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Bounded holomorphic functions with
multiple sheeted pluripolar hulls

by

ARMEN EDIGARIAN, JOZEF SICIAK and
WLODZIMIERZ ZWONEK (Krakow)

Abstract. We describe compact subsets K of 0D and R admitting holomorphic func-
tions f with the domains of existence equal to C \ K and such that the pluripolar hulls of
their graphs are infinitely sheeted. The paper is motivated by a recent paper of Poletsky
and Wiegerinck.

1. Introduction. The paper is motivated by a recent paper of E. Po-
letsky and J. Wiegerinck (see [8]).

Let £ C C™ be any subset. We say that E is pluripolar if for any
z € FE there exist a connected neighborhood U, of z and a plurisubharmonic
function u, defined on U, u, # —o0o, such that

EnU, c{welU,: u(w) =—o0}.

By Josefson’s theorem (see [5]) the set E is pluripolar if and only if
there exists a plurisubharmonic function u, u # —oo, defined on C" such
that £ C {w € C" : u(w) = —oo}. It is well known (see e.g. [6]) that
max{log|fi|,...,log|fm|} is a plurisubharmonic function for any holomor-
phic functions fi,..., fin. Therefore, the pluripolar sets are a generalization
of analytic ones. So, it seems natural to study, with regard to pluripolar
sets, problems similar to those studied in the case of analytic sets. In partic-
ular, we may study extension type problems. For this we use the notion of a
pluripolar hull.

We denote by PSH(£2) the set of all plurisubharmonic functions defined
on an open set {2 C C". For a pluripolar set £ C {2 we define its pluripolar
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hull as

Ef = ﬂ {w e 2 : h(w) = —o0}.
hePSH(R2), h| p=—o0

For properties of the hull see e.g. [13, 7],
Let D be a domain in C and let f be a holomorphic function on D. For
any subset A C D we denote the graph of f over A by

I(A) ={(z, f(2)) : = € A}.

Note that if A is a non-polar subset of D then (I't(A)){. = (I't(D))ge-
Our aim is to find conditions on K which would imply the existence of a
bounded holomorphic function on C\ K such that C\ K is the domain
of existence of the function and the pluripolar hull of its graph is at least
two-sheeted. It follows from [3]| that there are no holomorphic functions on
C\ K whose graphs have multiple sheeted pluripolar hulls if the set K is
polar. In [8] the authors constructed a Cantor type set K on the real line
and a holomorphic function f with the domain of existence C\ K such that
(I't(C\ K))» is double sheeted over C \ K.

Let us fix some notations which will be used throughout the paper. We
put D = {z € C: |z| < R}, where R > 0. We denote by D the unit disc
D; and D¢ := C\ D. We also denote by D(p,r) the open disc with center at
p € C and radius 7 > 0 and H_ := {z € C : Imz < 0}. Let “cap” denote
the logarithmic capacity and let w(z, A, D) denote the harmonic measure for
the domain D C C of the Borel set A C 9D, z € D (for definition and basic
properties see e.g. [9]). Let m denote the normalized Lebesgue measure on
the circle 9D(p,r) (i.e. m(9D(p,r)) = r) or the Lebesgue measure on R.

The main result of the paper is the following.

THEOREM 1. Let I denote the unit circle in C or an open interval (a,b),
where —oco < a < b < oco. Let K be a compact subset of I such that
cap(I \ K) < cap(I). Then the following conditions are equivalent:

(1) m(KNU) >0 for any z € K and for any neighborhood U of z.

(2) There exists a bounded holomorphic function with the domain of exis-
tence equal to C \ K.

(3) There exist a bounded holomorphic function f whose domain of ex-
istence is C\ K and a set Ko C K with m(Ko) > 0 such that the
non-tangential limits for f|p (respectively, f|g_) exist on Ko and for
any z € (C\ K)U Ko the set {w € C: (z,w) € (I'}(C\ K))g2} is

infinite.

It will follow from the proof that in the case K # 0D we shall be able to
choose f so that the pluripolar hull (I'f(C\ K))f. contains the set
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{(z,e%f(z)) :2€C\K}U {(z,e%f*(z)) iz € Ko}

for any k € Z, where f*(z) denotes the non-tangential limit of f|p (respec-
tively, flg_) at z € K.

The condition cap(/ \ K) < cap(/) implies, in particular, that K is not
empty, so condition (1) is not trivial.

It will follow from the proof that the assumption cap(l \ K) < cap(I)
may be replaced with some condition on the existence of a set G such that
I'\ G is thin at each point of a set of positive measure (cf. Theorem 7).

It is worth noting that the existence of non-constant holomorphic map-
pings on C\ K implies that K is of positive analytic capacity (see e.g. [12]).

The implication (2)=>(1) in Theorem 1 is well known (see e.g. |1, Ap-
pendix A 1.4]). The implication (3)=-(2) is trivial. So, the main result of the
paper is the implication (1)=(3).

Note that in the case K = 0D the Blaschke products from [14] help us
to produce examples similar to that from (3)-—the functions have, however,
a little weaker properties than the ones claimed in Theorem 1. In fact, one
may take the function f defined as f(z) := log(2 + 2)B(z) for z € D and
f(z) := f(1/z), z € D°. Then the pluripolar hull (I';(C\0D))¢., is generically
(with the possible exception of at most countably many points in C\ dD)
infinitely sheeted. The methods from [10] could also help to exhibit a set K
as in Theorem 1.

In our paper except for pluripolar hulls we use mainly results and no-
tions from potential theory on the complex plane. Apart from the notions of
logarithmic capacity and harmonic measure we use, among others, the no-
tions of logarithmic potential, equilibrium measure and Green function. The
book [9] may serve as a good reference for the notions from potential theory
used in this paper.

We mostly prove our results for subsets of JID. The case of subsets of R,
when handled along the same lines, is sometimes only sketched or some
details are omitted.

2. Useful results on the Green function and harmonic measure.
Let K C C be a non-polar compact set in the complex plane. We define its
Green function as

9K (2) = pu(z) — log cap(K),
where 4 is the equilibrium measure of K and p,(z) = {, log|z — w|du(w)
(for properties of the Green function see [9]). We extend the definition of the
Green function to bounded non-polar Fj,-sets. Assume that F' = |J K, where

K; is an increasing sequence of non-polar compact sets. Then {ng} is a
decreasing sequence of subharmonic functions. Put gp(z) = limj . gk, (2)-
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The following properties are well known:

e gr € SH(C)N(C\ F);

e gr > 0on C;

e gr=0o0n F\ E, where E is a Borel polar set;
o if ' C 9D then gp(0) = —logcap(F).

LEMMA 2. Let F C 0D be an F,-set such that cap(F) < 1. Then there
exists a Borel set L C 0D \ F of positive measure such that F is thin at
every point of L.

Let F' C (a,b), where —o0o < a < b < 00, be an Fy-set such that cap(F') <
cap((a,b)) = (b — a)/4. Then there exists a subset L of (a,b) \ F of positive
measure such that F is thin at every point of L.

Proof. Without loss of generality we may assume in both cases that F
is not polar.
Assume that F' C JD. The properties of gr imply that
2w

! § gr(e?)do.

0 < —logcap(F) = gr(0) = o

Note that the Borel set L := {z € 0D\ F' : gp(z) > 0} C 9D\ F is of positive
measure. We claim that F' is thin at every point of L. Indeed, gr = 0 on
F\ E, where E C F is a Borel polar set. Then F'\ E and E (and, therefore,
= (F\ E)UE)) are thin at every point of L.

In the case F' C (a,b), we may assume that a« = —1 and b = 1. Put

I = [-1,1]. Then the function
b—a

4cap F’

u(z) = gr(2) —g1(2), u(oo) = log

is a positive harmonic bounded function on C \ I. The function v(¢) =
u(2(¢ + 1/¢)) is harmonic in the unit disc and lim, ;- v(re') = v*(e') =
gr(cost) for almost all ¢ € [0, 27). Therefore,

2m T
1 , 1
0 < u(oc0) =v(0) = o S v*(e)dt = - Sgp(cost) dt.
0 0

Hence, theset L = {z € (a,b)\ F : gr(z) > 0} has positive Lebesgue measure
and so, as in the previous case, F' is thin at every point of L. =

Now we are going to give some estimate of the harmonic measure at
thin points. In the context of pluripolar hulls it was proved in [2]. In [4] the
authors observed that from the proof it follows that the estimate holds in
some fine neighborhood of a thin point. So, let A C C be a set thin at a
point p € C. It is well known that there exists a sequence g; \, 0 such that
ANOD(p, o) =0 (see [9, Theorem 5.4.2]).
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LEMMA 3. Let A C C be a set thin at a point p € C. Then for any € > 0
there exist o € (0,e), r € (0,0), and an open set Uy D (AN D(p,0)) \ {pr}
such that

e ANAID(p,0) =0, ID(p,r) N U = 0;

e Uj is thin at p;

o w(z,J,D(p, o)\ F) >m(J)/o—¢ for any z € D(p,r) \ U1, where J is
any closed subarc of OD(p, o) and F is any closed (in C) subset of A.

Proof. Note that if p ¢ A\ {p} then the assertion is trivial (recall that
w(0, J,D(p, 0)) = m(J)/p, take r sufficiently small and U; = (). So, we may
assume that p € A\ {p}.

Let U € SH(C) be an entire subharmonic function such that

lim U(z) = —o0

z—p,z€EA

and U(p) > —oo. By adding a constant to & we may assume that U <0
on D(p,p). Multiplying U by a positive constant we may assume that
U(p) > —e/2. Taking 0 < p < e small enough, we may assume that

ANoD(p,o) = 0 and U(z) < =1 on (AN D(p,p)) \ {p}. Then for any
arc J C dD(p, o) and any closed F' C A,

(1) w(z JD(p, o)\ F) > w(z,J,D(p,0)) +U(z), 2z€D(p,o)\F.

Put U; = {z € D(p,0) : U(z) < —¢/2}. Then U; is open, Uy D
(AN D(p,0)) \ {p}, and since U(p) > —e/2 the set U; is thin at p, with
p € Up \ {p}. We know that w(p, J,D(p, 0)) = m(J)/o. Hence, we may choose
0 <7 <o with Uy NdD(p,r) = 0 and w(z, J,D(p, 0)) > m(J)/o— /2 for
z € D(p, 7). Then by (1),

(2) w(z D \F) > ™) B\ U -

Now we study the case when A C 9D is thin at p € JD. First note that for
every ¢ with 0 < p < 1 there exists a closed subarc J of the arc DN JD(p, o)
(respectively, D®NOD(p, o)) with m(J) > o/3. So, from Lemma 3 we get the
following.

COROLLARY 4. Let A C 0D be a set thin at a point p € OD. Then for any
e > 0 there exist p € (0,¢), r € (0, 0), and an open set Uy D AND(p, o)\ {p}
such that AN ID(p,0) =0, OD(p,r) NU; =0, Uy is thin at p, and

(3) w(z,J,D(p,0) \ F') > 1/4, 2z e€D(p,r)\ Uy,

where J is any closed subarc of the arc D N 0D(p, 0) (respectively, D° N
0D(p, 0)) such that m(J) > /3 and F is any closed (in C) subset of A.
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3. Construction of a decreasing sequence of open sets

PROPOSITION 5. Let I denote either the unit circle 9D or an interval
(a,b), where —co < a < b < oo. Let K C I be a non-empty compact set such
that m(K NU) > 0 for any open set U such tha UNK # (). Then there is a
decreasing sequence (Gr)o2 of open sets in I with the following properties:

e 0 <m(UNG)<m(G) for any open set U C I such that UNK # (),
where G = () Gp;

e NG, =K;

e there erists a Borel set L C G of positive measure such that I\ G is
thin at every point of L.

It follows from Lemma 2 that for the existence of L as in the proposition
it is sufficient to construct G so that cap(I \ G) < cap(I).

Denote by Cy the family of non-trivial connected components of K and
by Cy the family of one-point connected components of K. Then C; is at
most countable (it may be empty). It will follow from the proof that in the
case C; = () the equality G = K holds.

LEMMA 6. Let I be either an open arc in 0D (we allow I to be equal
to D) or an interval (a,b), where —oco < a < b < 0o, and € > 0. Then there
is a decreasing sequence (Gy) of open sets in I, dense in I, such that

(4) 0<m(JNG) <m(J)
for any non-trivial open arc J C I, where G := ﬂnZI G, and
(5) cap(I\ G) < e.

Assume for a while that the lemma holds. Then we may complete the
proof of the proposition.

Proof of Proposition 5. We define G, to be the union of GI™¥ over all
P € C; (GMP is the set constructed as in the lemma with I = int P) and
{z € I : dist(z,|JC2) < 1/n}. Note that if C; is empty then G = K. For the
last statement it suffices to use Lemma 2 (in the case C; # () we need to use,
additionally, the previous lemma for one P € C1). »

Therefore, it is sufficient to show the above lemma.

Proof of Lemma 6. For an arbitrary non-trivial closed arc (interval) P we
make the following construction of Cantor-type sets (we follow the notation
from [9]). Below, we use the word arc (or subarc) for interval (subinterval).
For a sequence s := (s5,)22; of numbers such that 0 < s, < 1 we define
C(s1, P) to be the set obtained by removing from P the concentric (in the
case I = 0D the choice is arbitrary) arc whose length is an s; fraction of
the length of the whole arc. At the nth stage let C(sy,...,s,, P) be the set
obtained by removing from each connected component of C(sy, ..., Sy—1, P)
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the open concentric arc whose length is an s, fraction of the whole compo-
nent. We define

ﬂC’sl,.. s Sny P).

Recall that (see e.g. [9]) the Lebesgue measure of C(s, P) equals m(P)t(s) :=
m(P)[[,21(1 — sn). Below we choose a sequence of sequences s satisfying
additional assumptions. For 6 € (0,1) we define s(0) = (s1(0), s2(0),...) as

follows:
377 for j # 2,
s1(0) = { .
0 for j = 2.

Note that ¢(8) := t(s(8)) = Co(1 — #) > 0 for some constant Cp € (0,1).

Below we choose a sequence (fy) of numbers from (0,1) such that
0<6 <by<-- <1 limywly =1and [[y_,(1— tN) > 0, where
tN = t(0y).

For a relatively open (in I) subset 2 and 6 € (0, 1) we construct an open
set 2(0) as follows. Let us represent {2 as the union of at most countably
many open, disjoint arcs I;—these are all connected components of 2. Then
we define

(6) 20) = J3\ C(s(0), 1)) = T \ C(s(0), T)).

J J
Note that m(£2(0)) = m(£2)(1 —t(0)) and 2(0) 9_1- 2\ A, where A is at
most countable.

Now we come back to the proof of the lemma. We make an inductive
construction based on a proper choice of a sequence (6y) with the above
mentioned properties. We define, simultaneously, two sequences of sets.

We start with Go := I, Ko := (). Then we define K; := C(s(61), 1),
G1=1(01) =1\ C(s(61),I), where 61 € (0,1) is chosen so that cap(I \ G1)
< ¢/2. Then we define inductively sets Gy11, Kny+1 and a number 6y as
follows. If G, Kn and the numbers 0 < 67 < --- < 65 < 1 are already
constructed so that cap(I \ Gy) < g(1/2+ -+ 1/2V), we define Gy 41 =
GN(HN-H), KN—H = KN+1(0N+1) = Uj C(S(9N+1),I§V), where (I]N)j are
the connected components of G, and 1 > Oxy1 > Oy is chosen so that
cap(I \ Gny1) = cap((I \ GN) U Kn11) < e(1/24 -+ +1/2V*1); note that
Kn11(0n41) \ B as Ony41 — 17, where B is at most countable, so when
On+1 € (On,1) is sufficiently close to 1, cap(Kn+1(0n+1)) may be chosen to
be arbitrarily small. It is no problem to choose (6x)x so that limy_,oo Oy = 1
and [[¥_;(1 —tY) > 0.

The assumption s1(f) = 1/3 implies that for any N the set I \ Gy
is totally disconnected (and certainly compact). Moreover, the inequality
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m(IJN) < 1/3% holds for all possible j, N, where G = U; IJN and (I]N)j is
the family of connected components of Gy .

Now we prove that for a non-trivial open arc J C I the inequalities
0<m(JNG) <m(J) hold.

Fix a non-trivial open arc J C I. Then there are N and j such that
f;-v C J. Hence

[e.e]
m(JNG) =m(I;}) nG) =mI) [[ 1-t">o0.
k=N+1

On the other hand, the inequality m(J N G) < m(J) is equivalent to the
inequality m(J \ G) > 0. But

m(J\G) >m(I})\G) > m(IN\Gns1) = m(IY \Gns1) =m(IL )N > 0. w

4. Construction of holomorphic functions. In the whole section we
fix a non-empty compact set K C 0D and a decreasing sequence of open
sets (Gp)nen C OD such that (72, G, = K. We are going to construct a
holomorphic function f on C\ K with special properties.

Put G = ((Gy. Let u, (resp. u) denote the solution of the Dirichlet
problem on D with the boundary data x¢g, (resp. x¢). Let v, (resp. v)
denote the conjugate to u, (resp. u) with v,(0) = 0 (resp. v(0) = 0). Put
©On = Up + 1V, and @ = u + 1.

First recall the following result related to the solution of the Dirichlet
problem on the unit disc.

THEOREM 7 (see [9, Theorem 1.2.4], [11, Theorem IV.1]). Let ¢ €
LY(OD). Put

1 2 1—
’Uﬂb(z) = 27T S ‘619 ‘ZL‘Q w( )

Then

(a) uy is a harmonic function on D, infap 1 < uy < supgp ¢;

(b) u;’;(e’e) = lim,—1 uy (re?) exists for almost all § € [0,27); moreover,
=1 a.e. on 0D

(c) if ¥ is continuous at (o € OD, then uy, extends continuously to (o.

From Theorem 7 we obtain
27
1 e + 2 0
on(2) = 5 (S) i Xa, (") dob.

An analogous formula holds for ¢. Note that Re ¢, € C(D\ 0G,,). Moreover,
Rey, =1 on G,, and Rey,, = 0 on 9D \ G,,. Here the boundary of G,, is
taken with respect to the topology of 9.
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LEMMA 8.

(a) on extends continuously to 0D\ OG,,.
(b) The sequence {p,}52 tends to ¢ locally uniformly on D.

Proof. (a) Let I C G,, be an open arc. Without loss of generality we may
assume that I = {e¢ : 0 < 6 < 07}, where 6; € (0,27). Then

2r 2
1T e?+2 0 1T e?+2 0
QO’VL(Z) frd % (S) men\I(ez )da—'—% (S) eie_ZXI(el )d0 = Il+I2.

Fix 0y € (0,67). Note that I; extends continuously to €0 and

0
Iy = 1 Log (6—91/2 i>7

i z—1
where Log : {z € C:Imz > 0} - {z € C:0 <Imz < 7} is such that
Logi = mi/2, so it also extends continuously to %,

(b) Fix r € (0,1). Then for any z € D, we have

2 .
§re’9+z

1 . 2
S NGl 8] < 12 (6,0 )

2

(1) len(2) = 9(2)] =

0
The last expression tends to 0 as n — co. =

Put f, = exp(p,) and f = exp(y). Note that f,, extends to a function
from O(C \ G,,), denoted also by f,. Even more, the extension is defined
by the formula f,(2) = 1/fn(1/2), z € D°. For z € D° we also put f(z) =
1/f(1/Z). From Lemma 8 we see that the sequence (f,,)22 is convergent to
f locally uniformly on D U D*.

Note that e™! < |f,] < e on C\ G, and e7! < |f| < e on C\ K.
Note also that lim,_,;- |f(rz)| = e for almost all z € G (consequently,
lim,_,;+ |f(rz)] = e~! for almost all z € G) and lim,_;- |f(rz)| = 1 for
almost all z € 9D\ G (hence lim,_, 1+ |f(rz)| = 1 for almost all z € 9D\ G).

It is easy to see that if 0 < m(U N'G) < m(U) for any non-empty open
set U such that U N K # () then C\ K is the domain of existence of f.

5. Proof of Theorem 1. By Lemma 2 to prove Theorem 1 it suffices
to prove the following result. We shall prove it for K C 9D. The proof for
K C R follows exactly the same lines, so we omit it.

THEOREM 9. Let I denote either the unit circle or an interval (a,b) C R,
where a < b. Let K C I be a compact subset of I for which there exists a
decreasing sequence {Gp} of open subsets of I with the following properties:

e 0 <m(GNU) <m(U) for every open set U C I with UNK # 0,
where G := (), Gn;
o K=l Gu;
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o there exists a set L C G such that m(L) > 0 and I\ G is thin at every
point of L (which holds, for instance, when cap(I \ G) < cap [ —see

Lemma 2).
Put
2T
1 7 et+z ,
f(2) == fi(z) == exp vl e xa(e™)dt,
0
respectively,
£6) = fcl) = exp— | X0 gy
z) = Z) = exp — s
K P Jot—z ’

for z € C\ K. Then fr is a bounded holomorphic function on C\ K whose
mazimal domain of existence is C\ K and 1/e < |fx| <e on C\ K.
In the case K # 0D there exists a set Ky C K with m(Ky) > 0 such

that the non-tangential limits of f|p (respectively, f|g_) exist on Ky and the
pluripolar hull (I'y(C\ K)){. contains the set

{(z,e*f(2): 2€ C\ K} U{(z,e* f*(2)) : z € Ky}
for any k € Z, where f*(z) denotes the non-tangential limit of f|p (respec-
tively, flg_) at z € K.

In the case K = 0D we define K' := oDNH_, K? := 0D N H, and
f=rfi+ fo:= fxr + fx2. Then f is a bounded holomorphic function on
C \ 0D whose mazimal domain of existence is C\ 0D and there exist sets
K} ¢ K'Y, K C K2 with m(Ké) > 0 such that the non-tangential limits of
filp ezist on Ké and the pluripolar hull (I'y(C\ OD))f, contains the sets

{(z,e® f1(2) + e % 2f5(2) : 2 e D} U{(2, €2 f1(2) + e 2 f2(2)) : z € D}
and

{5 () + e 22 f5(2)) = € K U KR}
for any k € Z.

Proof. As already mentioned, we restrict ourselves to the case K C 0D.
Recall that f = fx is constructed in Section 4. Put

(8) Ko ={a € L: f|p has the angular limit value f*(a) at a}.

By the Fatou theorem the set Ky has positive Lebesgue measure.

Now we are left with the proof of the properties of pluripolar hulls. Let
us start with the case K # OD. In particular, C \ K is connected. Let
p € PSH(C?) be such that

9) p(z, f(2)) = —oc0 forany z € C\ K.
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We need to show that
(10) p(z,e*f(2)) = —o00  for any z € (C\ K)U Ky, k € Z,
where we put f(a) := f*(a) for a € Kj.
To prove (10) it is sufficient to show that
(11) p(z, Fi(z)) = —oo  forany z € DU Ko UD®, k € Z,
where F}, is given by
e?2f(2), zeD,
Fi(z) = e272f%(2), z¢€ K,,
ek f(2), z € D°.
We shall argue by induction with respect to k.

First let us show (11) for £ = 0. By the assumption p(z, f(z)) = —oo for
z € D°. Let ¢ be a fixed point of Ky. We now apply Corollary 4 to get

w(z,J,(D(c,0) \ D) U (G, NID)) >1/4, |z—c| <ry, z ¢ Ui,

where J is some arc in D(¢, ) N D® such that m(J) > o/3.
The functions

e 2fn(2), 2€DUG,,
Fn70(2) :{ fTL( ) . n
fn(2), z € D¢,
are holomorphic and uniformly bounded on DU G,, UD®, and F,o — Fj
locally uniformly on D U D°. Consider two cases:
() zp €D and |z0 — ¢| = ri;

(B) 20 =c.

In case («) we put

’LLn(Z) = p(»% Fn,O(z) + FO(ZO) - Fn,O(ZO))
and

M = supsup{u,(z) : z € (D(c, 0) \ D) U (D(c, 0) N Gy)}-
n>1
Let M, := sup{un(z) : z € J}. Then M,, — —oo and the two constants
theorem gives

un(2) < M+ (M, = M)w(z, J, (D(c, 0) \ OD) U (D(¢, ) N Gn))

for all z € D(¢,r1) \ U1, n > ng, where ng is so large that M, — M < 0 for
n > ng. It follows that

p(20, Fo(20)) = un(z0) < M + (My, — M)i — —c0

as n — 00. Since zg was chosen arbitrarily,

p(z, Fo(2)) = p(z,e 2 f(2)) = —o0
when |z —c| = r1, z € D. Consequently, p(z, Fy(z)) = —oo for all z € DUD*.
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In case () let Uy be the set from Corollary 4 thin at the point ¢, and
let {z;} be a sequence in D \ Uy such that z; — c. Let {ny} be a strictly
increasing sequence of positive numbers such that

|Froo0(ze) — Folzr)| < 1/k, k=1,2,....
Put
ug(2) = p(z + ¢ — 21, Fuy 0(2) + Fole) — Fy0(2k))
and

M = iliyl) sup{ug(z) : z € (D(c, o) \ OD) U (D(c, o) N Gp,)},

My, := sup{ug(z) : z € J}.

It is clear that M} — —oo and proceeding as in case («) we get

1
p(e, Fo(c)) = ukzk)<M+(Mk—M)Z, k > ko,

~—

) (
which implies that p(c, Fy(c)) = —oo. Since ¢ € K was chosen arbitrarily,
we have proved that (11) is true for £ =0, i.e.,

)

p(z,

n S

(2)) = on DU Ky UD°.

Assume that
p(z, Fp(z)) = —oc0  on DU KyUD®

for all k € Z with |k| < m, where m > 0. It remains to show that (11) is
true for all k € Z with |k| =m + 1.
First, let k = m + 1. By the induction assumption

p(z,e?™f(2)) = —co  on D°.
Since e?™ f(z) is holomorphic on C\ K and C\ K is connected, we get
p(z,e?™f(z)) = —oco on D.

Hence, by Corollary 4 with J in D and proceeding analogously as in the case
k=0 we get
p(z,e*™ 2 f(2)) = —oc0  on D° U Kj,.

Therefore,
p(z, F+1(2)) = —o0 on DU Ky UD°C.

Now, set k = —m — 1. We know that
p(z,e7 2™ 2f(2)) = —c0  on D"
Hence, by the analyticity of f on C\ K and the fact that C\ K is connected,
we get
p(z,e7 2™ 2f(2)) = —co0  on D.
So, by Corollary 4 we get similarly
p(z,e 21 f(2)) = —c0  on DU Ky UD°.
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Consequently,
p(z, F_m—1(2)) = —oc0  on DU Ky UD°.

Let us now consider the case K = JD. We shall follow the same idea
as in the previous case. First recall that f; is holomorphic on C \ K. Let
p € PSH(C?) be such that p(z, f1(z)+ f2(z)) = —o0, 2 € D°. Then apply ap-
proximation of f5 as in the previous case (with K = K?). Then the sums of f;
(holomorphic on C\ K') with the elements of the approximating sequence
of fo play the same role as the functions f, previously. Therefore, we get the
equality p(z, f1(2) + e 2f2(z)) = —o0, 2 € DU K2. Then applying the same
reasoning for the function fi 4 e~2f; restricted this time to D (with K = K*
and applying approximation of fi) we get p(z,e?f1(2) + e 2fa2(2)) = —o0,
z € D°, and p(z, f1(2) + e 2fa(2)) = —o00, 2 € K}. Proceeding inductively
we get

p(2762kf1(2)+6_2kf2(2)):—OO’ 26D67 k:0717"'7
p(z, e fi(2) + e 2 fo(2) = —00, 2z€ K}UKZUD, k=0,1,....

But proceeding exactly in the same way with f; replaced with fo (and vice
versa) we get the desired equality for all k € Z. =

REMARK 10. Let f be as in the theorem for K = 0D. For k € Z put
e f1(2) +e k2 f5(2), z€D,
Fi(z) =9 e fi(z) + e 27 2f5(2), z€ K} UKE,
e f1(2) + ek fo(2), z € D°.
Then I'p, (DU K UD®) C (I'y(C\ dD))g, and the functions Fy|p and Fy|pe

are pseudocontinuations of each other across K} U K2, i.e. (Filp)*(a) =
(Fielpe)*(a), a € K§ U Kg.

6. Examples. It is natural to ask whether the assumption in Theorem 1

on the capacity of K is essential, more precisely, whether there are compact
sets K C 0D such that m(K) > 0 and cap(dD \ K) = 1. Below we shall
produce such a set. First we prove

LEMMA 11. There ezists an Fy-set F C 0D such that m(F) = 0 and
cap(F) = 1.

Proof. First recall that for any Borel subset I C 9D and all n € N, if we
set [ :={A € dD: \" € I}, then

m(I) =m(I), cap(I)= ¥/capl.
There exists a compact set K C 9D such that m(K) = 0 and cap(K) > 0

(take for example a Cantor type set on the unit circle). Put I = {z € 9D :
2k € K}. Tt is sufficient to define F = (J;, I;. =
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EXAMPLE 12. Let 0 < § < 1. Then there is a compact set K C 0D such
that m(0D \ K) < 0 (equivalently, m(K) > 1 —0) and cap(0D \ K) = 1.

Proof. Take an Fy-set F' C 0D such that m(F) = 0 and cap(F) = 1.
For any § > 0 there exists an open set Us C 0D such that F C Uy and
m(Us) < 0. Put Ks =0D \ Us. m

It seems to us that the most interesting examples of compact sets satis-
fying the conditions of Theorem 1 are ones which are totally disconnected.
Below we show the existence of such subsets of JD.

EXAMPLE 13. There is a totally disconnected compact set K C 0D as
desired in Theorem 1, i.e. such that cap(dD\ K) < 1 and m(K NU) > 0 for
any z € K and any neighborhood U of z.

The construction of K is inductive and standard. For example we may
define K := 0D\ |J;2| Ly, where Ly, is a union of disjoint open arcs with
centers at €¥7/2" where j = —(2"—1), —(2"—3),...,2" — 1 with m-measure
of each arc smaller than 1/22" and with cap(Li U---U L,) < 1/2.

Then cap(0D\ K') < 1/2 and the choice may be done so that m(UNK) >0
for any z € K and for any neighborhood U of z.

In fact, we may even specify effectively how large the open arcs deleted in
the above process may be. These lengths may be deduced from the following
example.

ExAMPLE 14. Let {I;}32; be a sequence of disjoint open arcs in 9D such
that

> 1
2. g <

(for instance m(I;) = exp(—;?2)). Then there is a jo such that U := U;’ijo I;
has the properties
cap(U) <1, m(oD\U) > 0.

In fact, the result follows immediately from the subadditivity property of
the logarithmic capacity and the fact that cap(I;) = sin(m(I;)m/4).
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