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Bounded holomorphi
 fun
tions withmultiple sheeted pluripolar hullsby
Armen Edigarian, Józef Siciak and
Włodzimierz Zwonek (Kraków)Abstra
t. We des
ribe 
ompa
t subsets K of ∂D and R admitting holomorphi
 fun
-tions f with the domains of existen
e equal to C \K and su
h that the pluripolar hulls oftheir graphs are in�nitely sheeted. The paper is motivated by a re
ent paper of Poletskyand Wiegerin
k.1. Introdu
tion. The paper is motivated by a re
ent paper of E. Po-letsky and J. Wiegerin
k (see [8℄).Let E ⊂ C

n be any subset. We say that E is pluripolar if for any
z ∈ E there exist a 
onne
ted neighborhood Uz of z and a plurisubharmoni
fun
tion uz de�ned on Uz, uz 6≡ −∞, su
h that

E ∩ Uz ⊂ {w ∈ Uz : uz(w) = −∞}.By Josefson's theorem (see [5℄) the set E is pluripolar if and only ifthere exists a plurisubharmoni
 fun
tion u, u 6≡ −∞, de�ned on C
n su
hthat E ⊂ {w ∈ C

n : u(w) = −∞}. It is well known (see e.g. [6℄) that
max{log |f1|, . . . , log |fm|} is a plurisubharmoni
 fun
tion for any holomor-phi
 fun
tions f1, . . . , fm. Therefore, the pluripolar sets are a generalizationof analyti
 ones. So, it seems natural to study, with regard to pluripolarsets, problems similar to those studied in the 
ase of analyti
 sets. In parti
-ular, we may study extension type problems. For this we use the notion of apluripolar hull.We denote by PSH(Ω) the set of all plurisubharmoni
 fun
tions de�nedon an open set Ω ⊂ C

n. For a pluripolar set E ⊂ Ω we de�ne its pluripolar2000 Mathemati
s Subje
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234 A. Edigarian et al.hull as
E∗
Ω =

⋂

h∈PSH(Ω), h|E≡−∞

{w ∈ Ω : h(w) = −∞}.

For properties of the hull see e.g. [13, 7℄,Let D be a domain in C and let f be a holomorphi
 fun
tion on D. Forany subset A ⊂ D we denote the graph of f over A by
Γf (A) = {(z, f(z)) : z ∈ A}.Note that if A is a non-polar subset of D then (Γf (A))∗

C2 = (Γf (D))∗
C2 .Our aim is to �nd 
onditions on K whi
h would imply the existen
e of abounded holomorphi
 fun
tion on C \ K su
h that C \ K is the domainof existen
e of the fun
tion and the pluripolar hull of its graph is at leasttwo-sheeted. It follows from [3℄ that there are no holomorphi
 fun
tions on

C \ K whose graphs have multiple sheeted pluripolar hulls if the set K ispolar. In [8℄ the authors 
onstru
ted a Cantor type set K on the real lineand a holomorphi
 fun
tion f with the domain of existen
e C \K su
h that
(Γf (C \K))∗

C2 is double sheeted over C \K.Let us �x some notations whi
h will be used throughout the paper. Weput DR = {z ∈ C : |z| < R}, where R > 0. We denote by D the unit dis

D1 and D

e := C \ D. We also denote by D(p, r) the open dis
 with 
enter at
p ∈ C and radius r > 0 and H− := {z ∈ C : Im z < 0}. Let �cap� denotethe logarithmi
 
apa
ity and let ω(z,A,D) denote the harmoni
 measure forthe domain D ⊂ C of the Borel set A ⊂ ∂D, z ∈ D (for de�nition and basi
properties see e.g. [9℄). Let m denote the normalized Lebesgue measure onthe 
ir
le ∂D(p, r) (i.e. m(∂D(p, r)) = r) or the Lebesgue measure on R.The main result of the paper is the following.Theorem 1. Let I denote the unit 
ir
le in C or an open interval (a, b),where −∞ < a < b < ∞. Let K be a 
ompa
t subset of I su
h that
cap(I \K) < cap(I). Then the following 
onditions are equivalent :(1) m(K ∩ U) > 0 for any z ∈ K and for any neighborhood U of z.(2) There exists a bounded holomorphi
 fun
tion with the domain of exis-ten
e equal to C \K.(3) There exist a bounded holomorphi
 fun
tion f whose domain of ex-isten
e is C \ K and a set K0 ⊂ K with m(K0) > 0 su
h that thenon-tangential limits for f |D (respe
tively , f |H

−

) exist on K0 and forany z ∈ (C \ K) ∪ K0 the set {w ∈ C : (z, w) ∈ (Γf (C \ K))∗
C2} isin�nite.It will follow from the proof that in the 
ase K 6= ∂D we shall be able to
hoose f so that the pluripolar hull (Γf (C \K))∗

C2 
ontains the set
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{(z, e2kf(z)) : z ∈ C \K} ∪ {(z, e2kf∗(z)) : z ∈ K0}for any k ∈ Z, where f∗(z) denotes the non-tangential limit of f |D (respe
-tively, f |H

−

) at z ∈ K0.The 
ondition cap(I \K) < cap(I) implies, in parti
ular, that K is notempty, so 
ondition (1) is not trivial.It will follow from the proof that the assumption cap(I \ K) < cap(I)may be repla
ed with some 
ondition on the existen
e of a set G su
h that
I \G is thin at ea
h point of a set of positive measure (
f. Theorem 7).It is worth noting that the existen
e of non-
onstant holomorphi
 map-pings on C \K implies that K is of positive analyti
 
apa
ity (see e.g. [12℄).The impli
ation (2)⇒(1) in Theorem 1 is well known (see e.g. [1, Ap-pendix A 1.4℄). The impli
ation (3)⇒(2) is trivial. So, the main result of thepaper is the impli
ation (1)⇒(3).Note that in the 
ase K = ∂D the Blas
hke produ
ts from [14℄ help usto produ
e examples similar to that from (3)�the fun
tions have, however,a little weaker properties than the ones 
laimed in Theorem 1. In fa
t, onemay take the fun
tion f de�ned as f(z) := log(2 + z)B(z) for z ∈ D and
f(z) := f(1/z), z ∈ D

e. Then the pluripolar hull (Γf (C\∂D))∗
C2 is generi
ally(with the possible ex
eption of at most 
ountably many points in C \ ∂D)in�nitely sheeted. The methods from [10℄ 
ould also help to exhibit a set K0as in Theorem 1.In our paper ex
ept for pluripolar hulls we use mainly results and no-tions from potential theory on the 
omplex plane. Apart from the notions oflogarithmi
 
apa
ity and harmoni
 measure we use, among others, the no-tions of logarithmi
 potential, equilibrium measure and Green fun
tion. Thebook [9℄ may serve as a good referen
e for the notions from potential theoryused in this paper.We mostly prove our results for subsets of ∂D. The 
ase of subsets of R,when handled along the same lines, is sometimes only sket
hed or somedetails are omitted.2. Useful results on the Green fun
tion and harmoni
 measure.Let K ⊂ C be a non-polar 
ompa
t set in the 
omplex plane. We de�ne itsGreen fun
tion as

gK(z) = pµ(z) − log cap(K),where µ is the equilibrium measure of K and pµ(z) =
T
K log |z − w| dµ(w)(for properties of the Green fun
tion see [9℄). We extend the de�nition of theGreen fun
tion to bounded non-polar Fσ-sets. Assume that F =

⋃
Kj , where

Kj is an in
reasing sequen
e of non-polar 
ompa
t sets. Then {gKj
} is ade
reasing sequen
e of subharmoni
 fun
tions. Put gF (z) = limj→∞ gKj

(z).



236 A. Edigarian et al.The following properties are well known:
• gF ∈ SH(C) ∩ (C \ F );
• gF ≥ 0 on C;
• gF = 0 on F \E, where E is a Borel polar set;
• if F ⊂ ∂D then gF (0) = − log cap(F ).Lemma 2. Let F ⊂ ∂D be an Fσ-set su
h that cap(F ) < 1. Then thereexists a Borel set L ⊂ ∂D \ F of positive measure su
h that F is thin atevery point of L.Let F ⊂ (a, b), where −∞ < a < b <∞, be an Fσ-set su
h that cap(F ) <

cap((a, b)) = (b− a)/4. Then there exists a subset L of (a, b) \ F of positivemeasure su
h that F is thin at every point of L.Proof. Without loss of generality we may assume in both 
ases that Fis not polar.Assume that F ⊂ ∂D. The properties of gF imply that
0 < − log cap(F ) = gF (0) =

1

2π

2π\
0

gF (eiθ) dθ.Note that the Borel set L := {z ∈ ∂D\F : gF (z) > 0} ⊂ ∂D\F is of positivemeasure. We 
laim that F is thin at every point of L. Indeed, gF = 0 on
F \E, where E ⊂ F is a Borel polar set. Then F \E and E (and, therefore,
F = (F \E) ∪ E)) are thin at every point of L.In the 
ase F ⊂ (a, b), we may assume that a = −1 and b = 1. Put
I = [−1, 1]. Then the fun
tion

u(z) = gF (z) − gI(z), u(∞) = log
b− a

4 capF
,is a positive harmoni
 bounded fun
tion on Ĉ \ I. The fun
tion v(ζ) =

u
(

1
2(ζ + 1/ζ)

) is harmoni
 in the unit dis
 and limr→1− v(re
it) = v∗(eit) =

gF (cos t) for almost all t ∈ [0, 2π). Therefore,
0 < u(∞) = v(0) =

1

2π

2π\
0

v∗(eit)dt =
1

π

π\
0

gF (cos t) dt.Hen
e, the set L = {z ∈ (a, b)\F : gF (z) > 0} has positive Lebesgue measureand so, as in the previous 
ase, F is thin at every point of L.Now we are going to give some estimate of the harmoni
 measure atthin points. In the 
ontext of pluripolar hulls it was proved in [2℄. In [4℄ theauthors observed that from the proof it follows that the estimate holds insome �ne neighborhood of a thin point. So, let A ⊂ C be a set thin at apoint p ∈ C. It is well known that there exists a sequen
e ̺k ց 0 su
h that
A ∩ ∂D(p, ̺k) = ∅ (see [9, Theorem 5.4.2℄).



Multiple sheeted pluripolar hulls 237Lemma 3. Let A ⊂ C be a set thin at a point p ∈ C. Then for any ε > 0there exist ̺ ∈ (0, ε), r ∈ (0, ̺), and an open set U1 ⊃ (A ∩ D(p, ̺)) \ {p}su
h that
• A ∩ ∂D(p, ̺) = ∅, ∂D(p, r) ∩ U1 = ∅;
• U1 is thin at p;
• ω(z, J,D(p, ̺) \ F ) ≥ m(J)/̺− ε for any z ∈ D(p, r) \ U1, where J isany 
losed subar
 of ∂D(p, ̺) and F is any 
losed (in C) subset of A.Proof. Note that if p 6∈ A \ {p} then the assertion is trivial (re
all that

ω(0, J,D(p, ̺)) = m(J)/̺, take r su�
iently small and U1 = ∅). So, we mayassume that p ∈ A \ {p}.Let U ∈ SH(C) be an entire subharmoni
 fun
tion su
h that
lim

z→p, z∈A
U(z) = −∞and U(p) > −∞. By adding a 
onstant to U we may assume that U < 0on D(p, ̺). Multiplying U by a positive 
onstant we may assume that

U(p) > −ε/2. Taking 0 < ̺ < ε small enough, we may assume that
A ∩ ∂D(p, ̺) = ∅ and U(z) < −1 on (A ∩ D(p, ̺)) \ {p}. Then for anyar
 J ⊂ ∂D(p, ̺) and any 
losed F ⊂ A,(1) ω(z, J,D(p, ̺) \ F ) ≥ ω(z, J,D(p, ̺)) + U(z), z ∈ D(p, ̺) \ F.Put U1 := {z ∈ D(p, ̺) : U(z) < −ε/2}. Then U1 is open, U1 ⊃
(A ∩ D(p, ̺)) \ {p}, and sin
e U(p) > −ε/2 the set U1 is thin at p, with
p ∈ U1 \ {p}. We know that ω(p, J,D(p, ̺)) = m(J)/̺. Hen
e, we may 
hoose
0 < r < ̺ with U1 ∩ ∂D(p, r) = ∅ and ω(z, J,D(p, ̺)) > m(J)/̺ − ε/2 for
z ∈ D(p, r). Then by (1),(2) ω(z, J,D(p, ̺) \ F ) ≥

m(J)

̺
− ε, z ∈ D(p, r) \ U1.Now we study the 
ase when A ⊂ ∂D is thin at p ∈ ∂D. First note that forevery ̺ with 0 < ̺ < 1 there exists a 
losed subar
 J of the ar
 D∩ ∂D(p, ̺)(respe
tively, D

e∩∂D(p, ̺)) with m(J) ≥ ̺/3. So, from Lemma 3 we get thefollowing.Corollary 4. Let A ⊂ ∂D be a set thin at a point p ∈ ∂D. Then for any
ε > 0 there exist ̺ ∈ (0, ε), r ∈ (0, ̺), and an open set U1 ⊃ A∩D(p, ̺)\{p}su
h that A ∩ ∂D(p, ̺) = ∅, ∂D(p, r) ∩ U1 = ∅, U1 is thin at p, and(3) ω(z, J,D(p, ̺) \ F ) ≥ 1/4, z ∈ D(p, r) \ U1,where J is any 
losed subar
 of the ar
 D ∩ ∂D(p, ̺) (respe
tively , D

e ∩
∂D(p, ̺)) su
h that m(J) ≥ ̺/3 and F is any 
losed (in C) subset of A.



238 A. Edigarian et al.3. Constru
tion of a de
reasing sequen
e of open setsProposition 5. Let I denote either the unit 
ir
le ∂D or an interval
(a, b), where −∞ < a < b <∞. Let K ⊂ I be a non-empty 
ompa
t set su
hthat m(K ∩U) > 0 for any open set U su
h tha U ∩K 6= ∅. Then there is ade
reasing sequen
e (Gn)

∞
n=1 of open sets in I with the following properties:

• 0 < m(U ∩G) < m(G) for any open set U ⊂ I su
h that U ∩K 6= ∅,where G =
⋂
Gn;

•
⋂
Gn = K;

• there exists a Borel set L ⊂ G of positive measure su
h that I \ G isthin at every point of L.It follows from Lemma 2 that for the existen
e of L as in the propositionit is su�
ient to 
onstru
t G so that cap(I \G) < cap(I).Denote by C1 the family of non-trivial 
onne
ted 
omponents of K andby C2 the family of one-point 
onne
ted 
omponents of K. Then C1 is atmost 
ountable (it may be empty). It will follow from the proof that in the
ase C1 = ∅ the equality G = K holds.Lemma 6. Let I be either an open ar
 in ∂D (we allow I to be equalto ∂D) or an interval (a, b), where −∞ < a < b <∞, and ε > 0. Then thereis a de
reasing sequen
e (Gn) of open sets in I, dense in I, su
h that(4) 0 < m(J ∩G) < m(J)for any non-trivial open ar
 J ⊂ I, where G :=
⋂
n≥1Gn and(5) cap(I \G) < ε.Assume for a while that the lemma holds. Then we may 
omplete theproof of the proposition.Proof of Proposition 5. We de�ne Gn to be the union of GintP

n over all
P ∈ C1 (GintP

n is the set 
onstru
ted as in the lemma with I = intP ) and
{z ∈ I : dist(z,

⋃
C2) < 1/n}. Note that if C1 is empty then G = K. For thelast statement it su�
es to use Lemma 2 (in the 
ase C1 6= ∅ we need to use,additionally, the previous lemma for one P ∈ C1).Therefore, it is su�
ient to show the above lemma.Proof of Lemma 6. For an arbitrary non-trivial 
losed ar
 (interval) P wemake the following 
onstru
tion of Cantor-type sets (we follow the notationfrom [9℄). Below, we use the word ar
 (or subar
) for interval (subinterval).For a sequen
e s := (sn)

∞
n=1 of numbers su
h that 0 < sn < 1 we de�ne

C(s1, P ) to be the set obtained by removing from P the 
on
entri
 (in the
ase I = ∂D the 
hoi
e is arbitrary) ar
 whose length is an s1 fra
tion ofthe length of the whole ar
. At the nth stage let C(s1, . . . , sn, P ) be the setobtained by removing from ea
h 
onne
ted 
omponent of C(s1, . . . , sn−1, P )
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on
entri
 ar
 whose length is an sn fra
tion of the whole 
ompo-nent. We de�ne
C(s, P ) :=

∞⋂

n=1

C(s1, . . . , sn, P ).Re
all that (see e.g. [9℄) the Lebesgue measure of C(s, P ) equals m(P )t(s) :=
m(P )

∏∞
n=1(1 − sn). Below we 
hoose a sequen
e of sequen
es s satisfyingadditional assumptions. For θ ∈ (0, 1) we de�ne s(θ) = (s1(θ), s2(θ), . . .) asfollows:

sj(θ) :=

{
3−j for j 6= 2,
θ for j = 2.Note that t(θ) := t(s(θ)) = C0(1 − θ) > 0 for some 
onstant C0 ∈ (0, 1).Below we 
hoose a sequen
e (θN ) of numbers from (0, 1) su
h that

0 < θ1 < θ2 < · · · < 1, limN→∞ θN = 1 and ∏∞
N=1(1 − tN ) > 0, where

tN := t(θN ).For a relatively open (in I) subset Ω and θ ∈ (0, 1) we 
onstru
t an openset Ω(θ) as follows. Let us represent Ω as the union of at most 
ountablymany open, disjoint ar
s Ij�these are all 
onne
ted 
omponents of Ω. Thenwe de�ne(6) Ω(θ) :=
⋃

j

(Ij \ C(s(θ), I j)) =
⋃

j

(I j \ C(s(θ), I j)).Note that m(Ω(θ)) = m(Ω)(1− t(θ)) and Ω(θ) րθ→1− Ω \A, where A is atmost 
ountable.Now we 
ome ba
k to the proof of the lemma. We make an indu
tive
onstru
tion based on a proper 
hoi
e of a sequen
e (θN ) with the abovementioned properties. We de�ne, simultaneously, two sequen
es of sets.We start with G0 := I, K0 := ∅. Then we de�ne K1 := C(s(θ1), I),
G1 = I(θ1) = I \C(s(θ1), I), where θ1 ∈ (0, 1) is 
hosen so that cap(I \G1)
< ε/2. Then we de�ne indu
tively sets GN+1, KN+1 and a number θN asfollows. If GN , KN and the numbers 0 < θ1 < · · · < θN < 1 are already
onstru
ted so that cap(I \GN ) < ε(1/2 + · · · + 1/2N ), we de�ne GN+1 :=
GN (θN+1), KN+1 := KN+1(θN+1) :=

⋃
j C(s(θN+1), I

N
j ), where (INj )j arethe 
onne
ted 
omponents of GN , and 1 > θN+1 > θN is 
hosen so that

cap(I \GN+1) = cap((I \GN ) ∪KN+1) < ε(1/2 + · · · + 1/2N+1); note that
KN+1(θN+1) ց B as θN+1 → 1−, where B is at most 
ountable, so when
θN+1 ∈ (θN , 1) is su�
iently 
lose to 1, cap(KN+1(θN+1)) may be 
hosen tobe arbitrarily small. It is no problem to 
hoose (θN )N so that limN→∞ θN = 1and ∏∞

N=1(1 − tN ) > 0.The assumption s1(θ) = 1/3 implies that for any N the set I \ GNis totally dis
onne
ted (and 
ertainly 
ompa
t). Moreover, the inequality
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m(INj ) ≤ 1/3N holds for all possible j,N , where GN =

⋃
j I

N
j and (INj )j isthe family of 
onne
ted 
omponents of GN .Now we prove that for a non-trivial open ar
 J ⊂ I the inequalities

0 < m(J ∩G) < m(J) hold.Fix a non-trivial open ar
 J ⊂ I. Then there are N and j su
h that
INj ⊂ J . Hen
e

m(J ∩G) ≥ m(INj ∩G) = m(INj )
∞∏

k=N+1

(1 − tk) > 0.On the other hand, the inequality m(J ∩ G) < m(J) is equivalent to theinequality m(J \G) > 0. But
m(J \G)≥m(INj \G)≥m(INj \GN+1) =m(INj \GN+1) =m(INj )tN+1 > 0.4. Constru
tion of holomorphi
 fun
tions. In the whole se
tion we�x a non-empty 
ompa
t set K ⊂ ∂D and a de
reasing sequen
e of opensets (Gn)n∈N ⊂ ∂D su
h that ⋂∞

n=1Gn = K. We are going to 
onstru
t aholomorphi
 fun
tion f on C \K with spe
ial properties.Put G =
⋂
Gn. Let un (resp. u) denote the solution of the Diri
hletproblem on D with the boundary data χGn

(resp. χG). Let vn (resp. v)denote the 
onjugate to un (resp. u) with vn(0) = 0 (resp. v(0) = 0). Put
ϕn = un + ivn and ϕ = u+ iv.First re
all the following result related to the solution of the Diri
hletproblem on the unit dis
.Theorem 7 (see [9, Theorem 1.2.4℄, [11, Theorem IV.1℄). Let ψ ∈
L1(∂D). Put

uψ(z) =
1

2π

2π\
0

1 − |z|2

|eiθ − z|2
ψ(eiθ) dθ.Then(a) uψ is a harmoni
 fun
tion on D, inf∂D ψ ≤ uψ ≤ sup∂D ψ;(b) u∗ψ(eiθ) = limr→1 uψ(reiθ) exists for almost all θ ∈ [0, 2π); moreover ,

u∗ψ = ψ a.e. on ∂D;(
) if ψ is 
ontinuous at ζ0 ∈ ∂D, then uψ extends 
ontinuously to ζ0.From Theorem 7 we obtain
ϕn(z) =

1

2π

2π\
0

eiθ + z

eiθ − z
χGn

(eiθ) dθ.An analogous formula holds for ϕ. Note that Reϕn ∈ C(D\∂Gn). Moreover,
Reϕn = 1 on Gn and Reϕn = 0 on ∂D \ Gn. Here the boundary of Gn istaken with respe
t to the topology of ∂D.
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ontinuously to ∂D \ ∂Gn.(b) The sequen
e {ϕn}
∞
n=1 tends to ϕ lo
ally uniformly on D.Proof. (a) Let I ⊂ Gn be an open ar
. Without loss of generality we mayassume that I = {eiθ : 0 < θ < θI}, where θI ∈ (0, 2π). Then

ϕn(z) =
1

2π

2π\
0

eiθ + z

eiθ − z
χGn\I(e

iθ)dθ +
1

2π

2π\
0

eiθ + z

eiθ − z
χI(e

iθ)dθ =: I1 + I2.Fix θ0 ∈ (0, θI). Note that I1 extends 
ontinuously to eiθ0 and
I2 =

1

πi
Log

(
e−θI/2

z − eiθ

z − 1

)
,where Log : {z ∈ C : Im z > 0} → {z ∈ C : 0 < Im z < π} is su
h that

Log i = πi/2, so it also extends 
ontinuously to eiθ0 .(b) Fix r ∈ (0, 1). Then for any z ∈ Dr we have(7) |ϕn(z) − ϕ(z)| =

∣∣∣∣
1

2π

2π\
0

eiθ + z

eiθ − z
χGn\G(eiθ) dθ

∣∣∣∣ ≤
2

1 − r
m(Gn \G).The last expression tends to 0 as n→ ∞.Put fn = exp(ϕn) and f = exp(ϕ). Note that fn extends to a fun
tionfrom O(C \ Gn), denoted also by fn. Even more, the extension is de�nedby the formula fn(z) = 1/fn(1/z), z ∈ D

e. For z ∈ D
e we also put f(z) =

1/f(1/z). From Lemma 8 we see that the sequen
e (fn)
∞
n=1 is 
onvergent to

f lo
ally uniformly on D ∪ D
e.Note that e−1 < |fn| < e on C \ Gn and e−1 < |f | < e on C \ K.Note also that limr→1− |f(rz)| = e for almost all z ∈ G (
onsequently,

limr→1+ |f(rz)| = e−1 for almost all z ∈ G) and limr→1− |f(rz)| = 1 foralmost all z ∈ ∂D \G (hen
e limr→1+ |f(rz)| = 1 for almost all z ∈ ∂D \G).It is easy to see that if 0 < m(U ∩G) < m(U) for any non-empty openset U su
h that U ∩K 6= ∅ then C \K is the domain of existen
e of f .5. Proof of Theorem 1. By Lemma 2 to prove Theorem 1 it su�
esto prove the following result. We shall prove it for K ⊂ ∂D. The proof for
K ⊂ R follows exa
tly the same lines, so we omit it.Theorem 9. Let I denote either the unit 
ir
le or an interval (a, b) ⊂ R,where a < b. Let K ⊂ I be a 
ompa
t subset of I for whi
h there exists ade
reasing sequen
e {Gn} of open subsets of I with the following properties:

• 0 < m(G ∩ U) < m(U) for every open set U ⊂ I with U ∩ K 6= ∅,where G :=
⋂∞
n=1Gn;

• K =
⋂∞
n=1Gn;
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• there exists a set L ⊂ G su
h that m(L) > 0 and I \G is thin at everypoint of L (whi
h holds, for instan
e, when cap(I \ G) < cap I�seeLemma 2).Put

f(z) := fK(z) := exp
1

2π

2π\
0

eit + z

eit − z
χG(eit) dt,respe
tively ,

f(z) := fK(z) := exp
1

πi

∞\
−∞

χG(t)

t− z
dt,

for z ∈ C \K. Then fK is a bounded holomorphi
 fun
tion on C \K whosemaximal domain of existen
e is C \K and 1/e < |fK | < e on C \K.In the 
ase K 6= ∂D there exists a set K0 ⊂ K with m(K0) > 0 su
hthat the non-tangential limits of f |D (respe
tively , f |H
−

) exist on K0 and thepluripolar hull (Γf (C \K))∗
C2 
ontains the set

{(z, e2kf(z)) : z ∈ C \K} ∪ {(z, e2kf∗(z)) : z ∈ K0}for any k ∈ Z, where f∗(z) denotes the non-tangential limit of f |D (respe
-tively , f |H
−

) at z ∈ K0.In the 
ase K = ∂D we de�ne K1 := ∂D ∩ H−, K2 := ∂D ∩ H+ and
f := f1 + f2 := fK1 + fK2 . Then f is a bounded holomorphi
 fun
tion on
C \ ∂D whose maximal domain of existen
e is C \ ∂D and there exist sets
K1

0 ⊂ K1, K2
0 ⊂ K2 with m(Kj

0) > 0 su
h that the non-tangential limits of
fj |D exist on Kj

0 and the pluripolar hull (Γf (C \ ∂D))∗
C2 
ontains the sets

{(z, e2kf1(z) + e−2k−2f2(z)) : z ∈ D} ∪ {(z, e2kf1(z) + e−2kf2(z)) : z ∈ D
e}and

{(z, e2kf∗1 (z) + e−2k−2f∗2 (z)) : z ∈ K1
0 ∪K2

0}for any k ∈ Z.Proof. As already mentioned, we restri
t ourselves to the 
ase K ⊂ ∂D.Re
all that f = fK is 
onstru
ted in Se
tion 4. Put(8) K0 = {a ∈ L : f |D has the angular limit value f∗(a) at a}.By the Fatou theorem the set K0 has positive Lebesgue measure.Now we are left with the proof of the properties of pluripolar hulls. Letus start with the 
ase K 6= ∂D. In parti
ular, C \ K is 
onne
ted. Let
p ∈ PSH(C2) be su
h that(9) p(z, f(z)) = −∞ for any z ∈ C \K.



Multiple sheeted pluripolar hulls 243We need to show that(10) p(z, e2kf(z)) = −∞ for any z ∈ (C \K) ∪K0, k ∈ Z,where we put f(a) := f∗(a) for a ∈ K0.To prove (10) it is su�
ient to show that(11) p(z, Fk(z)) = −∞ for any z ∈ D ∪K0 ∪ D
e, k ∈ Z,where Fk is given by

Fk(z) =





e2k−2f(z), z ∈ D,
e2k−2f∗(z), z ∈ K0,
e2kf(z), z ∈ D

e.We shall argue by indu
tion with respe
t to k.First let us show (11) for k = 0. By the assumption p(z, f(z)) = −∞ for
z ∈ D

e. Let c be a �xed point of K0. We now apply Corollary 4 to get
ω(z, J, (D(c, ̺) \ ∂D) ∪ (Gn ∩ ∂D)) ≥ 1/4, |z − c| ≤ r1, z 6∈ U1,where J is some ar
 in D(c, ̺) ∩ D

e su
h that m(J) ≥ ̺/3.The fun
tions
Fn,0(z) =

{
e−2fn(z), z ∈ D ∪Gn,
fn(z), z ∈ D

e,are holomorphi
 and uniformly bounded on D ∪ Gn ∪ D
e, and Fn,0 → F0lo
ally uniformly on D ∪ D

e. Consider two 
ases:
(α) z0 ∈ D and |z0 − c| = r1;
(β) z0 = c.In 
ase (α) we put

un(z) = p(z, Fn,0(z) + F0(z0) − Fn,0(z0))and
M = sup

n≥1
sup{un(z) : z ∈ (D(c, ̺) \ ∂D) ∪ (D(c, ̺) ∩Gn)}.Let Mn := sup{un(z) : z ∈ J}. Then Mn → −∞ and the two 
onstantstheorem gives

un(z) ≤M + (Mn −M)ω(z, J, (D(c, ̺) \ ∂D) ∪ (D(c, ̺) ∩Gn))for all z ∈ D(c, r1) \ U1, n ≥ n0, where n0 is so large that Mn −M < 0 for
n ≥ n0. It follows that

p(z0, F0(z0)) = un(z0) ≤M + (Mn −M)
1

4
→ −∞as n→ ∞. Sin
e z0 was 
hosen arbitrarily,

p(z, F0(z)) = p(z, e−2f(z)) = −∞when |z− c| = r1, z ∈ D. Consequently, p(z, F0(z)) = −∞ for all z ∈ D∪D
e.
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ase (β) let U1 be the set from Corollary 4 thin at the point c, andlet {zk} be a sequen
e in D \ U1 su
h that zk → c. Let {nk} be a stri
tlyin
reasing sequen
e of positive numbers su
h that
|Fnk,0(zk) − F0(zk)| < 1/k, k = 1, 2, . . . .Put

uk(z) = p(z + c− zk, Fnk,0(z) + F0(c) − Fnk,0(zk))and
M := sup

k≥1
sup{uk(z) : z ∈ (D(c, ̺) \ ∂D) ∪ (D(c, ̺) ∩Gnk

)},

Mk := sup{uk(z) : z ∈ J}.It is 
lear that Mk → −∞ and pro
eeding as in 
ase (α) we get
p(c, F0(c)) = uk(zk) ≤M + (Mk −M)

1

4
, k ≥ k0,whi
h implies that p(c, F0(c)) = −∞. Sin
e c ∈ K0 was 
hosen arbitrarily,we have proved that (11) is true for k = 0, i.e.,

p(z, F0(z)) = −∞ on D ∪K0 ∪ D
e.Assume that

p(z, Fk(z)) = −∞ on D ∪K0 ∪ D
efor all k ∈ Z with |k| ≤ m, where m ≥ 0. It remains to show that (11) istrue for all k ∈ Z with |k| = m+ 1.First, let k = m+ 1. By the indu
tion assumption

p(z, e2mf(z)) = −∞ on D
e.Sin
e e2mf(z) is holomorphi
 on C \K and C \K is 
onne
ted, we get

p(z, e2mf(z)) = −∞ on D.Hen
e, by Corollary 4 with J in D and pro
eeding analogously as in the 
ase
k = 0 we get

p(z, e2m+2f(z)) = −∞ on D
e ∪K0.Therefore,

p(z, Fm+1(z)) = −∞ on D ∪K0 ∪ D
e.Now, set k = −m− 1. We know that

p(z, e−2m−2f(z)) = −∞ on D
e.Hen
e, by the analyti
ity of f on C\K and the fa
t that C\K is 
onne
ted,we get

p(z, e−2m−2f(z)) = −∞ on D.So, by Corollary 4 we get similarly
p(z, e−2m−4f(z)) = −∞ on D ∪K0 ∪ D

e.
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p(z, F−m−1(z)) = −∞ on D ∪K0 ∪ D

e.Let us now 
onsider the 
ase K = ∂D. We shall follow the same ideaas in the previous 
ase. First re
all that fj is holomorphi
 on C \ Kj . Let
p ∈ PSH(C2) be su
h that p(z, f1(z)+f2(z)) = −∞, z ∈ D

e. Then apply ap-proximation of f2 as in the previous 
ase (withK = K2). Then the sums of f1(holomorphi
 on C \K1) with the elements of the approximating sequen
eof f2 play the same role as the fun
tions fn previously. Therefore, we get theequality p(z, f1(z) + e−2f2(z)) = −∞, z ∈ D ∪K2
0 . Then applying the samereasoning for the fun
tion f1 +e−2f2 restri
ted this time to D (with K = K1and applying approximation of f1) we get p(z, e2f1(z) + e−2f2(z)) = −∞,

z ∈ D
e, and p(z, f1(z) + e−2f2(z)) = −∞, z ∈ K1

0 . Pro
eeding indu
tivelywe get
p(z, e2kf1(z) + e−2kf2(z)) = −∞, z ∈ D

e, k = 0, 1, . . . ,

p(z, e2kf1(z) + e−2k−2f2(z)) = −∞, z ∈ K1
0 ∪K2

0 ∪ D, k = 0, 1, . . . .But pro
eeding exa
tly in the same way with f1 repla
ed with f2 (and vi
eversa) we get the desired equality for all k ∈ Z.Remark 10. Let f be as in the theorem for K = ∂D. For k ∈ Z put
Fk(z) :=





e2kf1(z) + e−2k−2f2(z), z ∈ D,
e2kf∗1 (z) + e−2k−2f∗2 (z), z ∈ K1

0 ∪K2
0 ,

e2kf∗1 (z) + e−2kf2(z), z ∈ D
e.Then ΓFk

(D ∪K ∪ D
e) ⊂ (Γf (C \ ∂D))∗

C2 and the fun
tions Fk|D and Fk|Deare pseudo
ontinuations of ea
h other a
ross K1
0 ∪ K2

0 , i.e. (Fk|D)∗(a) =
(Fk|De)∗(a), a ∈ K1

0 ∪K2
0 .6. Examples. It is natural to ask whether the assumption in Theorem 1on the 
apa
ity of K is essential, more pre
isely, whether there are 
ompa
tsets K ⊂ ∂D su
h that m(K) > 0 and cap(∂D \ K) = 1. Below we shallprodu
e su
h a set. First we proveLemma 11. There exists an Fσ-set F ⊂ ∂D su
h that m(F ) = 0 and

cap(F ) = 1.Proof. First re
all that for any Borel subset I ⊂ ∂D and all n ∈ N, if weset Ĩ := {λ ∈ ∂D : λn ∈ I}, then
m(Ĩ) = m(I), cap(Ĩ) = n

√
cap I.There exists a 
ompa
t set K ⊂ ∂D su
h that m(K) = 0 and cap(K) > 0(take for example a Cantor type set on the unit 
ir
le). Put Ik = {z ∈ ∂D :

zk ∈ K}. It is su�
ient to de�ne F =
⋃∞
k=1 Ik.



246 A. Edigarian et al.Example 12. Let 0 < δ < 1. Then there is a 
ompa
t set K ⊂ ∂D su
hthat m(∂D \K) < δ (equivalently , m(K) > 1 − δ) and cap(∂D \K) = 1.Proof. Take an Fσ-set F ⊂ ∂D su
h that m(F ) = 0 and cap(F ) = 1.For any δ > 0 there exists an open set Uδ ⊂ ∂D su
h that F ⊂ Uδ and
m(Uδ) < δ. Put Kδ = ∂D \ Uδ.It seems to us that the most interesting examples of 
ompa
t sets satis-fying the 
onditions of Theorem 1 are ones whi
h are totally dis
onne
ted.Below we show the existen
e of su
h subsets of ∂D.Example 13. There is a totally dis
onne
ted 
ompa
t set K ⊂ ∂D asdesired in Theorem 1, i.e. su
h that cap(∂D \K) < 1 and m(K ∩U) > 0 forany z ∈ K and any neighborhood U of z.The 
onstru
tion of K is indu
tive and standard. For example we mayde�ne K := ∂D \

⋃∞
n=1 Ln, where Ln is a union of disjoint open ar
s with
enters at eijπ/2n, where j = −(2n−1),−(2n−3), . . . , 2n−1 with m-measureof ea
h ar
 smaller than 1/22n and with cap(L1 ∪ · · · ∪ Ln) < 1/2.Then cap(∂D\K)≤ 1/2 and the 
hoi
e may be done so thatm(U ∩K)> 0for any z ∈ K and for any neighborhood U of z.In fa
t, we may even spe
ify e�e
tively how large the open ar
s deleted inthe above pro
ess may be. These lengths may be dedu
ed from the followingexample.Example 14. Let {Ij}∞j=1 be a sequen
e of disjoint open ar
s in ∂D su
hthat

∞∑

j=1

1

log(2/m(Ij))
<∞

(for instan
e m(Ij) = exp(−j2)). Then there is a j0 su
h that U :=
⋃∞
j=j0

Ijhas the properties
cap(U) < 1, m(∂D \ U) > 0.In fa
t, the result follows immediately from the subadditivity property ofthe logarithmi
 
apa
ity and the fa
t that cap(Ij) = sin(m(Ij)π/4).

Referen
es[1℄ E. Chirka, Complex Analyti
 Sets, Kluwer, 1989.[2℄ A. Edigarian and J. Wiegerin
k, The pluripolar hull of graphs of 
ertain holomorphi
fun
tions, Indiana Univ. Math. J. 52 (2003), 1663�1680.[3℄ �, �, Determination of the pluripolar hull of graphs of 
ertain holomorphi
 fun
-tions, Ann. Inst. Fourier (Grenoble) 54 (2004), 2085�2104.[4℄ T. Edlund and B. Jöri
ke, The pluripolar hull of a graph and �ne analyti
 
ontinu-ation, Ark. Mat., to appear.



Multiple sheeted pluripolar hulls 247[5℄ B. Josefson, On the equivalen
e between lo
ally polar and globally polar sets forplurisubharmoni
 fun
tions on C
n, ibid. 16 (1978), 109�115.[6℄ M. Klimek, Pluripotential Theory , London Math. So
. Monogr. 6, Clarendon Press,1991.[7℄ N. Levenberg and E. Poletsky, Pluripolar hulls, Mi
higan Math. J. 46 (1999),151�162.[8℄ E. Poletsky and J. Wiegerin
k, Graphs of multiple sheeted pluripolar hulls, Ann.Polon. Math. 88 (2006), 161�171.[9℄ T. Ransford, Potential Theory in the Complex Plane, London Math. So
. StudentTexts 28, Cambridge Univ. Press, 1995.[10℄ J. Si
iak, Pluripolar 
ontinuation of graphs of Blas
hke produ
ts, in: Pro
. 12th In-ternat. Conf. on Finite or In�nite Dimensional Complex Analysis and Appli
ations,Kyushu Univ. Press, 2005, 305�317.[11℄ M. Tsuji, Potential Theory in Modern Fun
tion Theory , Maruzen, Tokyo, 1959.[12℄ L. Zal
man, Analyti
 Capa
ity and Rational Approximation, Springer, 1968.[13℄ A. Zeriahi, Ensembles pluripolaires ex
eptionnels pour la 
roissan
e partielle desfon
tions holomorphes, Ann. Polon. Math. 50 (1989), 11�91.[14℄ W. Zwonek, A note on pluripolar hulls of graphs of Blas
hke produ
ts, PotentialAnal. 22 (2005), 195�206.Institute of Mathemati
sJagiellonian UniversityReymonta 430-059 Kraków, PolandE-mail: Armen.Edigarian�im.uj.edu.plJozef.Si
iak�im.uj.edu.plWlodzimierz.Zwonek�im.uj.edu.plRe
eived May 16, 2005Revised version June 20, 2006 (5651)


