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Some new spaces of Besov and Triebel–Lizorkin type
on homogeneous spaces

by

Yongsheng Han (Auburn, AL) and Dachun Yang (Beijing)

Abstract. New norms for some distributions on spaces of homogeneous type which
include some fractals are introduced. Using inhomogeneous discrete Calderón reproduc-
ing formulae and the Plancherel–Pólya inequalities on spaces of homogeneous type, the
authors prove that these norms give a new characterization for the Besov and Triebel–
Lizorkin spaces with p, q > 1 and can be used to introduce new inhomogeneous Besov and
Triebel–Lizorkin spaces with p, q ≤ 1 on spaces of homogeneous type. Moreover, atomic
decompositions of these new spaces are also obtained. All the results of this paper are new
even for Rn.

1. Introduction. Spaces of homogeneous type introduced by Coifman
and Weiss in [2] include the Euclidean space, the n-torus in Rn, the C∞

compact Riemannian manifolds, the boundaries of Lipschitz domains and,
in particular, the Lipschitz manifolds introduced recently by Triebel in [19]
and the d-sets in Rn. It has been proved by Triebel in [17] that the d-sets in
Rn include various kinds of fractals; see also [18].

The homogeneous Besov and Triebel–Lizorkin spaces on spaces of ho-
mogeneous type have been studied in [12] and [7]. In [9], the inhomogeneous
Besov and Triebel–Lizorkin spaces on spaces of homogeneous type were
introduced by use of the generalized Littlewood–Paley g-functions when
p, q ≥ 1. In [10], the inhomogeneous Triebel–Lizorkin spaces were gener-
alized to the cases where 0 < p0 < p ≤ 1 ≤ q < ∞ via the generalized
Littlewood–Paley S-functions. The main purpose of this paper is to gen-
eralize the inhomogeneous Besov and Triebel–Lizorkin spaces on spaces of
homogeneous type to the case where p, q ≤ 1. To do this, we first introduce
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new norms for distributions on spaces of homogeneous type. Using the inho-
mogeneous Calderón reproducing formulas ([11]) and the Plancherel–Pólya
inequalities ([4]) on spaces of homogeneous type, we prove that these new
norms are equivalent to those introduced in [9]. Thus, these norms give
a new characterization for the inhomogeneous Besov and Triebel–Lizorkin
spaces developed in [9]. Moreover, using these norms, we introduce new in-
homogeneous Besov and Triebel–Lizorkin spaces for the case where p, q ≤ 1.
We also introduce a new inhomogeneous generalized Littlewood–Paley g-
function on spaces of homogeneous type and show that the Lp(X) norms
of this g-function and of the inhomogeneous Littlewood–Paley S-function
introduced in [10] are equivalent. As a consequence, this gives a new charac-
terization of Triebel–Lizorkin spaces ([10]). Finally, atomic decompositions
of these spaces are obtained. As a simple application, one can easily see that
when one regards a Lipschitz manifold as in [19] as a space of homogeneous
type, the Besov and Triebel–Lizorkin spaces defined here are the same as
those defined by Triebel in [19] via a completely different approach. More
applications of these new Besov and Triebel–Lizorkin spaces will be given
elsewhere; see [13] and [20]. All results of this paper are new even for Rn.

The organization of this paper is as follows. We state all the main results
in the remaining part of this section, and all the proofs will be given in
Section 2. Some remarks will be given in Section 3.

Before stating the main results, we first recall the necessary definitions
and notation for spaces of homogeneous type.

A quasi-metric % on a set X is a function % : X ×X → [0,∞) satisfying

(i) %(x, y) = 0 if and only if x = y;
(ii) %(x, y) = %(y, x) for all x, y ∈ X;

(iii) there exists a constant A ∈ [1,∞) such that for all x, y, z ∈ X,
%(x, y) ≤ A[%(x, z) + %(z, y)].

Any quasi-metric defines a topology, for which the balls

B(x, r) = {y ∈ X : %(y, x) < r}
for all x ∈ X and all r > 0 form a basis.

In what follows, we set diamX = sup{%(x, y) : x, y ∈ X}. We also
make the following conventions. We write f ∼ g if there is a constant C > 0
independent of the main parameters such that C−1g < f < Cg. Throughout
the paper, we will denote by C a positive constant which is independent of
the main parameters, but it may vary from line to line. Constants with
subscripts, such as C1, do not change in different occurrences. We denote
N ∪ {0} simply by Z+ and for any q ∈ [1,∞], we denote by q′ its conjugate
index, namely, 1/q+1/q′ = 1. If A is a set, we denote by χA the characteristic
function of A.
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Definition 1 ([13]). Let d > 0 and 0 < θ ≤ 1. A space of homogeneous
type, (X, %, µ)d,θ, is a set X together with a quasi-metric % and a nonnegative
Borel regular measure µ on X such that suppµ = X and there exists a
constant C0 > 0 such that for all 0 < r < diamX and all x, x′, y ∈ X,

µ(B(x, r)) ∼ rd,(1.1)

|%(x, y)− %(x′, y)| ≤ C0%(x, x′)θ[%(x, y) + %(x′, y)]1−θ.(1.2)

A space of homogeneous type defined above is a variant of a space of
homogeneous type introduced by Coifman and Weiss in [2]. In [14], Maćıas
and Segovia have proved that one can replace the quasi-metric % of any space
of homogeneous type in the sense of Coifman and Weiss by another quasi-
metric % which yields the same topology and (X, %, µ) is as in Definition 1
with d = 1.

Definition 2 ([8]). Fix γ > 0 and θ ≥ β > 0. A function f defined on
X is said to be a test function of type (x0, r, β, γ) with x0 ∈ X and r > 0 if
f satisfies the following conditions:

(i) |f(x)| ≤ C rγ

(r + %(x, x0))d+γ ;

(ii) |f(x)− f(y)| ≤ C
(

%(x, y)
r + %(x, x0)

)β rγ

(r + %(x, x0))d+γ

for %(x, y) ≤ 1
2A

[r + %(x, x0)].

If f is a test function of type (x0, r, β, γ), we write f ∈ G(x0, r, β, γ),
and the norm of f in G(x0, r, β, γ) is defined by ‖f‖G(x0,r,β,γ) = inf{C :
(i) and (ii) hold}.

Now fix x0 ∈ X and let G(β, γ) = G(x0, 1, β, γ). It is easy to see that

G(x1, r, β, γ) = G(β, γ)

with equivalent norms for all x1 ∈ X and r > 0. Furthermore, it is easy to
check that G(β, γ) is a Banach space. Also, let (G(β, γ))′ be the dual space
of all continuous linear functionals on G(β, γ).

We denote by 〈h, f〉 the natural pairing of h ∈ (G(β, γ))′ and f ∈ G(β, γ).
Clearly, for all h ∈ (G(β, γ))′, 〈h, f〉 is well defined for all f ∈ G(x0, r, β, γ)
with x0 ∈ X and r > 0.

It is well known that even when X = Rn, G(β1, γ) is not dense in G(β2, γ)
if β1 > β2, which will bring us some inconvenience. To overcome this defect,
in what follows, we let G

◦
(β, γ) be the completion of the space G(θ, θ) in

G(β, γ) when 0 < β, γ < θ. (The authors thank Professor Hans Triebel for
suggesting this idea.)
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Definition 3 ([8]). A sequence {Sk}∞k=0 of linear operators is said to
be an approximation to the identity of order ε ∈ (0, θ] if there exists C1 > 0
such that for all k ∈ Z+ and all x, x′, y, y′ ∈ X, the kernel Sk(x, y) of Sk is
a function from X ×X into C satisfying

(i) |Sk(x, y)| ≤ C1
2−kε

(2−k + %(x, y))d+ε ;

(ii) |Sk(x, y)− Sk(x′, y)| ≤ C1

(
%(x, x′)

2−k + %(x, y)

)ε 2−kε

(2−k + %(x, y))d+ε

for %(x, x′) ≤ 1
2A

(2−k + %(x, y));

(iii) |Sk(x, y)− Sk(x, y′)| ≤ C1

(
%(y, y′)

2−k + %(x, y)

)ε 2−kε

(2−k + %(x, y))d+ε

for %(y, y′) ≤ 1
2A

(2−k + %(x, y));

(iv) |[Sk(x, y)− Sk(x, y′)]− [Sk(x′, y)− Sk(x′, y′)]|

≤ C1

(
%(x, x′)

2−k + %(x, y)

)ε( %(y, y′)
2−k + %(x, y)

)ε 2−kε

(2−k + %(x, y))d+ε

for %(x, x′) ≤ 1
2A

(2−k + %(x, y)) and %(y, y′) ≤ 1
2A

(2−k + %(x, y));

(v)
�
X

Sk(x, y) dµ(y) = 1;

(vi)
�
X

Sk(x, y) dµ(x) = 1.

Remark 1. Coifman’s construction in [3] yields an approximation to
the identity of order θ such that Sk(x, y) has a compact support when one
variable is fixed, namely, there is a constant C2 > 0 such that for all k ∈ Z+,
Sk(x, y) = 0 if %(x, y) ≥ C22−k.

We need the following construction of Christ [1], which provides an ana-
logue of the grid of Euclidean dyadic cubes on spaces of homogeneous type.

Lemma 1. Let X be a space of homogeneous type. Then there exist a
collection

{Qkα ⊂ X : k ∈ Z+, α ∈ Ik}
of open subsets, where Ik is some (possibly finite) index set , and constants
δ ∈ (0, 1) and C3, C4 > 0 such that

(i) µ(X \⋃αQ
k
α) = 0 for each fixed k and Qk

α ∩Qkβ = ∅ if α 6= β;

(ii) for any α, β, k, l with l ≥ k, either Ql
β ⊂ Qkα or Qlβ ∩Qkα = ∅;

(iii) for each (k, α) and each l < k there is a unique β such that Qk
α ⊂ Qlβ;
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(iv) diam(Qkα) ≤ C3δ
k;

(v) each Qkα contains some ball B(zkα, C4δ
k), where zkα ∈ X.

In fact, we can think of Qk
α as being a dyadic cube with diameter roughly

δk and centered at zkα. In what follows, we always suppose δ = 1/2. See [12]
for how to remove this restriction. Also, in the following, for k ∈ Z+ and
τ ∈ Ik, we will denote by Qk,ν

τ , ν = 1, . . . , N(k, τ), the set of all cubes
Qk+j
τ ′ ⊂ Qkτ , where j is a fixed large positive integer. Denote by yk,ντ a point

in Qk,ντ . For another fixed large positive integer j, k ∈ Z+ and τ ∈ Ik, we
will denote by Qk,ντ , ν = 1, . . . , N(k, τ), the set of all cubes Qk+j

τ ′ ⊂ Qkτ and
by yk,ντ a point in Qk,ντ . For any dyadic cube Q and any f ∈ L1

loc(X), we set

mQ(f) =
1

µ(Q)

�
Q

f(x) dµ(x).

Now we introduce Bs
pq(X) and F spq(X) norms for all f ∈ (G

◦
(β, γ))′ with

0 < β, γ < θ.

Definition 4. Let −θ < s < θ. Suppose that {Sk}∞k=0 is an approxi-
mation to the identity of order θ, Ek = Sk − Sk−1 for k ∈ N, E0 = S0 and
{Q0,ν

τ : τ ∈ I0, ν = 1, . . . , N(0, τ)} with a fixed large j are dyadic cubes
as above. For 0 < p, q ≤ ∞ and all f ∈ (G

◦
(β, γ))′ with |s| < β < θ and

0 < γ < θ, define

‖f‖Bspq(X) =
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|E0(f)|)]p

}1/p

+
{ ∞∑

k=1

[2ks‖Ek(f)‖Lp(X)]
q
}1/q

,

and for 0 < p <∞, 0 < q ≤ ∞,

‖f‖F spq(X) =
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[m

Q0,ν
τ

(|E0(f)|)]p
}1/p

+
∥∥∥
{ ∞∑

k=1

[2ks|Ek(f)|]q
}1/q∥∥∥

Lp(X)
.

Here, for k ∈ Z+ and any suitable f ,

Ek(f)(x) =
�
X

Ek(x, y)f(y) dµ(y).

We now introduce new inhomogeneous generalized Littlewood–Paley g-
functions.
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Definition 5. Let s ∈ (−θ, θ) and q ∈ (0,∞). Let {Ek}∞k=0 and

{Q0,ν
τ : τ ∈ I0, ν = 1, . . . , N(0, τ)}

with a fixed large j be as in Definition 4. The inhomogeneous generalized
Littlewood–Paley g-function is defined by

gsq(f)(x) =
∑

τ∈I0

N(0,τ)∑

ν=1

[mQ0,ν
τ

(|E0(f)|)]χQ0,ν
τ

(x) +
{ ∞∑

k=1

[2ks|Ek(f)(x)|]q
}1/q

for f ∈ (G
◦
(β, γ))′ with |s| < β < θ and 0 < γ < θ.

Let us now state the main theorems of this paper.

Theorem 1. Let s ∈ (−θ, θ). Let {Sk}∞k=0 and {Pk}∞k=0 be two approx-
imations to the identity of order θ as in Definition 3, Ek = Sk − Sk−1
and Dk = Pk − Pk−1 for k ∈ N, and E0 = S0 and D0 = P0. Then, if
max(d/(d+θ), d/(d+θ+s)) < p ≤ ∞ and 0 < q ≤ ∞, for all f ∈ (G

◦
(β, γ))′

with |s| < β < θ and 0 < γ < θ, we have

{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|E0(f)|)]p

}1/p
+
{ ∞∑

k=1

[2ks‖Ek(f)‖Lp(X)]
q
}1/q

∼
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[m

Q0,ν
τ

(|D0(f)|)]p
}1/p

+
{ ∞∑

k=1

[2ks‖Dk(f)‖Lp(X)]
q
}1/q

.

If max(d/(d + θ), d/(d + θ + s)) < p, q and p < ∞, q ≤ ∞, then for all
f ∈ (G

◦
(β, γ))′ with |s| < β < θ and 0 < γ < θ, we have

‖gsq(f)‖Lp(X) ∼
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

}1/p

+
∥∥∥
{ ∞∑

k=1

[2ks|Dk(f)|]q
}1/q∥∥∥

Lp(X)
.

Theorem 1 shows that Definition 4 is independent of the choices of large
positive integers j and approximations to the identity. The following theorem
shows that the norms defined by Definition 4 give new characterizations for
the Besov spaces Bs

pq(X) and Triebel–Lizorkin spaces F spq(X) developed in
[9] and [10].

Theorem 2. Let s ∈ (−θ, θ) and {Ek}∞k=0 be as in Theorem 1. Then,
for all f ∈ (G

◦
(β, γ))′ with |s| < β < θ and 0 < γ < θ,



Spaces of Besov and Triebel–Lizorkin type 73

(1.3)
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|E0(f)|)]p

}1/p
+
{ ∞∑

k=1

[2ks‖Ek(f)‖Lp(X)]
q
}1/q

∼
{ ∞∑

k=0

[2ks‖Ek(f)‖Lp(X)]
q
}1/q

when 1 ≤ p, q ≤ ∞; while when 1 ≤ p <∞ and 1 ≤ q ≤ ∞,

(1.4) ‖gsq(f)‖Lp(X) ∼
∥∥∥
{ ∞∑

k=0

[2ks|Ek(f)|]q
}1/q∥∥∥

Lp(X)
.

If max(d/(d + θ), d/(d + θ + s)) < p < ∞ and 1 ≤ q < ∞, then for all
f ∈ (G

◦
(β, γ))′ with |s| < β < θ and 0 < γ < θ,

(1.5) ‖Ssq,a(f)‖Lp(X) ∼ ‖gsq(f)‖Lp(X),

where a ∈ (0,∞) and the generalized Littlewood–Paley function Ssq,a(f) is
defined by

Ssq,a(f)(x) =
{ ∞∑

k=0

�
{y : %(x,y)≤a2−k}

2kd[2ks|Ek(f)(y)|]q dµ(y)
}1/q

.

The following theorem shows that the norms given by Definition 4 are
also independent of the choices of the distribution spaces (G◦ (β, γ))′. In what
follows, we let a+ = max(a, 0) for any a ∈ R.

Theorem 3. Let s ∈ (−θ, θ).

(i) If max(d/(d+θ), d/(d+θ+s)) < p ≤ ∞, 0 < q ≤ ∞, f ∈ (G
◦
(β1, γ1))′

with max(0, s+,−s+d(1/p−1)+) < β1 < θ, 0 < γ1 < θ and ‖f‖Bspq(X) <∞,

then f ∈ (G◦ (β2, γ2))′ with max(0, s+,−s + d(1/p − 1)+) < β2 < β1 and
0 < γ2 < γ1.

(ii) If max(d/(d + θ), d/(d + θ + s)) < p, q and p < ∞, q ≤ ∞, f ∈
(G
◦
(β1, γ1))′ with max(0, s+,−s + d(1/p − 1)+) < β1 < θ, 0 < γ1 < θ and

‖f‖F spq(X) < ∞, then f ∈ (G
◦
(β2, γ2))′ with max(0, s+,−s + d(1/p − 1)+) <

β2 < β1 and 0 < γ2 < γ1.

We are now ready to introduce the spaces Bs
pq(X) and F spq(X) with

p, q ≤ 1.

Definition 6. Let s ∈ (−θ, θ) and {Ek}∞k=0 be as in Definition 4.

(i) The inhomogeneous Besov space Bs
pq(X) for max(d/(d+ θ),

d/(d+ θ+ s)) < p ≤ ∞ and 0 < q ≤ ∞ is the collection of all f ∈ (G
◦
(β, γ))′

with any given β and γ satisfying max(0, s+,−s+d(1/p−1)+) < β < θ and
d(1/p− 1)+ < γ < θ such that ‖f‖Bspq(X) <∞.
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(ii) The inhomogeneous Triebel–Lizorkin space F spq(X) for max(d/(d+θ),
d/(d + θ + s)) < p < ∞ and max(d/(d + θ), d/(d + θ + s)) < q ≤ ∞
is the collection of all f ∈ (G◦ (β, γ))′ with any given β and γ satisfying
max(0, s+,−s + d(1/p − 1)+) < β < θ and d(1/p − 1)+ < γ < θ such that
‖f‖F spq(X) <∞.

Remark 2. The restrictions s+ < β ≤ θ and d(1/p − 1)+ < γ ≤ θ
guarantee that G(β, γ) ⊂ Bs

pq(X) ∩ F spq(X) for s, p and q as in Definition 6
(see Lemma 2.1 in [21] for the proof); while the restrictions max(0,−s +
d(1/p − 1)+) < β < θ and 0 < γ < θ guarantee that the definitions of
the spaces Bs

pq(X) and F spq(X) are independent of the choices of β and
γ satisfying these conditions by Theorem 3. Thus, if β and γ are as in
Definition 6, then

G
◦
(β, γ) ⊂ G(β, γ) ⊂ Bs

pq(X) ∩ F spq(X), Bs
pq(X) ∪ F spq(X) ⊂ (G

◦
(β, γ))′,

for s, p and q as in Definition 6.

To give atomic characterizations of the spaces Bs
pq(X) and F spq(X), as

in the case X = Rn (see [6]), we need certain inhomogeneous spaces of se-
quences indexed by “dyadic cubes” {Qk,ν

τ : k∈Z+, τ ∈Ik, ν=1, . . . , N(k, τ)}
≡ J in X, which will characterize the coefficients in the decompositions
of distributions in Bs

pq(X) and F spq(X) in terms of smooth atoms, blocks,
molecules and units. For −θ < s < θ and 0 < p, q < ∞, we let bspq(X) be
the collection of sequences λ = {λQ}Q∈J such that

‖λ‖bspq(X) =
{ ∞∑

k=0

[ ∑

τ∈Ik

N(k,τ)∑

ν=1

2ksp(µ(Qk,ντ )1/p−1/2|λ
Qk,ντ
|)p
]q/p}1/q

<∞.

Let f spq(X) be the collection of sequences λ = {λQ}Q∈J such that

‖λ‖fspq(X) =
∥∥∥
{ ∞∑

k=0

∑

τ∈Ik

N(k,τ)∑

ν=0

(2ksµ(Qk,ντ )−1/2|λ
Qk,ντ
|χ
Qk,ντ

)q
}1/q∥∥∥

Lp(X)
<∞.

The following smooth blocks and atoms were introduced in [9].

Definition 7. Fix j ∈ N and a collection of open subsets,

{Qk,ντ : k ∈ Z+, τ ∈ Ik, ν = 1, . . . , N(k, τ)},
satisfying the conditions as above. A function a

Qk,ντ
defined on X is said to

be a γ-smooth atom for Qk,ν
τ if

(i) supp a
Qk,ντ
⊂ B(yk,ντ , 3AC22−k), where yk,ντ is the center of Qk,ν

τ ;
(ii) � X aQkτ (x) dµ(x) = 0;

(iii) |a
Qk,ντ

(x)| ≤ µ(Qk,ντ )−1/2 and

|a
Qk,ντ

(x)− a
Qk,ντ

(y)| ≤ µ(Qk,ντ )−1/2−γ/d%(x, y)γ.
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A function a
Qk,ντ

defined on X is said to be a γ-smooth block for Qk,ν
τ if

a
Qk,ντ

satisfies only (i) and (iii) above.

Theorem 4. Let s ∈ (−θ, θ), j ∈ N large enough and a collection {Qk,ν
τ :

k ∈ Z+, τ ∈ Ik, ν = 1, . . . , N(k, τ)} of open subsets satisfy the conditions as
above.

(i) If max(d/(d + θ), d/(d + θ + s)) < p ≤ ∞, 0 < q ≤ ∞ and f ∈
(G
◦
(β, γ))′∩Bs

pq(X) with max(0, s+,−s+d(1/p−1)+)<β<θ and d(1/p− 1)+
< γ < θ, then there exist a sequence λ = {λ

Qk,ντ
}
Qk,ντ ∈J, ε-smooth blocks aQ0,ν

τ

for τ ∈ I0 and ν = 1, . . . , N(0, τ), and ε-smooth atoms a
Qk,ντ

for k ∈ N,
τ ∈ Ik and ν = 1, . . . , N(k, τ), ε ∈ (|s|, θ], such that

(1.6) f =
∞∑

k=0

∑

τ∈Ik

N(k,τ)∑

ν=1

λ
Qk,ντ

a
Qk,ντ

with convergence both in the norm of Bs
pq(X) and in (G

◦
(β, γ))′ when

max(p, q) <∞, and only in (G◦ (β, γ))′ when max(p, q) =∞, and

(1.7) ‖λ‖bspq(X) ≤ C‖f‖Bspq(X).

(ii) If max(d/(d + θ), d/(d + θ + s)) < p, q and p < ∞, q ≤ ∞, and
f ∈ (G

◦
(β, γ))′ ∩ F spq(X) with max(0, s+,−s+ d(1/p− 1)+) < β < θ and

d(1/p− 1)+ < γ < θ,

then there exist a sequence λ = {λ
Qk,ντ
}
Qk,ντ ∈J, ε-smooth blocks a

Q0,ν
τ

for
τ ∈ I0 and ν = 1, . . . , N(0, τ), and ε-smooth atoms a

Qk,ντ
for k ∈ N, τ ∈ Ik

and ν = 1, . . . , N(k, τ), ε ∈ (|s|, θ], such that (1.6) holds with convergence
both in the norm of F spq(X) and in (G

◦
(β, γ))′ when q < ∞, and only in

(G
◦
(β, γ))′ when q =∞, and

(1.8) ‖λ‖fspq(X) ≤ C‖f‖F spq(X).

The converse of Theorem 4 also holds. In fact, we have a general result.
To state it, we recall the definition of smooth molecules and units in [9].

Definition 8. Fix j ∈ N and a collection of open subsets,

{Qk,ντ : k ∈ Z+, τ ∈ Ik, ν = 1, . . . , N(k, τ)},
satisfying the conditions as above. A function u

Qk,ντ
defined on X is said to

be a (β, γ)-smooth molecule for a dyadic cube Qk,ν
τ if

(i) � X uQk,ντ (x) dµ(x) = 0;

(ii) |u
Qk,ντ

(x)| ≤ µ(Qk,ντ )−1/2(1 + 2k%(x, yk,ντ ))−(d+γ);
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(iii) |u
Qk,ντ

(x)− u
Qk,ντ

(x′)| ≤ µ(Qk,ντ )−1/2−β/d%(x, x′)β

×
{

1

(1 + 2k%(x, yk,ντ ))d+γ
+

1

(1 + 2k%(x′, yk,ντ ))d+γ

}
,

where yk,ντ is the center of Qk,ν
τ .

A function u
Qk,ντ

defined on X is said to be a (β, γ)-smooth unit for a

dyadic cube Qk,ν
τ if u

Qk,ντ
satisfies only (ii) and (iii) above.

Theorem 5. Let s ∈ (−θ, θ), uQ0,ν
τ

for τ ∈ I0 and ν = 1, . . . , N(0, τ) be
a (β, γ)-smooth unit , and u

Qk,ντ
for τ ∈ Ik and ν = 1, . . . , N(k, τ) be a (β, γ)-

smooth molecule with s+ < β < θ, max(d(1/p − 1)+,−s + d(1/p − 1)+) <
γ < θ for the spaces bspq(X), and

max(d(1/min(p, q)− 1)+,−s+ d(1/min(p, q)− 1)+) < γ < θ

for the spaces f spq(X).

(i) If max(d/(d+θ), d/(d+θ+s)) < p ≤ ∞, 0 < q ≤ ∞ and λ ∈ bspq(X),
then

(1.9) f =
∞∑

k=0

∑

τ∈Ik

N(k,τ)∑

ν=1

λ
Qk,ντ

u
Qk,ντ

holds both in the norm of Bs
pq(X) and in (G

◦
(β1, γ1))′ with

max(0, s+,−s+ d(1/p− 1)+) < β1 < θ

and 0 < γ1 < θ when max(p, q) < ∞, and only in (G
◦
(β1, γ1))′ when

max(p, q) =∞, and

(1.10) ‖f‖Bspq(X) ≤ C‖λ‖bspq(X).

(ii) If max(d/(d + θ), d/(d + θ + s)) < p, q and p < ∞, q ≤ ∞, and
λ ∈ f spq(X), then (1.9) holds both in the norm of F spq(X) and in (G

◦
(β1, γ1))′

with max(0, s+,−s + d(1/p − 1)+) < β1 < θ and 0 < γ1 < θ when q < ∞,
and only in (G

◦
(β1, γ1))′ when q =∞, and

(1.11) ‖f‖F spq(X) ≤ C‖λ‖fspq(X).

2. Proofs. The basic tools we will use are the following inhomogeneous
Calderón reproducing formulae ([11]) and the Plancherel–Pólya inequalities
([4]).

Lemma 2 ([11]). Suppose that {Ek}∞k=0 is as in Theorem 1. Then there
exist functions ẼQ0,ν

τ
, F̃Q0,ν

τ
, τ ∈ I0 and ν = 1, . . . , N(0, τ), Ẽk(x, y) and

F̃k(x, y), k ∈ N, such that for any fixed yk,ντ ∈ Qk,ντ , k ∈ N, τ ∈ Ik and ν ∈
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{1, . . . , N(k, τ)} and all f ∈ (G
◦
(β1, γ1))′ with 0 < β1 < θ and 0 < γ1 < θ,

f(x) =
∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )mQ0,ν

τ
(E0(f))ẼQ0,ν

τ
(x)(2.1)

+
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )Ek(f)(yk,ντ )Ẽk(x, yk,ντ )

=
∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )F̃

Q0,ν
τ

(f)m
Q0,ν
τ

(E0(x, ·))

+
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )F̃k(f)(yk,ντ )Ek(x, yk,ντ ),

where the series converge in (G
◦
(β′1, γ

′
1))′ for β1 < β′1 < θ and γ1 < γ′1 < θ;

Ẽk(x, y), k ∈ N, satisfies conditions (i) and (ii) of Definition 3 with ε ∈
(0, θ), and �

X

Ẽk(x, y) dµ(x) =
�
X

Ẽk(x, y) dµ(y) = 0;

F̃k(x, y), k ∈ N, satisfies conditions (i) and (iii) of Definition 3 with ε ∈
(0, θ), and �

X

F̃k(x, y) dµ(x) =
�
X

F̃k(x, y) dµ(y) = 0;

diam(Q0,ν
τ ) ∼ 2−j for τ ∈ I0, ν = 1, . . . , N(0, τ), and some j ∈ N; ẼQ0,ν

τ
(x)

for τ ∈ I0 and ν = 1, . . . , N(0, τ) satisfies

(i) � X ẼQ0,ν
τ

(x) dµ(x) = 1,

(ii) for any given ε ∈ (0, θ), there is a constant C > 0 such that

|Ẽ
Q0,ν
τ

(x)| ≤ C 1
(1 + %(x, y))d+ε

for all x ∈ X and y ∈ Q0,ν
τ and

(iii) |Ẽ
Q0,ν
τ

(x)− Ẽ
Q0,ν
τ

(z)| ≤ C
(

%(x, z)
1 + %(x, y)

)ε 1
(1 + %(x, y))d+ε

for all x, z ∈ X and all y ∈ Q0,ν
τ satisfying %(x, z) ≤ 1

2A(1 + %(x, y)); and
F̃Q0,ν

τ
(x) satisfies the same conditions as ẼQ0,ν

τ
(x), and

F̃Q0,ν
τ

(f) =
�
X

F̃Q0,ν
τ

(y)f(y) dµ(y).
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Moreover , j can be any fixed large positive integer and the constant C in (ii)
and (iii) is independent of j.

Lemma 3 ([4]). Let s ∈ (−θ, θ). Let {Sk}∞k=0 and {Pk}∞k=0 be two ap-
proximations to the identity of order θ as in Definition 3, Ek = Sk − Sk−1
and Dk = Pk − Pk−1 for k ∈ N, and E0 = S0 and D0 = P0. Then there
is a constant C5 > 0 such that for all f ∈ (G

◦
(β, γ))′ with |s| < β < θ and

0 < γ < θ,

(2.2)
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[m

Q0,ν
τ

(|D0(f)|)]p
}1/p

+
{ ∞∑

k=1

2ksq
(∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )[ sup
z∈Qk,ντ

|Dk(f)(z)|]p
)q/p}1/q

≤ C5

{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q
0,ν
τ )[m

Q
0,ν
τ

(|E0(f)|)]p
}1/p

+ C5

{ ∞∑

k=1

2ksq
( ∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Q
k,ν
τ )[ inf

z∈Qk,ντ
|Ek(f)(z)|]p

)q/p}1/q

when max(d/(d+ θ), d/(d+ θ + s)) < p ≤ ∞ and 0 < q ≤ ∞, and

(2.3)
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

}1/p

+
∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[2ks sup
z∈Qk,ντ

|Dk(f)(z)|χ
Qk,ντ

]q
}1/q∥∥∥

Lp(X)

≤ C5

{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q
0,ν
τ )[m

Q
0,ν
τ

(|E0(f)|)]p
}1/p

+ C5

∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[2ks inf
z∈Qk,ντ

|Ek(f)(z)|χ
Q
k,ν
τ

]q
}1/q∥∥∥

Lp(X)

when max(d/(d + θ), d/(d + θ + s)) < p, q and p < ∞, q ≤ ∞, where
diam(Q0,ν

τ ) ∼ 2−j, diam(Q
0,ν
τ ) ∼ 2−j , j and j are two fixed large positive

integers, the constant C5 depends only on j when p < 1, and it is independent
of j and j when 1 ≤ p ≤ ∞ in (2.2) and 1 ≤ p <∞ in (2.3).
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Proof of Theorem 1. The proof is based on the fact that for all k ∈ N,
∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )[ inf
z∈Qk,ντ

|Ek(f)(z)|]p ≤ ‖Ek(f)‖pLp(X)

≤
∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )[ sup
z∈Qk,ντ

|Ek(f)(z)|]p

and for all x ∈ X,

∑

τ∈Ik

N(k,τ)∑

ν=1

[ inf
z∈Qk,ντ

|Ek(f)(z)|]χ
Qk,ντ

(x) ≤ |Ek(f)(x)|

≤
∑

τ∈Ik

N(k,τ)∑

ν=1

[ sup
z∈Qk,ντ

|Ek(f)(z)|]χ
Qk,ντ

(x).

Applying Lemma 3 yields Theorem 1.

To prove Theorem 2, we need the following lemma which can be found
in [6, pp. 147–148] for Rn and [12, pp. 93] for spaces of homogeneous type.

Lemma 4. Let 0 < r ≤ 1, k, η ∈ Z+ with η ≤ k, and for any dyadic cube
Qk,ντ ,

|f
Qk,ντ

(x)| ≤ (1 + 2η%(x, yk,ντ ))−d−γ,

where yk,ντ is any point in Qk,ντ and γ > d(1/r − 1). Then

∑

τ∈Ik

N(k,τ)∑

ν=1

|λ
Qk,ντ
| |f

Qk,ντ
(x)| ≤ C2(k−η)d/r

×
[
M
(∑

τ∈Ik

N(k,τ)∑

ν=1

|λ
Qk,ντ
|rχ

Qk,ντ

)
(x)
]1/r

,

where C is independent of x, k and η, and M is the Hardy–Littlewood max-
imal operator on X.

Proof of Theorem 2. We first show (1.3). Since 1 ≤ p ≤ ∞, by the Hölder
inequality we have

(2.4)
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|E0(f)|)]p

}1/p

≤
{∑

τ∈I0

N(0,τ)∑

ν=1

�
Q0,ν
τ

|E0(f)(z)|p dµ(z)
}1/p

≤ ‖E0(f)‖Lp(X),
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which shows that the left-hand side is dominated by the right-hand side
in (1.3).

To establish the converse, we only need to show that for f ∈ (G
◦
(β, γ))′

with |s| < β < θ and 0 < γ < θ,

‖E0(f)‖Lp(X) =
{∑

τ∈I0

N(0,τ)∑

ν=1

�
Q0,ν
τ

|E0(f)(x)|p dµ(x)
}1/p

(2.5)

≤
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[ sup

z∈Q0,ν
τ

|E0(f)(z)|]p
}1/p

≤ C
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[m

Q
0,ν
τ

(|E0(f)|)]p
}1/p

+ C
{ ∞∑

k=1

[2ks‖Ek(f)‖Lp(X)]
q
}1/q

.

To prove the last inequality in (2.5), by the first expression in (2.1) of
Lemma 2 we have

(2.6) sup
z∈Q0,ν

τ

|E0(f)(z)|

≤
∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )m

Q0,ν′
τ ′

(|E0(f)|) sup
z∈Q0,ν

τ

|E0(Ẽ
Q0,ν′
τ ′

)(z)|

+
∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )|Ek′(f)(yk

′,ν′
τ ′ )| sup

z∈Q0,ν
τ

|E0(Ẽk′)(z, y
k′,ν′
τ ′ )|

= G1 +G2,

where
E0(Ẽk′)(z, y

k′,ν′
τ ′ ) =

�
X

E0(z, x)Ẽk′(x, y
k′,ν′
τ ′ ) dµ(x).

By a proof similar to those of (1.6) in [9] and (3.9) in [8], we can verify

(2.7) sup
z∈Q0,ν

τ

|E0(Ẽ
Q0,ν′
τ ′

)(z)| ≤ C 1

(1 + %(y0,ν
τ , y0,ν′

τ ′ ))d+ε′
,

and for k′ ∈ N,

(2.8) sup
z∈Q0,ν

τ

|E0(Ẽk′)(z, y
k′,ν′
τ ′ )| ≤ C2−k

′ε′ 1

(1 + %(y0,ν
τ , y0,ν′

τ ′ ))d+ε′
,

where ε′ can be any positive number in (0, θ). In what follows, we will choose
ε′ ∈ (0, θ) such that |s| < ε′.
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From (2.7) and the Hölder inequality, it follows that

(2.9)
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[G1]p

}1/p

≤ C
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )
( ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )[m

Q0,ν′
τ ′

(|E0(f)|)]p

× 1

(1 + %(y0,ν
τ , y0,ν′

τ ′ ))d+ε′

)[ �
X

1

(1 + %(y0,ν
τ , y))d+ε′

dµ(y)
]p/p′}1/p

≤ C
{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )[m

Q0,ν′
τ ′

(|E0(f)|)]p
�
X

1

(1+%(x, y0,ν′
τ ′ ))d+ε′

dµ(x)
}1/p

≤ C
{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )[m

Q0,ν′
τ ′

(|E0(f)|)]p
}1/p

;

while from (2.8) and the Hölder inequality, it follows that

(2.10)
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[G2]p

}1/p

≤ C
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )
[ ∞∑

k′=1

2−k
′ε1p

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )

× |Ek′(f)(yk
′,ν′
τ ′ )|p 1

(1 + %(y0,ν
τ , yk

′,ν′
τ ′ ))d+ε′

]

×
[ ∞∑

k′=1

2−k
′ε1p

�
X

1

(1 + %(y0,ν
τ , y))d+ε′

dµ(y)
]p/p′}1/p

≤ C
{ ∞∑

k′=1

2−k
′(ε1+s)p2k

′sp
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )|Ek′(f)(yk

′,ν′
τ ′ )|p

×
�
X

1

(1 + %(z, yk
′,ν′
τ ′ ))d+ε′

dµ(z)
}1/p

≤ C
{ ∞∑

k′=1

2k
′sp
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )|Ek′(f)(yk

′,ν′
τ ′ )|p

]q/p}1/q

≤ C
{ ∞∑

k′=1

[2k
′s‖Ek′(f)‖Lp(X)]

q
}1/q

,
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where we chose ε1, ε2 > 0 such that ε′ = ε1 + ε2 and ε1 > |s|, and we used
the arbitrariness of yk

′,ν′
τ ′ in the last step, while in the second-to-last step,

we used the following well-known inequality: for t ∈ (0, 1] and aj ∈ C,

(2.11)
(∑

j

|aj |
)t
≤
∑

j

|aj |t.

Now (2.9) and (2.10) yield (2.5). This shows (1.3).
To verify (1.4), using the estimate of (2.4), we can first easily see that

the left-hand side of (1.4) is dominated by its right-hand side. To establish
the converse, by (2.5), we only need to show that for f ∈ (G

◦
(β, γ))′ with

|s| < β < θ and 0 < γ < θ,

(2.12)
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[ sup

z∈Q0,ν
τ

|E0(f)(z)|]p
}1/p

≤ C
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|E0(f)|)]p

}1/p

+ C
∥∥∥
{ ∞∑

k=1

[2ks|Ek(f)|]q
}1/q∥∥∥

Lp(X)
.

To prove (2.12), we control supz∈Q0,ν
τ
|E0(f)(z)| by G1 +G2 as in (2.6).

By Lemma 4, (2.8) and the Fefferman–Stein vector-valued maximal function
inequality in [5], we estimate the term related to G2 by

(2.13)
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[G2]p

}1/p

≤ C
{ �
X

∑

τ∈I0

N(0,τ)∑

ν=1

χ
Q0,ν
τ

(x)
[ ∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2−k
′(ε′+d)|Ek′(f)(yk

′,ν′
τ ′ )|

× 1

(1 + %(x, yk
′,ν′
τ ′ ))d+ε′

]p
dµ(x)

}1/p

≤ C
∥∥∥
∞∑

k′=1

2−k
′(ε′+s+d−d/r)

×
(
M
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sr|Ek′(f)(yk

′,ν′
τ ′ )|rχ

Qk
′,ν′
τ ′

])1/r∥∥∥
Lp(X)

≤ C
∥∥∥
{ ∞∑

k′=1

(
M
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sr|Ek′(f)(yk

′,ν′
τ ′ )|rχ

Qk
′,ν′
τ ′

])q/r}1/q∥∥∥
Lp(X)
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≤ C
∥∥∥
{ ∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

[2k
′s|Ek′(f)(yk

′,ν′
τ ′ )|χ

Qk
′,ν′
τ ′

]q
}1/q∥∥∥

Lp(X)

≤ C
∥∥∥
{ ∞∑

k′=1

[2k
′s|Ek′(f)(yk

′,ν′
τ ′ )|]q

}1/q∥∥∥
Lp(X)

,

where we chose r ∈ (0, 1) such that r > d/(d+ s+ ε′), and in the last step
we used the arbitrariness of yk

′,ν′
τ ′ . Now, (2.10) and (2.13) prove (2.12). This

shows (1.4).
From the smooth molecule and unit characterization of the spaces F s

pq(X)
when d/(d+ θ) < p <∞ and 1 ≤ q <∞ (see Theorems 2.1 and 2.2 in [10]),
and Theorems 4 and 5 below, it is easy to see that (1.5) holds.

This finishes the proof of Theorem 2.

From the proof of Theorem 1 in [4] (see also the proofs of (2.5) and (2.12)
above), we can easily deduce the following lemma which is Remark 1 in [4].

Lemma 5. With the notation as in Lemma 2,

{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )|F̃Q0,ν

τ
(f)|p

}1/p

+
{ ∞∑

k=1

2ksq
(∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )[ sup
z∈Qk,ντ

|F̃k(f)(z)|]p
)q/p}1/q

≤ C‖f‖Bspq(X)

when max(d/(d+ θ), d/(d+ θ + s)) < p ≤ ∞ and 0 < q ≤ ∞, and

{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )|F̃

Q0,ν
τ

(f)|p
}1/p

+
∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[2ks sup
z∈Qk,ντ

|F̃k(f)(z)|χ
Qk,ντ

]q
}1/q∥∥∥

Lp(X)
≤ C‖f‖F spq(X)

when max(d/(d+ θ), d/(d+ θ + s)) < p, q and p <∞, q ≤ ∞.

Proof of Theorem 3. Suppose f ∈ (G
◦
(β1, γ1))′ and h ∈ G(θ, θ). By

Lemma 2, we have

〈f, h〉 =
∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )F̃Q0,ν

τ
(f)

�
X

mQ0,ν
τ

(E0(x, ·))h(x) dµ(x)(2.14)

+
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )F̃k(f)(yk,ντ )〈Ek(·, yk,ντ ), h〉

= K1 +K2.
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We first verify that for τ ∈ I0 and ν = 1, . . . , N(0, τ),

(2.15)
∣∣∣

�
X

m
Q0,ν
τ

(E0(x, ·))h(x) dµ(x)
∣∣∣

≤ C‖h‖G(β2,γ2) inf
y∈Q0,ν

τ

1
(1 + %(y, x0))d+γ2

,

and for k ∈ N, τ ∈ Ik and ν = 1, . . . , N(k, τ),

(2.16) |〈Ek(·, yk,ντ ), h〉| ≤ C2−kβ2‖h‖G(β2,γ2) inf
y∈Qk,ντ

1
(1 + %(y, x0))d+γ2

,

where C is independent of n.
To prove (2.15), we have∣∣∣

�
X

m
Q0,ν
τ

(E0(x, ·))h(x) dµ(x)
∣∣∣

≤ sup
y∈Q0,ν

τ

∣∣∣
�
X

E0(x, y)h(x) dµ(x)
∣∣∣

≤ C‖h‖G(β2,γ2) sup
y∈Q0,ν

τ

�
{x : %(x,y)≤C1}

1
(1 + %(x, x0))d+γ2

dµ(x)

≤ C‖h‖G(β2,γ2)

× sup
y∈Q0,ν

τ

[
χ{y : %(y,x0)≤2AC1}(y) + χ{y : %(y,x0)>2AC1}(y)

1
(1 + %(y, x0))d+γ2

]

≤ C‖h‖G(β2,γ2) sup
y∈Q0,ν

τ

1
(1 + %(y, x0))d+γ2

≤ C‖h‖G(β2,γ2) inf
y∈Q0,ν

τ

1
(1 + %(y, x0))d+γ2

.

That is, (2.15) holds.
For (2.16), we have

|〈Ek(·, yk,ντ ), h〉| =
∣∣∣

�
X

Ek(x, y
k,ν
τ )[h(x)− h(y)] dµ(x)

∣∣∣

≤ C2−kβ2‖h‖G(β2,γ2)

�

{x : %(x,yk,ντ )≤3C12−k}

%(x, yk,ντ )β2

(1 + %(yk,ντ , x0))d+γ2+β2
dµ(x)

≤ C2−kβ2‖h‖G(β2,γ2)
1

(1 + %(yk,ντ , x0))d+γ2+β2

≤ C2−kβ2‖h‖G(β2,γ2) inf
y∈Qk,ντ

1
(1 + %(y, x0))d+γ2

.

Thus, (2.16) also holds.



Spaces of Besov and Triebel–Lizorkin type 85

Let us now prove (i) of Theorem 3. By Lemma 5, the Hölder inequality,
(2.11), (2.15) and (2.16), we obtain

|K1| ≤ C‖h‖G(β2,γ2)





[∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )|F̃

Q0,ν
τ

(f)|p
]1/p

, p < 1,

[∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )|F̃

Q0,ν
τ

(f)|p
]1/p

×
[ �
X

1
(1 + %(y, x0))(d+γ2)p′

dµ(y)
]1/p′

,

1 ≤ p ≤ ∞,

(2.17)

≤ C‖f‖Bspq(X)‖h‖G(β2,γ2);

and

|K2|≤C‖h‖G(β2,γ2)





∞∑

k=1

2−kβ2

[ ∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )p|F̃k(f)(yk,ντ )|p
]1/p

, p<1,

∞∑

k=1

2−kβ2
[ ∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )|F̃k(f)(yk,ντ )|p
]1/p

×
[ �
X

1
(1 + %(y, x0))(d+γ2)p′

dµ(y)
]1/p′

,

1 ≤ p ≤ ∞,
(2.18)

≤ C‖h‖G(β2,γ2)





∞∑

k=1

2−k[β2+s−d(1/p−1)]2ks

×
[ ∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )|F̃k(f)(yk,ντ )|p
]1/p

, p < 1,

∞∑

k=1

2−k(β2+s)2ks

×
[ ∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )|F̃k(f)(yk,ντ )|p
]1/p

, 1≤p≤∞,

≤ C‖f‖Bspq(X)‖h‖G(β2,γ2),

where we used β2 > max(0, s+,−s + d(1/p − 1)+) and the arbitrariness
of yk,ντ .

From (2.14)–(2.16), it follows that for all h ∈ G(θ, θ),

(2.19) |〈f, h〉| ≤ C‖f‖Bspq(X)‖h‖G(β2,γ2).
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Suppose now h ∈ G
◦
(β2, γ2). We choose hn ∈ G(θ, θ) for all n ∈ N such that

‖hn − h‖G(β2,γ2) → 0

as n→∞. The estimate of (2.19) shows that for all n,m ∈ N,

|〈f, hn − hm〉| ≤ C‖f‖Bspq(X)‖hn − hm‖G(β2,γ2),

which shows limn→∞〈f, hn〉 exists and the limit is independent of the choice
of hn. Therefore, we define

〈f, h〉 = lim
n→∞

〈f, hn〉.

By (2.19), for all h ∈ G◦ (β2, γ2),

|〈f, h〉| ≤ C‖f‖Bspq(X)‖h‖G(β2,γ2).

Thus, f ∈ (G
◦
(β2, γ2))′. This finishes the proof of (i) of Theorem 3.

The proof of (ii) can be obtained by using the fact that

‖f‖Bsp,max(p,q)(X) ≤ C‖f‖F spq(X);

see Proposition 2.3.2/2 in [15]. This finishes the proof of Theorem 3.

The key to the proof of Theorem 4 is also the discrete Calderón repro-
ducing formulae.

Proof of Theorem 4. Let f ∈ Bs
pq(X) ∩ (G

◦
(β, γ))′ with s, p, q, β and γ

as in Theorem 4. Let {Sk}∞k=0 be an approximation to the identity of order
θ with compact support as in Remark 1. Let Ek = Sk − Sk−1 for k ∈ N and
E0 = S0. For this {Ek}∞k=0, by Lemma 2, we have

f(x) =
∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )F̃

Q0,ν
τ

(f)m
Q0,ν
τ

(E0(x, ·))(2.20)

+
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )F̃k(f)(yk,ντ )Ek(x, yk,ντ ),

where all the other notation is as in Lemma 2, yk,ντ is the center of Qk,ν
τ ,

and (2.20) holds in (G
◦
(β′, γ′))′ with β < β′ < θ and γ < γ′ < θ. Let

λ
Q0,ν
τ

= µ(Q0,ν
τ )1/2F̃

Q0,ν
τ

(f) and

aQ0,ν
τ

(x) = µ(Q0,ν
τ )1/2mQ0,ν

τ
(E0(x, ·))

for τ ∈ I0 and ν = 1, . . . , N(0, τ), while λ
Qk,ντ

= µ(Qk,ντ )1/2F̃k(f)(yk,ντ ) and

a
Qk,ντ

(x) = µ(Qk,ντ )1/2Ek(x, yk,ντ )

for k ∈ N, τ ∈ Ik and ν = 1, . . . , N(k, τ). Then it is easy to check that
aQ0,ν

τ
(x) for τ ∈ I0 and ν = 1, . . . , N(0, τ) is an ε-smooth block for Q0,ν

τ ,
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and a
Qk,ντ

(x) for k ∈ N, τ ∈ Ik and N = 1, . . . , N(k, τ) is an ε-smooth atom

for Qk,ντ , multiplied with a normalizing constant. Moreover, by Lemma 5,
we have

‖λ‖bspq(X) ≤ C
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )|F̃Q0,ν

τ
(f)|p

}1/p

+ C
{ ∞∑

k=1

2ksq
[ ∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )|F̃k(f)(yk,ντ )|p
]q/p}1/q

≤ C
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[m

Q0,ν
τ

(|E0(f)|)]p
}1/p

+ C
{ ∞∑

k=1

2ksq
(∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )[ inf
z∈Qk,ντ

|Ek(f)(z)|]p
)q/p}1/q

≤ C‖f‖Bspq(X).

That is, (1.7) holds. By (1.7) and the same argument as in Theorem 3, we
can show that (2.20) also holds in (G

◦
(β, γ))′. To see that the series in (2.20)

converge in the norm of Bs
pq(X) if max(p, q) <∞, without loss of generality,

we may suppose Ik = N for all k ∈ Z+. For L ∈ N, we then define

fL(x) =
L∑

τ=1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )F̃

Q0,ν
τ

(f)m
Q0,ν
τ

(E0(x, ·))

+
L∑

k=1

L∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ντ )F̃k(f)(yk,ντ )Ek(x, yk,ντ ).

Then it is easy to see that for all L ∈ N,

f(x)− fL(x) =
∞∑

τ=L+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )F̃

Q0,ν
τ

(f)m
Q0,ν
τ

(E0(x, ·))

+
∞∑

k=L+1

∑

τ∈N

N(k,τ)∑

ν=1

µ(Qk,ντ )F̃k(f)(yk,ντ )Ek(x, yk,ντ )

+
L∑

k=1

∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ντ )F̃k(f)(yk,ντ )Ek(x, yk,ντ ).

For all L ∈ N, by using the definition of the norm ‖·‖Bspq(X) and a similar
argument to that of Theorem 1 in [4], we can show that
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(2.21) ‖f − fL‖Bspq(X)

≤ C
{ ∞∑

τ=L+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )|F̃Q0,ν

τ
(f)|p

}1/p

+ C
{ ∞∑

k=L+1

2ksq
(∑

τ∈N

N(k,τ)∑

ν=1

µ(Qk,ντ )[ sup
z∈Qk,ντ

|F̃k(f)(z)|]p
)q/p}1/q

+ C
{ L∑

k=1

2ksq
( ∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ντ )[ sup
z∈Qk,ντ

|F̃k(f)(z)|]p
)q/p}1/q

= H1 +H2 +H3.

Now, since f ∈ Bs
pq(X), for any δ > 0, by Lemma 5 we can choose L1 ∈ N

such that if L ≥ L1, then

(2.22) H1 +H2 < δ/3.

For L > L1, we write

H3 ≤ C
{ ∞∑

k=L1+1

2ksq
(∑

τ∈N

N(k,τ)∑

ν=1

µ(Qk,ντ )[ sup
z∈Qk,ντ

|F̃k(f)(z)|]p
)q/p}1/q

(2.23)

+ C
{ L1∑

k=1

2ksq
( ∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ντ )[ sup
z∈Qk,ντ

|F̃k(f)(z)|]p
)q/p}1/q

< δ/3+C
{ L1∑

k=1

2ksq
( ∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ντ )[ sup
z∈Qk,ντ

|F̃k(f)(z)|]p
)q/p}1/q

.

Since f ∈ Bs
pq(X), by Lemma 5 again, we can choose L2 ≥ L1 such that if

L ≥ L2, then

(2.24) C
{ L1∑

k=1

2ksq
( ∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ντ )[ sup
z∈Qk,ντ

|F̃k(f)(z)|]p
)q/p}1/q

< δ/3.

Combining (2.21)–(2.24), we conclude that if L > L2, then

‖f − fL‖Bspq(X) < δ.

That is, fL converges to f in the norm of Bs
pq(X) if max(p, q) < ∞. This

verifies (i).

To prove (ii), by Lemma 5, we obtain
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‖λ‖fspq(X) ≤ C
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )|ẼQ0,ν

τ
(f)|p

}1/p

+ C
∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[2ks|Ẽk(f)(yk,ντ )|χ
Qk,ντ

]q
}1/q∥∥∥

Lp(X)

≤ C
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[m

Q0,ν
τ

(|E0(f)|)]p
}1/p

+ C
∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[2ks inf
z∈Qk,ντ

|Ek(f)(z)|χ
Qk,ντ

]q
}1/q∥∥∥

Lp(X)

≤ C‖f‖F spq(X).

Thus, (1.8) holds. By Proposition 2.3 in [18] and (i), we can easily see that
(2.34) holds in (G◦ (β, γ))′ also in this case. By Lemma 3 and an argument
similar to that in Theorem 1 and Lemma 5, similarly to the case of the
spaces Bs

pq(X), we can show that (2.20) converges in the norm of F s
pq(X)

when q <∞. This finishes the proof of Theorem 4.

Proof of Theorem 5. Let {Ek}∞k=0 be as in Lemma 2. We first verify
(1.10). The following estimates are, respectively, (2.14) and (2.15) in [9]:
For k, k′ ∈ Z+, k ≤ k′, τ ′ ∈ Ik′ and ν ′ = 1, . . . , N(k′, τ ′),

(2.25) |Ek(uQk′,ν′
τ ′

)(x)|

≤ Cµ(Qk
′,ν′
τ ′ )−1/22−(k′−k)(d+γ) 1

(1 + 2k%(x, yk
′,ν′
τ ′ ))d+γ

,

and for k, k′ ∈ Z+, k ≥ k′, τ ′ ∈ Ik′ and ν ′ = 1, . . . , N(k′, τ ′),

(2.26) |Ek(uQk′,ν′
τ ′

)(x)| ≤ Cµ(Qk
′,ν′
τ ′ )−1/22−(k−k′)β 1

(1 + 2k′%(x, yk
′,ν′
τ ′ ))d+γ

.

By (2.25), (2.11) and the Hölder inequality, we have

(2.27)
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[m

Q0,ν
τ

(|E0(f)|)]p
}1/p

≤ C
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )
[ ∞∑

k′=0

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′

τ ′ )−1/22−k
′(d+γ)

× |λ
Qk
′,ν′
τ ′
| inf
x∈Q0,ν

τ

1

(1 + %(x, yk
′,ν′
τ ′ ))d+γ

]p}1/p
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≤ C





{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )
[ ∞∑

k′=0

2−k
′[γ+d(1−1/p)]p

×
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′

τ ′ )1/p−1/2|λ
Qk
′,ν′
τ ′
|)p

× inf
x∈Q0,ν

τ

1

(1 + %(x, yk
′,ν′
τ ′ ))(d+γ)p

]}1/p

, p < 1,

{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

×
[ ∞∑

k′=0

2−k
′ε1p

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′
τ ′ )1/p−1/2|λ

Qk
′,ν′
τ ′
|)p

× inf
x∈Q0,ν

τ

1

(1 + %(x, yk
′,ν′
τ ′ ))d+γ

]

×
[ ∞∑

k′=0

2−k
′ε2p′

�
X

1

(1 + %(y0,ν
τ , y))d+γ

dµ(y)
]p/p′}1/p

, 1≤p≤∞,

≤ C





{ ∞∑

k′=0

2−k
′[γ+d(1−1/p)+s]p2k

′sp

×
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′
τ ′ )1/p−1/2|λ

Qk
′,ν′
τ ′
|)p
]}1/p

, p < 1,

{ ∞∑

k′=0

2−k
′(ε1+s)p2k

′sp

×
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′
τ ′ )1/p−1/2|λ

Qk
′,ν′
τ ′
|)p
]}1/p

, 1 ≤ p ≤ ∞,

≤ C‖λ‖bspq(X),

where we used the fact that

γ > max(d(1/p− 1)+,−s+ d(1/p− 1)+)

and we chose ε1 > 0 and ε2 > 0 such that γ = ε1 + ε2 and ε1 > −s.
In what follows, for k ∈ N, we let
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fk =
∞∑

k′=k

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

λ
Qk
′,ν′
τ ′

u
Qk
′,ν′
τ ′

,

fk =
k−1∑

k′=0

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

λ
Qk
′,ν′
τ ′

u
Qk
′,ν′
τ ′

.

From (2.25), (2.11) and the Hölder inequality, it follows that

(2.28)
{ ∞∑

k=1

2ksq
(∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )[ inf
x∈Qk,ντ

|Ek(fk)(x)|]p
)q/p}1/q

≤ C
{ ∞∑

k=1

2ksq
(∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )

×
[ ∞∑

k′=k

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )−1/22−(k′−k)(d+γ)

× |λ
Qk
′,ν′
τ ′
| inf
x∈Qk,ντ

1

(1 + 2k%(x, yk
′,ν′
τ ′ ))d+γ

]p)q/p}1/q

≤ C





{ ∞∑

k=1

2k(s+d+γ)q
[ ∞∑

k′=k

2−k
′[γ+d(1−1/p)]p

×
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′
τ ′ )1/p−1/2|λ

Qk
′,ν′
τ ′
|)p

×
�
X

1

(1 + 2k%(x, yk
′,ν′
τ ′ ))(d+γ)p

dµ(x)
]q/p}1/q

, p < 1,

{ ∞∑

k=1

2k(s+d+γ)q
(∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )

×
[ ∞∑

k′=k

2−k
′ε1p

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′
τ ′ )1/p−1/2|λ

Qk
′,ν′
τ ′
|
)p

× inf
x∈Qk,ντ

1

(1 + 2k%(x, yk
′,ν′
τ ′ ))d+γ

]

×
[ ∞∑

k′=k

2−k
′ε2p′

�
X

1

(1 + 2k%(yk,ντ , y))d+γ
dµ(y)

]p/p′)q/p}1/q

,

1 ≤ p ≤ ∞,
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≤ C





{ ∞∑

k=1

[ ∞∑

k′=k

2(k−k′)[γ+s+d(1−1/p)]p2k
′sp

×
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′
τ ′ )1/p−1/2|λ

Qk
′,ν′
τ ′
|)p
]q/p}1/q

, p < 1,

{ ∞∑

k=1

[ ∞∑

k′=k

2(k−k′)(ε1+s)p2k
′sp

×
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′
τ ′ )1/p−1/2|λ

Qk
′,ν′
τ ′
|)p
]q/p}1/q

, 1 ≤ p ≤ ∞,

≤ C‖λ‖bspq(X),

where we chose ε1 > 0 and ε2 > 0 such that γ = ε1 + ε2 and ε1 > −s, and
we used the fact that γ > max(d(1/p− 1)+,−s+ d(1/p− 1)+).

By (2.26), (2.11) and the Hölder inequality, we obtain

(2.29)
{ ∞∑

k=1

2ksq
(∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )[ inf
x∈Qk,ντ

|Ek(fk)(x)|]p
)q/p}1/q

≤ C
{ ∞∑

k=1

2ksq
(∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )
[ k−1∑

k′=0

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )−1/22−(k−k′)β

× |λ
Qk
′,ν′
τ ′
| inf
x∈Qk,ντ

1

(1 + 2k′%(x, yk
′,ν′
τ ′ ))d+γ

]p)q/p}1/q

≤ C





{ ∞∑

k=1

[ k−1∑

k′=0

2(k−k′)(s−β)p2k
′sp

×
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′

τ ′ )1/p−1/2|λ
Qk
′,ν′
τ ′
|)p
]q/p}1/q

, p < 1,

{ ∞∑

k=1

[ k−1∑

k′=0

2(k−k′)(s−ε1)p2k
′sp

×
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′
τ ′ )1/p−1/2|λ

Qk
′,ν′
τ ′
|)p
]q/p}1/q

, 1 ≤ p ≤ ∞,

≤ C‖λ‖bspq(X),



Spaces of Besov and Triebel–Lizorkin type 93

where we chose ε1 > 0 and ε2 > 0 such that β = ε1 + ε2 and ε1 > s, and we
also used the fact that β > s+ and γ > d(1/p− 1)+.

Combining (2.27)–(2.29), we obtain (1.10). Using (1.10), we can show
that the series in (1.9) converge in the norm of Bs

pq(X) if max(p, q) < ∞,

and in (G
◦
(β1, γ1))′ with β1 and γ1 as in Theorem 5, as in the proof of

Theorem 3. We leave the details to the reader. This finishes the proof of (i).

Let us now prove (ii). We only verify (1.11). By (2.25), (2.11), Lemma 4
and the Fefferman–Stein vector-valued maximal function inequality in [5],
we obtain

(2.30)
{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )[m

Q0,ν
τ

(|E0(f)|)]p
}1/p

≤ C
{ �
X

∑

τ∈I0

N(0,τ)∑

ν=1

χQ0,ν
τ

(x)
[ ∞∑

k′=0

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′

τ ′ )−1/22−k
′(d+γ)

× |λ
Qk
′,ν′
τ ′
| 1

(1 + %(x, yk
′,ν′
τ ′ ))d+γ

]p
dµ(x)

}1/p

≤ C
∥∥∥
∞∑

k′=0

2−k
′(d+γ−d/r+s)2k

′s

×
(
M
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′
τ ′ )−1/2|λ

Qk
′,ν′
τ ′
|)rχ

Qk
′,ν′
τ ′

])1/r∥∥∥
Lp(X)

≤ C
∥∥∥
{ ∞∑

k′=0

2k
′sq

×
[
M
( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

[µ(Qk
′,ν′
τ ′ )−1/2|λ

Qk
′,ν′
τ ′
|]rχ

Qk
′,ν′
τ ′

)]q/r}1/q∥∥∥
Lp(X)

≤ C‖λ‖fspq(X),

where we chose r ∈ (0, 1] such that 0 < r < min(1, p, q) and

γ > max(d(1/r − 1)+,−s+ d(1/r − 1)+).

From (2.25), (2.11), Lemma 4 and the Fefferman–Stein vector-valued max-
imal function inequality in [5], it follows that
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(2.31)
∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[2ks inf
x∈Qk,ντ

|Ek(fk)(x)|χ
Qk,ντ

]q
}1/q∥∥∥

Lp(X)

≤ C
∥∥∥∥
{ ∞∑

k=1

2ksq
∑

τ∈Ik

N(k,τ)∑

ν=1

[ ∞∑

k′=k

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )−1/22−(k′−k)(d+γ)

× |λ
Qk
′,ν′
τ ′
|χ
Qk,ντ

1

(1 + 2k%(·, yk′,ν′τ ′ ))d+γ

]q}1/q∥∥∥∥
Lp(X)

≤ C
∥∥∥
{ ∞∑

k=1

[ ∞∑

k′=k

2−(k′−k)(d+γ−d/r+s)2k
′s

×
(
M
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′

τ ′ )−1/2|λ
Qk
′,ν′
τ ′
|)rχ

Qk
′,ν′
τ ′

])1/r]q}1/q∥∥∥
Lp(X)

≤ C
∥∥∥
{ ∞∑

k′=1

2k
′sq

×
[
M
( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

[µ(Qk
′,ν′
τ ′ )−1/2|λ

Qk
′,ν′
τ ′
|]rχ

Qk
′,ν′
τ ′

)]q/r}1/q∥∥∥
Lp(X)

≤ C‖λ‖fspq(X),

where we chose r ∈ (0, 1] as in (2.30); while by (2.26), we also have

(2.32)
∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[2ks inf
x∈Qk,ντ

|Ek(fk)(x)|χ
Qk,ντ

]q
}1/q∥∥∥

Lp(X)

≤ C
∥∥∥∥
{ ∞∑

k=1

2ksq
∑

τ∈Ik

N(k,τ)∑

ν=1

[ k−1∑

k′=0

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )−1/22−(k−k′)β

× |λ
Qk
′,ν′
τ ′
|χ
Qk,ντ

1

(1 + 2k′%(·, yk′,ν′τ ′ ))d+γ

]q}1/q∥∥∥∥
Lp(X)

≤ C
∥∥∥
{ ∞∑

k=1

[ k−1∑

k′=0

2−(k−k′)(β−s)2k
′s

×
(
M
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(µ(Qk
′,ν′
τ ′ )−1/2|λ

Qk
′,ν′
τ ′
|)rχ

Qk
′,ν′
τ ′

])1/r]q}1/q∥∥∥
Lp(X)
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≤ C
∥∥∥
{ ∞∑

k′=0

2k
′sq

×
[
M
( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

[µ(Qk
′,ν′
τ ′ )−1/2|λ

Qk
′,ν′
τ ′
|]rχ

Qk
′,ν′
τ ′

)]q/r}1/q∥∥∥
Lp(X)

≤ C‖λ‖fspq(X),

where we chose again r ∈ (0, 1) as in (2.30) and we also used the fact that
β > s+. Now, (2.30)–(2.32) yield (1.11).

This finishes the proof of Theorem 5.

3. Some remarks. First, we point out that on Rn, (1.3) and (1.4) with
a special choice of Ek are true even when p < 1. In fact, in this case, we can
take E0(f)(x) = (φ ∗ f)(x) and Ek(f)(x) = (ψk ∗ f)(x) for k ∈ N, where φ
and ψ are Schwartz functions, supp φ̂ ⊂ {x ∈ Rn : |x| ≤ 2}, |φ̂(x)| ≥ C > 0
for all |x| ≤ 1,

supp ψ̂(x) ⊂ {x ∈ Rn : 1/2 ≤ |x| ≤ 2},
|ψ̂(x)| ≥ C > 0 for all 3/5 ≤ |x| ≤ 5/3, and ψk(x) = ψ(2−kx) for k ∈ N
(see [15]). Let D be the set of all dyadic cubes with side length 2−j. By the
following well-known Plancherel–Pólya inequality on Rn:

∑

Q∈D
|Q| sup

z∈Q
|(φ ∗ f)(z)|p ≤ C‖φ ∗ f‖pLp(X)

for all p ∈ (0,∞) (see [15]), we can deduce
∑

Q∈D
|Q|
[

1
|Q|

�
Q

|(φ ∗ f)(x)| dµ(x)
]p

≤ C
∑

Q∈D
|Q| sup

z∈Q
|(φ ∗ f)(z)|p ≤ C‖φ ∗ f‖pLp(X).

From this and other inequalities in the proof of Theorem 2, it follows that
(1.3) and (1.4) are also true on Rn when p, q < 1 with these special operators.

We also remark that if s ∈ (0, θ) and u
Qk,ντ

for all k ∈ Z+, τ ∈ Ik and
ν = 1, . . . , N(k, τ) are smooth units, then Theorem 5 still holds, which can
be seen from its proof. From this fact and Theorem 6.6 of [19], we can see
that if X is a Lipschitz manifold, then the spaces Bs

pq(X) and F spq(X) are
the same as those defined in [19] by a completely different approach; see [19]
for the details.

Finally, we remark that (1.5) can be proved without using Theorems 4
and 5 of this paper and Theorems 2.1 and 2.2 of [10]. One can prove (1.5) by
applying Lemma 4, Theorem 2.1 of [10], the Fefferman–Stein vector-valued
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maximal function inequality of [5] and the definition of the spaces F s
pq(X)

in terms of the Littlewood–Paley S-function; see also [4] and [7].
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