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Somewhere dense Cesàro orbits and

rotations of Cesàro hypercyclic operators

by

George Costakis and Demetris Hadjiloucas (Heraklion)

Abstract. Let T be a continuous linear operator acting on a Banach space X. We
examine whether certain fundamental results for hypercyclic operators are still valid
in the Cesàro hypercyclicity setting. In particular, in connection with the somewhere
dense orbit theorem of Bourdon and Feldman, we show that if for some vector

x ∈ X the set {Tx, T
2

2
x, T

3

3
x, . . .} is somewhere dense then for every 0 < ε < 1 the

set (0, ε){Tx, T
2

2
x, T

3

3
x, . . .} is dense in X. Inspired by a result of Feldman, we also prove

that if the sequence {n−1T nx} is d-dense then the operator T is Cesàro hypercyclic. Fi-
nally, following the work of León-Saavedra and Müller, we consider rotations of Cesàro
hypercyclic operators and we establish that in certain cases, for any λ with |λ| = 1, T and
λT share the same sets of Cesàro hypercyclic vectors.

1. Introduction. Let X be an infinite-dimensional topological vector
space over the field C or R. A continuous linear operator T acting on X is
said to be hypercyclic if there exists a vector x ∈ X whose orbit under T ,
Orb(T, x) = {x, Tx, T 2x, . . .}, is dense in X. Such a vector x is called hy-

percyclic for T , and HC(T ) denotes the set of hypercyclic vectors for T . In
the literature one may find many examples of hypercyclic operators. For an
introduction to this subject and an informative account of results we refer
to the very nice review article [19]; see also the more recent review articles
[8], [26], [32], [20].

In the present paper we mainly examine whether certain properties of
hypercyclic operators are still valid in the context of Cesàro hypercyclic-
ity. The notion of Cesàro hypercyclicity was introduced by León-Saavedra
in [22]. An operator T : X → X is called Cesàro hypercyclic if there exists
a vector x ∈ X so that the sequence

I + T + · · · + Tn−1

n
x, n = 1, 2, . . . ,

is dense in X. In [22] León-Saavedra showed that T is Cesàro hypercyclic if
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and only if there exists x ∈ X so that the weighted orbit
{

Tx,
T 2

2
x,

T 3

3
x, . . .

}

is dense in X. He also established that a hypercyclic operator need not be
Cesàro hypercyclic and vice versa.

In this paper when we refer to the Cesàro orbit of a vector x under an
operator T we mean the sequence {n−1Tnx : n = 1, 2, . . .}. Also a weaker
notion of hypercyclicity which will be of use to us is that of supercyclicity.
An operator T acting on X over C (or R) is said to be supercyclic if there
exists a vector x ∈ X so that the set C Orb(T, x) (respectively R Orb(T, x))
is dense in X. We shall also be using the following notation: if A ⊂ C and
Y ⊂ X the set AY is defined by AY = {ay : a ∈ A, y ∈ Y }.

The first problem which concerns us is the somewhere dense orbit theo-
rem due to Bourdon and Feldman. In [9] Bourdon and Feldman answered a
question of Peris [29] by proving the following deep theorem.

Theorem (Bourdon–Feldman). Let X be a locally convex topological

vector space over C (or R) and let T be a continuous linear operator on X.

(i) If for some x ∈ X the set Orb(T, x) is somewhere dense then it is

everywhere dense.

(ii) If for some x ∈ X the set C Orb(T, x) (or R Orb(T, x)) is somewhere

dense then it is everywhere dense.

In fact Wengenroth [33] has shown that this theorem holds in arbitrary
linear topological spaces without the assumption of local convexity. A nat-
ural question to ask is whether the above theorem holds for the Cesàro
orbit {n−1Tnx}. Although we are not able to prove a complete analogue
of the Bourdon–Feldman theorem in the Cesàro hypercyclicity setting, in
Section 2 (Theorem 2.9) we establish that if the set {n−1Tnx} is somewhere
dense then for every 0 < ε < 1 the set (0, ε){n−1Tnx} is everywhere dense.
Furthermore under the extra assumption that T is hypercyclic we prove that
{n−1Tnx} is dense in X (Theorem 2.5).

In Section 3 we focus on the problem of d-dense Cesàro orbits. Our
results are inspired by the recent work of Feldman [15] in which he proved
the following.

Theorem (Feldman). Let X be a Banach space and let T be a bounded

linear operator acting on X. Suppose there exists x ∈ X so that Orb(T, x)
is d-dense for some d > 0, that is, for every y ∈ X there exists n ∈ N so

that ‖Tnx − y‖ < d. Then T is hypercyclic, but in general x need not be a

hypercyclic vector.

By a careful adaptation of Feldman’s method and slightly modifying his
arguments we prove the corresponding result for Cesàro orbits. In addition,
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we provide some results, with simple proofs, concerning perturbations of
certain dense sets.

In Section 4 we present some generalizations related to the Bourdon–
Feldman theorem. Actually, we show that Theorem 2.9 still holds if the
sequence of weights {n−1} is replaced by more general sequences.

The last problem we deal with comes from an elegant result of León-
Saavedra and Müller and is directly connected to rotations of hypercyclic
operators. Bès asked whether T hypercyclic implies that λT is also hyper-
cyclic for every λ with |λ| = 1 (see also [31] for a related question). León-
Saavedra and Müller [24], using semigroups of operators, gave an affirmative
answer by proving the following stronger result.

Theorem (León-Saavedra–Müller). Let X be a complex Banach space

and let T be a bounded linear operator on X. If T is hypercyclic then λT is

hypercyclic for every λ with |λ| = 1 and in addition HC(T ) = HC(λT ).

In Section 5 (Theorem 5.1) an analogue of the above theorem is estab-
lished for Cesàro hypercyclic operators, under the assumption that they are
also hypercyclic. The proof of Theorem 5.1 is based on three ingredients:
the T -invariance of certain limit sets, Baire’s category theorem and Cantor’s
theorem.

Finally, Section 6 contains some remarks and open problems.

2. Somewhere dense Cesàro orbits. In this section T will be a
bounded linear operator acting on a (separable) complex Banach space X.
We introduce the following notation. For x ∈ X define the sets OrbC(T, x)
and ωC(x) by

OrbC(T, x) = {n−1Tnx : n = 1, 2, . . .},

ωC(x) = {y ∈ X : ∃nk → ∞, n−1
k Tnkx → y}.

The sets OrbC(T, x), ωC(x) will be called the Cesàro T -orbit of x and the
ωC-limit set of x respectively. Observe that the latter notion resembles that
of ω-limit set from dynamical systems.

Let us start with a simple lemma that can be found in [12]; for complete-
ness we include its proof.

Lemma 2.1. Let x ∈ X be a non-zero vector. The following are equiva-

lent.

(i) The Cesàro T -orbit of x, OrbC(T, x), is dense in X.

(ii) The ωC-limit set of x, ωC(x), is the whole space X.

Proof. Since OrbC(T, x) = ωC(x) ∪ OrbC(T, x) it follows that (ii) im-
plies (i).
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To show the converse we first observe that (i) gives that for every j =
1, 2, . . .,

j−1T jx ∈ {n−1Tnx : n > m} = X, ∀m = 1, 2, . . . ,

which in turn implies that for every j = 1, 2, . . . there is a sequence {nk} of
natural numbers such that nk → ∞ and n−1

k Tnkx → j−1T jx. Therefore,

OrbC(T, x) ⊂ ωC(x).

Since the set ωC(x) is closed, the proof is finished.

We shall also need the following two lemmata. The first one gives
a characterization of Cesàro hypercyclic operators and is due to León-
Saavedra [22]. The second is a simple topological lemma which enables us
to work with invariant sets under T . This turns out to be crucial to our
approach.

Lemma 2.2. An operator T : X → X is Cesàro hypercyclic if and only

if there exists a non-zero vector x ∈ X such that OrbC(T, x) is dense in X.

Lemma 2.3. Let x be a non-zero vector. Then OrbC(T, x) is somewhere

dense if and only if ωC(x) is somewhere dense.

Proof. It suffices to show that if for some y ∈ X and ε > 0 the ball
B(y, ε) = {z ∈ X : ‖z − y‖ < ε} is contained in the closure of OrbC(T, x)
then B(y, ε) ⊂ ωC(x).

Let z ∈ B(y, ε). Then there exists a sequence of positive integers {nk}
such that ‖z − n−1

k Tnkx‖ < 1/k for k = 1, 2, . . . . If z /∈ OrbC(T, x) then
obviously nk → ∞. In case z ∈ OrbC(T, x), we may approximate z by a
sequence {wk} of vectors not belonging to OrbC(T, x). Hence, we are in the
previous situation where each wk can be approximated by some n−1

k Tnkx as
close as we want with nk → ∞. The other implication is obvious.

Lemma 2.4. The set ωC(x) is invariant under T .

Proof. Take y ∈ ωC(x). Then there exist nk → ∞ such that n−1
k Tnkx

→ y. Applying T we get n−1
k Tnk+1x → Ty. Then

∥

∥

∥

∥

Tnk+1

nk + 1
x − Ty

∥

∥

∥

∥

≤

∥

∥

∥

∥

Tnk+1

nk + 1
x −

Tnk+1

nk
x

∥

∥

∥

∥

+

∥

∥

∥

∥

Tnk+1

nk
x − Ty

∥

∥

∥

∥

≤

∣

∣

∣

∣

nk

nk + 1
− 1

∣

∣

∣

∣

∥

∥

∥

∥

Tnk+1

nk
x

∥

∥

∥

∥

+

∥

∥

∥

∥

Tnk+1

nk
x − Ty

∥

∥

∥

∥

.

Since the sequence ‖n−1
k Tnk+1x‖ is bounded, the above inequality implies

that
Tnk+1

nk + 1
x → Ty

as k → ∞. Thus Ty ∈ ωC(x) and ωC(x) is invariant under T.
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The next theorem is a slight generalization of Theorem 1.2 in [12].

Theorem 2.5. T is hypercyclic and Cesàro hypercyclic if and only if

there exist x, y ∈ X so that both Orb(T, x) and OrbC(T, y) are somewhere

dense.

Proof. Assume first that T is hypercyclic and Cesàro hypercyclic. Ac-
cording to the definition of hypercyclicity there is some vector x whose orbit
Orb(T, x) is dense. Since T is Cesàro hypercyclic, by (León-Saavedra’s char-
acterization) Lemma 2.2 it follows that there is some vector y such that
OrbC(T, y) is dense. Thus for the one direction we are done.

Assume that for some vectors x, y both Orb(T, x) and OrbC(T, y) are
somewhere dense. Using Lemma 2.3, we conclude that ωC(y) has non-empty
interior. By the Bourdon–Feldman theorem we immediately see that the
closure of Orb(T, x) is the whole space X, hence T is hypercyclic. Let us
denote by U the interior of ωC(y), which is non-empty as we showed above.
Since T is hypercyclic, there is a hypercyclic vector z such that z ∈ U
(the set of hypercyclic vectors is Gδ and dense in X). Using the invariance
of ωC(y) under T (Lemma 2.4), we get Orb(T, z) ⊂ ωC(y) and since z is
hypercyclic for T , it follows that ωC(y) = X. In view of Lemma 2.1 the
Cesàro T -orbit of y is dense in X and finally Lemma 2.2 implies that T is
Cesàro hypercyclic.

Remark 2.6. Of course the previous theorem still holds if X is a locally
convex topological vector space.

Remark 2.7. The proof of Theorem 2.5 implies that if T is hypercyclic
and OrbC(T, x) is somewhere dense then it is everywhere dense.

In order to give an application of Theorem 2.5 let us introduce some
terminology and standard notation. Let H(C) be the Fréchet space of entire
functions endowed with the topology of uniform convergence on compact
subsets of C. Birkhoff [7] showed that the translation operator T1 : H(C) →
H(C), T1(f)(z) = f(z + 1) for f ∈ H(C), is hypercyclic, and MacLane [25]
showed the same for the differentiation operator D : H(C) → H(C), Df =
f ′ for f ∈ H(C). We establish the following.

Corollary 2.8.

(i) If for some f ∈ H(C) the set OrbC(D, f) is somewhere dense then

it is dense in H(C).
(ii) If for some f ∈ H(C) the set OrbC(T1, f) is somewhere dense then

it is dense in H(C).
(iii) Let T be a unilateral weighted backward shift , with weight sequence

{wn}, acting on the Hilbert space l2(N) of square summable se-

quences. Suppose that there exists an increasing sequence {nk} of
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positive integers such that

lim
k→∞

∏nk

i=1 wi+q

nk
= ∞

for every non-negative integer q. If for some x ∈ l2(N) the set

OrbC(T, x) is somewhere dense then it is dense in l2(N).

Proof. It is well known that D and T1 are hypercyclic operators. By
applying Remark 2.6, (i) and (ii) follow. Observe that it is also easy to see
that both D and T1 are Cesàro hypercyclic. In order to prove (iii) we use
some results due to León-Saavedra. Since the weights {wn} satisfy the condi-
tion in (iii), T is Cesàro hypercyclic (see Proposition 3.1 in [22]). Since every
Cesàro hypercyclic unilateral weighted shift is hypercyclic (see Corollary 3.3
in [22]) using Remark 2.7 we get the desired result.

It is plausible that in Remark 2.7 the assumption that T is hypercyclic
can be dropped. Unfortunately we do not have a proof for this. However, as
already mentioned, we can prove the following.

Theorem 2.9. Suppose there is x ∈ X such that OrbC(T, x) is some-

where dense. Then for every 0 < ε < 1 the set (0, ε) OrbC(T, x) is dense

in X. In particular the last assertion implies that (0, ε) Orb(T, x) = X.

Proof. Since OrbC(T, x) is somewhere dense, Lemma 2.3 implies that
ωC(x) has non-empty interior. At this point we introduce the following
notation. For every x ∈ X the symbol Ux stands for the interior of
ωC(x), i.e.

Ux = ωC(x)◦.

Lemma 2.10. If for some x, y ∈ X \ {0}, Ux ∩ Uy 6= ∅ then

(0, ε)ωC(x) = (0, ε)ωC(y) for every 0 < ε < 1.

Proof. We know that ωC(x) is invariant under T (Lemma 2.4). Fix any
0 < ε < 1. It is not difficult to see that there exists k ∈ {1, 2, . . .} such that

T k

k
x ∈ Ux ∩ Uy.

Applying the T -invariance of ωC(x), ωC(y) we get

Tn+k

n + k
x ∈

k

n + k
ωC(x) ∩

k

n + k
ωC(y), ∀n = 1, 2, . . . .

Choose n0 ∈ N such that
k

n + k
< ε, ∀n ≥ n0.

Hence,
Tn+k

n + k
x ∈ (0, ε)ωC(x) ∩ (0, ε)ωC(y), ∀n ≥ n0.
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Let now z ∈ ωC(x). Then there exists a sequence {nm} of natural numbers
such that nm → ∞ as m → ∞, nm ≥ n0 + k and

Tnm

nm
x → z as m → ∞.

Observe that
Tnm

nm
x ∈ (0, ε)ωC(x) ∩ (0, ε)ωC(y), ∀m ∈ N.

Therefore,

z ∈ (0, ε)ωC(x) ∩ (0, ε)ωC(y),

and thus,

ωC(x) ⊂ (0, ε)ωC(x) ∩ (0, ε)ωC(y).

From the last inclusion it follows that

(0, ε)ωC(x) ⊂ (0, ε)ωC(x) ∩ (0, ε)ωC(y) ⊂ (0, ε)ωC(y).

By a similar argument we get

(0, ε)ωC(y) ⊂ (0, ε)ωC(x).

Hence (0, ε)ωC(x) = (0, ε)ωC(y).

Lemma 2.11. If Ux 6= ∅, then (0, ε)ωC(x) = (0, ε)ωC(λx) for every

λ ∈ C \ {0} and every 0 < ε < 1.

Proof. Since Ux 6= ∅, there are y ∈ X \ {0} and δ > 0 such that
B(y, δ) ⊂ Ux. Without loss of generality we may assume that ‖y‖ > δ. First
suppose that λ > 1. Then for µ > 1, B(µy, µδ) ⊂ µUx. It is easy to check
that µωC(x) ⊂ ωC(µx). Hence µUx ⊂ Uµx and therefore B(µy, µδ) ⊂ Uµx.

For µ > 1 and k = 1, 2, . . . the balls B(µk−1y, µk−1δ) and B(µky, µkδ) in-
tersect if and only if 1 < µ < (δ + ‖y‖)/(‖y‖ − δ). Therefore, if we can find
1 < µ < (δ + ‖y‖)/(‖y‖ − δ) and n ∈ N such that µn = λ then for every
k = 1, . . . , n we have

B(µk−1y, µk−1δ) ∩ B(µky, µkδ) 6= ∅.

The last relation implies that

Uµk−1x ∩ Uµkx 6= ∅

and applying the previous lemma we conclude that for every 0 < ε < 1,

(0, ε)ωC(µk−1x) = (0, ε)ωC(µkx), ∀k = 1, . . . , n.

Hence,

(0, ε)ωC(x) = (0, ε)ωC(λx).

It remains to show the existence of 1 < µ < (δ + ‖y‖)/(‖y‖ − δ) and
n ∈ N such that µn = λ. But this is possible, since λ1/n → 1 as n → ∞ and
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λ1/n > 1. The case 0 < λ < 1 can be handled in a similar way and it is left
to the reader. This completes the proof of the lemma for λ positive.

To finish the proof consider λ = eiθ for θ > 0. If φ > 0 then for every
k = 1, 2, . . . the balls B(ei(k−1)φy, δ) and B(eikφy, δ) intersect if and only if
|1 − eiφ| < 2δ/‖y‖. Working as before (for λ positive), we will be done if
we can find φ > 0 and n ∈ N such that nφ = θ and |1 − eiφ| < 2δ/‖y‖.

But it is obvious that such φ, n can be found. Therefore (0, ε)ωC(x) =

(0, ε)ωC(eiθx).

Let us now continue with the proof of Theorem 2.9. Since ωC(x) has
non-empty interior, it follows that C Orb(T, x) has non-empty interior. Using
the Bourdon–Feldman theorem we conclude that C Orb(T, x) is dense in X,
hence T is supercyclic. It is well known that the set of supercyclic vectors
is residual. Therefore, there is a supercyclic vector z ∈ X such that z ∈ Ux

(since Ux is open and non-empty). Since ωC(x) is T -invariant, Orb(T, z)

⊂ ωC(x). Thus we get (0, ε) Orb(T, z) ⊂ (0, ε)ωC(x). The last relation and
Lemma 2.11 yield

⋃

λ∈C\{0}

λ(0, ε) Orb(T, z) ⊂
⋃

λ∈C\{0}

(0, ε)λωC(x) ⊂
⋃

λ∈C\{0}

(0, ε)ωC(λx)

= (0, ε)ωC(x).

Since it can be easily checked that 0 ∈ (0, ε)ωC(x), we arrive at

C Orb(T, z) ⊂ (0, ε)ωC(x).

But z is a supercyclic vector and this implies (0, ε)ωC(x) = X. Now it is
straightforward that (0, ε) OrbC(T, x) = X. The proof of Theorem 2.9 is
complete.

Remark 2.12. At this point we would like to point out how the previous
argument is connected to the Bourdon–Feldman theorem. To be precise, we
shall prove that statement (ii) of the Bourdon–Feldman theorem implies (i)
of that theorem. Indeed, suppose Orb(T, x) is somewhere dense. Using (ii) it
follows that C Orb(T, x) is dense in X. Hence T is supercyclic and since the
set of supercyclic vectors is Gδ and dense in X, there exists a supercyclic
vector z ∈ X so that

z ∈ Orb(T, x)
◦

where D◦ denotes the interior of the set D. A. Peris established in [29] that

if Orb(T, x)
◦
∩ Orb(T, y)

◦
6= ∅ then Orb(T, x)

◦
= Orb(T, y)

◦
.

Using the previously mentioned result and following the proof of Lem-
ma 2.11, one deduces that

if Orb(T, x)
◦
6= ∅ then Orb(T, x)

◦
= Orb(T, λx)

◦
∀λ ∈ C \ {0}.
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Therefore (C \ {0}) Orb(T, z) ⊂ Orb(T, x)
◦

and since z is supercyclic we
conclude that Orb(T, x) is dense in X.

3. d-dense Cesàro orbits. Let X be a separable Banach space and
T be a continuous linear operator on X. In [15] N. Feldman introduced
the notion of a d-dense orbit. Recall that if d is a given positive number
and x ∈ X then the orbit Orb(T, x) = {x, Tx, T 2x, . . .} is called d-dense
if for every y ∈ X there is a positive integer n so that ‖Tnx − y‖ < d. As
already mentioned in the introduction, Feldman found a connection between
hypercyclicity and d-dense orbits by proving the following.

Theorem 3.1. If Orb(T, x) is d-dense for some x ∈ X and d > 0 then

T is hypercyclic.

Let us now proceed by giving a definition.

Definition 3.2. For a given positive number d, a subset A of X will be
called d-dense if for every x ∈ X there exists a ∈ A such that ‖a − x‖ < d.

In this section we extend Feldman’s result to the context of Cesàro hy-
percyclicity. More precisely, we establish the following result.

Theorem 3.3. If OrbC(T, x) is d-dense for some x ∈ X and d > 0 then

T is Cesàro hypercyclic.

Proof. Let {xj} be a countable dense set in X. Define

E(j, s, n) =

{

x ∈ X :

∥

∥

∥

∥

Tn

n
x − xj

∥

∥

∥

∥

< s

}

for every j, n ∈ {1, 2, . . .} and any s > 0.

Lemma 3.4. If OrbC(T, x) is d-dense for some x ∈ X and d > 0, then

B(y, 3d) ∩ OrbC(T, x) is infinite for every y ∈ X.

Proof. The proof is similar to the proof of Lemma 2.4 from [15] but we
give it for completeness. Fix y ∈ X. Since X is infinite-dimensional, there
exists an infinite sequence {yn : n = 1, 2, . . .} such that ‖yn − y‖ = 2d and
‖yn − ym‖ ≥ 2d for every n 6= m. As B(yn, d) ⊂ B(y, 3d) and OrbC(T, x)
intersects every member of the sequence of pairwise disjoint open balls
{B(yn, d)}, we conclude that B(y, 3d) contains infinitely many elements of
the Cesàro T -orbit of x.

Lemma 3.5. If OrbC(T, x) is d-dense for some x ∈ X and d > 0,
then for every ε > 0 and every m ∈ {1, 2, . . .} the set OrbC(T, Tmx) is

3d + ε-dense.
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Proof. Fix ε > 0 and m ∈ {1, 2, . . .}. Let y ∈ X. By Lemma 3.4 there is
a sequence {nk} of positive integers with nk → ∞ as k → ∞ such that

(1)

∥

∥

∥

∥

Tnk+m

nk + m
x − y

∥

∥

∥

∥

< 3d, ∀k = 1, 2, . . . .

Using (1) we have
∥

∥

T nk+m

nk+m x
∥

∥ ≤ ‖y‖ + 3d and hence

(2)

∥

∥

∥

∥

Tnk+m

nk
x −

Tnk+m

nk + m
x

∥

∥

∥

∥

=

(

nk + m

nk
− 1

)∥

∥

∥

∥

Tnk+m

nk + m
x

∥

∥

∥

∥

→ 0

as k → ∞. By (1) and (2) Lemma 3.5 follows.

Lemma 3.6. If x ∈
⋂

j

⋃

n E(j, s, n) for some s > 0 then

x/l ∈
⋂

j

⋃

n

E(j, s/l, n) for every l ∈ {1, 2, . . .}.

Proof. If l = 1 there is nothing to prove. Suppose l ∈ {2, 3, . . .} and
fix xj . Then there is j′ ∈ {1, 2, . . .} such that ‖xj′ − lxj‖ < s or equivalently

(3)

∥

∥

∥

∥

xj′

l
− xj

∥

∥

∥

∥

<
s

l
.

By our hypothesis there is a positive integer n such that
∥

∥

T n

n x − xj′
∥

∥ < s,
which trivially implies

(4)

∥

∥

∥

∥

Tn

n

(

x

l

)

−
xj′

l

∥

∥

∥

∥

<
s

l
.

By (3), (4) and since l ≥ 2 the result follows.

Lemma 3.7. If OrbC(T, x) is d-dense for some x ∈ X and d > 0, then
⋂

j

⋃

n E(j, 4d, n) is Gδ and dense in X.

Proof. Lemma 3.5 implies that OrbC(T, Tmx) is 3d + ε-dense for every
m ∈ {1, 2, . . .} and every ε > 0. Hence, Tmx ∈

⋂

j

⋃

n E(j, 3d+ε, n) for every
m ∈ {1, 2, . . .} and every ε > 0. Take ε = d. Then Tmx ∈

⋂

j

⋃

n E(j, 4d, n)
for every m ∈ {1, 2, . . .}. By Lemma 3.6 we conclude that

(5)
Tm

m̺
x ∈

⋂

j

⋃

n

E(j, 4d, n)

for every m, ̺ ∈ {1, 2, . . .}. We claim that the set
{

Tm

m̺
x : m, ̺ = 1, 2, . . .

}

is dense in X. Indeed, let y ∈ X and fix ε > 0. There exists a positive integer
j such that

(6) ‖y − xj‖ < ε/2.
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Fix a positive integer ̺ such that d/̺ < ε/2. Then there is m ∈ {1, 2, . . .}
such that

∥

∥

∥

∥

Tm

m
x − ̺xj

∥

∥

∥

∥

< d.

Hence, by the choice of ̺ we get

(7)

∥

∥

∥

∥

Tm

m̺
x − xj

∥

∥

∥

∥

<
ε

2
.

Combining now (6) and (7) we arrive at
∥

∥

∥

∥

Tm

m̺
x − y

∥

∥

∥

∥

< ε,

proving the claim. From (5), it follows that
⋂

j

⋃

n E(j, 4d, n) is dense in X
and since E(j, 4d, n) is open in X we conclude that the set

⋂

j

⋃

n E(j, 4d, n)
is Gδ and dense in X.

Let us now proceed with the proof of Theorem 3.3. Since OrbC(T, x) is d-
dense, it is easy to see that OrbC(T, x/s) is d/s-dense for every s ∈ {1, 2, . . .}.
Lemma 3.7 shows that

⋂

j

⋃

n E(j, 4d/s, n) is Gδ and dense in X for every
s ∈ {1, 2, . . .}. Hence, Baire’s category theorem implies that

⋂

s

⋂

j

⋃

n

E(j, 4d/s, n)

is Gδ and dense in X. It is plain that
⋂

s

⋂

j

⋃

n

E(j, 4d/s, n) = {x ∈ X : OrbC(T, x) = X}.

Therefore using León-Saavedra’s characterization (Lemma 2.2) we conclude
that T is Cesàro hypercyclic.

Below we include some simple observations on perturbations of certain
dense sets. In the following, T : X → X will be a continuous linear operator.

Proposition 3.8. If {m−1 Orb(T, x) : m = 1, 2, . . .} = X and ‖Tny‖
< M for all n = 0, 1, 2, . . . for some positive number M , then

{m−1 Orb(T, x + y) : m = 1, 2, . . .
}

= X.

Proof. Let z ∈ X and ε > 0. There are positive integers N and n0 such
that

1/n0 < ε/2, M < N.

Then

(8)

∥

∥

∥

∥

1

n0N
Tny

∥

∥

∥

∥

<
ε

2
, ∀n = 1, 2, . . . .
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There exist positive integers m, n1 so that

(9)

∥

∥

∥

∥

1

m
Tn1x − n0Nz

∥

∥

∥

∥

< N.

Now (9) implies that

(10)

∥

∥

∥

∥

1

mn0N
Tn1x − z

∥

∥

∥

∥

<
1

n0
.

From (8) and (10) we get
∥

∥

∥

∥

1

mn0N
Tn1(x + y) − z

∥

∥

∥

∥

< ε.

An immediate consequence is the following

Corollary 3.9. If Orb(T, x) = X and there is some positive number

M such that ‖Tny‖ < M for every n = 0, 1, 2, . . ., then

{m−1 Orb(T, x + y) : m = 1, 2, . . .} = X.

Observe that under the hypothesis of Corollary 3.9 it is not true in
general that Orb(T, x + y) = X (see [15]). In Proposition 3.8 one can also
replace the sequence {m−1} by the interval (0, 1) and get a similar result.

Proposition 3.10. If (0, 1) Orb(T, x) = X and there is some positive

number M such that ‖Tny‖ < M for every n = 0, 1, 2, . . ., then

(0, 1) Orb(T, x + y) = X.

The proof of Proposition 3.10 is similar to that of Proposition 3.8 and
is omitted. On the other hand as we show below, the last proposition is not
true if we replace (0, 1) by R

+ = (0,∞).

Proposition 3.11. If R+ Orb(T, x) = X and there is some positive

number M such that ‖Tny‖ < M for every n = 0, 1, 2, . . ., then it is not

true in general that R+ Orb(T, x + y) = X.

Proof. The proof is based on the work of Müller [27], [28] and on a
result due to Bermúdez, Bonilla and Peris [2]. In order to provide a coun-
terexample, let a candidate operator be any supercyclic and power bounded
operator T with spectral radius r(T ) = 1, acting on a real Hilbert space X.
Recall that T is power bounded if supn ‖T

n‖ < ∞. Let x ∈ X be such that
R Orb(T, x) = X. If for every z ∈ X \ {−x} we have R Orb(T, x + z) = X,
then for every z ∈ X \ {0} it follows that R Orb(T, z) = X. The last
equality contradicts Theorem 3 in [27] which states that if T satisfies the
above requirements then there is a non-zero vector which is not supercyclic.
Therefore there exists y ∈ X so that R Orb(T, x + y) 6= X and obviously
supn ‖T

ny‖ < ∞. Using now the result of Bermúdez, Bonilla and Peris [2]

that for any x ∈ X, R Orb(T, x) = X if and only if R+ Orb(T, x) = X,
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the conclusion follows. It is also possible to provide a similar example for
Banach spaces. In this case one has to use the main result from [28] and
then the argument is the same as in the Hilbert case.

Proposition 3.12. If (0, 1) Orb(T, x) is d-dense for some d > 0 then

it is also dense in X.

Proof. Let y ∈ X and ε > 0. Without loss of generality we may assume
that ε < d. Then there exist n ∈ N and λ ∈ (0, 1) such that

∥

∥

∥

∥

λTnx −
d

ε
y

∥

∥

∥

∥

< d

or equivalently
∥

∥

∥

∥

ε

d
λTnx − y

∥

∥

∥

∥

< ε.

The next proposition shows that Proposition 3.12 does not remain true
if (0, 1) is replaced by (1,∞).

Proposition 3.13. Let B be the backward shift on l2(N). Then there

exist d > 0 and x ∈ l2(N) such that (1,∞) Orb(2B, x) is d-dense but not

dense in X.

Proof. Take x to be the vector constructed in the proof of Theorem 2.6
in [15]. Then the first coordinate of (2B)nx belongs to the set F =
{z ∈ C : |z| ≥ 1} ∪ {0}. Therefore for every λ > 1 the first coordinate
of λ(2B)nx belongs to F . Hence, by taking y = (1/2, 0, 0, . . . ) we have

‖λ(2B)nx − y‖ ≥ 1/2 for all λ > 1

and for all non-negative integers n. This yields (1,∞) Orb(2B, x) 6= X and

by Feldman’s construction the set Orb(2B, x) is 4-dense in l2(N). The proof
is complete.

4. Generalizations. The purpose of this section is to provide general-
izations of Theorems 2.5 and 2.9. Let T be a continuous linear operator on
a Banach space X. Roughly speaking, we shall show that regarding Theo-
rems 2.5 and 2.9, the particular sequence of weights {n−1} in the Cesàro
orbit of a vector x ∈ X under T does not play any significant role in our
approach. We shall need the following well known more general notion of
hypercyclicity. Let {Tn} be a sequence of continuous linear operators on X.
The sequence {Tn} is said to be hypercyclic provided there exists a vector
x ∈ X so that the sequence {Tnx} is dense in X, and the vector x is called
hypercyclic for the sequence {Tn}. Following standard notation we denote by
HC({Tn}) the set of hypercyclic vectors for the sequence {Tn}. We establish
the following.
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Theorem 4.1. Let {λn} be a sequence of positive numbers such that

λn+1/λn → 1 as n → ∞. Then T is hypercyclic and the sequence {λnTn} is

hypercyclic if and only if there exist x, y ∈ X so that both sets {Tnx : n =
0, 1, 2, . . .}, {λnTny : n = 0, 1, 2, . . .} are somewhere dense.

The proof is similar to the proof of Theorem 2.5 and is omitted. A
consequence of the proof of Theorem 4.1 is the following.

Proposition 4.2. Let {λn} be a sequence of positive numbers such that

λn+1/λn → 1 as n → ∞. Suppose that T is hypercyclic. If the set {λnTnx}
is somewhere dense then it is everywhere dense.

Theorem 4.3. Let {λn} be a sequence of positive numbers such that

λn+1/λn → α as n → ∞ for some α > 0. Suppose that for some x ∈ X the

sequence {λnTnx} is somewhere dense.

(i) If

lim
n→∞

λn

αn
= 0

then (0, ε){λnTnx : n = 1, 2, . . .} is dense in X for every 0 < ε < 1.
(ii) If

lim
n→∞

λn

αn
= ∞

then (M,∞){λnTnx : n = 1, 2, . . .} is dense in X for every M > 1.
(iii) If

lim
n→∞

λn

αn
= b

for some b ∈ (0,∞) then {λnTnx : n = 1, 2, . . .} is dense in X,
hence the sequence {λnTn} is hypercyclic.

Proof. Since the proof is similar to the proof of Theorem 2.9 we shall
only sketch it. For every x ∈ X define

Zx = {y ∈ X : ∃nk → ∞, λnk
Tnkx → y}

and let
Wx = Z◦

x,

the interior of Zx. Arguing as in the proof of Lemma 2.4 it is easy to show
that

T (Zx) ⊂
1

α
Zx,

and hence

Tn(Zx) ⊂
1

αn
Zx, ∀n = 1, 2, . . . .

Since the proofs of statements (i), (ii) and (iii) are quite similar we shall
only sketch the proof of (ii). As in Section 2, using the above invariance
property of Zx we can prove the following two lemmata.
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Lemma 4.4. If for some x, y ∈ X, Zx ∩ Zy 6= ∅ then (M,∞)Zx =

(M,∞)Zy for every M > 1.

Proof. Fix M > 1. There exists k ∈ {1, 2, . . .} such that

λkT
kx ∈ Wx ∩ Wy.

Applying T n times we get

λn+kT
n+kx ∈

λn+k

λkαn
Zx ∩

λn+k

λkαn
Zy, ∀n = 1, 2, . . . .

Since limn→∞ λn/αn = ∞, there is n0 ∈ N so that

λn+k

λkαn
> M, ∀n ≥ n0.

Therefore

λn+kT
n+kx ∈ (M,∞)Zx ∩ (M,∞)Zy, ∀n ≥ n0.

Let z ∈ Zx. Then there exists a sequence {nm} of natural numbers such
that nm → ∞ as m → ∞, nm ≥ n0 + k and

λnm
Tnmx → z as m → ∞.

It is plain that

λnm
Tnmx ∈ (M,∞)Zx ∩ (M,∞)Zy, ∀m ∈ N.

Hence z ∈ (M,∞)Zx ∩ (M,∞)Zy, which gives

Zx ⊂ (M,∞)Zx ∩ (M,∞)Zy.

This implies

(M,∞)Zx ⊂ (M,∞)Zx ∩ (M,∞)Zy ⊂ (M,∞)Zy.

In a similar manner it follows that (M,∞)Zy ⊂ (M,∞)Zx and we conclude

(M,∞)Zy = (M,∞)Zx.

Lemma 4.5. If Wx 6= ∅, then (M,∞)Zx = (M,∞)Zλx for every λ ∈
C \ {0} and every M > 1.

The proof of this lemma is exactly the same as that of Lemma 2.11
and is omitted. To finish the proof of (ii) one proceeds as in the proof of
Theorem 2.9. The details are left to the reader.

5. Rotations of Cesàro hypercyclic operators. Recently León-
Saavedra and Müller [24] employing some methods of semigroups of op-
erators showed that if T is a hypercyclic operator acting on a complex Ba-
nach space, then for every λ with |λ| = 1, λT is hypercyclic and HC(T ) =
HC(λT ). This result gave an answer to a question raised by Bès. For re-
lated questions and partial results in this direction we also refer to [14], [11]
and [31]. In connection with Bès’ question and inspired by the notion of
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Cesàro hypercyclicity we investigate whether it is possible to obtain a result
similar to that of León-Saavedra and Müller for more general sequences of
operators. Using in an essential way Cantor’s theorem along with arguments
that have been widely used in connection with hypercyclicity (as Baire’s cat-
egory theorem and invariance of certain sets) we prove the following.

Theorem 5.1. Let X be a topological vector space whose topology is

induced by a complete and translation invariant metric, i.e. X is a Fréchet

space. Fix a complex number λ with |λ| = 1. Let {λn} be a sequence of

positive numbers such that

lim
n→∞

λn+1

λn
= 1

and let T be a continuous linear operator acting on X.

(i) If T is hypercyclic and the sequence {λn(λT )n} is hypercyclic then

so is {λnTn} and

HC({λn(λT )n}) ⊂ HC({λnTn}).

(ii) If λT is hypercyclic and the sequence {λnTn} then so is {λn(λT )n}
is hypercyclic and

HC({λnTn}) ⊂ HC({λn(λT )n}).

Proof. The proofs of (i) and (ii) are similar, hence we shall only prove (i).
The symbol T stands for the set of complex numbers of modulus 1. Define

Kµ,x = {y ∈ X : ∃nk → ∞, λnk
(µT )nkx → y}

for every x ∈ X and every µ with |µ| = 1.

Suppose x ∈ HC({λn(λT )n}). Using a similar argument to the proof of
Lemma 2.1 we get

X = Kλ,x.

It follows that

X = Kλ,x ⊂ TK1,x.

Since T is closed, bounded and bounded away from zero, it is easy to see
that TK1,x ⊂ TK1,x. Hence,

X = TK1,x.

Divide T in two closed subarcs A1, A2 of length π such that T = A1 ∪ A2.
Therefore

X = A1K1,x ∪ A2K1,x

and Baire’s category theorem yields (AiK1,x)◦ 6= ∅ for some i ∈ {1, 2}.
Define

C1 = Ai.
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Using the hypothesis limn→∞ λn+1/λn = 1, one can easily check the T -
invariance of C1K1,x, i.e.

T (C1K1,x) ⊂ C1K1,x.

Since T is hypercyclic and C1K1,x is somewhere dense, there exists z ∈

HC(T ) such that z ∈ C1K1,x. Therefore Orb(T, z) ⊂ C1K1,x, which in turn
implies that

X = C1K1,x.

Divide C1 in two closed subarcs C1,1, C1,2 of length π/2 such that C1 =
C1,1 ∪ C1,2. Using a similar procedure as above we conclude that

X = C1,iK1,x

for some i ∈ {1, 2}. Defining C2 = C1,i it follows that

X = C2K1,x.

Proceeding inductively, we obtain a decreasing sequence {Cn} of closed sub-
arcs of T so that the length of Cn is π/2n−1 and

(11) X = CnK1,x, ∀n = 1, 2, . . . .

By Cantor’s theorem we have
⋂

n Cn = {α} for some α ∈ T. One can easily
verify that

⋂

n

CnK1,x = αK1,x

and using (11) we get X = αK1,x or equivalently X = K1,x. This trivially
implies that

X = {λnTnx : n = 1, 2, . . .},

hence x ∈ HC({λnTn}).

As an application we provide a version of León-Saaevedra and Müller’s
theorem for sequences of operators of the form {λnTn} acting on Fréchet
spaces, under the assumption that T satisfies the hypercyclicity criterion.
This criterion was first discovered by C. Kitai [21] and later rediscovered
by Gethner and Shapiro [16]. Since then there has been a lot of progress on
problems related to this criterion, but the question of whether the hyper-
cyclicity criterion is equivalent to hypercyclicity remains one of the major
open problems in this area. For partial results in this direction and equiv-
alent formulations of the hypercyclicity criterion we refer to [6], [4], [17],
[23], [18].

Let us first recall this criterion.

Hypercyclicity Criterion. Let {Tn} be a sequence of bounded con-
tinuous operators acting on a Fréchet space X. Suppose there exist an in-
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creasing sequence {nk} of positive integers, dense subsets X1, X2 of X and
maps Snk

: X2 → X2 such that

(i) Tnk
x → 0 as k → ∞ for all x ∈ X1,

(ii) Snk
y → 0 as k → ∞ for all y ∈ X2,

(iii) Tnk
Snk

y → y as k → ∞ for all y ∈ X2.

Then the sequence {Tn} is hypercyclic.

In the above criterion if Tn = Tn then we say that T satisfies the hyper-

cyclicity criterion.

Corollary 5.2. Fix a sequence {λn} of positive numbers such that

lim
n→∞

λn+1

λn
= 1.

Let T be a bounded continuous operator acting on a Fréchet space X. If T
satisfies the hypercyclicity criterion and the sequence {λnTn} is hypercyclic,
then for every λ with |λ| = 1 the sequence {λn(λT )n} is hypercyclic and

HC({λnTn}) = HC({λn(λT )n}).

Proof. Fix any λ with |λ| = 1. Then it is obvious that λT satisfies the
hypercyclicity criterion and Theorem 5.1 yields the conclusion.

Corollary 5.3. Let X be a complex Banach space. Fix a sequence {λn}
of positive numbers such that limn→∞ λn+1/λn = 1 and let T be a continuous

linear operator on X. If T is hypercyclic and the sequence {λnTn} is hyper-

cyclic then for every λ with |λ| = 1 the sequence {λn(λT )n} is hypercyclic

and

HC({λnTn}) = HC({λn(λT )n}).

Proof. This is an immediate consequence of Theorem 5.1 and the theo-
rem of León-Saavedra and Müller.

Corollary 5.4.

(i) Let T : l2(N) → l2(N) be a Cesàro hypercyclic unilateral weighted

backward shift. Then for every λ with |λ| = 1, λT is Cesàro hyper-

cyclic and

HC

({

Tn

n

})

= HC

({

(λT )n

n

})

.

(ii) Let T : l2(N) → l2(N) be a unilateral weighted backward shift. Then

for every λ with |λ| = 1 and every r positive integer the sequence

{λn(I + T )n/nr} is hypercyclic and

HC

({

λn(I + T )n

nr

})

= HC

({

(I + T )n

nr

})

.
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Proof. (i) Using Proposition 3.1 in [22] we conclude that for every λ with
|λ| = 1, λT is Cesàro hypercyclic. On the other hand, Corollary 3.3 in [22]
implies that T is also hypercyclic. Hence the requirements of Theorem 5.1
are satisfied and the assertion follows.

(ii) Combine Theorem 4.1 in [22] and Corollary 5.2 above.

We shall give one more application of Theorem 5.1. Recall that H(C) is
the Fréchet space of entire functions endowed with the topology of uniform
convergence on compact subsets of C and T1, D : H(C) → H(C) are the
translation and differentiation operators respectively, defined in Section 2.
We establish the following.

Corollary 5.5. Fix a sequence {λn} of positive numbers such that

lim
n→∞

λn+1

λn
= 1.

Then for every λ with |λ| = 1 the following hold.

(i) HC({λnDn}) = HC({λn(λD)n}).
(ii) HC({λnTn

1 }) = HC({λn(λT1)
n}).

Proof. It is known and easy to see—using the hypercyclicity criterion—
that {λnDn} and {λnTn

1 } are hypercyclic (see for example [3] and also [10],
[5] for further results). Since both D and T1 satisfy the hypercyclicity crite-
rion, Corollary 5.2 gives the desired result.

6. Concluding remarks and open problems. In this section we col-
lect some open problems that arise naturally after the present investigation.
Assume that X is a topological vector space and let T be a continuous linear
operator on X.

Problem 1. If for some x ∈ X the set OrbC(T, x) is somewhere dense,
is it true that it is everywhere dense?

Observe that a positive answer to the above question would imply ver-
sions of Ansari’s theorem [1] and Herrero’s conjecture [11], [29] for Cesàro
hypercyclic operators. For details on this simple implication we refer to [12].
We also note that in a forthcoming paper [13] we prove that the assump-
tion that the sequence {Tn/n} satisfies the hypercyclicity criterion implies
a version of Ansari’s theorem for Cesàro hypercyclic operators.

Problem 2. Suppose that T is Cesàro hypercyclic. Is it true that for

every λ with |λ| = 1 the operator λT is Cesàro hypercyclic and HC({Tn/n})
= HC({λTn/n})?

Finally, we raise a question in connection with the following impressive
result of Read [30]: there exists a continuous linear operator S acting on
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the space l1(N) of absolutely summable sequences such that every non-zero
vector is hypercyclic for S.

Problem 3. Does there exist a continuous linear operator S : l1(N) →
l1(N) so that the set OrbC(S, x) = {n−1Snx : n = 1, 2, . . .} is dense in l1(N)
for every x ∈ l1(N) \ {0}?

Let us mention that in the above problems one may replace the sequence
of weights {n−1} with the sequence {nα} for any real α and ask similar
questions. As a stronger version of Problem 3 we ask the following.

Problem 4. Does there exist a continuous linear operator S : l1(N) →
l1(N) so that the set {nαSnx : n = 1, 2, . . . } is dense in l1(N) for every

x ∈ l1(N) \ {0} and every α ∈ R?
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