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Characterisations of open multivalued linear operators

by

T. Álvarez (Oviedo)

Abstract. The class of all open linear relations is characterised in terms of the re-
strictions of the linear relations to finite-codimensional subspaces. As an application, we
establish two results, the first of which shows that an upper semi-Fredholm linear relation
retains its index under finite rank perturbations, and the second is a density theorem
for lower bounded linear relations that have closed range. Results of Labuschagne and of
Mbekhta about linear operators are covered.

1. Introduction. Several authors [10], [11], [13], [14] and [15] have proved
characterisation results for open linear operators in order to establish density
and perturbation theorems for various classes of linear operators of Fredholm
theory. The aim of this paper is to find conditions under which results of this
kind are true in the setting of multivalued linear operators.

In Section 2, the class of open linear relations is characterised by their ac-
tion on finite-codimensional subspaces. As a consequence, we obtain two re-
sults, the first of which (Theorem 9) asserts that the index of an upper semi-
Fredholm linear relation remains constant under finite rank perturbations,
and the second (Theorem 11) shows that the class of lower bounded linear
relations with closed range is dense in the class of upper semi-Fredholm
linear relations with index not exceeding zero.

Notations. We follow the notation and terminology of the book [8]:
X, Y are normed spaces, BX the closed unit ball of X. Let C(X) and
P (X) denote the finite-codimensional and the closed finite-codimensional
subspaces of X respectively.

A linear relation or multivalued linear operator T : X → Y is a mapping
from a subspace D(T ) ⊂ X, called the domain of T , into the collection of
nonempty subsets of Y such that T (αx1 + βx2) = α(Tx1) + β(Tx2) for all
nonzero scalars α, β and x1, x2 ∈ D(T ). The class of all such linear relations
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is denoted by LR(X, Y ). If T maps the points of its domain to singletons,
then T is said to be a linear operator.

The graph G(T ) of T ∈ LR(X, Y ) is G(T ) := {(x, y) ∈ X×Y : x ∈ D(T ),
y ∈ Tx}. Let M be a subspace of D(T ). Then the restriction of T to M ,
denoted by T |M , is defined by G(T |M ) := {(m, y) : m ∈ M, y ∈ Tm}. For
any subspace M of X such that M ∩D(T ) 6= ∅, we write T |M∩D(T ) = T |M .

The inverse of T is the linear relation T−1 defined by G(T−1) := {(y, x) ∈
Y × X : (x, y) ∈ G(T )}. The subspace N(T ) := T−1(0) is called the null

space of T . If N(T ) is {0} then T is called injective, and T is said to be
surjective if its range R(T ) := T (D(T )) equals Y .

The nullity and the deficiency of T ∈ LR(X, Y ) are defined by α(T ) :=
dimN(T ) and β(T ) := dimY/R(T ) := codimR(T ). If either α(T ) or β(T )
is finite, then we define the index of T by i(T ) := α(T ) − β(T ).

For a given closed subspace M of X let QM denote the quotient map
from X onto X/M . We shall denote Q

T (0)
by QT . Clearly QT T is a linear

operator. For x ∈ D(T ), ‖Tx‖ := ‖QT Tx‖ and the norm of T is defined by
‖T‖ := ‖QT T‖.

A multivalued linear operator T ∈ LR(X, Y ) is said to be closed if its
graph is a closed subspace of X ×Y ; continuous if for each neighbourhood V
in R(T ), T−1(V ) is a neighbourhood in D(T ), equivalently ‖T‖ < ∞; open if
T−1 is continuous, equivalently γ(T ) > 0 where γ(T ) is the minimum modulus

of T defined by

γ(T ) := sup{λ : ‖Tx‖ ≥ λd(x, N(T )), x ∈ D(T )};

bounded below if it is injective and open; and bounded if it is continuous and
D(T ) = X.

Linear relations were introduced into functional analysis by J. von Neu-
mann [16] motivated by the need of considering adjoints of nondensely de-
fined linear differential operators which are considered by various authors
(see, for example, [6] and [7]). Problems in optimisation and control also
lead to the study of set valued maps and differential inclusions (see [4], [5],
etc.) Studies of convex processes and tangent cones form part of the theory
of convex analysis developed to deal with nonsmooth problems in viability
and control theory, for example.

Other works on multivalued linear operators include the treatise on par-
tial differential relations by Gromov [12], the application of multivalued
methods to the solution of differential equations by Favini and Yagi [9] and
several papers on linear relations of semi-Fredholm type and other related
classes (see, for example, [1]–[3], [8] and [17]).

Throughout this paper, X and Y will denote infinite-dimensional normed
spaces and T will always denote an element of LR(X, Y ) except where stated
otherwise.
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2. Characterisations. We start this section by proving a result which
gives equivalent conditions for a linear relation with finite-dimensional null
space to be open.

Theorem 1. Let dimN(T ) < ∞. Then the following properties are

equivalent :

(i) T is open.

(ii) For every M ∈ P (D(T )), R(T |M ) is closed in R(T ) and T |M is

open if M ∩ N(T ) = {0}.
(iii) There exists M ∈ P (D(T )) such that R(T |M ) is closed in R(T ) and

T |M is injective and open.

(iv) There exists M ∈ C(D(T )) such that R(T |M ) is closed in R(T ) and

T |M is injective and open.

Proof. (i)⇒(ii). Let M be an arbitrary closed finite-codimensional sub-
space of D(T ). Then M+N(T ) is closed since α(T ) < ∞. To see that R(T |M )
is closed in R(T ), suppose yk → y where y ∈ Tx and yk ∈ Tmk for x ∈ D(T )
and (mk) ⊂ M ; we shall prove that there is m ∈ M for which y ∈ Tm. Since
y ∈ Tx ⇔ Tx = y + T (0) and yk ∈ Tmk ⇔ Tmk = yk + T (0) ([8, I.2.8]), we
have QT Tmk = QT yk → QT y = QT Tx and noting that 0 < γ(T ) = γ(QT T )
and N(T ) = N(QT T ) ([8, II.3.9]), it follows that d(x − mk, N(T )) → 0.
Thus there exists (nk) ⊂ N(T ) such that mk + nk → x ∈ M + N(T ) (as
M + N(T ) is closed). Hence x = m + n for some m ∈ M and n ∈ N(T )
and so we have y + T (0) = Tx = T (m + n) = Tm + Tn = Tm + T (0)
(as n ∈ N(T ) ⇔ Tn = T (0)), showing that Tm = y + T (0), equivalently
y ∈ Tm, as desired.

As the linear relations T and T |M+N(T ) have the same null space, we
derive from the definitions that 0 < γ(T ) ≤ γ(T |M+N(T )).

Now assume that N(T ) ∩ M = {0}. Clearly T |M is injective with M ∈
P (M + N(T )) and thus by [8, II.3.18] there exists a continuous linear oper-
ator projection P defined on M +N(T ) with range M and null space N(T ).
Hence for any m ∈ M ,

‖m‖ = d(m, N(T |M)) = d(m, P (N(T )))

= inf{‖Pm − Pn‖ : n ∈ N(T )} ≤ ‖P‖d(m, N(T )).

In consequence

0 < γ(T ) ≤ γ(T |M+N(T ))

≤ inf{(‖P‖‖Tm‖)/d(m, N(T |M)) : m ∈ M \ N(T )}

= ‖P‖γ(T |M )

and thus T |M is open.

The implications (ii)⇒(iii)⇒(iv) are obvious.
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(iv)⇒(i). Suppose M ∈ C(D(T )) and that T |M is bounded below with
closed range in R(T ). Since T |M is injective, we can choose as F a comple-
ment of M ⊕ N(T ) in D(T ). Thus

(1) T |M+F is injective.

Now, since dimR(T )/R(T |M ) ≤ dim D(T )/M by [8, I.6.1] and M ∈
C(D(T )) we derive that

(2) R(T |M ) is a closed finite-codimensional subspace of D((T |M+F )−1)

and as (T |M )−1 is continuous and clearly (T |M )−1 = (T |M+F )−1|TM we
conclude from (2) and [8, II.3.19] that (T |M+F )−1 is continuous, that is,

(3) T |M+F is open.

Finally, we conclude that T is open since

0 < γ(T |M+F ) = inf{‖Tx‖/‖x‖ : x ∈ M + F}

≤ inf{‖Tx‖/d(x, N(T )) : x ∈ M + F}

= inf{‖Tx‖/d(x, N(T )) : x ∈ D(T ) \ N(T )} = γ(T ).

(Here we have combined (1) and (3)).

This theorem generalises the corresponding result for linear operators of
Labuschagne [13, 7].

Our next objective is to extend the above theorem to arbitrary linear re-
lations. To this end, we shall use some auxiliary results concerning canonical
factorisation and graph operators which we now present.

Definition 2 ([8, V.13.1]). The injective component T̂ of T is the linear

relation T̂ ∈ LR(X/N(T ), Y ) given by G(T̂ ) := {([x], y) : (x, y) ∈ G(T )}.

The representation T = T̂QN(T ) is referred to as the canonical factorisation

of T .

It is trivial that Tx = T̂ [x] (x ∈ D(T )) and that X/N(T ) is a normed
space if and only if N(T ) is closed, for example if T is closed.

Proposition 3. If N(T ) is closed , then T is open if and only if so is T̂ .

Proof. Since T̂−1 = QN(T )T
−1 = QT−1(0)T

−1, we obtain ‖T̂−1‖ =

‖QN(T )T
−1‖ = ‖T−1‖ and as ‖T−1‖ = γ(T ) by [8, II.2.5], the desired result

holds.

Definition 4 ([8, IV.3.1]). Given T ∈ LR(X, Y ), let XT denote the
vector space D(T ) normed by ‖x‖T := ‖x‖ + ‖Tx‖, x ∈ D(T ). The graph

operator GT is defined by D(GT ) := XT and GT x := x, x ∈ XT .

Proposition 5 ([8, IV.3.2 and IV.3.10]). TGT is a continuous every-

where defined linear relation such that N(TGT ) is a closed subspace of XT

and γ(TGT ) = γ(T )/(1 + γ(T )) (where ∞/∞ := 1).
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Theorem 6. T is open if and only if there exists M ∈ C(D(T )) such

that R(T |M ) is closed in R(T ) and T |M is open.

Proof. Let M be a finite-codimensional subspace of D(T ) such that
R(T |M ) is closed in R(T ) and γ(T |M ) > 0. Then M + N(T ) ∈ C(D(T )),
TM = T (M + N(T )) and N(T |M ) ⊂ N(T ) = N(T |M+N(T )) and thus it
follows immediately from the definitions that

(∗) γ(T |M ) ≤ γ(T |M+N(T )).

Let us consider two cases for N(T ):

Case 1: N(T ) closed. First we note that as N(T ) ⊂ M + N(T ), the

injective component of T |M+N(T ) coincides with T̂ |(M+N(T ))/N(T ). Further-

more, (M + N(T ))/N(T ) is a finite-codimensional subspace of D(T̂ ) and

T̂ ((M + N(T ))/N(T )) = T (M + N(T )) = TM,

which is closed in R(T ) = R(T̂ ) and so γ(T̂ |(M+N(T ))/N(T )) = γ(T |M+N(T ))

> 0 by Proposition 3 and (∗). Now, Theorem 1 shows that γ(T̂ ) > 0 and
again by Proposition 3 we conclude that T is open.

Case 2: N(T ) not closed. We consider the linear relation TGT . By
Proposition 5, TGT has closed null space and it is easy to see that

G−1
T (M + N(T )) ∈ C(XT ) and TGT (G−1

T (M + N(T ))) = TM,

which is closed in R(T ) = R(TGT ). Now, if we can show that the restriction
TGT |G−1

T
(M+N(T )) is open, it will follow from Case 1 that γ(TGT ) > 0 and

then applying Proposition 5 we will conclude that T is open.

To prove the openness of TGT |G−1

T
(M+N(T )) it is enough to observe that

γ((T |M+N(T ))(GT |G−1

T
(M+N(T )))) ≤ γ(TGT |G−1

T
(M+N(T )))

by [8, II.3.11] and also that T |M+N(T ) is open by (∗).

The converse is clear.

In the particular case of linear operators the previous theorem was ob-
tained by Labuschagne [13, 8].

Definition 7. A linear relation T is called upper semi-Fredholm if
γ(T ) > 0, α(T ) < ∞ and R(T ) is closed. The corresponding class of linear
relations will be abbreviated USF(X, Y ).

We shall use the above characterisation results to investigate the stability
of upper semi-Fredholm linear relations under finite rank perturbations.
We also recall the following finite-dimensional extension lemma for linear
relations.
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Lemma 8 ([8, V.15.5]). Let S, T ∈ LR(X, Y ) and let S be an extension

of T (that is, S|D(T ) = T ) such that dim D(S)/D(T ) := n < ∞. If T has

an index , then i(S) = i(T ) + n.

Theorem 9. Let T ∈ USF(X, Y ) and let S be a continuous finite rank

linear relation such that D(T ) ⊂ D(S) and S(0) ⊂ T (0). Then T + S ∈
USF(X, Y ) and i(T + S) = i(T ) if i(T ) exists.

Proof. We assume without loss of generality that D(T ) = X. Let M :=
N(S). Since S(0) is closed (as R(S) is finite-dimensional), N(S) = N(QSS)
is a closed finite-codimensional subspace of X. Observing that as T has
closed range with S(0) ⊂ T (0) by hypothesis and TM is closed, it follows
from Theorem 1 that TM = (T + S)M is a closed subspace of Y . Further-
more, since m ∈ N((T + S)|M ) if and only if (T + S)m = (T + S)(0) for
m ∈ M if and only if m ∈ N(T |M ), we have N(T |M ) = N((T + S)|M ) and
so it follows immediately from the definitions that γ(T |M ) = γ((T + S)|M ).
Hence, if we can show that T |M is open, it will follow from Theorem 6 that
T + S is also open.

To see that γ(T |M ) > 0, we note that since the linear relations T and
T |M+N(T ) have the same null space, γ(T ) ≤ γ(T |M+N(T )). Moreover, as
M ∈ P (M + N(T )) there exists a continuous linear projection P from
M + N(T ) onto M and for any m ∈ M we have

d(m, N(T |M ) = inf{‖Pm − Pn‖ : n ∈ N(T )} ≤ ‖P‖d(m, N(T )).

Consequently, 0 < γ(T ) ≤ γ(T |M+N(T )) ≤ ‖P‖γ(T |M ) and hence T |M is
open, as desired.

Since (T + S)M is closed and dimR(T + S)/(T + S)M ≤ dimX/M
< ∞ we see that R(T + S) is a closed subspace of Y , while the property
α(T + S) < ∞ is trivially obtained by [8, V.2.4, V.3.2 and V.5.1]. Finally,
assume that i(T ) exists and let dimX/M := n < ∞. Combining Lemma 8
with R(T |M ) = R((T +S)|M ) and the closedness of both R(T ) and R(T +S)
yields i(T ) = i(T |M ) + n = i((T + S)|M ) + n = i(T + S). Hence the result
follows.

As a consequence of Theorem 9 we give a density result for lower bounded
linear relations that have closed range. We also need the following elemen-
tary lemma.

Lemma 10. Let M be a closed subspace of X, and let N ⊂ X be a

subspace such that M ⊂ N . Then N is closed if and only if N/M is closed.

Theorem 11. Let T ∈ USF(X, Y ) with i(T ) ≤ 0. Then for every ε > 0
there exists Tε ∈ LR(X, Y ) such that Tε is bounded below , R(Tε) is closed

and ‖Tε − T‖ ≤ ε.
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Proof. Since T has closed range, it follows from Lemma 10 that R(QT T )
= R(T )/T (0) is also closed and β(T ) = β(QT T ). Furthermore, as γ(T ) > 0
and N(T ) is closed, applying [8, II.3.9], we obtain γ(T ) = γ(QT T ) and
N(T ) = N(QT T ). Consequently, QT T is an upper semi-Fredholm linear
relation such that N(T ) = N(QT T ) and i(T ) = i(QT T ) ≤ 0. Choose a
basis {x1, . . . , xn} for N(T ) with ‖xi‖ = 1 (1 ≤ i ≤ n) and let [y1], . . . , [yn]
be linearly independent elements of Y/T (0) whose linear span intersects
R(QT T ) only in {[0]} and ‖[yi]‖ = 1 (1 ≤ i ≤ n). As QT is surjective
and QT BY = BQT Y we can select y1, . . . , yn linearly independent in BY

such that QT yi = [yi] (1 ≤ i ≤ n). By the Hahn–Banach theorem there
exists a set {x′

1, . . . , x
′

n} of linear functionals in X ′ satisfying ‖x′

i‖ = 1 and
x′

i(xi) = δij (1 ≤ i, j ≤ n).

Let ε > 0. Define

Fεx := (ε/n)

n∑

i=1

x′

i(x)yi (x ∈ X).

Then it is clear that Fε is a bounded finite rank linear operator whose norm
does not exceed ε. We shall verify that Tε := T + Fε is a lower bounded
linear relation with closed range and ‖Tε − T‖ ≤ ε.

By Theorem 9, Tε ∈ USF(X, Y ). Now, as T (0) = Tε(0) = (Tε − T )(0),
it follows that QT = QT+Fε

= QTε−T and hence QTε+Fε
(T + Fε) = QT T +

QT Fε. From this we obtain ‖Tε−T‖ := ‖QTε−T (Tε−T )‖ = ‖QT Fε‖ ≤ ε and
to prove the injectivity of Tε it is enough to show that QT T + QT Fε is an
injective linear operator (as trivially N(T + Fε) ⊂ N(QT+Fε

(T + Fε))). But
(QT T + QT Fε)x = 0 ⇒ QT Fεx = −QT Tx ∈ R(QT T ) ∩ span{[y1], . . . , [yn]}
= {[0]} ⇒ x ∈ N(QT T ) ∩ N(QT Fε) ⇒ x = 0, that is, QT T + QT Fε is
injective, as required.

Corollary 12. Let T ∈ LR(X, Y ) be closed , where X and Y are Ba-

nach spaces, and suppose that R(T ) is closed , dimN(T ) < ∞ and i(T ) ≤ 0.
Then for every ε > 0 there exists Tε ∈ LR(X, Y ) that is closed , injective

with closed range and such that ‖Tε − T‖ ≤ ε.

Proof. The closed graph and open mapping theorems for multivalued
linear operators [8, III.5.3 and III.5.4] assert that for closed linear relations
S between Banach spaces, S is open if and only if R(S) is closed. Combin-
ing this with Theorem 11 shows that the linear relation Tε obtained as in
Theorem 11 is injective, has closed range and ‖Tε − T‖ ≤ ε. Furthermore,
as T is closed and Fε is a bounded linear operator, Tε = T + Fε is closed by
[8, II.5.16].

For the particular case of linear operators, the above corollary was proved
(independently) by Galaz-Fontes [10, 2.1] for the case where X = Y and T
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is bounded and by Mbekhta [14, 3] for the case when T is closed. Our proof
is different.
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