
STUDIA MATHEMATICA 151 (1) (2002)

Doubling properties and unique
continuation at the boundary for elliptic
operators with singular magnetic fields

by

Xiangxing Tao (Ningbo)

Abstract. Let u be a solution to a second order elliptic equation with singular mag-
netic fields, vanishing continuously on an open subset Γ of the boundary of a Lipschitz
domain. An elementary proof of the doubling property for u2 over balls centered at some
points near Γ is presented. Moreover, we get the unique continuation at the boundary of
Dini domains for elliptic operators.

1. Introduction and statement of results. The unique continuation
problem has been receiving increasing attention from workers in both partial
differential equations and mathematical physics. In the survey paper on
Schrödinger semigroups [S] Simon formulated the following conjecture: Let
V ∈ K loc

n , the local Kato class of potentials. Then the Schrödinger operator
H = −∆ + V has the unique continuation property (UCP). By this it is
meant that given any connected open subset Ω ⊂ Rn, the only solution u
of Hu = 0 in Ω vanishing in an open subset Ω0 ⊂ Ω is u ≡ 0. It was proved
in [SS] that if V 2 ∈ K loc

n , then the Schrödinger operator H has the UCP.
A recent outstanding result of Fabes, Garofalo and Lin’s [FGL] proves that
if V ∈ K loc

n and is monotone radial, then H has the UCP.
On the other hand, the following unique continuation question was raised

in [L], [AEK] and [AE]: If u is a harmonic function in a connected Lipschitz
domain Ω, vanishing continuously on an open subset Γ of the boundary ∂Ω
and whose normal derivative vanishes on a subset of Γ of positive surface
measure, does it follow that u is identically zero in Ω? In [AEK], it was
shown that this holds for convex domains. In [AE] and [KN], it was proven
that the answer is affirmative for Dini domains, and thus, in particular, for
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C1,α domains with α > 0, while it is also pointed out in [AE] that the result
can be generalized to solutions to elliptic operators with Lipschitz second
order coefficients and bounded lower order coefficients in C1,α domains with
α > 0. The key step in [AE] is to prove that u satisfies a doubling type
condition on the boundary. In this paper, we prove doubling properties for
solutions of Hu = 0 (Theorems 1.1 and 1.2), and give an affirmative answer
to related unique continuation questions for the Schrödinger operator H in
Dini domains (Theorem 1.3).

In fact, we consider second order elliptic operators of the following form:

Lu(X) = −
n∑

j,k=1

Dj(ajk(X)Dku(X)) +
n∑

j=1

Wj(X)Dju(X)(1.1)

+ V (X)u(X)

in some domains Ω, where A(X) = (ajk(X))nj,k=1 is a real symmetric matrix
function, Dj = ∂/∂xj− ibj is a differential operator, b(X) = (bj(X))nj=1 and

W (X) = (Wj(X))nj=1 are real-valued vector fields, and V (X) = V R(X) +
iV I(X) is a complex-valued function.

Throughout this paper we use the notation

D = ∇− ib, D∗ = ∇+ ib, ∇ =
(

∂

∂x1
, . . . ,

∂

∂xn

)
,

B = (bjk)nj,k=1, bjk(X) =
∂bj
∂xk
− ∂bk
∂xj

,

Hm
loc(Ω) = {u ∈ L2

loc(Ω) : ∇αu ∈ L2
loc(Ω), |α| ≤ m}.

Note that Du = D∗u for a complex-valued function u.
To state our main results, we first recall the definition of the Kato class

K loc
n .

Definition 1.1. We say a measurable function g ∈ L1
loc(Ω) belongs to

the Kato class K loc
n (Ω) if limr→0 η(r; gχΩ0) = 0 for every bounded subdo-

main Ω0 of Ω. Here

η(r; g) = sup
X∈Rn

�

Br(X)

|g(Y )|
|X − Y |n−2 dY

where Br(X) = {Y ∈ Rn : |Y −X| ≤ r} is the ball in Rn.

In this paper, the assumptions on A, b, W and V are the following.

Assumption (A). For any X0 ∈ Ω, there exists a λ > 1 such that , for
every X ∈ Ω and ξ ∈ Rn,

(1.2) λ−1|ξ|2 ≤ A(X)ξ · ξ ≤ λ|ξ|2;
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and there exists a nondecreasing function f : R+ → R+ such that
limr→0 f(r) = 0, and for every X ∈ B1(X0) ∩Ω,

(1.3) |∇A(X)| ≤ f(|X −X0|)
|X −X0|

, |A(X)− A(X0)| ≤ f(|X −X0|),

and

(1.4) |W (X)| ≤ f(|X −X0|)
|X −X0|

, |∇ ·W (X)| ≤ f(|X −X0|)
|X −X0|2

.

Assumption (B). For any X0 ∈ Ω, we have

(1) b ∈ L4
loc(Ω), ∇ · b ∈ L2

loc(Ω), |b|2 ∈ K loc
n (Ω),

(|X −X0||B|)2 ∈ K loc
n (Ω);

(2) V R ∈ K loc
n (Ω), (|X −X0| · |V I|)2 ∈ K loc

n (Ω),

2
X −X0

|X −X0|
V R + |X −X0|∇V R ∈ K loc

n (Ω).

We remark that if V ∈ K loc
n (Ω) and is a monotone radial real function,

then it satisfies Assumption (B).
In this paper, we always denote by

4r(Q) = Br(Q) ∩ ∂Ω and Tr(Q) = Br(Q) ∩Ω
a surface ball and a Carleson region for the boundary point Q ∈ ∂Ω. Take
Q0 ∈ ∂Ω. Let η0(r; g) = η(r; gχT3(Q0)) and

η0(r) = η0(r;V R) + η0

(
r; 2

X −X0

|X −X0|
V R + |X −X0|∇V R

)

+ η0(r; (|X −X0|V I)2)1/2 + η0(r; (|X −X0| · |B|)2)1/2;

we also put

θ0(r) = η0(r) + f(r),

and denote by r∗ a small number defined in Definition 3.1.
The main results of this work are the following doubling properties near

the boundary.

Theorem 1.1. Let Ω be a Lipschitz domain, and L be an operator as
in (1.1) satisfying Assumptions (A) and (B) with � 1

0(θ0(r)/r) dr = M <∞,
and let u ∈ H2

loc(Ω) be a solution to Lu = 0 in Ω vanishing on 43(Q0) for
some Q0 ∈ ∂Ω. Suppose that there exist a positive number r0, 0 < r0 < r∗,
and a point X0 ∈ B1(Q0) ∩Ω such that A(X0) = I, the unit matrix , and

(1.5) A(Q)(Q−X0) · ν(Q) ≥ 0 for a.e. Q in B2r0(X0) ∩ ∂Ω



34 X. X. Tao

where ν(Q) is the outward unit normal vector at Q ∈ ∂Ω. Then
�

B2r(X0)∩Ω
|u(X)|2 dX ≤ 2C(r0)

�

Br(X0)∩Ω
|u(X)|2 dX

for all 0 < r < r0, where C(r0) is a constant independent of X0 and r.

Theorem 1.2. Assume the same conditions as in the above theorem, but
without � 1

0(θ0(r)/r) dr <∞. Then there exist absolute constants C1, C2 and
K independent of 0 < r < r0 and X0 ∈ B1(Q0) ∩Ω such that

�

B2r(X0)∩Ω
|u(X)|2 dX ≤ exp

(
C1

rC2θ0(Kr0)

) �

Br(X0)∩Ω
|u(X)|2 dX.

The proof of the two theorems above will use a Rellich type identity
near the boundary and the variational method; the original idea goes back
to Garofalo and Lin [GL1] who dealt with the equation div(A∇u) = 0.
We will give the proofs in Section 3. From the two theorems, it is easy
to deduce the following boundary unique continuation for Dini domains
(Corollaries 1.1 and 1.2), and the inner unique continuation in any domain
Ω ⊂ Rn (Corollaries 1.3 and 1.4).

Corollary 1.1. Let Ω be a connected Dini domain in Rn and u ∈
H2

loc(Ω) be a solution in Ω to Lu = 0 vanishing continuously on an open
subset Γ of ∂Ω, where L is an operator as in (1.1) with Lipschitz coefficients
A and satisfies Assumptions (A), (B) and � 1

0(θ0(r)/r) dr <∞. Assume that
for some point Q in Γ and for every m > 0,

�

Tr(Q)

|u(X)|2 dX = O(rm), r → 0.

Then u must be identically zero in Ω.

Corollary 1.2. Let Ω be a connected C1 domain in Rn and u ∈
H2

loc(Ω) be a solution in Ω to Lu = 0 vanishing continuously on an open
subset Γ of ∂Ω, where L is an operator as in (1.1) and satisfies Assump-
tions (A) and (B). Assume that for some point Q in Γ , there are positive
constants K and β such that

�

Tr(Q)

|u(X)|2 dX = O(exp(−K/rβ)), r → 0.

Then u must be identically zero in Ω.

Corollary 1.3. Suppose Assumptions (A) and (B) hold , � 1
0(θ0(r)/r) dr

< ∞, and Ω is a connected domain in Rn. Then L has the strong inner
unique continuation property : if u ∈ H2

loc(Ω) is a solution to Lu = 0 and
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satisfies, for some X0 ∈ Ω and every m > 0,
�

Br(X0)

|u(X)|2 dX = O(rm), r → 0,

then u ≡ 0 in Ω.

Corollary 1.4. Suppose Assumptions (A) and (B) hold , and Ω is a
connected domain in Rn. Then L has the inner unique continuation prop-
erty : if u ∈ H2

loc(Ω) is a solution to Lu = 0 and satisfies, for some X0 ∈ Ω
and K, ε > 0,

�

Br(X0)

|u(X)|2 dX = O(exp(−K/rε)), r → 0,

then u ≡ 0 in Ω.
In particular , L has the weak inner unique continuation property : if u

vanishes on a subdomain Ω0 of Ω, then u ≡ 0 in Ω.

These corollaries improve the previous results of [AE], [AEK], [FGL],
[GL2] and [Ku]. The arguments for their proofs have already been given in
[AE] and [FGL]; in Section 4 we outline the proofs of Corollaries 1.1 and 1.2
for the sake of completeness.

We also consider the unique continuation at the boundary, and obtain
the following results.

Theorem 1.3. Let Ω be a Dini domain in Rn, and let L be an operator
as in (1.1) with Lipschitz second order coefficients, satisfying Assumptions
(A) and (B) and � 1

0(θ0(r)/r) dr < ∞. If u ∈ H2
loc(Ω) is a solution in Ω

to Lu = 0 vanishing continuously on an open subset Γ of ∂Ω and whose
normal derivative vanishes on a subset of Γ with positive surface measure,
then u must be identically zero in Ω.

Since Lu = −div(A∇u)+(W +2iAb) ·∇u+ idiv(Ab)u+Ab ·bu+V u, we
can apply the results of [AE] for a Dini domain. But they require stronger
conditions: |W |, |Ab|,div(Ab), |V | ∈ L∞loc, while our method only requires,
for instance, div(Ab) ∈ L2

loc.

Corollary 1.5. Let Ω be a Dini domain, and L̃ a real elliptic operator
of the form

(1.6) L̃u = −div(A∇u) +W · ∇u+ V u,

where A satisfies (1.2) and the Lipschitz condition; W satisfies (1.4) or
|W | ∈ L∞loc(Ω); V ∈ K loc

n (Ω) and 2 X−X0
|X−X0|V + |X − X0|∇V ∈ K loc

n (Ω);

and let � 1
0(θ0(r)/r) dr <∞. Then L̃ has the unique continuation property at

the boundary : if u ∈ H2
loc(Ω) is a nonconstant solution to L̃u = 0 vanish-
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ing continuously on an open subset Γ of ∂Ω, then the surface measure of
{Q ∈ Γ : |∇u| = 0} is zero.

Remark 1.1. Let X0 = 0, B1 = B1(0) and V (X) = |X|−l
∣∣log |X|

∣∣−m,
l > 0, m ∈ R. Then (see [Ku])

V ∈ K loc
n (B1) ⇔ (m > 1, l = 2) or (m ∈ R, l < 2);

V 2 ∈ K loc
n (B1) ⇔ (m > 1/2, l = 1) or (m ∈ R, l < 1);

2
X

|X| V + |X|∇V ∈ K loc
n (B1) ⇔ (m > 0, l = 2) or (m ∈ R, l < 2).

So in this example the condition V 2 ∈ K loc
n is the strongest. In fact if the

assumption on V is replaced by |V |2 ∈ K loc
n the theorems are valid (see

Remark 3.2 below).

Remark 1.2. By using an approximation argument we can show unique
continuation theorems similar to those above even for H1

loc-solutions.

In this paper, the letter C always denotes positive constants which may
depend on λ, n, the K loc

n norm and the Lipschitz character of Ω but may
change at different occurrences. The notation h = O(f) means that |h| ≤
C|f | for some constant C.

2. Kato potentials and auxiliary lemmas. In this section, we recall
some notations and lemmas concerning the Kato class which will be useful
in this paper.

Lemma 2.1. Let Ω be a Lipschitz domain, and assume g ∈ K loc
n (Ω),

and u ∈ H1
loc(Ω) vanishes continuously on B ∩ ∂Ω, where B = Br(X0) for

some X0 ∈ Ω and r > 0. Then there exists a dimensional constant Cn,
independent of r, X0 and u, such that

�

B∩Ω
|g| · |u|2 dX ≤ Cnη(r; gχB∩Ω)

( �

B∩Ω
|∇u|2 dX +

1
r

�

∂B∩Ω
|u|2 dσ

)
,(2.1)

�

B∩Ω
|g| · |u|2 dX ≤ Cnη(r; gχB∩Ω)

( �

B∩Ω
|Du|2 dX +

1
r

�

∂B∩Ω
|u|2 dσ

)
.(2.2)

Proof. Arguing as in Lemma 1.1 of [FGL], we get (2.1) for all r > 0,
g ∈ K loc

n (Ω) and u ∈ C∞(Ω) vanishing on B ∩ ∂Ω. By density, (2.1) also
holds for u ∈ H1

loc(Ω) vanishing on B ∩ ∂Ω.
On the other hand, it is not difficult to see that

(2.3) |Du|2 =
∣∣∇|u|

∣∣2 +
∣∣∣∣bu−

u1∇u2 − u2∇u1

u

∣∣∣∣
2

≥
∣∣∇|u|

∣∣2,

where u1 = Re(u), u2 = Im(u). This yields (2.2).
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Lemma 2.2. Let Ω be a Lipschitz domain with X0 ∈ Ω, and assume that
u ∈ H1

loc(Ω) vanishes continuously on Br(X0) ∩ ∂Ω. Then

(2.4)
�

Br(X0)∩Ω

|u(X)|2
|X −X0|2

dX

≤ 4
( �

Br(X0)∩Ω
|Du|2 dX +

1
r

�

∂Br(X0)∩Ω
|u|2dσ

)

for all r, X0 and u.

Proof. This is a variation of Heisenberg’s uncertainty principle (see [RS]).
We observe that it is not restrictive to assume that X0 = 0. From the
divergence theorem,

�

Br∩Ω

|u(X)|2
|X|2 dX =

�

Br∩Ω
|u|2 div

(
X

|X|2
)
dX

= −2
�

Br∩Ω
|u|∇|u| · X

|X|2 dX +
1
r

�

∂Br∩Ω
|u|2 dσ

≤ 2
( �

Br∩Ω

|u|2
|X|2 dX

)1/2( �

Br∩Ω

∣∣∇|u|
∣∣2 dX

)1/2
+

1
r

�

∂Br∩Ω
|u|2 dσ.

This inequality, Cauchy’s inequality and (2.3) yield (2.4).

Using Lemma 2.1 we can deduce the following Caccioppoli inequality
([Ke]).

Lemma 2.3. Let Ω be a Lipschitz domain with Q0 ∈ ∂Ω and L be an op-
erator as in (1.1) satisfying Assumptions (A) and (B). Suppose u ∈ H1

loc(Ω)
is a solution to Lu = 0 vanishing on 43(Q0). Then there exist constants C
and 0 < r∗ < 1 such that for all 0 < r < r∗ and X0 ∈ B1(Q0) ∩Ω,

(2.5)
�

Br(X0)∩Ω
|∇u|2 dX ≤ C

r2

�

B2r(X0)∩Ω
|u|2 dX.

Proof. Take 0 < r < 1, and let φ ∈ C∞0 (Rn) be a real function, φ ≡ 1
on Br(X0), suppφ ⊂ B2r(X0), |∇φ| ≤ C/r. Since u ≡ 0 on B2r(X0) ∩ ∂Ω,
we have uφ2 ∈ H1

0 (B2r(X0) ∩Ω). Thus
�

B2r(X0)∩Ω
[ADu ·D∗(uφ2) +W ·Duuφ2 + V uuφ2] dX = 0.

By assumptions and Hölder’s inequality we have
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�

B2r(X0)∩Ω
|∇u|2φ2 dX ≤ Cλ,n

�

B2r(X0)∩Ω
|u|2|∇φ|2 dX

+ Cλ,n
�

B2r(X0)∩Ω
((V R)− + |b|2 + |W |2)|uφ|2 dX

where Cλ,n is a constant depending only λ and n. Thus, from (2.1) in
Lemma 2.1, one can see that

(2.6)
�

B2r(X0)∩Ω
|∇u|2φ2 dX ≤ Cλ,n

�

B2r(X0)∩Ω
|u|2|∇φ|2 dX

+ Cλ,n(η0(2r; (V R)− + |b|2) + f2(2r))
�

B2r(X0)∩Ω
|∇u|2φ2 dX.

Taking 0 < r∗ < 1 such that Cλ,n(η0(2r; (V R)− + |b|2) + f2(2r)) ≤ 1/2 for
all r ∈ (0, r∗), we then get (2.5). The lemma is proved.

3. Doubling property. The purpose of this section is to establish the
doubling property.

Definition 3.1. Let Q0 ∈ ∂Ω, C1 = max{2λ,Cn, Cλ,n}, where Cn is a
dimensional constant of Lemma 2.1, and Cλ,n is the constant in (2.6). Set

r∗ = max{0 < r < 1 : η0(2r; (V R)− + |b|2) + f2(2r) ≤ (2C1)−1}.
Without loss of generality, we may assume X0 = 0 is the origin and write

Br = Br(0). Thus condition (1.5) can be rewritten as

(3.1) A(Q)Q · ν(Q) ≥ 0 for a.e. Q in B2r0 ∩ ∂Ω
We now consider the function µ and vector field β defined as

µ(X) = A(X)X ·X/|X|2, β(X) = A(X)X/µ(X).

From Assumption (A) we have, with |X| = r,

(3.2) λ−1 ≤ µ(X) ≤ λ, |∇µ(X)| ≤ O(f(r)/r), µ(X) = 1 +O(f(r)),

(3.3) |β(X)|=O(r), div(AX)=n+O(f(r)), (∂/∂xj)βk=δjk +O(f(r)),

where the constants depend only on λ and n. For u as in Theorem 1.1 and
0 < r < 2, we introduce the following functions:

(3.4)

I1(r) =
�

Br∩Ω
ADu ·DudX, I2(r) =

�

Br∩Ω
Re(W ·Duu) dX,

I3(r) =
�

Br∩Ω
V R|u|2 dX, I(r) = I1(r) + I2(r) + I3(r),

H(r) =
�

∂Br∩Ω
µ|u|2 dσ, N(r) =

rI(r)
H(r)

.
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Differentiating H(r) we have, from (3.2),

H ′(r) =
(
n− 1
r

+O

(
f(r)
r

))
H(r) + 2 Re

�

∂Br∩Ω
µu

∂u

∂r
dσ.

We note that u is a solution to −D(ADu) + W · Du + V u = 0 and u
vanishes on Br ∩ ∂Ω. A direct computation yields

I(r) =
�

Br∩Ω
div(uADu) dX − i

�

Br∩Ω
{Im(W ·Duu) + V I|u|2} dX

=
�

∂Br∩Ω
u
∂u

∂νA
dσ − i

�

∂Br∩Ω
|u|2b ·Aν dσ

− i
�

Br∩Ω
{Im(W ·Duu) + V I|u|2} dX

where we have used the divergence theorem, and where ∂u/∂νA is the conor-
mal derivative.

Remark 3.1. Using Lemmas 2.1, 2.2, Assumptions (A) and (B), and
the fact that u ∈ H2

loc(Ω), we can deduce the integrability of each integrand
above.

Since the conormal derivative on ∂Br is given by ∂u/∂νA =A∇u ·X/|X|,
and α = AX/|X| − µX/|X| is a tangential vector field on ∂Br with
|div(α(X))| = O(f(r)/r), and noting that I(r) is real-valued, we obtain
from the divergence theorem and (3.2) the following identity:

I(r) = Re
�

∂Br∩Ω
u
∂u

∂νA
dσ

= Re
�

∂Br∩Ω
µu

∂u

∂r
dσ + Re

�

∂Br∩Ω
u∇u · αdσ

= Re
�

∂Br∩Ω
µu

∂u

∂r
dσ +

1
2

�

∂Br∩Ω
∇(|u|2) · αdσ

= Re
�

∂Br∩Ω
µu

∂u

∂r
dσ +O

(
f(r)
r

)
H(r)

Thus

(3.5) H ′(r) = 2I(r) +
[
n− 1
r

+O

(
f(r)
r

)]
H(r).

Lemma 3.1. For every 0 < r < 1, there exists an absolute constant
Cλ,n > 0 depending only on λ and n such that
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(3.6) |I2(r)|+ |I3(r)| ≤ Cλ,nθ0(r)
(
H(r)
r

+ I1(r)
)

;

and for all 0 < r < r∗,

(3.7) I1(r) ≤ 2
(
H(r)
r

+ I(r)
)
.

Proof. By Hölder’s inequality, Assumption (A) and Lemma 2.2 we have

|I2(r)| ≤
( �

Br∩Ω
|W |2|u|2 dX

)1/2( �

Br∩Ω
|Du|2 dX

)1/2

≤ 2λf(r)

√
H(r)
r

+ I1(r)
√
I1(r) ≤ 2λf(r)

(
H(r)
r

+ I1(r)
)
,

and from Lemma 2.1,

|I3(r)| ≤
�

Br∩Ω
|V R| · |u|2 dX ≤ Cnη0(r;V R)

(
H(r)
r

+ I1(r)
)
,

whence (3.6) follows. Moreover,

I(r) = I1(r) + I2(r) + I3(r)

≥ I1(r)− [2λf(r) + cnη0(r; (V R)−)]
(
H(r)
r

+ I1(r)
)
,

which implies (3.7).

Lemma 3.2. For every r ∈ (0, r∗), H(r) > 0 unless u ≡ 0 in Br ∩Ω.

Proof. Assume that H(r) = 0 for a certain r sufficiently small. Then

I(r) = Re
�

∂Br∩Ω
u
∂u

∂νA
dσ = 0.

This and (3.7) imply I1(r) = 0, and so we obtain |Du(X)| = 0 for a.e.
X ∈ Br ∩ Ω. Since

∣∣∇|u|
∣∣ ≤ |Du| a.e., |u| is constant in Br ∩ Ω. Thus,

H(r) = 0 implies u ≡ 0 in Br ∩Ω.

Our next task is to consider the differentiation of the functions I(r) and
N(r). Our argument is based on the following identity:

Lemma 3.3. For every 0 < r < 1, we have

(3.8)
�

∂Br∩Ω
ADu ·Dudσ

= 2
�

∂Br∩Ω

1
µ
|ADu · ν|2 dσ +

1
r

�

Br∩∂Ω

AQ · ν Aν · ν
µ

|∇u · ν|2 dσ
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+
[
n− 2
r

+O

(
f(r)
r

)] �

Br∩Ω
ADu ·DudX

− 2
r

Re
�

Br∩Ω
β ·Du [W ·Du+ V u] dX

+
2
r

Im
�

Br∩Ω
βlblkajkDjuu dX.

Proof. Observing that

(∂/∂xk)Dju− (∂/∂xj)Dku = i[bjku+ bj(∂u/∂xk)− bk(∂u/∂xj)],

we have the following Rellich identity:

div(βADu ·Du)− 2 div(β ·DuADu)

= div(β)ADu ·Du+ βl(∂ajk/∂xl)DjuDku

− 2(∂βl/∂xk)Dlu ajkDju− 2βlDluDk(ajkDju)

− 2iβlblkajkDjuu− 2iβ · bADu ·Du
+ βlajk(Dku(∂(Dju)/∂xl)−Dju(∂(Dku)/∂xl)).

Taking real parts, we have

(3.9) div(βADu ·Du)− 2 div(β ·DuADu)

= div(β)ADu ·Du+ βl(∂ajk/∂xl)DjuDku

− 2(∂βl/∂xk)DluajkDju− 2 Re{βlDluDk(ajkDju)}
+ 2 Im{βlblkajkDjuu}.

We recall that β ·ν = r on ∂Br and β ·DuADu ·ν = r
µ |ADu ·ν|2 on ∂Br.

Also since u = 0 and then Du = ∇u, ∇u = (∇u · ν)ν almost everywhere on
Br ∩ ∂Ω, we have

β · νADu ·Du = β ·DuADu · ν = β · νAν · ν|∇u · ν|2

=
AQ · νAν · ν

µ
|∇u · ν|2

on Br ∩ ∂Ω. Therefore, integrating over Br ∩ Ω the Rellich–Nečas iden-
tity (3.9), we obtain (3.8).

As remarked above, the existence of the integrals in (3.8) follows from
Lemmas 2.1, 2.2 and Assumptions (A) and (B). Now we introduce the quan-
tities
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F (r) = 2
�

∂Br∩Ω

1
µ
|ADu · ν|2 dσ,(3.10)

+
1
r

�

Br∩∂Ω

AQ · ν Aν · ν
µ

|∇u · ν|2 dσ,

J(r) = − 2 Re
�

Br∩Ω
β ·Du [W ·Du+ V u] dX(3.11)

+ 2 Im
�

Br∩Ω
βlblkajkDjuu dX.

Then (3.8) can be rewritten as

(3.12) I ′1(r) = F (r) +
[
n− 2
r

+O

(
f(r)
r

)]
I1(r) +

1
r
J(r).

In order to deal with the term J(r), we use the fact that

Re(β ·DuV Ru) = Re(β · ∇uV Ru) = 1
2β · ∇(|u|2)V R;

then from the divergence theorem and (3.3) we obtain

Re
�

Br∩Ω
β ·DuV udX =

1
2

�

Br∩Ω
β · ∇(|u|2)V R dX + Im

�

Br∩Ω
β ·DuV Iu dX

= − 1
2

�

Br∩Ω
div(βV R)|u|2 dX +

r

2

�

∂Br∩Ω
V R|u|2 dσ+ Im

�

Br∩Ω
β ·DuV Iu dX

= − n+O(f(r))
2

I3(r)− 1
2

�

Br∩Ω
(β · ∇V R)|u|2 dX

+
r

2
I ′3(r) +O(1)

�

Br∩Ω
|X| · |V I| · |Du| · |u| dX.

Using Assumptions (A), (B), Lemma 2.1 and Hölder’s inequality, we then
get the following estimates:

(3.13)
1
r
J(r) =

n− 2 +O(f(r))
r

I3(r)− I ′3(r)

+
1
r

�

Br∩Ω
(2V R + β · ∇V R)|u|2 dX +

O(1)
r

�

Br∩Ω
|X| · |W | · |Du|2 dX

+
O(1)
r

�

Br∩Ω
(|X| · |V I|+ |X| · |B|)|Du| · |u| dX

≥ n− 2 +O(f(r))
r

I3(r)− I ′3(r)− Cθ0(r)
r

(
H(r)
r

+ I1(r)
)

with a positive constant C independent of r.
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Remark 3.2. If |V |2 ∈ K loc
n (Ω), then by Lemma 2.1 we can get, directly

from (3.11),

J(r) ≥ (n− 2 +O(f(r)))I3(r)− rI ′3(r)− Cθ0(r)
(
H(r)
r

+ I1(r)
)
.

Proceeding in the standard way, we will show that there exists a constant
C > 0 such that the frequency function Z(r) = N(r) + 1 satisfies

(3.14) Z ′(r) ≥ −C θ0(r)
r

Z(r) for all 0 < r < r0,

First recall that

I ′2(r) = Re
�

∂Br∩Ω
W ·Duudσ =

1
2

�

∂Br∩Ω
W · ∇(|u|2) dσ;

then the divergence theorem implies

(3.15) |I ′2(r)| ≤ Cf(r)
r2 H(r)

with a constant C independent of 0 < r < 1.
Using (3.12), (3.13), (3.15) and Lemma 3.1, we have

I ′(r) = I ′1(r) + I ′2(r) + I ′3(r)

≥ F (r) +
n− 2
r

I(r)− Cθ0(r)
r

(
I1(r) +

H(r)
r

)

≥ F (r) +
n− 2
r

I(r)− Cθ0(r)
r

(
I(r) +

H(r)
r

)
.

By the above inequality, (3.5), and the quotient rule we obtain

Z ′(r) =
I(r)H(r) + rI ′(r)H(r)− rI(r)H ′(r)

H(r)2(3.16)

≥ rF (r)H(r)− 2rI(r)2

H(r)2 − C θ0(r)
r

Z(r)

with an absolute constant C > 0 independent of r ∈ (0, r∗).
On the other hand, recalling the definition of F (r) and

I(r) = Re
�

∂Br∩Ω
A∇u · νu dσ = Re

�

∂Br∩Ω
ADu · νu dσ,

we see by Hölder’s inequality that F (r)H(r)−2I(r)2 ≥ 0 ifA(Q)Q · ν(Q)≥ 0.
Hence the desired differential inequality (3.14) holds, which yields the fol-
lowing monotonicity of Z(r):

Lemma 3.4. Let L be an operator as in (1.1) satisfying Assumptions
(A) and (B), and u a solution to Lu = 0 in Ω vanishing on 43(Q0). With
notations as above, if condition (1.5) in Theorem 1.1 holds for X0 = 0 and
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0 < r0 < r∗, and A(0) = I, then there exists an absolute constant C > 0
such that

Z(r) exp
{
−C

r0�

r

θ0(t)
t

dt

}

is nondecreasing in r ∈ (0, r0). Moreover :

(i) If � 1
0(θ0(r)/r) dr <∞, then N(r) ≤ C(r0) for all r ∈ (0, r0).

(ii) In general , for every r ∈ (0, r0),

N(r) ≤ C1(r0)
rC2(r0)θ0(r0)

where C(r0), C1(r0) and C2(r0) are bounded constants independent of r.

Proof. From (3.14) above,

(3.17)
d

dr
logZ(r) ≥ −C θ0(r)

r
for all 0 < r < r0,

which shows that Z(r)) exp{−C � r0
r

(θ0(t)/t) dt} is nondecreasing. Further,
we integrate (3.17) between r and r0 to get

Z(r)
Z(r0)

≤ exp
{
C

r0�

r

θ0(t)
t

dt

}
,

which yields the assertion.

This lemma and (3.5) imply Theorems 1.1 and 2.2 by a standard argu-
ment. For the details see [FGL] and [AEK].

4. Unique continuation at the boundary

Proof of Corollary 1.1. Let Q ∈ 41(Q0) and 43(Q0) ⊆ Γ . Using the
linear change of variable X = SY + Q, where S is a nonsingular matrix
satisfying A(Q) = StS, we can assume that Q = 0 and A(0) = I, and that
Ω is the set of points Y = (y, yn) in the unit cylindrical body of Rn such
that yn > ϕ(y), where ϕ is a Lipschitz function in Rn−1 satisfying ϕ(0) = 0
and |∇ϕ(y)−∇ϕ(0)| ≤ %(|y|) for all y ∈ Rn−1, where % is a Dini function.
From the mean value theorem we get

(4.1) y∇ϕ(y)− ϕ(y) ≥ −2|y|%(|y|) for all y ∈ Rn−1.

We consider the change of variables Y = Ψ(X) = (x, xn + 3|X|%̃(|X|)),
where

%̃(r) = (log 2)−2
2r�

r

1
t

2t�

t

%(s)
s

ds dt;
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Ψ defines a C1-diffeomorphism in a neighborhood of zero. A calculation
shows that the function w = u ◦ Ψ is an H2

loc-solution in Ω̃ = Ψ−1(Ω) to

L̃w = −D̃ · (ÃD̃w) + W̃ D̃w + Ṽ w = 0

with w = 0 on 4r1 for some 0 < r1 < 1, where

Ã(X) = detJΨ(X)JΨ−t(X)A ◦ Ψ(X)JΨ−1(X),

b̃(X) = JΨ(X)b ◦ Ψ(X), D̃ = ∇+ b̃,

W̃ (X) = detJΨ(X)JΨ−t(X)W ◦ Ψ(X),

Ṽ (X) = detJΨ(X)V ◦ Ψ(X),

where JΨ(X) denotes the Jacobian of Ψ(X). Then it is not difficult to
show that the operator L̃ satisfies Assumptions (A) and (B) with C1θ0(C2r)
replacing θ0(r), where C1 and C2 depend on n and λ. Moreover, for P ∈ 4r1
and taking r1 smaller if necessary, we can see from (4.1) that

Ã(P )P · ν(P )

≥ 1
2
|P |θ(|P |) + detJΨ(P )JΨ(P )−t(A ◦ Ψ(P )− I)JΨ(P )−1P · ν(P )

=
1
2
|P |θ(|P |) +O(|P |2) ≥ 0,

and Ã(0) = I. Thus, Theorem 1.1 implies the doubling property for w and
as a consequence for u, which implies that u cannot vanish to infinite order.
This proves the corollary.

Proof of Corollary 1.2. Using the notation of the proof of Corollary 1.1
and putting % = ε, we can find r(ε) > 0 for each ε > 0 such that

y∇ϕ(y)− ϕ(y) ≥ −2ε|y| for |y| ≤ r(ε).
Proceeding as in the proof of Corollary 1.1, we deduce that Ã(P )P ·

ν(P ) ≥ 0 on 4r(ε). At this point, the argument for (3.14) and (3.5) in the
proof of Theorem 1.1 implies that the functions H(r) and Z(r) associated
with w, L̃ and Ω̃ satisfy the differential inequalities

Z ′(r) ≥ −Cε
r
Z(r), r

d

dr
logH(r) ≤ 2Z(r) + Cε

for all r ≤ r(ε), where C depends only on n and λ. Integrating these in-
equalities we obtain

H(r) ≥ H(r(ε))
[
r

r(ε)

]Cε
exp
(
− 2
Cε

[
r

r(ε)

]Cε
Z(r(ε))

)

for all r < r(ε). But the assumption on u in Corollary 1.2 implies that
H(r) ≤ C exp(−r−β/2) for all r ≤ r(ε). From this, and taking ε > 0 such
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that Cε ≤ β/2, we see that H(r(ε)) must be equal to zero. Thus, u must be
identically zero on an open neighborhood of zero, which proves the corollary.

Our ultimate aim is to establish the unique continuation at the boundary,
Theorem 1.3. Before doing that we need to prove the following lemmas.

Lemma 4.1. Let Ω be a Lipschitz domain in Rn with Q0 ∈ ∂Ω, and
let u be a nonconstant solution in T3(Q0) to Lu = 0 vanishing contin-
uously on 43(Q0), where L is an elliptic operator as in (1.1) satisfying
Assumptions (A) and (B). Then there exist constants C such that , for any
Q ∈ 41(Q0) and all 0 < r < 1,

(4.2)
{ �

4r(Q)

∣∣∣∣
∂u(Q)
∂νA

∣∣∣∣
2

dσ

}1/2

≤ Cr−(n+3)/2
�

T2r(Q)

|u(X)| dX.

Proof. Without loss of generality we may assume Q = 0 and A(0) = I.
Let β denote a vector field supported in T2r, 0 < r < 1, with |∇β| ≤ r−1,
β · ν ≥ C on 4r for some positive constant C depending on the Lipschitz
character of Ω, and β · ν ≥ 0 on 42r (see [G]). Recalling the Rellich–Nečas
identity (3.9) and integrating over T2r, we get

(4.3)
�

B2r∩∂Ω
β · ν Aν · ν

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dσ

= O(1)
�

B2r∩Ω
|Du|2 dX + 2 Re

�

B2r∩Ω
β ·Du [W ·Du+ V u] dX

− 2 Im
�

B2r∩Ω
βlblkajkDjuu dX.

Arguing as for (3.13), from (4.3) and Lemmas 2.1, 2.2 we obtain

Cλ
�

4r

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dσ ≤ C

r

�

T2r

|Du|2 dX ≤ C

r

�

T2r

|∇u|2 dX

with constants Cλ and C independent of r < 1. This proves the lemma.

Lemma 4.2 ([AE]). Let Ω be a Lipschitz domain in Rn, L an operator
as in (1.1) satisfying Assumptions (A), (B) and the condition � 1

0(θ0(r)/r) dr
< ∞. For each ε > 0 there exists a constant C(ε) such that if Q ∈ ∂Ω,
0 < r < 1, and u is a solution to Lu = 0 on T2r(Q) vanishing continuously
on 42r(Q), then

�

Tr(Q)

|u| dX ≤ C(ε)r2
�

42r(Q)

∣∣∣∣
∂u

∂ν

∣∣∣∣ dσ + ε
�

T2r(Q)

|u| dX.

This lemma follows from the same arguments used in [AE].
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Finally we turn to

Proof of Theorem 1.3. Without loss of generality we may assume that
Γ = 46(Q0). We let u ∈ H2

loc(Ω) be a solution to Lu = 0 as in Theorem 1.3
and Q ∈ 41(Q0) denote a density point of the set E = {Q ∈ 41(Q0) :
∇u(Q) = 0} whose surface measure is positive; that is,

(4.4) lim
r→0

σ(4r(Q) ∩ E)
σ(4r(Q))

= 1.

By Lemma 4.2, Hölder’s inequality and Lemma 4.1, for all m > 0 we
have

�

Tr(Q)

|u| dX ≤
[
Cm

(
σ(4r(Q) \ E)
σ(4r(Q))

)1/2

+ 2−m
] �

T4r(Q)

|u| dX

with a constant Cm independent of r. Thus from (4.4), using the doubling
property (Theorem 1.1) and choosing m large enough, we find that for all
ε > 0 there exists r(ε) > 0 such that

�

Tr(Q)

|u| dX ≤ ε
�

Tr(Q)

|u| dX for all 0 < r < r(ε),

and this is well known to imply that u vanishes to infinite order at Q.
Hence, using Corollary 1.1, we finish the proof of Theorem 1.3.

Remark 4.1. Inspecting the proof shows that the assumptions on W
may be replaced with |W | ∈ L∞loc(Ω). In particular, Corollary 1.5 follows
from Theorem 1.3.
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