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Optimal domains for kernel operators on [0, c0) x [0, c0)
by

OLviDO DELGADO (Huelva)

Abstract. Let T be a kernel operator with values in a rearrangement invariant Ba-
nach function space X on [0,00) and defined over simple functions on [0, c0) of bounded
support. We identify the optimal domain for T (still with values in X) in terms of in-
terpolation spaces, under appropriate conditions on the kernel and the space X. The
techniques used are based on the relation between linear operators and vector mea-
sures.

Introduction. Let T': E — X be a continuous linear operator between
function spaces. The problem of determining the optimal domain for T
within a class F of spaces consists in identifying the “largest” space Y € F
with E C Y to which T can be extended as a continuous operator, still
with values in X. The space Y is the largest in the sense that if T' can be
extended to F' € F then F is continuously embedded into Y. A procedure
for solving this problem is to associate to 1" a vector measure v, defined by
v(A) = T(xa), and to study the space L'(v) of integrable functions with
respect to v. In the case when F and X are Banach function spaces over
a finite measure space, optimal domains for classical operators have been
studied in [7], [8], [9] and [19]. In this setting, the space L'(v) turns out to
be the optimal domain for T within the class of Banach function spaces with
absolutely continuous norm provided T satisfies an appropriate “monotone
weak convergence” property. This identification allows one to deduce prop-
erties of the optimal domain for 7" from those of 7' (and so of v) and X; see
[4], [5], [6], [10], [13], [18], [20], [21].

For operators T' defined on Banach function spaces over an infinite mea-
sure space, the associated vector measure v may not be defined for measur-
able sets of infinite measure (e.g. if 7' is the Hilbert transform on the real
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line). Thus, we are led to consider v defined on a structure weaker than a
o-algebra (e.g. bounded measurable subsets of the real line).

In this paper, we consider operators 1" defined over simple functions with
respect to a d-ring R. We consider the associated vector measure v on R.
Under appropriate conditions, L'(v) is the optimal domain for 7" within a
certain class of Banach function spaces containing the simple functions with
respect to R (Theorem 2.5). In this case, the integration operator f — { f dv
extends T to L(v).

An important class of operators between function spaces are kernel oper-
ators, defined as T'(f) = §;° f(y) K (-, y) dy, where K is a measurable function
on [0,00) x [0,00). If the kernel K is nonnegative and satisfies some inte-
grability and monotonicity conditions, then we give a precise description,
as in [8], of the optimal domain for 7" as an interpolation space of weighted
L'-spaces (Theorems 3.5, 3.8 and 3.9).

1. Preliminaries. Given a o-finite measure space ({2, X, 1), a Banach
function space (abbreviated B.f.s.) X is a Banach space of (classes of) mea-
surable functions which are integrable over sets of finite measure, such that
X contains the simple functions supported on sets of finite measure and
satisfies the condition that g € X with ||g||x < ||f||x whenever f € X and
lg| < |f| p-a.e. [15, Definition 1.b.17]. Note that a B.f.s. is a Banach lattice
for the p-a.e. order. A Banach lattice has absolutely continuous (abbreviated
a.c.) norm if order bounded, increasing sequences are norm convergent. A
B.f.s. X has the Fatou property if for every sequence (f,) C X of nonneg-
ative functions with sup,, ||fn|x < oo that increases p-a.e. to f, we have
fe X and | fullx — If]x.

Consider [0,00) with Lebesgue measure m. A rearrangement invariant
(r.i.) space X on [0,00) is a B.f.s. on [0, 00) which has the Fatou property
and f € X implies that its decreasing rearrangement f* also belongs to X
with ||f*|x = [|fllx. The decreasing rearrangement f* of a function f is
the left continuous inverse of its distribution function m¢(X\) := m({t € £2:
|f(#)] > A}). Relevant r.i. spaces on [0,00) are L' N L, with norm
I fllniaree = max{[|f|l1,]lf|lo}, and the space L' + L of all functions f
such that f = g + h for some g € L' and h € L*, endowed with the
norm || fllpiype = S(l) f*(s) ds. Moreover, if X is a r.i. space on [0,00), then
L'NL>® C X C L'+ L™ continuously. For issues related to r.i. spaces, see
[1, Chp.2].

We briefly recall the integration theory of real functions with respect to
vector measures defined on ¢-rings, due to Lewis [14] and Masani and Niemi
[16], [17]. Let R be a §-ring of subsets of a set {2, that is, a ring closed under
countable intersections, and RI°° the o-algebra of all subsets A of §2 such
that ANB € R for all B € R. We denote by M the space of measurable real
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functions on (£2,R1°°) and by S(R) the space of R-simple functions, that
is, simple functions supported in R. Let A\: R — R be a countably additive
measure, that is, Y - A(A,) converges to A(|J 4, ) for (A,) a family of disjoint
sets in R with |J A, € R. The variation of X is the nonnegative countably
additive measure on R'°° given by

IA[(A) = sup { 3 IA(44)] < (4;) finite disjoint sequence in R () 2A}.

A function f € M is integrable with respect to X if |f|1x = {|f| d|A| < oco. If
we identify functions which are equal |A|-a.e., the space L!()) of integrable
functions with respect to X is a Banach space with norm |-|; , in which
S(R) is dense. The integral of an R-simple function f = > | aixa, is
defined by { fd\ := Y | a;A(A;). For f € L'(\) the integral is defined
by | fdX := lim§ f,, d\, where (f,) is a sequence in S(R) converging to f
in LY(N).

Let X be a real Banach space and v: R — X a vector measure, that
is, v has the property that > v(A,) converges to v(|JA4,) in X, for (A,)
disjoint sets in R with | J A, € R. A set A € R'°®is v-null if v(B) = 0 for all
B € RN24. A property holds v-almost everywhere (v-a.e.) if it holds except
on a v-null set. Let X* be the dual space of X, and |z*v| the variation of
the measure z*v: R — R. A function f € M is integrable with respect to v
if it is integrable with respect to |2*v| for all 2* € X* and for each A € RI°¢
there is a vector, denoted by SA fdv € X, such that

a:*(ifdy):;fdzn*u for all z* € X*.

We denote by L!(v) the space of integrable functions with respect to v,
where functions which are equal v-a.e. are identified. An R-simple function
f =" aixa, isin LY(v) with §, fdv =31 | aiv(4; N A) for A € R
The space L'(v) is a Banach lattice for the v-a.e. order and the a.c. norm
given by

11l = sup { JIf1dla*v]  2* € X*, o) < 1},
The R-simple functions are dense in L!(v). Moreover, L!(v) is an ideal
of measurable functions, that is, g € L!(v) whenever |g| < |f| v-a.e. for some

f € LY(v). The integration operator defined by f € L'(v) — {fdv € X is
continuous with || § f dv||x < ||f|l,. Also, each f € L'(v) satisfies

) Sl <swp {|[{ far]|, 4R} <5l
A

For results concerning the space L'(v) when v is defined on a d-ring, see [11].
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2. Optimal domain for operators on a B.f.s. on a d-ring. Let R be
a o-ring of sets and X a Banach space. Given a linear operator T': S(R) — X
we consider the finitely additive set function v: R — X defined by v(A) =
T(xA4)- In this section we show that if v is a vector measure (i.e. is countably
additive in X over R) then T can be extended to L!(v) as a continuous
operator with values still in X. Indeed, L!(v) is the optimal domain for T
within a certain class of spaces (see below).

The next definition extends that of B.f.s. by considering a J-ring R in
the role played by sets of finite measure in the classical setting.

DEFINITION 2.1. Let R be a d-ring of sets in 2 and pu: R — [0, 0]
a countably additive measure. A Banach function space over (2, R,u) is
a Banach space E of (classes of) functions in M (i.e. R'°>-measurable)
satisfying:

(i) fge M, f € F and |g| < |f| p-a.e., then g € E and ||g||g < || f| &
(ii) xa € E for every A € R.

Note that a B.f.s. over (£2, R, u) is a Banach lattice with the u-a.e. order,
in which the convergence in norm of a sequence implies the convergence
p-a.e. for some subsequence.

EXAMPLE 2.2.

(a) A B.f.s. with respect to a o-finite measure space (2, X, 1) is a B.f.s.
over (2, R, i), where R is the d-ring of sets in X' with finite measure.
In this case, R = X.

(b) Let v: R — X be a vector measure and A\: R — [0,00] a local
control measure for v, that is, a countably additive measure which
has the same null sets as v. For the existence of such a measure,
see [2, Theorem 3.2] and [17, Proposition 3.6]. As noted before,
the space L'(v) is an ideal of measurable functions containing the
R-simple functions. Since the v-a.e. order is equivalent to the A-a.e.
order, L*(v) is a B.f.s. over (£2, R, \); see [11].

The next proposition extends Theorem 3.1 of [8] to the setting of d-rings.

PROPOSITION 2.3. Let E be a B.f.s. over (2, R,u), X a Banach space
and T : E — X a linear operator satisfying:

(i) If fu,f € E with0 < f, T f p-a.e., then T f,, converges weakly in X
to Tf.
(ii) If A € R with x4 € E and x* € X*, we have
sup |[z*T(xB)|=0 = z*T(xa) =0.
BeRN24

Then the set function v : R — X given by v(A) = T(x4) is a vector measure
and for each f € E we have f € L*(v) with § f dv = T f. Even more, if p and
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v are equivalent, that is, they have the same null sets, then E is continuously
embedded into L'(v) and the integration operator extends T.

Proof. Let (A,) be disjoint sets in R with |JA,, € R. For any subse-

quence (A ), from (i) we see that T(XUN a )= Z;VZI v(Ap,) converges
i=14n;

weakly in X to T(x|y Anj) = v(JAp,). From the Orlicz-Pettis theorem,

it follows that > v(A,) is unconditionally convergent to v(|JA4,); see [12,
Corollary I.4.4]. Thus, v is a vector measure on R.

Suppose that for simple functions ¢ € E we have ¢ € L'(v) and {¢ dv =
T'(1). Consider 0 < f € E and let (1,,) be a sequence of simple functions
increasing to f. Then 1), € E and so ¢, € L'(v). Since R-simple functions
are dense in L!(v), we can take o, € S(R) such that ||[¢», — |, — 0. Then
there is a subsequence such that ¢,, — f v-a.e. Let 2* € X*. If we prove
that (§, ¥n,dz*v) converges for every A € RI°¢ applying [11, Proposition
2.3] to the measure z*v: R — R, we will deduce that f is integrable with
respect to x*v and SA fdx*v =limg_ s SA on,, dz*v for A € RI°C.

Note that

‘ S on,, dx*v — S Y, daj*u‘ < S |on, — Un,, | d|z” V|
A A A
< [l llny, = oy [l — 0.

Then from condition (i) it follows that
*T(fxa) = lim 2"T(Yp, xa) = lim S tp, dz*v = lim S ©n,, dx*v.
k—o0 k—o0 n k—oo A

So, f is integrable with respect to *v and

S fdz*v = lim S on, dz*v = 2T (fxa).

A ooy

Hence, f € L'(v) and { f dv = T(f). Since a g-null set is v-null, the map that
takes the class of E represented by f to the class of L!(v) represented by f
is well defined. In the case p and v are equivalent, this map is one-to-one,
that is, it is the identity map. In this case, E is embedded in L'(v) and
the embedding is continuous since it is a positive linear operator between
Banach lattices; see [15, p. 2].

Therefore, we only have to prove that if x4 € FE then ya € L'(v)
with {xadv = T(xa). If A € R'® with ya € E, then |z*v|(A) <
for every x* € X*. Suppose not; then for some z* € X* we can find, via
a standard procedure, an increasing sequence of sets B, € R N 24 such
that |z*v(By,)| > n. But from (i), v(B,) = T(xB, ) is weakly convergent to
T(xyB,) € X. The contradiction establishes the claim.

Let B€RY¢ and x* € X*. Then |z*v|(B N A) < oco. Since |z*v|(B N A)
= sup{|z*v|(H) : H € RN 2B74} there exists an increasing sequence
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(H,) of sets in R N 2874 with |z*v|((B N A)\H,) converging to zero. Thus,
XH, | xanB x*v-a.e. and so

X xAdzr*v = lim SXH” dz*v = lim z*v(H,)
B n—oo n—oo

= lim *T(xm,) = 2"T(xBnA)-
n—oo

The last equality is obtained from condition (ii), since (BNA)\ |J Hy, is a z*v-
null set and so =*T'(X(pna)\ U H,) = 0- Hence, x4 € L'(v) and §;xadv =
T(xang) for every B € R1°°. u

An important consequence for applications follows.

COROLLARY 2.4. Let E be a B.f.s. over (£2,R, ) with a.c. norm, X a
Banach space and T : E — X a continuous linear operator such that B is
p-null whenever B € R with T(x ) = 0 for every set A € RN25. Then
E is continuously embedded into L' (v) and the integration operator extends
T, where v : R — X s the vector measure given by v(A) =T (xa).

Proof. Since the condition satisfied by T" means that p and v are equiv-
alent, we only have to show that conditions (i) and (ii) in Proposition 2.3
hold. From the absolute continuity of the norm of E and the continuity of T,
(i) follows. For (ii), since T is continuous it suffices to show S(R) is dense
in E. Let {A, : @ € A} be a maximal family of sets A, € R with u(A,) >0
and p(Ay N Ag) = 0 for a # 3. Observe that the maximality of this family
implies that if B € R'°° satisfies u(B N A,) = 0 for every a € A, then B is
a p-null set. Given f € E, for any sequence (o) C A we have

n
2 17ben, = g e, TG, s
]:

Since E has a.c. norm, » ., |f|XAaj converges in E. Thus, > - |f|xa.
satisfies the Cauchy condition. So, fx 4o = 0 p-a.e. except for a countable set
{a;}. Hence, f = fx Aa, frace. Suppose f > 0 and let (¢,,) be a sequence
of simple functions with 0 <, T f. Then ¢, = danU;L:l Aq,; A€ R-simple
functions and 0 < ¢,, T f p-a.e. Hence, (¢,,) converges to f in F. =

The next result identifies, under very mild conditions, the optimal do-
main for an operator.

THEOREM 2.5. Let R be a 6-ring, X a Banach space and T : S(R) — X
a linear operator such that T'(xa, ) is weakly convergent to T'(xa) in X for
every increasing sequence (Ap,) C R with A = |JA, € R. Then the set
function v : R — X given by v(A) = T(xa) is a vector measure and L'(v)
is the optimal domain for T within the class of B.f.s.’s over (£2, R, u) with
a.c. norm and p equivalent to v.
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Proof. Note that the required condition on T is necessary and sufficient
for v being a vector measure. The space L!(v) is a B.f.s. over (£2, R, \) with
a.c. norm and A a local control measure for v, that is, A is equivalent to v.
Moreover, the integration operator extends 7. Suppose now that T: F' — X
is a continuous linear extension of T', where F' is a B.f.s. over (§2, R, i) with
a.c. norm and p equivalent to v. Let B € R'°® be such that T(XA) = 0 for
all A € RN28. Since T(xa) = T(xa) = v(A), it follows that B is v-null,
equivalently B is u-null. Hence, the hypotheses of Corollary 2.4 are satisfied
by T and so F is continuously embedded in L!(7), where 7: R — X is
the vector measure given by 7(A) = T(x4). Since ¥ is equal to v, we have
L'(v)=L'Y(v). =

Again, an important consequence for applications follows.

COROLLARY 2.6. Let E be a B.f.s. over (£2,R, ) with a.c. norm, X a
Banach space and T: E — X a continuous linear operator such that B is
p-null whenever B € RI1°¢ with T(x4) = 0 for all A € RN 2B. Then the
optimal domain for T within the class of B.f.s.’s on (£2, R, \) with a.c. norm
and X equivalent to v is the space L'(v) with v: R — X the vector measure
given by v(A) =T(xa).

The required condition on 7" in Corollary 2.6 is necessary for the operator
integration being an extension of T to L'(v), that is, for E being embedded
injectively in L!(v).

ExaMmpPLE 2.7. Let R be the §-ring of all bounded Borel subsets of R
and m the Lebesgue measure. Note that R!°° is the Borel o-algebra of R.
For 1 < p < oo, the space LP(R) is a B.f.s. over (R, R, m) with a.c. norm.
An isomorphism T': LP(R) — LP(R) satisfies the hypothesis of Corollary
2.6, in particular m-null and v-null sets coincide. Then, for the vector mea-
sure v: R — LP(R) given by v(A) = T(xa), it follows that L(v) is the
optimal domain for 7" within the B.f.s.’s over (£2, R, ) with a.c. norm and
@ equivalent to v, in particular g = m. Also, it is known that L!(v) is order
isomorphic to LP(R); see [11, Example 4.1].

3. Optimal domains for kernel operators. Throughout this section,
B is the o-algebra of the Borel subsets of [0, 00) and By, the §-ring of bounded
sets of B. Note that B® = B. Lebesgue measure on [0, o) is denoted by m.

Let K: [0,00) X [0,00) — [0, 00) be a measurable function such that, for
every z € [0,00), the function K, defined by K,(y) = K(z,y) is integrable
over sets in By,. We say that K is an admissible kernel. Associated to K we
have the finitely additive set function v defined over By, by

v(A) = [ K () dy,
A
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and the linear operator T' given by

oo

T(f) =\ fW)KE(.y)dy,

provided the integral exists. 0

PROPOSITION 3.1. Let X be a B.f.s. on [0,00), K an admissible kernel,
T the operator associated to K and v the associated set function. Suppose
that v takes values in X, that is, v: By, — X is well defined.

(a) If X has a.c. norm, then v: By, — X is countably additive.

(b) Ifv: By, — X is countably additive, then f € L'(v) implies T(f) €
X and T(f) =\ fdv.

(c) Ifv: By — X is countably additive, then L (v) is the optimal domain
for T: S(By,) — X within the class of B.f.s.’s over ([0,00), By, 1)
with a.c. norm and p equivalent to v.

Proof. (a) Let (A,) C By be such that |J A, € Bp. As K is nonneg-
ative, v(Uj_; 4;) T v(UA;) € X. Since X has a.c. norm, > 1, v(4;) =
v(Uj=; 4j) converges in X to v(JA4;).

(b) Suppose v: By, — X is countably additive. Let 0 < f € L'(v) and
() be a sequence of simple functions with 0 < ¢, T f. The functions
¥n = YnXo,n are Bp-simple and 0 < ¢, T f. Since L'(v) has a.c. norm,
¢, converges to f in L'(v), so {¢ndv — | fdvin X. Consider a subsequence
{on, dv = T(pp,) converging a.e. to | fdv. Since K is nonnegative, 0 <
Tony = 17 ¢y (1)K (- ) dy increases to 17 f(y) (- y) dy. Hence, T(f) —
{fdv e X.

(c) If v: By, — X is countably additive, then T': S(By,) — X satisfies the
hypothesis of Theorem 2.5. =

In view of Proposition 3.1, we will focus our attention on the problem of
determining conditions on the admissible kernel K and the B.f.s. X so that
v: By, — X is a vector measure. Let X be ar.i. space on [0, 00). Since L'NnL>
is continuously embedded in X, a vector measure with values in L' N L>®
is also a vector measure with values in X. Thus, we look for conditions
on K guaranteeing the associated set function v: By, — L' N L™ is a vector
measure.

PROPOSITION 3.2. Given an admissible kernel K, the set function v: By,
— L'N L™ associated to K is a vector measure if and only if K satisfies:

(i) The maps K, defined by K,(z) = K(z,y) are integrable for m-a.e.
y € [0,00).
(ii) The map y — §;° Ky(x) dx is integrable over sets in By,.
(iii) For every A € By, we have esssup,sq § , K(z,y) dy < oc.
(iv) For every A€ By, we have lim,,(py_g esssup,q § 45 K (7, y) dy=0.



Optimal domains for kernel operators 139

Proof. Clearly v(A) € L™ for every A € By, if and only if K satisfies
(iii). The condition that v(A) € L! is precisely

S SK(w,y)dydx:S SK(x,y)d:z:dy<oo.
0A A0

This holds for every A € By, if and only if K satisfies (i) and (ii). Thus, v is
well defined if and only if K satisfies (i)—(iii). Since L! has a.c. norm, from
Proposition 3.1(a) it follows that v: B, — L' N L is countably additive if
and only if v: By, — L™ is countably additive.

Suppose K satisfies (iv). Let (A,) be disjoint sets in By, with A =
UAn € By. Since m(A4) < oo, we have m(U;., 4;) — 0. From (iv), it
follows that [[v/(U;>, 45)[ , = esssup,»g SU N

Y K (z,y)dy converges to
zero. So, v: By, — L™ is countably additive.

Conversely, suppose v: B, — L% is countably additive. If (iv) does
not hold for some A € By, then there exists 6 > 0 and sets (B,) with

m(B,) < 1/2" such that
o <esssup | Ku(y)dy = [v(Ba N A)llo < Ixsanally < lIxa,llo,
220 p'nA

where H,, = |J

to zero m-a.e., so v-a.e., absolute continuity of the norm in L!(v) implies
llxm, |l — 0. We have arrived at a contradiction. m

i>n B N A. Since xp, are Bp-simple functions decreasing

EXAMPLE 3.3. Let ¢: [0,00) — [0,00) be a measurable function and
define K on [0, 00) x [0,00) by K(z,y) = ¢(z — y)X[0,.](¥)- The function K
is an admissible kernel satisfying (i)—(iv) in Proposition 3.2 if and only if
¢ is integrable. In this case, v: By, — L' N L™ is a vector measure. These
kernels were considered in [7] for the interval [0, 1].

We also focus our attention on the problem of identifying the optimal
domain for T, the associated operator to an admissible kernel K, which
under the conditions of Proposition 3.1(c) corresponds to identifying the
space L'(v), where v is the vector measure associated to K. For this, we
consider decreasing kernels K, that is, satisfying K,, (y) > K, (y), for every
y € [0,00), whenever z; < z3. Decreasing admissible kernels K satisfy (iii)
and (iv) in Proposition 3.2. Thus, for these kernels, v: B, — L' N L™ is
a vector measure if and only if K satisfies (i) and (ii) in Proposition 3.2.
Observe that increasing kernels (K, (y) < Kg,(y), for every y € [0,00),
whenever 21 < x2) do not satisfy (i) in Proposition 3.2.

EXAMPLE 3.4. The kernel K (z,y)=exp (=AY — ¥))X[z,00)(y) With A€R
is admissible and satisfies conditions (i)—(iv) in Proposition 3.2. Thus, the
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associated set function v: B, — L' N L™ is a vector measure. Moreover,
K is decreasing whenever A < 0.

For each decreasing admissible kernel K satisfying (i) and (ii) in Propo-
sition 3.2, we consider the functions w and & given by

w(y) = | Ky()dz, &(y)=K(O",y) = i K(z,y), foryel0,00).
0

Note that w and ¢ are integrable over sets in B;,. Denote by L}, the space of
integrable functions with respect to Lebesgue measure with density w and
by | - [l its norm; similarly for L.

We first consider the smallest r.i. space L' N L.

THEOREM 3.5. Let K be a decreasing admissible kernel satisfying (i) and
(ii) in Proposition 3.2. Then v: B, — L' N L™ is a vector measure and the
space L*(v) is order isomorphic to L., N L%.

Proof. The hypothesis and the monotonicity of K imply, by Proposition
3.2, that v: B, — L'NL> is a vector measure. Let LLHL% be endowed with
the norm || f||w.e = max{| fllw. | f|l¢} and the my-a.e. order, where my is the
Lebesgue measure with density ¢ = max{w, £}. Note that from Proposition
3.1(b), for f € L'(v) we have { fdv = { f(y)K(-,y) dy. Given a By-simple
function f, we have {|f|dv € L' N L>. Then

o0 0

(2) £l = S FW)lw()dy = | | 1f @)K (z,y) dy da

00

= () e = [ 1],

0
Since K is decreasing,

[e.e]

171l = § 1F W) dy = esssup | 7)1 . v)dy = | §11]dv |
x> 0 0o

0
Hence, || fllw.e = IV |f]dv||LinLe. In particular, my-null and v-null sets co-
incide. From (1) it follows that 3[fll, < [|fllwe < |f],- Hence, L'(v) is
order isomorphic to L}, N LE’

REMARK 3.6. If a kernel K is decreasing in the weaker sense that K, ()
> Kg,(y) for m-ae. y € [0,00) whenever x; < z, then there exists a
decreasing kernel K (in the strong sense) which satisfies K(z,y) = K(z,y)
for m ® m-a.e. (z,y), and so K and K produce the same operator T. It
is enough to take K(z,y) = SUp,.cq, r>z K (7,y) and notice that, for every

x> 0, we have K (z,y) < K(z,y) < K(z~,y) for m-a.c. y € [0,00).
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REMARK 3.7. Under the conditions of Theorem 3.5, v: B, — L! is a
vector measure. Moreover, for a By-simple function f, from (1) and (2)
it follows that 1||f[l, < [fllo < |If[lv- Thus, L'(v) is order isomorphic
to L}. Also, for all f € LL, we find that ||f|l. = ||{|f|dv|. Similarly,
v: B, — L is a vector measure such that L'(v) is order isomorphic to L%

and || flle = [I§1f]dvlio for all f € Lg.

Now we consider the largest r.i. space L' + L. A further monotonicity
property is needed.

THEOREM 3.8. Let K be a decreasing admissible kernel satisfying (i)
and (ii) in Proposition 3.2. Suppose K satisfies the following condition:
there exists a constant C' > 0 such that

1 00
(3) SKy(az) dx > Cmin{ S Ky(x)dx, K(0+,y)} for all y > 0.
0 0

Then v: B, — L' + L™ is a vector measure and the space L'(v) is order
isomorphic to LY, + L%.

Proof. Consider the space L}, + L% of measurable functions f such that
f=g+hforsome g € L. and h € L}, endowed with the norm

£l = nf{llgllo + lIhlle - f = g+ with g € Ly, h € Lg}

oo

= | Ir@)Iminfw(y), &)} dy

0

(see [3, (3.1.39), p. 307]), and the my-a.e. order, where 1) = min{w, {}.

Let f be a By-simple function. Then || f|lu.e > |IV|f]dv|p11p=. To see
this, let f = g+ h for g € L. and h € L%. From Remark 3.7 we have
g1l = 1§ lgl dv[l; and [|hl¢ = [|§ 2] dv]|,. Then

lgllo+ 1alle = || §lgl + Ity dv| > |[§if1dv]

On the other hand, from (3) we have

Lt +L>® Lt + Lo ’

— =

e

L14L>®

(§1£1dv) (s ds > 5 (§141dv) @) da

1

1f )|\ Ky(z) dz dy
0

QR <

(e}

> O | |f(y)|min{w(y). &)} dy = C||f |we-
0
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Thus, (1) implies C||f{, ¢ < [[fll, < 2/ f[l, ¢ In particular m, and v have
the same null sets. So, L!(v) and L} + L% are order isomorphic. =

Let now X be ar.i. space on [0, 00). Recall that if a set function v: By, —
L' N L™ is a vector measure, so is v: B, — X. In order to describe the
space L'(v) we need to recall the K-method of interpolation of Peetre. If
(Xo, X1) are Banach spaces continuously embedded in a common Hausdorff
topological vector space, then the K-functional of f € X+ X is, for ¢t > 0,

K(t, f; Xo, X1) = inf{{[ fol| + tIlAll : f = fo+ f1, fo € Xo, f1 € X1}

Assume Xp N X is dense in Xy. Let X be a r.i. space on [0,00). Then
(X0, X1)x is the space of all functions f € Xy + X; such that X', the
derivative of the K-functional, satisfies K'(-, f; Xy, X1) € X. Endowed with
the norm || f|l(xyx,)x = IK'(-, f; Xo, X1)|x, the space (Xo, X1)x is an
interpolation space between Xy and Xi; see [1, Chp. V]. A r.i. space X on
[0,00) can be generated by this procedure as (L[0, 00), L°°[0, 00)) x.

Now we can prove the main result.

THEOREM 3.9. Let X be a r.i. space on [0,00) with a.c. norm and K
a decreasing admissible kernel satisfying (i) and (ii) in Proposition 3.2.
Suppose K satisfies the following condition: there exists a constant C > 0
such that
t 00
(4) SKy(:n) dzx > C’min{ S Ky (z)dz, tK (0T, y)} for all t,y > 0.
0 0

Then v: By, — X is a vector measure and the space L'(v) is order isomor-
phic to (L, L%)X

Proof. For every f € L. + L}, from [3, (3.1.39), p. 307], we have

(5) K(t, f; L5, L) = | 1 ()| minfw(y), t€(y)} dy.
0

The space (L}U,L%)X is a B.f.s. on ([0, 00), By, my), with ¢ = min{w, £}.
Moreover, (L., L%)X has a.c. norm since X has a.c. norm (see Lemma 3.10
below). So, By,-simple functions are dense in (L}, L%) X
Let f be a By-simple function. Applying condition (4) to (5) we have
t

K F L D) < 5§ 1)Ky o) dady
0 0
= SV 1)K (o) dy d < S(S\f\dV) 5) ds
00
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Moreover, lC(t,f;Li,L%) > Sg(§|f|du)*(s) ds, since for every g € L. and
h e L% with f = g+ h, from Remark 3.7, we have

lolle + s = || Yol av]], +¢] il av |

> K (8§ g+ 1) dvs L1, 1) = [ (§11dv) (s) ds,

t
=
0
where we have used the fact that (¢, f; LY, L) = Sg f*(s)ds for fe L' +L>;
see [1, Theorem V.1.6]. From [1, Theorem I1.4.7], it follows that
1

k(. T TA

fiftav| <17y one = IKCL AL 2YIx < 5 |Si1av))

and from (1), CHfH(ng,L%)X <|Ifll. < 2||f||(LL,L§)x' In particular, my and v

have the same null sets. Thus, L!(v) is order isomorphic to (L, L%) X.
We now prove the technical lemma referred to in the previous proof.

LEMMA 3.10. If X has a.c. norm then (Li,L%)X has a.c. norm, where
w and & are weights.

Proof. Consider (LSJ,LE) x endowed with the m-a.e. order where ¢ =
min{w, £}. To simplify notation let (¢, f) = IC(t,f;L}u,L%). Let fn,f €
(LOIJ,L%)X with 0 < f,, T f my-a.e. Then K'(t, f,,) increases to K'(t, f), for
all ¢ > 0. We now prove this. For any function g, we can write K'(t, g) as

(© K(t.9) = lim 3 (K(t-+ h,g) ~ K(t,))

In (5), writing ®(y,t) = min{w(y), t&(y)} we have

() 3 0K+ hg) = K(t,9)) = 3 | low)|(@(t+ h,v) — 2(t,0)) d.
0

From (6) and (7) it follows that K'(¢, f,) < K'(t, fa+1) < K'(t, f) for all
t > 0. Since K’ is decreasing, we have

t+h
1 1
(8) 5 (K(t+h,g) =Kt 9) = 7 | K'(s.9)ds < K'(t, g).
t
From (5), it follows that for all ¢ > 0,

) K(t, £) = lim K(t f).

(K( + b f) = K{t, ) = Y - (K(+ b f) = K(t, )
< Jim Kt fy) < K'(1, ).
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Taking the limit as h — 0T, we obtain X' (¢, f,) T K'(¢, f) for all ¢ > 0. Since
X has a.c. norm, K'(-, f,,) converges in X to K'(-, f). Since 0 < f,, < f, equa-
tion (7) shows that K'(¢t, f) — K'(¢t, fn) = K'(t, f — fn). Hence, f, converges
to f in (LOIJ,L%)X. .

REMARK 3.11. Considering Example 3.4, direct computation shows that
the admissible kernel K for A < 0 satisfies condition (4) in Theorem 3.9.
Therefore, for a r.i. space X on [0,00) with a.c. norm and for the vector
measure v: B, — X associated to K, we have L!(v) = (L}u,L%)X, where

w(y) = (L—e™)/x and (y) = ™.
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