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Banach-valued axiomatic spectra
by

SEAN DINEEN and ROBIN E. HARTE (Dublin)

Abstract. Using axiomatic joint spectra we obtain a functional calculus which ex-
tends our previous Gelfand—Waelbroeck type results to include a Banach-valued Taylor—
Waelbroeck spectrum.

1. Introduction. In previous papers [5-8] we developed a spectral the-
ory and functional calculus for an infinite number of elements in a unital
Banach algebra A. In [8] we obtained a functional calculus for the Banach-
valued spectrum introduced by Waelbroeck [20] when A is commutative.
In this paper we discuss axiomatic spectra and obtain a holomorphic func-
tional calculus for commuting elements in A@W X with respect to a class of
spectra which includes the commutative case and the Taylor spectrum. The
functional calculus is more inclusive than that considered in [17, 22] as we
consider here a more general class of holomorphic functions.

We refer to Curto [2]| for a comprehensive survey of spectral theory for
a finite number of commuting elements in a Banach algebra. Background
information on tensor products may be found in [3, 16] and we refer to
[4, 12] for information on infinite-dimensional holomorphy.

Throughout this article .A will denote a Banach algebra over the complex
numbers C, with identity e. We let €(A) and €y(.A) denote, respectively, the
set of all commuting systems of elements and finite commuting systems of
elements in A. We let S(.A) denote the spectrum of the unital Banach alge-
bra A, that is, the set of all non-zero multiplicative linear functionals on A.
We denote Banach spaces, always assumed to be over C, by X, Y, ... and let
B(X) denote the Banach algebra of bounded linear operators from X into X.

2. Spectral systems. Axiomatic joint spectra were initially introduced
by Stodkowski and Zelazko in 1974 [17]. Since then they have proved useful
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both as a theoretical tool and as a means of comparing the different concrete
spectra that have been introduced over the years. Slight variations in the
definition have also appeared in the literature (see for instance [2, 9, 15,
17, 22|), but the differences are generally only a matter of convenience. We
have chosen a definition which displays important features but which is not
without redundancies and we address this point in the remarks below.

DEFINITION 1 ([2, 17, 22]). A spectral system for the unital Banach al-
gebra A is a mapping ¢* which maps (a;)ier € €o(A) onto a compact subset
of C!, the spectrum of (a;);cs, such that the following hold:

(a) 0*({a}) is a non-empty subset of o(a), the usual spectrum of a € A,
for any singleton set {a} in €y(A),
(b) (the finite polynomial spectral mapping property)

P(o"(a)) = o™ (P(a))

for all a € €y(A) and all polynomials P between finite-dimensional
spaces.
(c) (the projection property)

(0" ((ai)ier)) = o™ ((ai)ics)

for any subset J of the finite set I where 7r§ denotes the canonical
projection from C! onto C”.

REMARKS. (1) Some authors [2, 15| replace (a) with the condition
o*({a}) = o(a). In either case we have o*({0}) = o(0) = {0}.

(2) Let a = (a1,...,a,) € €(A). If j = (j1,...,7Jn) where each j; is
a non-negative integer and z = (z1,...,2,) € C", let 2/ = z{l 20" and
al =a}'---al). P :C"— C™ P = (P,...,Py) where each P is a
C-valued polynomial in n variables then each P is a finite sum ) ; ajzj,
where a; € C, and P;(a) =) ; o al.

(3) If I is a finite set and J C I then the projection 7l ((2;)icr) := (2)jes
is a polynomial between finite-dimensional spaces, and applying the finite
polynomial spectral mapping property we see that (b)=-(c) in Definition 1.
On the other hand, suppose (a) and (c) hold and also the one way spectral
mapping property, that is,

P(*(a)) € 0" (P(a)
for all a € €5(A) and all polynomials P between finite-dimensional spaces.
Suppose a = (aq,...,a,) € €(A), P : C* — C™ is a polynomial and
p = (uj)je; € o*(P(a)). By the projection property u € mm(c*(a, P(a)))
where

T (Z1y o vy Zny W1y ooy Wiy) = (W1, .oy Wiy).
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Hence there exists A = (\;)i; € C" such that (A, ) = ((Ni)iy), (15)721) €
c*(a, P(a)). By the projection property A € o*(a). Let

Q(z1,. .oy 2n, Wi,y W) = P21, 0, 20) — (W1, ..., W)

Then @ is a polynomial between finite-dimensional spaces and Q(a,b) =
P(a) —b for any b = (b;)72;. By the one way polynomial spectral mapping
property
Q(o*(a, P(a)) € 0*(@Q(a, P(a))) = 0" ({0})

where 0 = (0,...,0) € €(A). By the projection property and (1), o*({0}) =
0 € C". Hence Q(\,pu) = P(A) —p = 0 and g = P(\) € o*(P(a)). So
o*(P(a)) C P(c*(a)) and we have shown that the one way finite polyno-
mial spectral mapping property and the projection property imply the finite
polynomial spectral mapping property.

Our first proposition, Theorem 2.3 in [17], says that spectral systems
always extend from finite to infinite collections.

PROPOSITION 1. If 0* is a spectral system for €y(.A) then there exists a
unique mapping, that we still denote by o*, which maps (a;)icr € €(A) onto
a compact subset of C! satisfying the projection property for infinite systems
and whose restriction to €y(A) coincides with o*.

By (a) and (b) of Definition 1 and by Proposition 1 the spectrum of
a:= (a;)ier € €(A) is a non-empty compact subset of C’.

The projection property and the finite polynomial spectral mapping prop-
erty can be combined to transfer polynomial identities between elements in
a:= (a;)ier and A := (\;);er € 0*(a). The method is very simple and useful
(see [10] and Theorem 11.4.3 in [11]). We give the full details in one case in
Lemma, 1 and sufficient details in the other cases that we require.

LEMMA 1. Let a = (a;)ier € €(A) where A is a unital Banach algebra.
Let o* denote a spectral system and suppose X := (\;)ier € o*(a). Ifi,j,k €
then the following are true:

(i) If a; + a; = ag then \; + )\j = \g.

(ii) If a; = Ay then )\i = )\j.

(iii) If Qi - a; = ag then )\i . )\j = )\k-

(iv) If a € C and cwa; = aj then ak; = \j.

Proof. (i) Let m((as)ier) = (ai,aj,ax) and P(z;, 25, 2,) = 2 + 2j — 2.
By the projection property (i, Aj, A\x) € c*(a) and by the finite polynomial
spectral mapping property

P()\Z', )\j, )\k) =N+ )\j — A\

€ 0" (P({ai,aj,ar}) = c*({ai + aj — ar}) = 0({0}) = 0.
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Hence P(\i, A\j, A\i) = Ai + Aj — A, = 0. For (i) use P(z;,2;) = 2 — #;, for
(ili) use P(z;, 25, 2K) = 2 - 2j — 2k, and for (iv) use P(z;,2j) = az; — z; and
the method used to prove (i). This completes the proof.

Our next result is Theorem 3.3 in [17]. We include a simple proof based
on Lemma 1.

PROPOSITION 2. Let o* denote a spectral system. If B is a closed com-

mutative unital subalgebra of the unital Banach algebra A then there exists
S*(B) C §(B) such that

o*((ai)ier) = {(m(a;))ier : m € S*(B)}
for all (a;)ier C B.

Proof. If b := B = (b;) e for some indexing set J and A := ()\})jes €
o*(b), let X : B — C be defined by A(b;) = A;. By (i), (iii), and (iv) above,
X € 8(B). Let 8*(B) := {\: A € 6*(B)}. Then o*(b) = {(m(b;))jes : m €
S*(B)}.

Let a = (a;);er and suppose a; € B for all ¢ and let ¢ = (a,b). Then
c € ¢(A). By the projection property (\;)ier € o*(a) if and only if there
exists (03;)jcs € o*(B) such that ((\i)ier, (8)jes) € 0*(c). By the above,
there exists m € S*(B) such that 3; = m(b;) for all j € J. If i € I then
there exist j € J such that a; = b;. Hence \; = 8; = m(a;) = m(b;) and
(Mi)ier = (m(a;))ier. Conversely suppose m € S*(B). Then (m(b;));cs €
o*(b) and by the projection property there exists (\;);e;r € 0*(a) such that
((Mi)ier, (m(bj)jes)) € 0*(c). As above, \; = m(a;) for all i € I and by the
projection property (m(a;))ier € c*(a). This completes the proof.

3. Tensor products. We now introduce the setting in which we will
operate. To avoid the excessive use of parentheses we use interchangeably
the following functional notation: (f)z := f(z) =: (f)(x).

DEFINITION 2. Let v denote a uniform cross-norm, let X denote a Ba-
nach space and let A denote a Banach algebra with identity e. If a €
A @7 X we let A, denote the closed unital subalgebra of A generated by
((e ® 2')a) e x and call A, the algebra generated by a. If A, is commuta-
tive we say that a is commutative. For a commutative in A @7 X and ¢* a
spectral system let

o*(a) = 0" (((e ® 2)a)wex).

If A € 0*(a) then A € CX" and there exists a unique mapping A X' - C
such that A\, = X(ac’) for all 2/ € X’. By Lemma 1, \ is a linear mapping
on X'. Since o*((e ® z’)a) C o((e ® 2’')a) and ||(e @ 2)a|| < ||2/| - ||a]| we
have |A(z)| < ||a| - ||2/|| for all 2/ € X’. Hence A € X" and ||A|| < |a]|.
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To refine this result we need the following lemma about arbitrary uniform
cross-norms on Banach spaces.

LEMMA 2. If v is a uniform cross-norm and a € X &X\)«, Y where X and
Y are Banach spaces then the mappings

Ta: (X' o(X'. X)) =Y, Ti(¢)=(¢®1y)a,
T (Y,o(Y')Y)) — X, T.(0) = (1x ®6)a
are uniformly continuous on bounded sets.
Proof. Tt suffices to consider the mapping T.. Let a := Yo Ty €
X QY. If (¢a)a and ¢, “, ¢ as a — oo then

(1) Th¢a) =D dalzi)yi — D d(@i)yi = T(9)
=1 =1

and T is continuous on (X', (X', X)).
Now suppose a € X@WY, da € X', ||da|| < M and ¢, o, ¢ as a — 0.
Let £ > 0 be arbitrary. Choose b € X ® Y such that ||a — b|| < e. Then
1T (¢a) — Ta(@)]l = I[(¢a @ 1y)a — (¢ ® 1y)al| = [|(($a — ¢) © 1yv)a|
< [[((pa — @) @ 1y)b| + [[((¢a — ¢) ® 1y)(a —Db)]
< [[((¢a — ¢) ® 1y)b|| + 2Me.
Sinceb € X ®Y, ((¢pa — ¢) ® 1y)b — 0. Hence T (o) — TL(¢) as o — oo
and this completes the proof.
If X is a Banach space we let Jx denote the canonical mapping from X
into X”.

PRrROPOSITION 3. Ifa € .AG?)7 X is commutative then there exists a non-
empty norm compact subset A C {x € X : ||z|| < ||la||} such that Jx(A) =
o*(a).

Proof. Let 2" € o*(a) C X" and let (¢o)q denote a bounded net in X’
which converges w* to ¢. Then

2"(¢a) = 2"(¢) = 2"(¢a — ¢) € 07((e ® (60 — ¢))a)

and

2" (¢a) — 2"(0)] < [(e @ (¢a — d))all = T3 (da — &) — 0
as o — oo. Hence 2 is w* continuous on bounded sets and thus belongs to
Jx (X).
From now on we identify o*(a) with a subset of X. This means that
x € X belongs to o*(a) if and only if 2/(z) € 0*((e ® 2’)a) for all 2’ € X',
Having already noted that o*(a) C {x € X : ||z|| < ||a||} it now suffices
to show that ¢*(a) is norm compact. Let 29 € o*(a) and let ¢ : A — C
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be given by ¢(a) = a'(xg) if a = (e ® ')a. If 2/ and 3’ belong to X’
and (e ® 2')a = (e ® y')a then (e ® (' — y'))a = 0. Since xy € o*(a),
(@' =y )xo € o*((e® (2' —y'))a) = 0*({0}). Hence (2’ — y')zp = 0 and ¢ is
well defined.

Ifa; = (e®a})aand oy € Cfor i =1,...,n then

n n n
Yo=Y o eora= (e (Y or-ai))a
=1 =1

i=1
and ¢ is defined on a subspace of A. Since

¢(§;ai'ai) = (Zn;ai'ﬂﬁ;)ﬂfo = Zn;ai'sb(ai),

¢ is linear. If a = (e ® 2’)a then ¢(a) C o*((e® 2')a) C o(a) C {N € C:
[Al < lall}. Hence |¢(a)| < ||al| and [¢] < 1.

By the Hahn—Banach theorem ¢ can be extended to A as a continuous
linear mapping with the same norm. We choose an extension and denote it

also by ¢.
Ifz'e X', zeX,be Aand § € A then

(e )(b®x)) =0(b)-2'(z)

and
((0@1x)(b@z)) =2'(0(b)x) =06(b) - /().

On taking finite sums and using continuity we obtain

fl(e® ") (b)] = 2'((§ ® 1x)b)
for all b € A®., X. Applying this identity to ¢ and a = (e ® z')a we obtain
' (xg) = ¢((e®x')a) = 2/((¢p ® 1x)a) for all 2/ € X'. By the Hahn—Banach
theorem zg = (¢ ® 1x)a = TL(¢). Hence o*(a) C T (B (1)). By Lemma 2,
c*(a) is a relatively norm compact subset of X. If z,, € o*(a) — x as
n — oo then z, — x weakly and hence z, — 2 in CX’. By Definition 1,
x € o*(a). Hence o*(a) is closed and this completes the proof.

If 0 ¢ o*(a) we say that a is invertible. Since (e ® z')a — 2/(z)e =

(e@z')(a—e®ux) for all z € X and all 2/ € X’ we see that = ¢ o*(a) if and
only if a — e ® x is invertible.

4. Algebraic polynomial extensions. If X and Y are vector spaces
over C we let P,("X;Y) denote the set of n-homogeneous polynomials from
X into Y. A polynomial is a finite sum of homogeneous polynomials and we
denote by P,(X;Y") the space of polynomials from X to Y. If P € P,("X;Y)
we let PV denote the unique symmetric n-linear form on X" associated with
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P (see [4]). Universal properties of the tensor product imply (see [1, 7]) the
following result.

PROPOSITION 4. If X, Y, Z, W are vector spaces, Q € Po("Z; W) and
P e Py("X;Y) then there exists a unique Q@ P € Po("ZR X; W ®Y') such
that
(QRP) (1 @x1,...,2n @ Tp) = QV(21,...,2n) @ PV(21,...,1,)
for (zi)l-y C Z and (z;)]~, C X.
If Z is an algebra A and Q(a) = a" for all a € A then Q € P,("A; A)
and we let P4 := Q ® P. Note that P4(a®z) = a" ® P(x) for all a € A and

all z € X. If we identify X with the subspace e ® X of A ® X then we may
regard P4 as an extension of P. If {ay,...,a,} C A let

1
s(al,...,an)zﬁ Z a
.UESn

denote the symmetrization of {ay,...,a,} where S, is the set of all permu-
tations of {1,...,n}.
For parts (a) and (b) of the following proposition we refer to [7].

PROPOSITION 5.

(a) fa:=3"_a;®z; € A® X and P € Py("X;Y) then

= Z a* @ PY(z*
ketn

where t" = {(i1,...,i,) : 1 < 45 < t}, ab = a; ---a;,, and ¥ =

(Tiyy- ooy xq,) for k= (i1,...,0n).
(b) If P € Po("X;Y) then Py is the unique polynomial in Pa(" A ® X;
A®Y) such that

(2) [PA]Y (a1 ®@ 21, ... a0 @ 2p) = s(a1,...,0,) @ PV (z1,..., 1)

for any set {a; ® z;}7_; CA®X.
() Tfd € X* := P(LX;C) then b4 = e ® o.
(d) If {¢i}lq C X* then

(3) (61 dn)ala) = — Z Do (1) ~(bo(m))A(a).

oESh

Proof. (c)Ifa € Aand z € X then ¢p4(a®z) = a®¢(x) = (e®¢)(a®@x).
By linearity ¢4 = e ® ¢.



220 S. Dineen and R. E. Harte
(d) Clearly ¢1 --- ¢y, € Po("X) and

1

n!

(P1--bn) (w1, Tp) = ) In(Ta(n))

2 4
ESn

= i' Z 0(1 ) T ¢U(n)(‘rn)
€Sn

If {a;}", C A® X let

Q(al’ .. 7an) = 2 Z (d)a(l))A(aT(l)) e (d)a(n))A(aT(n))‘

The mapping () is easily seen to be symmetric n-linear. Some tedious
but straightforward calculations, using parts (b), (c¢) and the formula for
(¢1,...,¢n)", show that

Qa1 ®x1,...,a, @xp) = [(¢1- Pn)a] (a1 @ 21,..., a0 @ p)

when {a;®@z;} | C A®X. Hence Q = [(¢1- - ¢n)4]Y and (3) follows easily.
This completes the proof.

If R: X — Y is a linear mapping between vector spaces we let Rl .
X™ — Y™ denote the n-linear mapping defined by R["}(xl,...,xn) =
(R(x1),...,R(xp)).

LEMMA 3. If P: X —- Y, R: Z — W are linear mappings between
vector spaces and QQ € Po("Y;Z) then (RoQo P)gy = Ra0Qa0 Py.

Proof. If (z;)7_; C X then, by the polarization formula [4],

(RoQoP)(x1,...,2n) = n'2” Z g1 en(RoQoP) (Zsz )

= nlgn 622 g1 (ZE@ Ty )

<n|2ngzz €1+ €”Q<Z€’ a:z)>

= R(Q"(P(z1), ..., P(xn)))
=RoQV oP[n](xl,...,xn).

If (x;)?; C X and (a;)}_; C A then, using Proposition 5,



Banach-valued axiomatic spectra 221

[(RoQo P)l (a1 ®@x1,...,an @ 1)
=s(a1,...,an) ® (RoQo P)Y(x1,...,7,)
=s(ar,...,an) @ (Ro QY o P (21,...,z,)
= RA(S(CL ce an) & QV(P<1'1)7 B P(x”)))
= Ra((Qa)"(a1 ® P(x1),...,an ® P(zy)))
= (Rao(Qa)" o (PO (a1 @21, a0 @ 2.
Hence [(Ro Qo P)4]Y = Rao(Q4)Y o (P4 and
(RoQoP)a(a) =[(RoQo P)a]’(a") = Rao (Qa)'(Pa(a),..., Pa(a))
= (RaoQu)(Pa(a)) = Rao Qa0 Pa(a).
This completes the proof.

The above result is true for arbitrary P and @Q if A is commutative [§]
whereas the following example shows that it does not generally hold.

ExampLE 1. If H is a Hilbert space and A = B(H), P(z1,22) = 2122
for (z1,22) € C%, Q(z) = 2% for z € C and e; = (1,0) and ez = (0, 1) denote
the standard unit vector basis for C2, then

(QaoPa)a® e +b® es) = = (ab+ ba)?

] =

while
(QoPlala®er +b®er) = é (aabb + abab + abba + baba + baab + bbaa).
If a denotes the unilateral shift and b = a* then
(QoPlala®er +b®ez) # (QuoPa)(a®er +b®@e).

5. Continuous polynomial extensions. In this section we extend the
algebraic results of the previous section to continuous polynomials on com-
pleted tensor products.

Let P("X;Y) denote the space of all continuous n-homogeneous polyno-
mials from the Banach space X to the Banach space Y endowed with the
topology of uniform convergence over the unit ball of X and let P(X;Y)
denote the space of all continuous polynomials.

If A is a unital Banach algebra, = is a uniform cross-norm, X and Y are
Banach spaces and P € P(X;Y) satisfies

sup{|[|[Pa(0)] : 0 € A® X, ||0]ly < 1} < o0,

then P4 extends to define a element in P("(A ®., X); A®,Y). In this case
we say that P can be adapted to A @7 X
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PROPOSITION 6. If A is a unital Banach algebra, 7y is a uniform cross-
norm, X is a Banach space and {¢;}, C X', then (¢1 - ¢pn)a €
P"A®y X); A®,Y) and

(4) (617 6n)ala) = — =S oy < (Go(m))Ala).

n O'GSn

If a is commutative then

(5) (@1 dn)a(@) = (¢1)a(a) - (dn)a(a).

Proof. For (4) it suffices to apply continuity and (3) in Proposition 5,
and for (5) the definition of a commutative element and (4) complete the
proof.

Definition 3 below was introduced in [8] (see also [5]) and shown to be
necessary for the existence of a 7p-continuous functional calculus for all a €
A @7 X when A is commutative, X is some infinite-dimensional Banach
space and 7 is a uniform cross-norm.

DEFINITION 3. Let A denote a unital Banach algebra and let « denote
a uniform cross-norm. A Banach space X has the (A, v)-extension property
if every P € P(X) can be adapted to A &, X and there exists ¢ > 1 such
that for all n and all P € P("X),

[Pall < ®[|P]].

In this article we are more involved with a commutative subalgebra of
a non-commutative algebra and give a more general definition, Definition 4,
which focuses on particular elements in A @7 X rather than on the whole
space. We use the following notation from now on: if A is a unital Banach
algebra ~ is a uniform cross-norm, X is a Banach space and a belongs to
A ®7 X, then |- ||,/ is the norm on A, ® X induced by the norm || - H7
on A ®7 X. In general, the canonical mapping from A, ®7 X into A ®7
is not an isomorphism onto its image, it will be injective when X has the
approximation property and it will always be continuous, since « is a uniform
cross-norm, with norm less than or equal to 1. This means that ||-[[,, < |- ]|,
on A, ® X for any v and any a € A ®, X. Since there is no possibility of
confusion we let A, @7/ X denote ‘E\he closure o/f\ A, ® X in A4 @7 X:\ If ¢ is
the injective tensor norm then A, ®o X = A, ®: X for any a € A @, X

DEFINITION 4. If A is a unital Banach algebra, +y is a uniform cross-norm,
X is a Banach space and a belongs to A @7 X then X is (a,7) adaptable
if there exists ¢ € R such that for all n, for every Banach space Y and all
P e P("X;Y) we have

(6) sup{[|Pa(0)] : 0 € Aa @ X, [|0]], < 1} < || P]].
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When (6) holds, the restriction of P4 to Aa ® X extends to define a contin-
uous .A&f)7 Y -valued n-homogeneous polynomial, that we still denote by Py,
on Aa ®'Y/ X.

Results in [7, 8] imply that any Banach space X is (a,7) adaptable for
all a € A®; X, A arbitrary and 7 the projective tensor product, and (a, ¢)
adaptable for all a € U ®. X where U is a uniform Banach algebra with
identity and ¢ is the injective tensor product.

ExampLE 2. If A = B(H) and C is a unital C*-subalgebra of B(H)
generated by a commuting family of normal operators, then C is isometrically
isomorphic to a uniform algebra and C ®, X is isometrically isomorphic to a
subspace of B(H) ®. X for any Banach space X. By Example 6 in [7], X is
(a,e) adaptable for any a € C.

We now restrict ourselves to a commutative element a € A @7 X and to
Banach spaces with the bounded approximation property in order to use the
collection (e ® x')ex/ to obtain properties of a.

PROPOSITION 7. If v is a uniform cross-norm, X and Y are Banach
spaces, T : X — Y is a continuous linear operator, A is a Banach algebra
with identity e and a € A&~ X is commutative then (e ® T)a is commuta-
tive and Aegrya C Aa- If T is a finite rank operator from X into X then
(e@T)ac Ay ® X.

Proof. 1f y/ € Y’ then
(1)a(le®T)a) = (e@y)(e®@T)a=(e® (y' o T))a= (y o T)aa.

Since y/oT € X’ and a is commutative this implies that (e®y’)(e®T)a € A,
and hence (e ® T')a is commutative.

T (x) =>" x(x)x; for all z € X where (2}); C X" and (z;)I; C X
then by first considering a ® x, then taking finite sums and finally using
continuity, we see that

n
e®T)a=>» ((e®@))a)®@x; € Aa® X.
i=1
This completes the proof.

DEFINITION 5. A Banach space X has the bounded approximation prop-
erty if there exists a bounded set (T )aer of finite rank operators in B(X)
which converges to the identity mapping on X uniformly on compact subsets
of X. If each T, is a projection we say that X has the bounded projection

property.
The bounded projection property is also known as the m-property.
A separable Banach space is a complemented subspace of a Banach space
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with the bounded approximation property if and only if it is a complemented
subspace of a Banach space with the bounded projection property.

PROPOSITION 8. If X is a Banach space with the bounded approzimation
property, v is a uniform cross-norm, A is a Banach algebra with identity e
and a € A®, X, then (e ® T,)a — a as a — oco. If a is commutative then
ac A, (/8?7/ X.

Proof. Suppose ||T,|| < M for all a. Let e > 0 be arbitrary. Choose
b:=3" b ®x; € A® X such that ||a — b|| <e. Then

le® (To = Lx)bll = | > b ® (Ta — Lo)a:
i=1

< D Ibill - 1(Za = L) ()| — 0
i=1

as o — 00. Hence

(e @ To)a—al = [l(e @ (Ta — Ix))al
< [l(e @ (Ta = Ix))bl| + [[(e @ (Ta — Ix))(a = b
<[l(e® (To — Ix))bl[ 4+ (M + 1)e

and (e ® T, )a — a as a — 0.

If a is commutative, Proposition 7 implies that (e ® T, )a € A, ® X for
all « and, by the first part of the proposition, a € A, @7/ X. This completes
the proof.

PROPOSITION 9. If X and Y are Banach spaces and X has the bounded
approzimation property, v is a uniform cross-norm, A is a Banach algebra
with identity e, a is a commutative element in A@WX, X is (a,v) adaptable
and P € P(X;Y), then Pa(a) is well defined, Ap, ) C Aa and Py(a) is
commautative.

Proof. By linearity we may suppose that P is n-homogeneous. By Propo-
sition 8, a € Aa @W/ X and since X is (a, ) adaptable, P4 € P("(Aa @7/ X);
A®,Y) and Py(a) is well defined. To complete the proof we must show
that (y')a(Pa(a)) € A, for all ¥ € Y. Since A, is a closed subspace of the
Banach space A it suffices, by Lemma 3 and Proposition 8, to show that

(1) ()aPal(e®T)a)) = (y)a((PoT)aa) = (y o PoT)a(a)
lies in A, for any continuous finite rank operator 7' from X into X. If

T(x)= Zé’:l 6;(x)x; where z; € X and 0; € X' for all j then

(y' o PoT)(x) = > 0" () -y (P (2m))

m={j1,....Jn}, 1<5; <l
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where 0™ = 0;, ---0;, and x,, = (z,,...,xj,). By Proposition 6,
(8) (y o PoT)ula) = > Y (P¥(zm)) - 0% (a)
where 07 (a) = (0;,).a(a)---(0;,)4(a). Since each (0;,) a(a) belongs to A,,
(y o PoT)4(a) € Aa. This completes the proof.
ProposiTIiON 10. If X is a Banach space with the bounded approxima-

tion property, v is a uniform cross-norm, A is a Banach algebra with identity
e, ac A®, X is commutative and X is (a,v) adaptable, then the mapping

P e P(X)— Py(a)
is an algebra homomorphism.
Proof. By linearity it suffices to show (P - Q)4(a) = Pa(a) - Qa(a) for
all P € P("X) and all @Q € P("X). Let (T4)n denote the set of finite rank

operators on X associated with the bounded approximation property. By
Proposition 8,
(P-Q)a(a) = lim (P-Q)a((e® Tw)a) = lim (P-Q)a((Tx)aa)
= lim (P-Q)oTy)a(a) = hm ((P 0Ty)  (QoTy))ala).
a— 00 a— 00

Now P o Ta = >,0and Qo T, = Zj @' where the sums are finite,
0 =6; ---0 andgb = ¢j, -+ 0;,,, i € X' and ¢; € X’ for all ¢ and j.
Hence

(PoT) DI
Proposition 6 implies, since a is commutatlve,
(PoTa)-(QoTa))ala) =Y (07)a(a)- (¢]")a(a)
v
= (PoTs)ala)- (QoTu)ala)

for all a. On letting @ — oo we obtain, by Proposition 8, (P - Q)4(a) =
Py(a) - Qa(a). This completes the proof.

6. Polynomial functional calculus. If ¢* is a spectral system and
acA @7 X is commutative then Proposition 2 together with the identity
d((e®a')b) = 2'((’®1x)b) forall 2’ € X', a' € A’ and b € AR, X shows
that there exists a subset S*(a) of S(Aa) such that

o*(b) ={(m((e® 2")b))wex :me S (a)} = {(m@1x)b:m e S*(a)}
whenever b € A &, X satisfies (e ® 2')b € A, for all 2/ € X',

PROPOSITION 11. Let A denote a Banach algebra with identity e, X a
Banach space with the bounded approximation property, v a uniform cross-
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norm and let o* denote a spectral system. Ifa € A@VX 18 commutative and
X is (a,7) adaptable then

0" (Pa(a)) = P(d"(a))
for all P € P(X).
Proof. By the above we must show

(9) m(Pa(a)) = P((m ® 1x)a)

for all m € S*(a). Let (T4)o denote a bounded net of finite rank operators
which converges to the identity uniformly on compact subsets of X. By
Proposition 7, (Ty)a(a) = (e ® Ty)(a) € Aa ® X C Domain(Py) and, by
Proposition 8, (e ® T,,)a — a as o — oo. Hence it suffices to prove (9) with
a replaced by T4(a) where T : X — X is a finite rank operator and by

linearity we may also suppose that P € P("X).
If T'(x) = 23':1 0;(z)x; where z; € X and 0; € X' for all j then

(PoT)(x) = > 0% ()P (x1)

k={j1,-nin}, 1<5i <L
where 08 =0, ---0;, and x), = (z;,,...,2},). By Proposition 6,
Pa(Ta(@)) = (PoT)ala) = > PY(ay) - 0% (a)
E={j1,-sdn}, 1<4:<1
where 6% (a) = (6;,)a(a)---(0),).(a). Since m and (6;,).4 are continuous
linear mappings,
m((0;,)a(a)) = m((e ® 0j,)a) = 0;,((m @ 1x)a),
and as (0;,) 4(a) belongs to Aj for all j; and m € S(Aa),
m(Pa(Ta(a))) = > PY(x) - 0*((m @ 1x)a)
k={j1,-wmrjn}, 1<Gi <L
=PoT((m®1x)a)=P(m®1x)(e®T)a)
= P((m ®1x)(Ta(a))).
This completes the proof.

7. Holomorphic functional calculus. The results and proofs in this
section are, in some cases, modified versions of those given in [8], to which
we refer for details.

If U is an open subset of a Banach space X we let H(U) denote the
space of holomorphic functions on U and let 75 denote the compact open
topology on H(U). Let Hy,(U) denote the subspace of H(U) consisting of
those functions which are bounded on the bounded subsets of U which lie
strictly inside U. Endowed with the topology, 7,, of uniform convergence on
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these sets the space Hy,(U) is a Fréchet space (we refer to [4, 8] for further
details). When X is finite-dimensional, H,(U) = H(U). We let B, = {z €
X z] <7}

LEMMA 4. Let A denote a Banach algebra with identity e, X a Banach
space with the bounded approximation property, v a uniform cross-norm and
o* a spectral system. If a € A@W X is commutative, X is (a,v) adaptable,
¢ is a constant for which (6) holds and v > c||al|, let 05 : Hp(B;) — Aa,

o0
Oa(f) := fala) =D (Pn)a(a)
n=0
where Yo Py, is the Taylor series expansion of f € Hy(By). Then 0y is the
unique Ty continuous algebra homomorphism from Hy(B,) into A which is
To continuous on the bounded subsets of Hy(B,) with the following property:

(10) Oa(z') = 24 (a)

for all 2’ € X'. Moreover,

(11) m(0a(f)) = f((m® 1x)a)
for all f € H(o*(a)) and all m € §*(Aa) and

(12) 0" (0a(f)) = f(o"(a))
for all f € H(c*(a)).

Proof. Existence, continuity and uniqueness follow as in Lemma 20 in [§],
and Proposition 10 shows that 6, is an algebra homomorphism. Since r >
c||a|| the series > 7 (P,).a(a) converges and, by Proposition 9, f4(a) € Aa
for all 2/ € X’. By Propositions 2 and 9,

o (fa(@)) = {(m @ 1x)fa(a) : m € §(a)}.
If m € §*(a), (9) and Proposition 11 imply

m(fa(a) =Y m((P)a@) =) Pu((m®1x)a) = f((m® Lx)a).
n=0

n=0

This proves (11), which implies (12) and completes the proof.
Our next lemma yields a simplified proof of a similar result in [8].

LEMMA 5. Let A denote a unital Banach algebra, v a uniform cross-
norm, X a Banach space with the bounded projection property and bounded
set of projections (Ty)a converging to the identity and let o* be a spectral
system. Then given a commutative in A @«, X and ¢ > 1 there exists 6 > 0
and for every € > 0 a direct sum decomposition X = Xi(e) @& Xa(e) with
Xi(e) finite-dimensional, a decomposition of a, a = aj(c) + az(e), and open
sets Ui(e) C Xi(e) and Uz(e) C Xao(e) such that the following hold for all
e>0:
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1. aj(e) € Aa, i = 1,2,

2. Us(e) =eB N Xa(e) where B={x € X : ||z] < 1},
3. o*(ai(e)) C Ui(e) and cllaz(e)|| < e,

4. o*(a)+eB C Ui(e) ® Us(e) C 0*(a) + 0 B.

Proof. Let d = sup,, ||Ta|| and let T% := Ix — T,. Then X = T,,(X) @
T*(X) for all & where both T,(X) and T%(X) are given the induced norm
from X. Fix € > 0. By Proposition 8, (7'“) 4(a) — 0 as @ — oo and we may
choose 3 := a. such that c||(T”)4(a)|| < e. Let

ay 1= ay(e) := (TP 4(a) = (e® T")a
and let a; := a;(¢) := a—ay = (Ig)a(a) = (e ® Ts)a. By Proposition 9,
a; € A,, and by Proposition 11, o*(a;) C X;(e) for i =1, 2.
Let

Ui(e) = o*(a1) + 2ed(BNTs(X)), Ua(e) = 2¢(1 + d)(BNTP(X)).

If 2 € 0*(a) then x = Ts(x) + T%(z), where T(x) € o*(a;), and by Propo-
sition 3, ||T%(x)|| < . Hence

o*(a)+eB Co*(a;)+2eB
C o*(a1) + 2ed(BNT3(X)) + 2¢(1 + d)(BNTP(X))
=Ui(e) ® Us(e) C o*(a) + (34 4d)B.
On taking § = 3 4 4d the proof is complete.

If K is a compact subset of a Banach space we let H(K') denote the space
of holomorphic germs on K. The compact-open topology 79 on H(K) is
defined to be the inductive limit of (H(U), 79) where U ranges over the open
neighbourhoods of K. The 7, topology on H(K) is defined as the inductive
limit topology derived from the spaces (Hy(U), 1), U ranging over the open
subsets of X containing K. We require the following well known fact about
holomorphic functions:

(13) Hy(U x V)= H(U) & Hy(V)

when U is an open subset of a finite-dimensional space and V is an open
subset of a Banach space.

By Lemma 5 we can choose a null sequence (e,,)5 ; of positive numbers
such that (Ui(e,) @ Uaz(ey))02, is a decreasing basic open neighbourhood

system for o*(a). This implies (see [4, 5])
(H(0(a)), ) = limy (Hy(Us(en) @ Ua(en)), 7)

where 7 = 19 or T,.

To extend the functional calculus in Lemma 4 we need a further condition
on o*. The existence of the set S*(Aa) in the following definition is proved
in Proposition 2.
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DEFINITION 6. A spectral system o* admits a unique finite A-holomor-
phic functional calculus if for all a := (aq,...,a,) € €(A) and every open
set U containing o*(a) there exists a unique 7p-continuous algebra homo-
morphism 6, : H(U) — A such that

Oa(2') = 24(a)
for all 2’ € (C")" and

m(ba(f)) = f((m @ 1cn)a)
for all f € H(U) = Hp(U) and all m € S*(Aa).

PROPOSITION 12. Let A denote a Banach algebra with identity e, X a
Banach space which is a complemented subspace of a Banach space with the
bounded projection property, and let a denote a commutative element in A®7
X where v is a uniform cross-norm. If X is (a,7) adaptable with constant
c* satisfying (6) and o* is a spectral system which admits a unique finite A-
holomorphic functional calculus, then for every open set U containing o*(.A)
there exists a unique T,-continuous algebra homomorphism Oy =0, : f €
Hu(U) — fa(a) € A which is 1o-continuous on bounded sets such that

(14) Ou(a’) = (2) a(a)
for all v’ € X' and
(15) m(0u(f)) = f((m® 1x)a)

for all f € Hy(U) and all m € S*(Ay).

Proof. It suffices to establish the result for a fundamental system of
neighbourhoods of ¢*(a). We first suppose that X has the bounded pro-
jection property. Fix £ > 0. We use our previous notation: U := U; & U,
where U; C X;(e) =: X;, Uy := eBN Xy, a; := a;(e), i = 1,2, and d =
sup,, ||Tw|| are defined as in Lemma 5. In this setting each f € Hy,(U; & Us)
has an expansion f = Y 7, anfn ® g where ()52, C l1, (fn)52, is a
bounded subset of (H(U1),70), (gn)5>; is a bounded subset of (Hy,(Uz), 7,)
and > "7 o |on| - || fulli - lgnllB; < o0 for every compact subset K C U; and
all § < e.

Since Aa, C Aa by Proposition 9 and X is a complemented subspace
of X it is easily verified that Xy is (ag,y) adaptable with constant ¢ :=
c*(1 + d), independent of ¢, satisfying (6). By Lemma 5, c|las]|| < e.

Let 0a, : H(U2) — Aa denote the homomorphism defined in Lemma 4
and let 05, : H(U1) — A denote the unique homomorphism given by the
finite-dimensional functional calculus. If 6, := 05, ® Oa, : Hp (U1 ® Uz) — A
let

(16) Ha(z Qp frn & gn) = Z anbla; (fn) - Oay (9n)-
n=0

n=1
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The mapping 6, is an algebra homomorphism which is 7,-continuous on
Hyp(U) and 79-continuous on the bounded subsets of Hy(U). The proof of
Lemma 21 in [8] shows that 0, has all the required properties and the proof
of Theorem 18 in [8] shows how the result can be extended to complemented
subspaces. This completes the proof.

Under the same hypotheses we have the following corollary.

COROLLARY 1. There exists a unique Tg-continuous algebra homomor-
phism 0 := 6, : f € H(c*(a)) — fa(a) € A with the following properties:

(a) Oa(a') = 2/4(a)

for all 2’ € X',

(b) m(ba(f)) = f(m@1x)a) and o"(0a(f)) = f(o™(a))
for all f € H(c*(a)) and all m € S*(Aa).

Proof. 1f U and V are open subsets of X and V' C U we let Ry v (f) = f|v
denote the restriction operator from H(U) to H(V'). The mapping Ry v is
an algebra homomorphism. If 6*(a) C V' C U then, by uniqueness, we have
0y o Ryy = Oy. The definition of inductive limits implies that we obtain
the required homomorphism and that it is unique. The continuity property
follows, as in [8], from a result of Mujica [12]|. This completes the proof.

ExaMmPLE 3. Let A denote a commutative unital Banach algebra. For
(@) C Awelet o((ai)_y) = {(m(a;))f~; : m € S(A)}. This is the classi-
cal joint spectrum based on the commutative Gelfand theory which satisfies
the hypothesis in Definition 1 and hence is a spectral system. Results of
Zame [21] and Putinar [15] show that o admits a unique finite .A-holomorphic
functional calculus. An infinite-dimensional holomorphic functional calculus
for this spectrum was obtained in [8] and many of the techniques developed
for that particular case were used in this article. As it was first developed in
an infinite-dimensional tensor product setting by Waelbroeck [20] we refer to
it as the Gelfand—Waelbroeck spectrum and denote it by ow. If a € A @X\)ﬂY X
then

ow(a)={(m®1)(a): me S(A)}.

EXAMPLE 4. The most important joint spectrum for a finite number of
commuting elements in the non-commutative Banach algebra B(Y') is the
joint spectrum o7 introduced by J. L. Taylor [18, 19]. Talyor showed that
o satisfies the conditions in Definition 1 and hence o is a spectral system.
Putinar [14] established that o admits a unique finite B(Y")-holomorphic
functional calculus for any Banach space Y. If a := (a;)"; C B(Y) then,
by [18, 19], 0a(f) C a”, the double commutant of (a;)!"; in B(Y'), for any
f € H(or(a)). If the conditions on a € B(Y)®, X, v and X in Proposition 12
hold then, in view of Lemma 4 and (15), the mapping 6, in Proposition 12
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maps H(U), U a neighbourhood of or(a), into A2, the double commutant
of Aa in B(Y).

ExaMPLE 5. If A is a unital Banach algebra and a € A let L, denote the
operation of multiplication by a. Then L, € B(A) and ifa = (a;)!; C €o(A)
then Ly := (Lg;)i; € €o(B(A)). The Taylor split spectrum of a, o gpiit(a),
is defined to be o1 (La). If A is commutative then, by a remark in the proof
of Corollary 5.21 in 2], ow(a) = o1 (La) and hence the Taylor split spectrum
generalizes the Gelfand—Waelbroeck spectrum. The Taylor split spectrum is
a spectral system and not necessarily [13] the same as the split spectrum

when A= B(Y).

If a and b are commutative elements in B(Y) ®, X where X and Y are
Banach spaces and 7' € B(Y) then we say that T intertwines a and b if
(@) a(a)oT =T o (') a(b) for all ' € X’. Our final proposition extends
Theorem 4.5 in [19] from finite-dimensional spaces to Banach spaces with
the bounded projection property. In the proof (7, ), will denote a bounded
set of finite rank projections which converges uniformly to the identity 1x.

PROPOSITION 13. Let X and Y be Banach spaces and suppose X has
the bounded projection property. Let a and b denote commutative elements
in B(Y)®~ X where «y is a uniform cross-norm such that X is both (a,~) and
(b,7) adaptable. If T € B(Y') intertwines a and b and f € H(U) where U
is an open subset of X containing or(a)Uor(b), then T intertwines fa(a)

and fa(b).

Proof. By (5), T intertwines (¢™) 4(a) and (¢™) 4(b) for all ¢ € X’ and,
by the bounded projection property, 7" intertwines P4(a) and P4(b) for all
PeP(X) If Se€ B(X) then (2')4(Sa(a)) = (2' 0 S)4(a) for all 2’ € X'.
Since z’0S € X' this implies that T intertwines S 4(a) and S4(b). Combining
these two cases we see that T intertwines (P o S)4(a) and (P o S)4(b).

We now use (16) and keep the notation used in that equation. Since
Oas (gn) = Y peo(PnoT*) a(a) and Oy, (gn) = >, 2 o(PnoT) 4(b) for some o
where P, € P("X) for all n and T* = Ix — T, the above shows that
T intertwines 6a,(g,) and 0p,(gn). Now T intertwines a; = (Tn)4(a) and
b; = (T,)4(b) and the finite-dimensional intertwining result shows that T
intertwines 6, (f,) and 6y, (fn). By continuity, linearity and (16) it follows
that T intertwines f4(a) and f4(b). This completes the proof.
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