥
\
|f | dν

∥∥∥
X

≤ ‖f‖(L1
ω,L

1
ξ
)X

= ‖K′(· , f ;L1
ω, L

1
ξ)‖X ≤

1

C

∥∥∥
\
|f | dν

∥∥∥
X
,

and from (1), C‖f‖(L1
ω,L

1
ξ
)X

≤ ‖f‖ν ≤ 2‖f‖(L1
ω,L

1
ξ
)X

. In particular, mψ and ν

have the same null sets. Thus, L1(ν) is order isomorphic to (L1
ω, L

1
ξ)X .

We now prove the technical lemma referred to in the previous proof.

Lemma 3.10. If X has a.c. norm then (L1
ω, L

1
ξ)X has a.c. norm, where

ω and ξ are weights.

Proof. Consider (L1
ω, L

1
ξ)X endowed with the mψ-a.e. order where ψ =

min{ω, ξ}. To simplify notation let K(t, f) = K(t, f ;L1
ω, L

1
ξ). Let fn, f ∈

(L1
ω, L

1
ξ)X with 0 ≤ fn ↑ f mψ-a.e. Then K′(t, fn) increases to K′(t, f), for

all t > 0. We now prove this. For any function g, we can write K′(t, g) as

(6) K′(t, g) = lim
h→0+

1

h
(K(t+ h, g) −K(t, g)).

In (5), writing Φ(y, t) = min{ω(y), tξ(y)} we have

(7)
1

h
(K(t+ h, g) −K(t, g)) =

1

h

∞\
0

|g(y)|(Φ(t+ h, y) − Φ(t, y)) dy.

From (6) and (7) it follows that K′(t, fn) ≤ K′(t, fn+1) ≤ K′(t, f) for all
t > 0. Since K′ is decreasing, we have

(8)
1

h
(K(t+ h, g) −K(t, g)) =

1

h

t+h\
t

K′(s, g) ds ≤ K′(t, g).

From (5), it follows that for all t > 0,

(9) K(t, f) = lim
n→∞

K(t, fn).

Thus, (8) and (9) imply

1

h
(K(t+ h, f) −K(t, f)) = lim

n→∞

1

h
(K(t+ h, fn) −K(t, fn))

≤ lim
n→∞

K′(t, fn) ≤ K′(t, f).
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Taking the limit as h→ 0+, we obtain K′(t, fn) ↑ K′(t, f) for all t > 0. Since
X has a.c. norm, K′(·, fn) converges in X to K′(·, f). Since 0 ≤ fn ≤ f , equa-
tion (7) shows that K′(t, f) −K′(t, fn) = K′(t, f − fn). Hence, fn converges
to f in (L1

ω, L
1
ξ)X .

Remark 3.11. Considering Example 3.4, direct computation shows that
the admissible kernel K for λ ≤ 0 satisfies condition (4) in Theorem 3.9.
Therefore, for a r.i. space X on [0,∞) with a.c. norm and for the vector
measure ν : Bb → X associated to K, we have L1(ν) = (L1

ω, L
1
ξ)X , where

ω(y) = (1 − e−λy)/λ and ξ(y) = e−λy.
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