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On the functional equation defined
by Lie’s product formula

by

GERD HERzOG and CHRISTOPH SCHMOEGER (Karlsruhe)

Abstract. Let E be a real normed space and A a complex Banach algebra with
unit. We characterize the continuous solutions f : E — A of the functional equation

flz+y) =limno(f(z/n)f(y/n))".

Let A be a complex Banach algebra with unit 1. In this setting the
famous Lie product formula reads

(1) exp(a+b) = lim (exp(a/n) exp(b/n))"  (a,b€ A);

see [4, Theorem VIII.29] for matrices and a proof which also holds for Banach
algebras, and Trotter’s version for semigroups [6].

Let p € A be a projection (that is, p?> = p), and consider the complex
Banach algebra p.Ap which has unit p. The exponential function in p.Ap will
be denoted by exp,,. Now, let £ be a real normed space, let A : £ — pAp
be a continuous and linear mapping (here pAp is considered as a real vector
space), and set

(2) f(z) :=exp,(A(z)) = pexp(A(z))p  (z € E).

As an immediate consequence of (1) the function f is a continuous solution
of the functional equation

(3) fle+y) = lim (f(z/n)f(y/n)"  (z,y € E).
In this paper we prove conversely that all continuous solutions of (3) are of
type (2). More precisely we have

THEOREM 1. Let f : E — A be a continuous function which satisfies (3).
Then p = f(0) is a projection, and there exists a unique continuous linear
mapping A : E — pAp such that

f(z) = expy(A(x)) (v € E).
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In the proof of Theorem 1 we use the following proposition. Note that
o(a) denotes the spectrum of a € A.

PRrROPOSITION 1. Let a,b € A.

(i) If a® =a and o(a) C {0,1}, then a? = a.
(ii) If exp(a) =exp(b) and |a]| <, then ab = ba.
(iii) If exp(ta) =1 (t > 0), then a = 0.

Proof. (i) and (ii) follow from [2, Propositions 8.11 and 18.12], respec-
tively, and (iii) follows by differentiation. m

Proof of Theorem 1.
STEP 1. We have
(4) »=p.
Proof. From (3) we obtain
F(0) = lim f(0)*" = f(0)*= lim f(0)*"** = f(0).

Hence o(f(0)) € {—1,0,1}. Now, assume —1 € o(f(0)). Choose open sets
U,V CCsuchthat UNV =0, -1 € U,and 0,1 € V. Then o(f(0)) CUUV
and o(f(0)) NU # 0. Since f(0)*® — f(0) as n — oo, Theorem 3.4.4 in [1]
proves

o(f0")NT #0
for n sufficiently large. But o(f(0)?") C {0,1} C V, a contradiction. There-
fore o(f(0)) C {0,1} and (4) follows from Proposition 1(i).

STEP 2. We have
() f(z) =pf(x) = fx)p=pflz)p (z € E);
in particular f(z) € pAp (z € E).

Proof. According to (3),

pf(@) = F(0)F(@+0) = F(0) lim (F(z/n)f(0))"
= (lim (£(0)f(2/n))") f(0) = f(0+2)f(0) = f(z)p
for each z € F. Thus,
F@) = fe+0) = lim Fla/n)"f(0)" L tim fle/n)" F(0)!
= (lim f(z/n)"f(0)")f(0) = f(z + 0) ( ) = f(@)p,

and we have (5). In particular, if p = 0 then f(x) =0 (z € E).

STEP 3. Forxz € E and m € N,

(6) f(ma) = fz)™.
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Proof. Note that by (5),

f@) = Jim S@/n)" (€ )
First consider m = 2. Again from (3) we obtain
F(20) = flo+a) = lim fla/n) = lim (f(a/n)")? = f@)"

Now, let m > 2 and suppose f(mz) = f(x)™ (x € E). Then
Flm+ 1)) = Tim (f(ma/n) f(w/n)" = lim (F(a/n)"™ f(z/m)"

= Tim (f(a/n)")"™ = f(2)"

Thus (6) holds by induction.
Next, for each x € E let f, : R — A be defined by

fz(a) :== f(ax).

STEP 4. We have
(7) fa(a) f2(B) = f2(B) fo(c)

Proof. Let x € F and m,n,r,s € N. Now
x

fo(Ur) fo(1/5) = f(a/r)f(x/s) = f<5 E>f<7" ;U_5>
9 5(2) = napnn.

(a, >0, €FE).

Hence

fotimrfetnfs) = £ (m )7 (0 ) & ftafrym ot = fGafs) stafr)”
= f(nf f(m f) = fuln/s) folm/7).

Therefore (7) is valid for «, 5 € QN [0, 00), hence for a, 3 € [0, 00), since f

1S continuous.
STEP 5. We have

fola+0) = fo(@)fz(B)  (a,8 20,z € E).

(8)
Proof. For o, 3 > 0,

e = sore ) i (1(25)1(03))

™ JEEof<O‘ %> f<5 %) D tim f(ax)f(52) = f2(0) fa(5).
STEP 6. The limit
1
o @) = i 20 =)
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exists for each x € E. Moreover

(10) AW epdp  (w € B)

and

(1) flax) =p+ Y2 A (a20)
n=1

Note that in particular for « = 1 we have

(12)  f)=p+y A
n=1

n

= exp,(A(z)) = pexp(A(z))p  (z € E).

Proof. Since f; : [0,00) — A is a continuous solution of the functional
equation in (8), the existence of the limit in (9) and the equation (10) follow
from [3, Theorem 9.4.2]. Now, (10) follows from (5) and (9).

STEP 7. We have
(13) A(fz) = BA(x) (B>0,z€E).
Proof. Obviously (13) holds for § = 0. For 5 > 0,

A(9e) = lim = (f(afz) ~p) = lim 2% (£.(aB) =) = BA()
STEP 8. For x,y € E,
(14) expy(A(z + ) = exp,(A@) + A)),
and
(15) Az +5)(Ax) + A(y)) = (A(z) + A(y)) Az + ).

Proof. Fix x,y € FE and let a > 0. Set
a:=Ala(z+vy)), b:=A(azx)+ Alay).
Then, by Lie’s product formula, and by (12) and (13),
exp,(b) = lim (exp, (A(ax/n)) exp,(A(ay/m))"

2t (/) fay/m)" = flaw +ay)

= exp,(A(az + ay)) = exp,(a).
For a = 1 we obtain (14), and by choosing o > 0 such that
lall = allA(z + )] <,
Proposition 1(ii) proves ab = ba, hence (15).
STEP 9. We have
(16) Aw+y) = Alw) + Ay)  (z.y € B).
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Proof. According to (14) and (15) we have
expy(Az +y) — (Az) + AW) =p (5,9 € B).
Fix z,y € E. By (13),
exp,(t(A(z +y) — (A(x) + AW) =p  (t>0),
and Proposition 1(iii) proves (16).
STEP 10. We have
(17) Alar) = aA(x) (aeR,z e E).
Proof. Fix x € E. Then

exp, (tH(A(z) + A(=2))) © exp, (Atz) + A(—tz)) L exp, (A(ta — tz)) = p

for each t > 0. Again, A(—z) = —A(x) follows from Proposition 1(iii). In
combination with (13) this gives (17).

STEP 11. The linear mapping A : E — pAp is continuous.

Proof. Tt is sufficient to prove that A is continuous at 0. Assume the

contrary. Then there is a sequence (z,) in E with |z,|| = 1 (n € N) and
|A(zp)|| — o0 (n — o0). Set
T, A(zy)
Yn = a7 0 M T QA
3[|A(zn) | 3[|A(zn)||
We have

f(yn) = expp(A(yn)) = expp(zn) = p (0 — 00),
because y, — 0 (n — c0). Since |lexp,(zn) — p|| < 1/2 < 1, we conclude
Zn = logp(expp(zn)) -0 (n— o0),

a contradiction. Here log, denotes the power series
e (_1)k+1
log,(p +a) = ; L a®  (a€pAp, [a] <1).

Finally, concerning the uniqueness of A, let B : E — pAp be a continuous
linear operator such that

f(z) = expy(B(x)) (x € E).

Then
= (flaw) = p) = — (epya(B@) —p) = B) (@ — 04),
According to (9), A(z) = B(z) (x € E). =

As an application of Theorem 1 we may characterize in terms of A those
continuous solutions of (3) which satisfiy the exponential equation of Cauchy

(18) flz+y)=f@)fly) (v,y€E).
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COROLLARY 1. Let f: E — A be a continuous solution of (3), and let
p and A: E — pAp be as in Theorem 1. Then (18) holds if and only if
(19) A(x)A(y) = A(y)A(z)  (z,y € E).

Proof. If (19) holds then clearly

[z +y) = expy(A(z) + A(y)) = exp,(A(x)) exp,(A(y)) = f(z)f(y)
for z,y € F.
Now, let (18) be valid. Then f(x)f(y) = f(y)f(z), hence

expp,(A(z)) exp,(A(y)) = exp,(A(y)) exp,(A(z))  (2,y € E).
Fix z,y € E and let a > 0 be such that
max{|A(az)|, |A(ay)[]} <
According to the result in [5],
Alaz)A(ay) = Alay) A(az),
from which (19) follows. m

REMARK. Theorem 1 is also valid if A is a real Banach algebra with
unit 1. In this case apply the complex version to the complexification Ac
of A and note that p = f(0) € A and that A maps E to pAp according
to (9).

As an example consider £ = R and assume that f : R — A is a contin-
uous solution of (3) with f(0) invertible. Then by Theorem 1, f(0) = 1 and
there is a unique a € A such that

f(z) = exp(za) (z €R).
Here f is a solution of (18).
On the other hand consider E = R? and again assume that f: R? — A

is a continuous solution of (3) with f(0) invertible. Then there exist unique
a,b € A such that

f((x1,22)) = exp(x1a + x2b)  ((z1, x2) € R?).
Here, f is a solution of (18) if and only if ab = ba.
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