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On positive solutions of nonlinear elliptic equations
involving concave and critical nonlinearities

by

J. CHABROWSKI (Brisbane) and P. DRABEK (Plzen)

Abstract. We study the existence of nonnegative solutions of elliptic equations in-
volving concave and critical Sobolev nonlinearities. Applying various variational principles
we obtain the existence of at least two nonnegative solutions.

1. Introduction. The main purpose of this paper is to investigate the
existence of solutions of the following nonlinear elliptic problem:
—Au4u=ceh(z)u? +v? "1 in RV,
(1c) (RN
u>0, heH (RY),
where € > 0 is a parameter, 0 < ¢ < 1 and 2* = 2N /(N —2), N > 3, is
the critical Sobolev exponent. We assume that h is a nonnegative and % 0
function in L"(RY) N C(RY), where r = 2*/(2* — q — 1).
It is well known that equation (1) with A = 0, that is,
(1) ~Au+u=u?"1 inRY,
does not have a positive solution. This is a consequence of the Pokhozhaev
identity. By contrast, the equation
(2) —Au=u?"1 inRN

has a family of positive solutions e~ (N =2/2U((z — y)/e), where the function
U, called an instanton, is given by (see [17])

N(N—2) (W22
N(N —2)+|z|?
We also have v [VU[2dz = {5 U dz = SV/2. The constant S is the best

U(x) =
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Sobolev constant given by

S = inf{ | Vul?dz:ueD2®RY), | |uf do= 1},
RN RN
where D12(RY) denotes the Sobolev space obtained as the completion of
the space C(RY) with respect to the norm

lulpre = | [Vul® de.
RN
However, the equation

(3) —Au+a(z)u=1"1 inRY

with nonnegative and nonconstant coefficient a(z) may have a positive so-
lution. In fact, Benci-Cerami [6] proved the existence of a positive solution
of (3) provided |lal| /2 < S(2N/2 —1). This result has been extended in [9],
where the multiplicity of solutions was expressed in terms of the category of
the set a~1(0). Further results, under some integrability assumptions on the
coefficient a(x), can be found in [1], [13] and [14]. In Section 3 we show that
problem (1.), which is a small concave perturbation of (1), admits a posi-
tive solution. This solution is obtained as a local minimizer of a variational
functional for (1.). In Section 4, we consider an equation of the form

()  —Auteu=ch@)u?+u® " mRY,

where s > 1. Theorem 4.1 of Section 4 gives the existence of two positive
solutions: the first is a mountain-pass type solution and the second is ob-
tained through local minimization of the variational functional for (1. ). In
Section 5 we establish the existence of infinitely many solutions of equations
(1c) and (1. ) for € > 0 small. The results of Section 3 show that at least
one of the solutions of the equation in (1.) is positive. By Theorem 4.1 of
Section 4 at least two solutions of (1. ) are positive under an additional
assumption that s < 2/(1 — ¢). In Section 6, we extend the local minimiza-
tion to some nonlinear problems involving the p-Laplacian. Theorems 7.1
and 8.1 of Sections 7 and 8, respectively, complement the results obtained
in [16]. In the case of the p-Laplacian the exponent ¢ satisfies the inequality
q < p and the corresponding nonlinearity is not necessarily concave.
Throughout our paper we use standard notation and terminology. In a
given Banach space X, we denote by “—” weak convergence and by “—”
strong convergence. For u € R, we let v = max(0,u) and «~ = max(0, —u).
Let I € CYX,R). A sequence {u,,} is said to be a Palais—Smale
sequence for F at level ¢ ((PS). sequence for short) if F(u,,) — ¢ and
F'(uy,) — 0in X* as m — oo. We say that F' satisfies the Palais—Smale
condition at level ¢ ((PS). condition for short) if any (PS). sequence is
relatively compact in X. By H'(R") we denote the usual Sobolev space
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equipped with the norm

Jull> = | (IVul® + u?) dz.
RN

2. Palais—Smale condition. For v € H'(R") we define the energy
functional associated with (1.):

1 1 x
Jow) = 5 § (IVul® +u?) do — % | @)l de = o § [u* de.
RN RN RN
An elementary analysis of the real-valued function
2*
1 1
i e i) LU e
shows that it has a global minimum greater than or equal to —C*e" with
some C* = C*(N, ¢q,||h||») > 0. Thus we have
2*

a 1 1
4 z A q+1 gL,
for every a > 0.

PROPOSITION 2.1. The functional J. satisfies the (PS). condition for

(5) c<

Proof. 1If {uy,} is a (PS). sequence with ¢ satisfying (5), then {u,,} is
bounded in H'(RY). Indeed, there exists an integer mg such that

1

§<Jé(um),um)

a1 § hlu yq+1dx+i | Juml* da
2(q +1) " N "

RN

for all m > mg. By the Holder and Sobolev inequalities, we deduce

| luml® dz < C1 + Collum |7 + o)
RN
for some constants C7,C5 > 0 and all m > mg. On the other hand,

1 1 *
S(|Vum|2+u )da:—JE(um)—l-qL S h!um|q+1dx+§ S U |* da

c+ 1+ o(|luml]) > Je(um) —

QRN +1RN RN
€ 1 x
Setlt—3 | h\um|q+1da:+§ | fuml? do
RN RN

for m > mg. Combining the last two estimates we easily derive the bound-
edness of {u,,} in H'(RY). Therefore, we may assume that u,, — u in
HYRN), uy — u in LP(£2) for each 1 < p < 2* and each bounded domain
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2 Cc RN, Also, we assume that u,, > 0 on RY. Otherwise we replace J. by
a functional
1
JH(u) = 3 S (IVul* +u?) dz — c S h(u+)q+1 dr — — S (qu)2 dx

RN q+1]RN RN

and observe that every bounded (PS). sequence {uy, } for JI has the property
that u,, — 0 in H'(RY). We set

foo = lim limsup S (| Vs |* 4 u2,) de,

R—00 m—oo

|z|>R
. . ox
Voo = Rhm lim sup S |um|* dx.
— 00
m—o0 o[>R

Then by the concentration-compactness principle (see [15] and [8]) we have
[Vl 4+ 2, = dp = [Vul? 4% + 3 s, + 1ooboc,
jedJ
Jum[* = dv = [u]* + > Vb, + VaoOoo,
jed
where J is at most a countable set, and v;, ; > 0 are constants satisfying

(6) S I <

for j € JU {oo}. Using a family of test functions concentrating at x; and a
family of test functions concentrating at co, we check as in [2] and [8] that
(7) Vi = 1

for all j € JU {oco}. We now observe that if v; # 0 for some j € J U {co},
then by (6) and (7) we have

(8) v; > SN2,

We show that v; = 0 for every j € J U {oo}. Arguing by contradiction,
assume that v; > 0 for some j € JU {oco}. Then we have

Je(tm) = 5 (T2 (), ) = RSN [uml™ do + 57— RXN h(@) || da,

Letting m — oo and using (8) we deduce that

() = lim <Jg(um) - 1<J;(um),um>>

m—00 2
1 o SN2 (g —1)e
> — o+l
> 5 |l de+ = T 2T D | n()ul
RN RN
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If u = 0, we deduce from (9) that ¢ > SV/2 /N, which is impossible. If u % 0,
we then derive from (9) and (4) that

which is impossible. Since v; = 0 for every j € JU{oo}, we see that u,, — u
in L?"(RY). To show that w,, — u in H'(RY) we write
o(1) = (JL(un) — Je(tm), tn — um)
RN

—e | hlunl®  un = [um|* ) (U — ) da

- S (|un|2*_2un - |um|2*_2um)(un — um) dzx.
RN
Since u, — u in L* (RY), it is easy to check that the last two integrals

converge to 0 as n,m — oo. Hence {uy} satisfies the Cauchy condition in
H'(R™) and the convergence of {u,} in H'(RY) follows. m

3. Local minimum. We are now in a position to establish the existence
of a local minimum for J..

THEOREM 3.1. There exists an €9 > 0 such that for each 0 < ¢ < g9
problem (1.) has a solution us which is a local minimum of Js.

Proof. Using the Sobolev embedding theorem and the Holder inequality
we obtain the following estimate from below for the functional J.:

L2 € A T
Je(u) = 5 Jlull” - ) 1Rll T = = llu]
1 € 522 x
_ 2 -1 2*—1
=l (5~ g Wl = 5 )
Let ||u]| = 0 and choose p > 0 so that
.
= - 0t > 00> 0,

2 2%
where gg is a constant. It then follows from the last two estimates that there
exist constants g > 0 and ¢; > 0 such that

J5<’U,) > 0192

for all ||ul| = pand 0 < & < gq. If ¢ > 0, ¢ € H'(RV), then

t2 5 o tatle I 2 -
Je(tp) = — S (IVel* 4+ ¢°) dx — S h(z)p?™ de — — S v dr <0
2 qg+1 2%
RN RN RN
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for ¢ > 0 sufficiently small. Therefore, we have

M = inf J.(u)<0.
lull<e

We can also assume that gy is chosen so that SN/2/N — e"C* > 0 for
0 < e < gg. By the Ekeland variational principle [11] there exists a min-
imizing sequence {u,,} C B(0, ¢) such that J.(uy,) — M and J.(uy) — 0
in H~1(RY). Since the functional J; satisfies the (PS); condition it is clear
from the above construction that the functional J. achieves a minimum u,
at an interior point of B(0, o). Since J.(u:) = J-(|us|) we may assume that
ue > 0 and by the maximum principle we have u. > 0 on RY. This completes
the proof. =

REMARK 3.2. It follows from the Holder and Sobolev inequalities that
|lue|l < r(e) with r(¢) — 0 as ¢ — 0.
Indeed, since u. satisfies (1) we deduce from the inequality
1

Je(ue) — §<Jé(u5),u5) <0
that
« — 1-— . (g+1)/2*
S u? dr < Ne -4 X hu™ dax < Ne——9_ HhH,«< X u? dx) !
N 2(g+1) N 2(g+1) N
and hence

. N@ D 1 -
(] 2 ax) T < Ne =79 ),
N 2(g+1)

Combining this with the inequality J¢(ue) < 0 we derive our assertion.

REMARK 3.3. Theorem 3.1 remains true if i changes sign, that is, h™ %0
and h~ # 0.

This follows from the fact that positivity of h was only used to show
that inf |, <, Je(u) < 0 for small ¢ > 0. This also can be shown by choosing
o € H'(RN), ¢ >0, # 0 and with suppy C {z : h(x) > 0}. This obviously
implies that J.(tp) < 0 for small ¢ > 0.

In Proposition 3.4 below, we show that problem (1.) has no solution for
¢ large.

PROPOSITION 3.4. There exists €* > 0 such that problem (1;) has no
solution for e > &*.

Proof. We follow the argument from [12]. Suppose that problem (1.) has
a solution u. for every € > 0. Let €, — oo and set up = u.,. Since h > 0
and # 0 on RY, we may assume without loss of generality that h(z) > 0 on
B(0, R) for some R > 0. We denote by A1(R) > 0 the first eigenvalue of the
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problem
(10) —Au+u=Xu, ueW,?B(0,R)).

Given § > 0 we choose ¢, sufficiently large so that
exh(z)u? +u?" > (A (R) + 0)u

for all w > 0 and x € B(0, R). Then uy, is a supersolution of the problem
(11) —Au+u=(R)+08u, ueW,>(B(0,R)).

If ¢ > 0 is an eigenfunction corresponding to A1 (R), then for each ¢ > 0, t¢ is
a subsolution of (11). We now choose t > 0 sufficiently small so that tp < uy
on B(0, R). Hence we can find a solution v of (11) such that t¢ < v < u on
B(0, R). However, this is impossible for § > 0 sufficiently small, since the
first eigenvalue of (10) is isolated. =

4. Mountain-pass solution. Inspection of the proofs of Proposition
2.1 and Theorem 3.1 shows that the method of local minimization can be
extended to problem (1.,). A variational functional for problem (1. s) has

the form

1 s € 1 *
Jea(u) = 5 | (IVul? + e*u?) do — P | h(@)ulr do - oF | Jul* da.
RN RN RN

Using the mountain-pass principle [3] and local minimization we show that
problem (1. ) has two distinct positive solutions.

THEOREM 4.1. Suppose that N > 5 and 1 < s < 2/(1 — q). Then there
exists € > 0 such that for every 0 < ¢ <€ problem (1. 5) admits two distinct
positive solutions.

Proof. First, we check that the functional J. ; has mountain-pass geom-

etry. We set
lull2 = § (IVul? + e*u?) de
RN
for £ > 0. This is a norm equivalent to || - ||. First, we notice that if ||v]| = o,
then [|v°]|. = pe*/2, where v () = eN¥/*v(e%/2x). We now consider a sphere
ulle = 0e¥/? in H'(RN), where o > 0 is fixed. For ||u|. = 0e°/? we have the
following estimate:
Jes(u) > %022 — CyelHatDs/2patl 0 0s27/2 52"
_ 68(02/2 _ Clgl—i-(q—l)s/ZQq-‘rl _ 0285(2*_2)/2Q2*).

From this and s < 2/(1 — q) we deduce that there exists £; > 0 such that
to every 0 < € < &1 there corresponds g > 0 such that J. s(u) > o, for

|ull- = 0%/2. Tt is clear that J. ,(tU) < 0 for t > 0 sufficiently large, where
U is the instanton defined in Section 1. We point out here that J. ((U) is



74 J. Chabrowski and P. Drabek

well defined since N > 5. Therefore, we can define the mountain-pass level

c. = inf max J. s(u
€ Jel 051 s,s( )a

where
I'={yeC([0,1], H'(RY)) : 7(0) = 0, v(1) < 0}.
We now show that

SN/2
(12) ce <

N
for € > 0 sufficiently small. First, we choose t* > 0 and £* > 0 small enough
so that

— C*e”

SN/2
(13) Jes(tU) < — %"
for 0 <t <t*and 0 < € < &*. Here £* is chosen so that
SN/Q

N —C*¢">c)>0

for all 0 < ¢ < €*. To estimate J, 4(tU) for t* < ¢ we observe that the

function
tHﬁS(NU\QHSUz)dm—iSU?dm t>0
2 RN 2 RN ’ T
achieves its maximum on [0,00) at a point t. > 0. If ¢ = 0, then tp = 1 and
we also have 1 < t, <ty for 0 < e < 1. We then have, for t* < t,

t2 2" N
Jes(tU) < = V(IVUP + U dz — 5 | U da
2 RN 2 RN

*\q+1
_ &) S h(z)UT da.
N

g+1

Since

t2 ) tZ - 1 ) 1 o SN/2

5 | VUl do — = R4 do < 5 | Vol do — o | v*d ==

RN RN RN RN
we deduce from the previous inequality that
SN/Q 6(t*)q+1 L
(14) Jos(tU) < +0(e%) — | W)U da
b q + 1
RN

for t* <t and 0 < € < &*. Taking £* smaller if necessary, we can assume
15 O(g*) — h(z)U dx < —C*e"
(15) €)= S | haute <

RN
for all 0 < ¢ < £*. Combining (13)-(15) we obtain (12). The argument
used in the proof of Proposition 2.1 shows that the functional J. ; satisfies
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the (PS). condition with ¢ satisfying (5). This completes the proof of the
existence of a mountain-pass solution. The above estimate of the functional
J..s on the sphere |lull: = ge*/? shows that the second solution can be
obtained by local minimization as in Theorem 3.1. =

In the next result we examine the behaviour, as ¢ — 0, of the solutions
from Theorem 4.1.

PROPOSITION 4.2. Suppose that the assumptions of Theorem 4.1 hold.

(i) If {uc}, 0 < e < E, are mountain-pass solutions of problem (1),
then lim. e~ %||u:||? = oo.

(ii) If {ue}, 0 < e < g, are solutions of problem (1c5) which are local
minimizers, then lim._q ||uc|| = 0.

Proof. 1t follows from the proof of Theorem 4.1 that for every o > 0
there exists an g > 0 such that a mountain-pass solution u. satisfies

s 2
Jes(ug) > 64 for 0 < e < gp.
This implies that
1 9 s 9 %02 € G+ 1 o
§S(]Vu5] +&%ul)da > 1 —i—;ShuE dm—i—z—*SuE dx
RN RN RN

e502 1
- 49 + o [ (Ve + e*u?) da.
]RN
From this we deduce that
1 5592
N RSN(|Vu5|2 + Esug) dx > 1

and the result follows.
(ii) Following the argument of Remark 3.2 we see that

1
Je,s(ue) — 5 (L (ue), ue) <0

5 ¢
implies that

x 1—¢q
2 < N——
) i do s 2(g+1)

RN

ellhll ue 12

We then have
1 € 1 *
5 S ([Vue)? + e%u?) do = J. o(uc) + Pt S hul™t dx + o S u? da
RN q RN RN

€ 1 *
< Al el + o § w2 dz < eCyfluc)| 2!
qg+1 e

2*
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for some constant C; > 0 independent of €. Since
e lull < Jlulle < lull
for every u € H'(R"), we deduce from the last estimate for u. that
ue|| < Cel/(1=a)=s/2
for some constant C' > 0 independent of €. This estimate completes the

proof of assertion (ii). m

REMARK 4.3. Theorem 4.1 continues to hold if A changes sign and sat-
isfies {pn h(z)UTH ! dz > 0.

This assumption allows one to show that the mountain-pass level c. for
the functional J ¢ satisfies (12).

5. Existence of infinitely many solutions. Since the right-hand side
of the equation in (1.) involves concave and convex nonlinearities we can
establish the existence of infinitely many solutions. Our approach is based
on the Bartsch-Willem fountain theorem [4].

Let {ex}, k =1,2,..., be an orthonormal basis for H'(R"). We set

X(j)zspan(el,...,ej), Xk:@X(])a Xk:@X(])
j=k i<k
for each k € N.

THEOREM 5.1 (Bartsch-Willem [5]). Let F: HY(RY) — R be a C! even
functional satisfying the following conditions:

(A7) There exists an integer ko such that for every k > ko there exists
Ry, > 0 such that F(u) > 0 for every u € Xy, with ||u|| = Ry.

(A2) by =infp, F(u) — 0 as k — oo, where By, = {u € X}, : ||u]| < R}.

(As) For every k > 1 there exist r, € (0,Ry) and di, < 0 such that
F(u) < dy for every u € X* with ||ul| = ry.

(Ayg) Every sequence u, € X" with F(uy,) < 0 and F'|x» — 0 asn — o0
has a subsequence which converges to a critical point of F.

Then for each k > ko, F' has a critical value cj € [by, dg].

THEOREM 5.2. There exists eg > 0 such that for 0 < & < g¢ the equation
in (12) admits infinitely many solutions.

Proof. Tt suffices to check that the functional J¢ satisfies the assumptions
of Theorem 5.1. For each k € N we define
Bluldt! do)1/ (a+1)
po o e Al do

weXp—{0} [ |
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It is clear that {)\} is a decreasing sequence. Since u — §pn h(z)|u(z)|7™ do
is a completely continuous functional on H'(R"), we can show as in [18§]
that A\ — 0 as k — co. We now proceed as in the proof of Theorem 3 in [5].
Let u € H'(R"™). Then we have

AFle S=2"/2

L2 +1 2+
) 2 gl = 2l = S g
If ||u|| < R with R > 0 small, then
S—2*/2

L1
lull® < llull*.

2*
We set Ry, = (45)\Z+1/(q +1))/(=9) We see that Ry, satisfies
R2
Ay _ & ZHRZH
4 qg+1

and moreover R, — 0 as k — oo. Therefore we can find ky € N such that
Ry < R for k > ko. Consequently, if u € Xy, k > ko, satisfies ||u|| = R, we

then have
q+1

1 EA
Je(w) 2 glhull* = T 7+ =0,

This shows that (A1) holds and since Ry, — 0, condition (As) is also satisfied.
To check (A3z) we observe that on the finite-dimensional space X* all norms
are equivalent. Hence

1 .
Je(u) < glull* = Allu ™ = Bllul?

for some constants A, B > 0. Since ¢ + 1 < 2, taking r; sufficiently small,
we can satisfy (As). The Palais—Smale condition (A4) follows from Propo-
sition 2.1. We only need to select g9 > 0 so that SNV/2/N — ¢"C* > 0 for
0<e<eg. n

A similar argument can be employed to show the existence of infinitely

many solutions of equation (1. ).

THEOREM 5.3. Let s > 1. There exists € > 0 such that equation (1c )
for 0 < e <€ has infinitely many solutions.

6. The p-Laplacian. In this section we study the problem

(1) { —Apu+uPt =P T4 A f(z,u)  in RV,
u>0 onRYN,
where A, = —div(|Vu|P~2Vu) is the p-Laplacian of u, p* = Np/(N — p),
N > p, is the critical Sobolev exponent and A > 0 is a positive parameter.
We assume that the function f : RY x R — R satisfies the following
conditions:
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(f1) feCRN xR,R) and f(x,0) =0 for z € RV,

(f2) for every R > 0 there exist 0 € [p,p*) and constants ar,br > 0
such that

|f(z,8)| < aps” " + br
for every |z| < R and s > 0,
(fs)  there exist constants r1 € (1,p*) and 73 € (p, p*) such that
flx,s) <b(x)s"™ 1 +est

for every x € RN and s > 0, where b € LP"/®"="1)(RN) and b(x) > 0
on RY and ¢ > 0 is a constant. Furthermore, we assume that there
exist ¢ € (1,p) and an open set 2 C R¥ such that the function
F(x,s) = §, f(z,t) dt satisfies

F(x,s) > as?
for every x € 2 and s > 0 and some positive constant a > 0.
An example of the nonlinearity f satisfying the above conditions is
f(z,s) =b(z)s? —d(z)s'™1 + Cs™71,

where C' > 0 is a constant, 1 < I < p*, b(z) > 0 on RY and belongs to
L'/ =a(RN) N C(RY) and d(z) is a continuous and nonnegative function
on RY. Moreover, it is assumed that b(z) > ag > 0 on B(0, R) and d(z) = 0
on B(0, R). In this example ¢ = and 2 = B(0, R).

A similar problem

—Apu =P "L+ Af(z,u) in RV,
©w>0 onRY,

has been studied in [16]. Under some additional assumptions, guaranteeing
the mountain-pass geometry of the variational functional for this problem,
the authors established the existence of a nontrivial solution. First, we estab-
lish the existence of a solution for problem (1,) through local minimization.
Under assumptions (f1), (f2) and (f3) a variational functional correspond-
ing to (1,) is not well defined on W'P(R"). Therefore, following the paper
[16] we truncate the nonlinearity f. We also point out here that in [16] the
constant ¢ (see assumption (f3)) satisfies 1 < ¢ < p* and some other restric-
tions. This assumption is replaced here by 1 < ¢ < p, since we construct a
solution through local minimization (see Lemma 6.2 below).

Let ¢ € CY(R™M) be a function such that p(z) =1 for |z| < 1, ¢(x) =0
for |z| > 2 and 0 < p(x) < 1 on RY. We set ¢, (z) = ¢(z/n) and extend
f by 0 for s < 0, that is, f(z,s) = 0 for x € RY and s < 0. We define a
modified nonlinearity fy(z,s) = ¢n(x)f(z,s). For each n € N we consider
the following problem:
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1) [ ~dure = g R,
Ao w>0 onRVN.
Let Fyy(x,s) = § fu(z, t) dt. We associate with problem (1) the variational
functional

1 1 *

Iyp(u) = - X (IVulP + [ulP) dz — — S (u™)" da — A S F,(z,u)dz

p RN p RN RN
for u € WHP(RN), where WHP(RY) is the usual Sobolev space equipped
with the norm

lull? = § (Il + ul?) da.
RN

The functional I ,, is well defined on W1?(RY) and is of class C*. Its Fréchet
derivative is given by

<I$\,n<u)7v> = S (‘Vu‘p_QV’U,V’U + ‘u‘p—qu) dr — S (u"r)p*—lv dr
RN BN
—A S fo(z,u)vdr for v € WHP(RN).
RN
LEMMA 6.1. (i) Let r1 < p. Then there erist X, 0, > 0 such that for
every 0 < A < A |
(16) Do) > o for[lul = o,
and each n € N.

(ii) If p < r1 < p*, then for each A\ > 0 there exist o, > 0 such that
(16) holds for each n € N.

Proof. (i) It follows from (f3) and the Sobolev inequality that

1 1 A ¢
P
Inn() 2 >l =l = 2 10l o el = 2 el
1 1 * )\ )\C
> = p_ P _ . N L __ 72
>l = e [l = g Wbl ™ = s

1 1 . 1011+ /(o —r1) c
— Pl — __ p —Dp _ 71 72
= |Jull (p T [ > A(imsm/p [Jul|™ + o [Jull™ ),

where C,., is the best Sobolev constant for the embedding of W1?(R") into
L™ (RN). First we choose constants g, o1 > 0 so that

1 1 *
N -p
p p*Sp*/p Qp > Ql

Then we choose a constant A > 0 such that the inequality (16) holds for all
0 < A < X and some constant o > 0.
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(ii) If p < r1 < p*, then the above estimate takes the form

1 1

D) 2 | = e [ull” ™ = MGl + Colfu )

for some constants Cy,Cs > 0 independent of A and u. From this estimate
we easily deduce assertion (ii). m

LEMMA 6.2. In both cases (1) and (ii) of Lemma 6.1 there exist constants
0 < 01 < 02 such that

(17) —02 < inf Iy p(u) < —o1
lull<e

for all n € N sufficiently large.

Proof. Let w € CHRY), w >0, w # 0, supp w C 2 and ||w|| < o. Then
for t > 0,

tr P R
Dun(tw) < = | (IVwl? + [wP)de — — | |[w]”" dz — at? | |w|?dx,
P gy P™ g RN
where n is so large that suppw C B(0,n). Since ¢ < p we can choose ¢ > 0
small enough so that Iy ,(tw) < 0 and consequently the upper bound in
(17) holds for n sufficiently large. Finally, the lower bound in (17) follows
from the estimates in the proof of Lemma 6.1. u

7. Existence result for (1),). For each n € N we set

Can = inf I)\7 uj.
" uli<e n(t)

According to Lemma 6.2 we have —g2 < ¢y, < —p1. Therefore we may
assume that up to a subsequence —p2 < ¢y = lim;,, .o ¢y, < —01. For each
n € N there exists a sequence {u?} C B(0, ¢) such that

I)Hn(u?) — ¢y, and Iﬁ\n(u?) —~0 inWw b (RN)

as j — oo, where p’ = p/(p — 1). Given ¢ > 0 satisfying ¢\ + & < 0 we can
find ng € N such that ¢y, € (cx —¢, ¢y +¢) for each n > ng. Thus, for each

n > ng we can select u, = uj, satisfying
ey —e<Dip(up) <cx+e and |1}, (un)| < 1/n.

Since {u,} is bounded in WP (RY) we may assume that u,, —u in WP (RN).
We are now in a position to formulate the existence result for problem
(1x). We need the following assumption:

(f1) There exist constants p < 7 < p* and 1 < u < p* such that
1
— f(z,s)s — F(x,s) > c1(z)s"
-

for all z € RN and s > 0, where ¢; is a function in LP"/(®"=#)(RN),
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The nonlinearity f from the example in the paragraph following the as-
sumption (f3) satisfies (f4) with ¢1(z) = (1/7 — 1/q)b(x), p = q, provided
<1 <re.

THEOREM 7.1. (i) If r1 < p, then there exists X > 0 such that problem
(1) has a nontrivial solution for each 0 < A < A.

(ii) If p < r1 < p*, then problem (1)) has a nontrivial solution for each
A>0.

Proof. 1t is sufficient to show that the weak limit of the sequence {u,}
is not identically equal to 0. The proof of this fact is similar to that of
Theorem 1.1 in [16]. Therefore we only sketch it in some details.

Step 1. Applying P. L. Lions’ concentration-compactness principle [15]
we may assume that up to a subsequence

U, —u in Li (RY),1<s<p*, up(z) —u(x) ae on RY,

[unl?” = v = [ul”" + Y ids, + VooOso
i
|[VulP = and Zuf/p* < 00,

(A
where

. . *
Voo = lim limsup S |up|P dx.
R—oo pn—oo

Step 2. In each bounded subset of R™V there are only a finite number of
the points x;. To establish this claim we use a family of smooth functions
concentrating at ; and assumption (f2) and show as in [16] that u({z;}) <

arv({x;}) = agry;. On the other hand we always have u({z;}) > Sljf/p*.

Therefore v; > (S/ar)N/P. Since 3, Z/ZP/p* < 00, we see that there are at
most a finite number of z; in B(0,r) for every r > 0 and the claim easily
follows.

Step 3. Using Step 2 one can show that u, — u in Lp*(K) for each
compact set K C RY — U{x:}. Indeed, as an immediate consequence of
Step 2 we obtain {, |u,|P" dz — {, |u[F" dz as n — oco. By the uniform
convexity of the space LP" (K) we find that u, — u in LP" (K). From this,
using the fact that {5 [VulP dz and {; |ulP dz are convex functionals, we
deduce that Vu, — Vuin (LP(K))" for each compact set K € RY —J{x;}.
This implies that Vu, — Vu a.e. on RY. Applying Vitali’s convergence
theorem we show as in [16] that u is a solution of (1)) in the distributional
sense. For details we refer to pages 9-10 of [16]. It remains to show that



82 J. Chabrowski and P. Drabek

u # 0. Arguing indirectly assume that v = 0. Thus, up to a subsequence
lim S (IVup|? + |up|P)de =1> 0,
n—oo N
R

since otherwise I ,,(u,) — 0, which is impossible. By (f1) we have
. 1
0> lim [I,\m(un) - = <I§\n(un), unﬁ
n— oo T

> lim [(% _ %) | (Ftnl? + [un?) do + G - i) [ () d

n—00 e p* e

+ S c1(x)|up|? dx]
RN

which gives a contradiction. =

8. Remark on the existence of a mountain-pass solution for
problem (1,). In the final section of this paper we indicate how to con-
struct a mountain-pass solution for problem (1,). This requires an additional
assumption on the nonlinearity f:

(fs)  There exists an open set 21 C RY such that
F(x,s) > bs?

for every x € {21, s > 0 and some constants b > 0 and 1 < ¢ < p*.
Moreover, p < q; if p2 < N, and ¢1 > p* — p/(p — 1) if p?> > N.
This extra assumption in our model nonlinearity

f(ilf) = b(l’)Sq_l — d(,ﬁU)Sl_l + CSTQ—l

is satisfied provided d(x) = 0 for x € B(0, R) with ¢; = r2 and 73 satisfying
the conditions for ¢; from (fs).
We recall that the best Sobolev constant S in W1P(RN) is defined by

VulPd
(18) S— i Jox [Vul?dz
uweDLP (RN )—{0} (SRN JufP* dx)p/p

It is well known [10] that the infimum in (18) is achieved by a family of
functions

CN&«(N—p)/pz
(e + |z[p/(0=1))(N=p)/p’

We(z) = e >0,
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for z € RV, where

_ p—1y (N—p)/p?
v={v3=2] )
p—1

We also have SRN |IVWIP dz = S]RN WP dx = SN/P,

THEOREM 8.1. Suppose that assumptions (f1),...,(fs) hold. Then in
both cases (i) and (ii) of Theorem 7.1 problem (1) admits a mountain-pass
solution. (This means that in both cases (i) and (ii) problem (1)) has at least
two distinct solutions.)

Proof. We follow the ideas from [16] (see the proof of Theorem 1.1 there).
Step 1. We use the estimate from the proof of Lemma 6.2 to obtain

tP tP" R
I (tw) < — S (IVw? + |w|P) dz — — S |wlP” dx — at? S |w|? dx.
P gy P" gy RN
However, this time for sufficiently large ¢t > 0 we get I ,,(tw) < 0. Combin-
ing this with Lemma 6.1 we see that in both cases (i) and (ii), I, satisfies
(uniformly in n) the conditions of the geometry of the mountain-pass theo-
rem.

Step II. Let xo € (21 and choose r > 0 so that B(zo,2r) C 1. We
assume that B(zg, 2r) C B(0,n) for all n > ng for some integer ny. We define
a function ¢ € C§(RY) such that ¢(x) = 1 on B(wo,7), ¢(x) = 0 on RY —
B(z0,2r) and 0<p(z) <1 on RY and set v. = oW (- — 20)/||eWe (- — 0) ||p*-
We claim that there exist ,dy > 0 such that

SN/p

<
(19) r)rflzagcf)\’n(tva) <d) <

for n > ng. Setting Yz = {on (|V0e|? + |ve|P) dz, we derive from assumption
(f4) that

I (tve) e _ i —A S F,(x,tv.) dz
p P N
< e _ i — Xt%b S |ve| T d.
p P N
Let N
Ja(tv,) = ¥ _ i =Xt | foe] ™ da.
p P N
It is sufficient to show that there exist dy,e > 0 such that
SN/p

< .
max Ia(tve) < dy < N
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For each € > 0 there exists t. > 0 such that

1?2218( Ia(tve) = Ja(teve),

with 0 < t. < Ygl/(p_l). Consequently, we have
1
Ia(tevs) < NY;V/P — by | Joe| da
RN
for some constant b; > 0. Suppose that p?> < N. Using the explicit form of

W, we easily derive the following estimate:
SN/p

Ia(teve) < (eWVTPPY £ O™y = Aoy | [ue| " da
RN
SN/p

p

+ 0P = Aby | Jve|® da
RN
The term O(eP™!) is due to the integral {5 |v-|P dz appearing in Y. Thus,

there exists M > 0 such that
SN/p

Ab
Ja(tevs) < P! <M | e dm)

ep~l

RN
Arguing as in the proof of Proposition 5.1 in [16] we derive from this the
estimate

N/p N— (p— 1)N B
— (M—)\bQE[(_pQﬂ )q1+ +1 P})

(20)  Ja(teve) <

for some constant by > 0. Since
N—-—p N-p N
a3
p p p
is equivalent to p < g1, our claim follows from the estimate (20). In a similar
manner we consider the case p> > N.

Step I1I. We now apply the mountain-pass theorem to the functionals
I, for every n > ng to obtain the mountain-pass levels c) , and Palais—
Smale sequences {u]} in WP (RN) satisfying

Lun(ul) = enn and I§ (u?) — 0 in W H7(RY)

as j — oo. We then choose a subsequence u, = u} satisfying
ex—e < Dunlun) Sexte, |1, (u)ll < 1/n

for n > ng and some € > 0, where up to a subsequence lim, . c\, = cy.
Arguing as in Lemma 6.1 of [16] we show that u, — u Z 0 in WP(R") and
u is a solution of (1)). m
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