
STUDIA MATHEMATICA 182 (3) (2007)

A characterization of the invertible measures

by

A. Ülger (Istanbul)

Abstract. Let G be a locally compact abelian group and M(G) its measure algebra.
Two measures µ and λ are said to be equivalent if there exists an invertible measure ̟

such that ̟∗µ = λ. The main result of this note is the following: A measure µ is invertible
iff |µ̂| ≥ ε on Ĝ for some ε > 0 and µ is equivalent to a measure λ of the form λ = a + θ,
where a ∈ L1(G) and θ ∈ M(G) is an idempotent measure.

Introduction. Let G be a locally compact abelian group equipped with
its Haar measure, L1(G) its group algebra and M(G) its measure algebra,
the multiplication being the convolution. This note concerns the question
when a given measure µ ∈ M(G) is invertible. As is well-known, an element
of a commutative unital Banach algebra is invertible iff the Gelfand trans-
form of that element does not vanish on the Gelfand spectrum of the algebra.
Suppose now that G is not discrete. Then the Gelfand spectrum of the alge-
bra M(G) is of the form ∆(M(G)) = Ĝ∪H, where Ĝ is the dual group of G
and H is the hull of L1(G) considered as an ideal in M(G). A classical phe-
nomenon known as the “Wiener–Pitt phenomenon” [Ru; 5.3.4] says that the

closure of the set Ĝ is not dense in the Gelfand spectrum of M(G). In other

words, for a measure µ ∈ M(G) to be invertible, the condition “|µ̂| ≥ ε on Ĝ
for some ε > 0” is necessary but far from being sufficient. On the other hand,
a characterization of the invertible elements of the algebra M(G) involving a

part of its Gelfand spectrum larger than the closure of Ĝ in ∆(M(G)) is not
considered to be a good characterization. Thus we are faced with a dilemma:
How to characterize the invertible elements of the algebra M(G) without in-

volving the unattainable part, H \ Ĝ, of its Gelfand spectrum? As far as we
know, no such characterization has appeared in the literature. We propose
here such a characterization. The main ingredient of the proof of the theo-
rem we have stated in the abstract is a deep result due essentially to B. Host
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and F. Parreau [Ho-Pa], known as the Glicksberg–Host–Parreau theorem,
which states that for a measure µ ∈ M(G), the ideal µ ∗ L1(G) is closed in
L1(G) iff µ is equivalent to an idempotent measure. In Section 2 we present
a similar characterization of the invertible elements of the Fourier–Stieltjes
algebra B(G) of a locally compact amenable group G. For the proof of this
result our main ingredient is the analogue of the Glicksberg–Host–Parreau
theorem proved for the Fourier algebra A(G) of an amenable locally com-
pact group G in [Ü]. In the third section these results are extended to some
abstract Banach algebras. Our notation and terminology are quite standard
and follow the book of W. Rudin [Ru]. Some other notation and terminology
will be introduced as and where needed.

1. Invertible measures. Let G be a locally compact abelian group
equipped with its Haar measure, L1(G) its group algebra and M(G) its
measure algebra. We shall say that two measures µ and λ are equivalent if
there exists an invertible measure ̟ ∈ M(G) such that ̟ ∗ µ = λ. This is
indeed an equivalence relation on the algebra M(G).

We start by recalling the Glicksberg–Host–Parreau theorem.

Theorem 1.1. Let µ ∈ M(G). The ideal µ ∗ L1(G) is closed in L1(G)
iff µ is equivalent to an idempotent measure.

We shall use this theorem in the following form.

Corollary 1.2. For a noninvertible measure µ ∈ M(G), the ideal µ ∗
L1(G) is closed in L1(G) iff zero is an isolated point of the spectrum σ(µ)
of µ.

Proof. If the ideal µ ∗ L1(G) is closed in L1(G) then, by the preceding
theorem, µ is equivalent to an idempotent measure so that zero is an isolated
point of σ(µ). Conversely, if zero is an isolated point of σ(µ) then, by [Lau-
Mb; Theorem 10] or [Ko; Proposition A], the ideal µ ∗ L1(G) is closed in
L1(G).

Before stating the first main result of the paper, let us recall once more
(since we shall use it below) that the Gelfand spectrum ∆(M(G)) of the

Banach algebra M(G) is of the form ∆(M(G)) = Ĝ ∪ H, where H is the
hull of the ideal L1(G) in the algebra M(G). We identify (via the Radon–
Nikodym theorem) the elements of L1(G) with the measures in M(G) that
are absolutely continuous with respect to the Haar measure of G.

Theorem 1.3. A measure µ ∈ M(G) is invertible iff |µ̂| ≥ ε on Ĝ for

some ε > 0 and µ is equivalent to a measure λ of the form λ = a + θ, where

a ∈ L1(G) and θ ∈ M(G) is an idempotent measure.
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Proof. Suppose first that µ is invertible. Then of course |µ̂| ≥ ε on Ĝ for
some ε > 0. Also µ, being invertible, is equivalent to the identity element δe

(the Dirac measure at the unit element e of G) of the algebra M(G), which
is an idempotent. So µ is equivalent to the measure λ = 0 + δe, where 0 is
the zero element of L1(G).

Conversely, suppose that |µ̂| ≥ ε on Ĝ for some ε > 0 and that µ is
equivalent to λ = a + θ, where a ∈ L1(G) and θ is an idempotent measure.
We want to prove that 0 6∈ σ(µ). Towards a contradiction, assume that
0 ∈ σ(µ). There are two possibilities: either zero is an isolated point of σ(µ)
or an accumulation point of it. If zero is an isolated point of σ(µ) then,
by the preceding corollary, the ideal µ ∗ L1(G) is closed in L1(G). So, by
the Glicksberg–Host–Parreau theorem, µ = ν ∗ ̺ with ν idempotent and ̺
invertible. Since |µ̂| ≥ ε on Ĝ, we must have |ν̂| ≥ δ on Ĝ for some δ > 0.

Since ν is an idempotent and |ν̂| ≥ δ on Ĝ, the multiplier T : L1(G) →
L1(G), defined by T (a) = ν ∗ a, is bijective. Hence T is invertible. This is
equivalent to saying that ν is invertible. Then µ = ν ∗ ̺ is invertible, which
contradicts the assumption that 0 ∈ σ(µ).

Now assume that zero is an accumulation point of σ(µ). Then, since
σ(µ) = µ̂(∆(M(G))), where µ̂ is the Gelfand transform of µ, there must
exist a sequence (γn)n∈N in ∆(M(G)) such that, for each integer n ∈ N,

µ̂(γn) 6= 0 and µ̂(γn) → 0 as n → ∞. Since |µ̂| ≥ ε on Ĝ, all but finitely

many γn’s must be in H. As µ = a + θ, we must have µ̂(γn) = θ̂(γn) 6= 0

for all n ∈ N. As θ is an idempotent, θ̂(γn) = 1 whenever θ̂(γn) 6= 0. Thus

θ̂(γn) = 1 for all but finitely many n ∈ N and θ̂(γn) = µ̂(γn) → 0 as n → ∞,
which is not possible.

It follows that 0 /∈ σ(µ), and so µ is invertible.

Thus, up to equivalence, a measure µ ∈ M(G) satisfying the condition
“δ(µ) = inf

γ∈Ĝ
|µ̂(γ)| > 0” is invertible iff it is a perturbation of an idem-

potent measure by an element of L1(G). We recall that, as proved in [Ha],
if G is not compact, then every measure µ ∈ M(G) can be decomposed as

µ = a + λ, where a ∈ L1(G) and λ has natural spectrum, i.e. σ(λ) = λ̂(Ĝ).
So if λ is equivalent to an idempotent measure then µ is equivalent to a
measure of the form b + θ with b ∈ L1(G) and θ ∈ M(G) idempotent. We
also recall that the idempotent elements of M(G) are known in the sense
that for θ ∈ M(G) to be an idempotent measure it is necessary and sufficient

that the Fourier–Stieltjes transform θ̂ of θ be the characteristic function of
a set E belonging to the coset ring ℜ(Ĝ) of Ĝ generated by the cosets of the

open subgroups of Ĝ [Co]. In particular, if Ĝ is connected then a measure
µ ∈ M(G) is invertible iff δ(µ) > 0 and µ is equivalent to a measure of the
form λ = a + δe, where a ∈ L1(G).
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Without using the above equivalence relation, Theorem 1.3 above can
be restated as follows.

Theorem 1.4. A measure µ∈M(G) is invertible iff δ(µ) = inf
γ∈Ĝ

|µ̂(γ)|

> 0 and µ = a + λ, where a ∈ L1(G) and λ ∈ M(G) is such that the ideal

λ ∗ L1(G) is closed in L1(G).

2. Invertible elements of the Fourier–Stieltjes algebras B(G).
Let G be a locally compact group. In [Ey] P. Eymard associated to G two
Banach algebras, A(G) and B(G), known as the Fourier algebra and Fourier–
Stieltjes algebra of G, respectively. These are commutative semisimple Ba-
nach function algebras with pointwise multiplication. The algebra B(G) is
always unital whereas A(G) is unital only if G is compact, in which case
A(G) = B(G). As sets, A(G) ⊆ C0(G) and B(G) ⊆ Cb(G), the space of
continuous bounded functions u : G → C. For the properties of these alge-
bras we refer the reader to the seminal paper of P. Eymard [Ey] and to the
book [Pi] of J.-P. Pier. Let us just mention that: 1) The algebra A(G) has a
BAI (= bounded approximate identity) iff G is amenable. 2) A(G) is a closed
ideal of B(G). 3) The Gelfand spectrum of A(G) is G and each γ ∈ G acts as
a Dirac measure on the elements of A(G). 4) If G is amenable, then B(G) is

the multiplier algebra of A(G). 5) If G is commutative, then A(G) = L1(Ĝ)

(via Fourier transform) and B(G) = M(Ĝ) (via Fourier–Stieltjes transform).

As above, we shall say that two elements u and v of the algebra B(G)
are equivalent if, for some invertible element p of B(G), we have u = p.v.

Throughout this section G will be a locally compact amenable group. We
shall need the following result proved in [Ü; Theorem 2.7 or Corollary 3.8].

Theorem 2.1. Let u ∈ B(G) be a given element. Then the ideal u.A(G)
= {u.a : a ∈ A(G)} is closed in A(G) iff u is equivalent to an idempotent

element of B(G).

At this point we recall that an element p of B(G) is equivalent to an
idempotent element of B(G) iff, as in the commutative case, the set E =
{γ ∈ G : p(γ) 6= 0} belongs to the coset ring ℜ(G) of the group G generated
by the cosets of the open subgroups of G [Ho].

The proof of Corollary 1.2 above shows that the following analogue
of that corollary also holds for the algebra A(G) since Theorem 10 of [Lau-
Mb] that we have used to prove Corollary 1.2 is valid for any semisimple
Banach algebra.

Corollary 2.2. For a noninvertible element u∈B(G), the ideal u.A(G)
is closed in A(G) iff zero is an isolated point of the spectrum σ(u) of u.
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The proof of the next theorem, which is the second main result of this
note, is just an adaptation of the proof of Theorem 1.3 above. For this reason
we shall omit it.

Theorem 2.3. An element u of B(G) is invertible iff |u| ≥ ε on G for

some ε > 0 and u is equivalent to an element v of the form v = a+θ, where

a ∈ A(G) and θ is an idempotent element of B(G).

We could deduce Theorem 1.3 from the preceding theorem since the
proof of Theorem 2.1 above is completely independent of the proof of the
Glicksberg–Host–Parreau theorem. We preferred to present Theorem 1.3 and
Theorem 2.3 separately essentially for two reasons. First, the Glicksberg–
Host–Parreau theorem is a famous theorem of historical importance; we
could not bypass it. Secondly, the measure algebra M(G) is an object better
known than the Fourier–Stieltjes algebra B(G) of an amenable group G. This
is also the reason for the choice of the paper’s title.

3. The case of some abstract Banach algebras. We proceed, con-
trary to the general tendency in mathematics, from the concrete to the
abstract; we think that this approach is more pedagogical. Moreover, the
abstract result presented below does not cover the main results of the pre-
ceding sections. The essential reason is that the analogue of the Glicksberg–
Host–Parreau theorem is not valid for general commutative semisimple Ba-
nach algebras. For instance, if A is the classical disk algebra and u(z) = z
then the ideal u.A = {a ∈ A : a(0) = 0} is closed in A but u is not
equivalent to an idempotent element of this algebra since u is not invertible
and the only idempotent element of A is its identity. The class of Banach
algebras we are interested in in this section is the class of commutative semi-
simple Tauberian Banach algebras A with a BAI and with discrete spectrum.
The term “Tauberian” means that the set {a ∈ A : supp â is compact} is
norm dense in A. For instance, any quotient algebra of L1(G) (G com-
pact abelian) and the algebras c0, c0 ⊗̂ c0, c0 ⊗̂A(G) (G discrete amenable)
belong to this class. The essential fact about Banach algebras belonging
to this class is that the analogue of the Glicksberg–Host–Parreau theorem
holds for them.

In this section, A will denote a commutative semisimple Tauberian
Banach algebra with a BAI and discrete spectrum. We recall that a lin-
ear operator T : A → A is said to be a multiplier if T (ab) = aT (b) for
all a and b in A. The space M(A) of multipliers of A, under the operator
norm and the composition of operators, is a commutative semisimple unital
Banach algebra [La]. As above we shall say that two multipliers T and S in
M(A) are equivalent iff R ◦ T = S for some invertible element R of M(A).
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For a ∈ A, La : A → A is the multiplier defined by La(b) = ab. The following
result is proved in [Ü; Theorem 3.9].

Theorem 3.1. A multiplier T : A → A has a closed range iff T is

equivalent to an idempotent multiplier.

The proofs of the following two results are the same as the proofs of their
counterparts in Section 1. For that reason we state them without proof.

Corollary 3.2. The range of a noninvertible multiplier T : A → A is

closed in A iff zero is an isolated point of σ(T ).

Theorem 3.3. A multiplier T ∈ M(A) is invertible iff |T̂ | ≥ ε on ∆(A)
for some ε > 0 and T is equivalent to a multiplier of the form T = La + θ,
where a ∈ A and θ ∈ M(A) is idempotent.

From the results presented above it is clear that, if A is any commu-
tative semisimple Banach algebra with a BAI for which the analogue of
the Glicksberg–Host–Parreau theorem holds, then the exact analogue of the
preceding theorem holds for the multipliers of this algebra. The charac-
terization of the commutative Banach algebras with a BAI for which the
analogue of the Glicksberg–Host–Parreau theorem holds seems to be an
open problem. For some examples of Banach algebras for which the ana-
logue of the Glicksberg–Host–Parreau theorem holds we refer the reader to
the paper [Ü].
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