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John–Nirenberg lemmas for a doubling measure

by

Daniel Aalto (Helsinki and Åbo), Lauri Berkovits (Oulu),
Outi Elina Kansanen (Stockholm) and Hong Yue (Angola, IN)

Abstract. We study, in the context of doubling metric measure spaces, a class of
BMO type functions defined by John and Nirenberg. In particular, we present a new
version of the Calderón–Zygmund decomposition in metric spaces and use it to prove the
corresponding John–Nirenberg inequality.

1. Introduction. Besides the well known class BMO of functions of
bounded mean oscillation, F. John and L. Nirenberg defined another, larger
class of functions in their paper [11]. We call this space the John–Nirenberg
space with exponent p and write JNp. Whereas the classical John–Nirenberg
lemma shows that any function of bounded mean oscillation has exponen-
tially decaying distribution function, any function in JNp belongs to weak Lp.

Unlike BMO, the John–Nirenberg space has not been systematically
studied. In this paper we generalize the definition to doubling metric mea-
sure spaces by replacing the cubes in the original definition by metric space
balls, and, in particular, prove the John–Nirenberg lemma for JNp in this
setting. We also study properties of this space; for example, we show that
every p-integrable function is in the John–Nirenberg space with the same
exponent, and we provide an example of a function in the weak Lp that is
not a John–Nirenberg function.

In the Euclidean case there are a few proofs of the John–Nirenberg in-
equality for JNp. The original proof in [11], based on an induction argument,
can be found with more details in [8] and [7]. There is an alternative proof
on the real line: see [18]. We present here a new proof in the Euclidean
case, which is more straightforward than the original argument. The proof
is based on iterating a suitable good-λ inequality. It is interesting that this
proof generalizes directly to the setting of doubling metric measure spaces
via dyadic sets defined by M. Christ; see [1] or [3] for the definition.
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To prove the John–Nirenberg inequality for JNp in the metric case we
have adapted ideas from A. P. Calderón’s proof of the classical John–Niren-
berg lemma for BMO in the Euclidean setting in [16], and from the aforemen-
tioned proof in [18]. To this end, we present a new version of the Calderón–
Zygmund decomposition in metric spaces. The advantage of this version is
that we are able to iterate it efficiently, which is not trivial in the metric
setting. We also get both lower and upper bounds for mean values over the
decomposition balls. Existence of a doubling measure is the only assumption
we need to impose on the space.

Calderón’s method is remarkably flexible as illustrated by a simplified
proof of the so-called parabolic John–Nirenberg inequality by E. Fabes and
N. Garofalo; see [5]. To further demonstrate this flexibility of Calderón’s
technique and the use of our decomposition lemma we also give a new proof
of the classical John–Nirenberg lemma for BMO in doubling metric mea-
sure spaces. The lemma has previously been generalized to doubling metric
measure spaces, for example, in [12], [2], [14], [15].

Addendum. After the paper had been accepted, the authors learned
that the results in [6] and [13] can also be applied for the class JNp. For
similar results in Orlicz spaces, see [9].

2. Doubling metric measure spaces. Let (X, d, µ) be a metric space
endowed with a metric d and a Borel regular measure µ. We assume that
an open ball always comes with a center and a radius, i.e.

B = B(x, r) = {y ∈ X : d(y, x) < r}.

We denote by λB the λ-dilate of B, that is, the ball with the same center
as B but λ times its radius. We assume that µ is doubling, i.e. all open balls
have positive and finite measure whenever r > 0 and there exists a constant
cµ ≥ 1, called the doubling constant of µ, so that

µ(2B) ≤ cµµ(B) for all B in X.

The doubling condition implies a covering theorem, sometimes referred
to as the Vitali covering theorem. Indeed, given any collection of balls with
uniformly bounded radius, there exists a pairwise disjoint, countable sub-
collection of balls whose 5-dilates cover the union of the original collection.
This theorem implies Lebesgue’s differentiation theorem, which guarantees
that any locally integrable function can be approximated at almost every
point by integral averages of the function over a contracting sequence of
balls.

The Hardy–Littlewood maximal function Mf of a locally integrable func-
tion f is defined for every x ∈ X by



John–Nirenberg lemmas 23

Mf(x) = sup
B3x

�

B

|f | dµ,

where
fB =

�

B

f dµ =
1

µ(B)

�

B

f dµ,

and the supremum is taken over all balls containing x. The Hardy–Littlewood
maximal function satisfies

(2.1) ‖Mf‖p ≤ c(p, µ)‖f‖p
for every f ∈ Lp(X) with 1 < p ≤ ∞. For the proof of (2.1), the Vitali
covering theorem and further information on metric spaces, see, for example,
[10] or [4].

3. The second John–Nirenberg inequality for a doubling mea-
sure. We begin by recalling the definition of the John–Nirenberg space in
the Euclidean case; see [11]. Let Q0 be a cube in Rn and 1 ≤ p < ∞. An
integrable function f defined on Q0 belongs to JNp(Q0), the John–Nirenberg
space with exponent p, if there exists Kf <∞ such that

(3.1)
∑
i

|Qi|
[ �

Qi

|f − fQi | dx
]p
≤ Kp

f

independent of the family {Qi}∞i=1, where Qi are subcubes of Q0 such that⋃
Qi = Q0 and the interiors of Qi are disjoint.
Observe that the definition in terms of cubes can be directly generalized

in metric spaces. Indeed, the dyadic structure of the Euclidean cubes can
be transferred to a doubling metric measure space using Christ’s construc-
tion [3]. Then the natural definition is in terms of these dyadic sets. However,
the definition of JNp in a doubling metric measure space is most natural in
terms of balls. Balls cannot be organized in a simple dyadic way in nested
generations as cubes in Rn and we have thus chosen to define the space JNp

so that the definition is compatible with the Vitali covering theorem.

Definition 3.2. Let (X, d, µ) be a metric measure space, 1 < p < ∞
and B0 ⊂ X be a ball. Let f be a locally integrable function defined on
11B0. We say that f belongs to the John–Nirenberg space with exponent p,
and we write f ∈ JNp(B0), if there exists Kf <∞ such that∑

i

µ(Bi)
( �

Bi

|f − fBi | dµ
)p
≤ Kp

f

whenever {Bi} is a countable collection of balls centered at B0 and contained
in 11B0 with the property that the balls 1

5Bi are pairwise disjoint. We will
call the smallest possible constant Kf the JNp norm of f .
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Remark 3.3. Observe that JNp is a generalization of BMO. Indeed,
it follows directly from the definitions that a function is of bounded mean
oscillation if and only if its JNp norm is bounded as p tends to infinity.

The next result shows that there are plenty of functions in John–Niren-
berg spaces.

Proposition 3.4. Let 1 < p < ∞ and f ∈ Lp(11B0). Then f ∈
JNp(B0).

Proof. Let Bi be a family of balls that is admissible in the definition
of JNp(B0). Write B′i = 1

5Bi for the disjoint balls. We know that for every
ball Bi, �

B′i

Mf dµ ≥ inf
x∈B′i

Mf(x) ≥
�

Bi

|f | dµ.

Hence, ∑
i

µ(Bi)
( �

Bi

|f − fBi | dµ
)p
≤ 2pc3µ

∑
i

µ(B′i)
( �

B′i

Mf dµ
)p
.

Now by Hölder’s inequality

µ(B′i)
( �

B′i

Mf dµ
)p
≤

�

B′i

(Mf)p dµ,

and by the disjointness of the balls B′i and the boundedness of the maximal
operator we have∑

i

�

B′i

(Mf)p dµ ≤
�

11B0

(Mf)p dµ ≤ c
�

11B0

|f |p dµ,

which is finite by assumption. This completes the proof.

Notice that in Rn Proposition 3.4 follows from the definition simply by
using the Hölder inequality.

The John–Nirenberg inequality for JNp(Q0) shows that it is contained
in weak Lp(Q0). The following one-dimensional example shows that the
inclusion is strict.

Example 3.5. Consider the function f(x) = x−1/p on Q0 = (0, 2) with
p > 1. It is clear that this function belongs to weak Lp(Q0). Let us partition
the interval Q0 as Qj = (2−j , 21−j), where j = 0, 1, . . . , to see that (3.1) fails.
A simple change of variable x = 2−jy shows that fQj = 2j/pfQ0 . Similarly,
we set I = |f − fQ0 |Q0 and conclude that |f − fQj |Qj = 2j/pI. Hence, the
sum in (3.1) diverges.

The following theorem is our main result.
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Theorem 3.6. If f ∈ JNp(B0), then

(3.7) µ({x ∈ B0 : |f(x)− fB0 | > λ}) ≤ C(Kf/λ)p,

where C only depends on p and the doubling constant.

To prove the theorem we need two lemmas. The first one is a Calderón–
Zygmund decomposition lemma and the second one is a good-λ-type in-
equality. The key idea behind the proof of Theorem 3.6 stems from the
method used in [16].

Lemma 3.8. Let f be a non-negative locally integrable function on X.
Fix a ball B0 = B(x0, R) and assume that

λ0 ≥
1

µ(B0)

�

11B0

f dµ.

Then there exists a countable, possibly finite, family {Bi}i of disjoint balls
centered in B0 and satisfying 5Bi ⊂ 11B0 such that

(i) f(x) ≤ λ0 for µ-a.e. x ∈ B0 \
⋃
i 5Bi,

(ii) λ0 <
�
Bi
f ≤ c3µλ0,

(iii) c−3
µ λ0 <

�
5Bi

f ≤ λ0.

The balls satisfying the above conditions are called Calderón–Zygmund balls
at level λ0. Moreover, if λ0 ≤ λ1 ≤ · · · ≤ λN , then the Calderón–Zygmund
balls corresponding to different levels λn may be chosen in such a way that
each Bi(λn+1) is contained in some 5Bj(λn).

Proof. Define a maximal function

MB0f(x) = sup
B3x
B⊂B0

�

B

f dµ,

where the supremum is taken over all balls containing x and included in B0.
Write

Eλ = {x ∈ B0 : MB0f(x) > λ}.

Let us first consider λN to show how the balls are chosen. By the defi-
nition of MB0f , for every x ∈ EλN

there exists a ball Bx with x ∈ Bx ⊂ B0

and

(3.9) λ0 ≤ · · · ≤ λN <
�

Bx

f dµ.

We now take a look at the balls 5kBx, where k ∈ Z+. Note that if a ball B
satisfies B0 ⊂ B ⊂ 11B0, then by the choice of λN , we have

�

B

f dµ ≤ 1
µ(B0)

�

11B0

f dµ ≤ λ0 ≤ λN .
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If Bx has radius r, take k such that 5k−1r ≤ 2R < 5kr. Then B0 ⊂ 5kBx ⊂
11B0 and the average of f over 5kBx is at most λN . Consequently, there
exists a smallest n = nx ≥ 1 such that

(3.10)
�

5nBx

f dµ ≤ λN .

Then

(3.11) λN <
�

5jBx

f dµ

for all j = 0, 1, . . . , n− 1.
Consider the balls 5nx−1Bx. They form a covering of EλN

and by the Vi-
tali covering theorem we may pick a countable subfamily of pairwise disjoint
balls Bi = 5nxi−1Bxi with

EλN
⊂
∞⋃
i=1

5Bi.

The balls Bi have the required properties. Indeed, by (3.10) and (3.11), we
have

(3.12) λN <
�

5n−1Bx

f dµ ≤ c3µ
�

5nBx

f dµ ≤ c3µλN ,

thus proving (ii). Since 5Bi = 5nBxi , the first inequality in (iii) has already
been proved in (3.12), while the second inequality is just (3.10).

It remains to prove (i). We have

B0 \
∞⋃
i=1

5Bi ⊂ B0 \ EλN
.

This implies that MB0f(x) ≤ λN for µ-a.e. x ∈ B0 \
⋃
i 5Bi, from which we

get (i) by Lebesgue’s differentiation theorem.
We have now constructed the desired decomposition at level λN and turn

to λN−1. Since EλN
⊂ EλN−1

, for every x ∈ EλN
we may start from exactly

the same ball Bx satisfying (3.9) as before. For every x ∈ EλN−1
\ EλN

we
take a ball Bx with x ∈ Bx ⊂ B0 and

(3.13) λ0 ≤ · · · ≤ λN−1 <
�

Bx

f dµ.

Now for each ball Bx choose the smallest m = mx ≥ 1 satisfying

(3.14)
�

5mBx

f dµ ≤ λN−1.

Notice that if Bx is a ball corresponding to an x ∈ EλN
, then n ≤ m (here n

is from (3.10)). Then apply Vitali’s theorem to the balls 5m−1Bx to obtain
a family of balls satisfying conditions (i)–(iii) with λ0 replaced by λN−1.
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Now let Bi(λN ) by any of the Calderón–Zygmund balls corresponding
to λN . Then Bi(λN ) = 5n−1Bxi for some xi ∈ EλN

and Bi(λN ) ⊂ 5m−1Bxi

(because n ≤ m). The ball 5m−1Bxi is not necessarily a Calderón–Zygmund
ball corresponding to the level λN−1, but it is one of the balls in the col-
lection from which the Calderón–Zygmund balls were extracted. Vitali’s
theorem shows that 5m−1Bxi is contained in a 5-dilate of some of them, say,
Bj(λN−1). Then Bi(λN ) ⊂ 5Bj(λN−1).

We continue this procedure. Next, we consider EλN−2
. For x ∈ EλN

we
take the same ball Bx which we used in the first step. For x ∈ EλN−1

\EλN

we use the same ball Bx which we used in the second step. For every x ∈
EλN−2

\ EλN−1
we take a ball Bx with x ∈ Bx ⊂ B0 and

(3.15) λ0 ≤ · · · ≤ λN−2 <
�

Bx

f dµ

and proceed as previously.

Lemma 3.16. Assume f ∈ JNp(B0) and

λ ≥ 1
µ(B0)

�

11B0

|f − fB0 | dµ.

Consider Calderón–Zygmund balls {Bi(λ)}i and {Bj(2λ)}j for the function
|f − fB0 | at levels λ and 2λ, respectively. Suppose that each Bi(2λ) is con-
tained in some 5Bj(λ). Then

(3.17)
∑
j

µ(Bj(2λ)) ≤
c
3/q
µ Kf

λ

(∑
i

µ(Bi(λ))
)1/q

,

where q is the conjugate exponent of p, that is, 1/p+ 1/q = 1.

Proof. We may assume Kf = 1 and fB0 = 0. We partition the family
{Bj(2λ)}j as follows. First collect those balls which are contained in 5B1(λ).
From the remaining balls we collect those which are contained in 5B2(λ) and
continue similarly. In other words,

{Bj(2λ)}j =
⋃
i

{Bj(2λ)}j∈Ji ,

where

J1 = {j : Bj(2λ) ⊂ 5B1(λ)},
J2 = {j : Bj(2λ) ⊂ 5B2(λ), j /∈ J1},
J3 = {j : Bj(2λ) ⊂ 5B3(λ), j /∈ J1 ∪ J2},

...
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We have

(3.18) 2λ
∑
j

µ(Bj(2λ)) ≤
∑
j

�

Bj(2λ)

|f | dµ =
∑
i

∑
j∈Ji

�

Bj(2λ)

|f | dµ,

where ∑
j∈Ji

�

Bj(2λ)

|f | dµ ≤
∑
j∈Ji

�

Bj(2λ)

∣∣|f |+ λ− |f5Bi(λ)|
∣∣ dµ

≤
∑
j∈Ji

�

Bj(2λ)

|f − f5Bi(λ)| dµ+
∑
j∈Ji

�

Bj(2λ)

λ dµ

≤
�

5Bi(λ)

|f − f5Bi(λ)| dµ+ λ
∑
j∈Ji

µ(Bj(2λ)).

Now we sum over i to obtain

2λ
∑
j

µ(Bj(2λ)) ≤
∑
i

�

5Bi(λ)

|f − f5Bi(λ)| dµ+ λ
∑
j

µ(Bj(2λ)).

By Hölder’s inequality and the normalization Kf = 1 we get∑
i

�

5Bi(λ)

|f − f5Bi(λ)| dµ

=
∑
i

µ(5Bi(λ))1/qµ(5Bi(λ))−1/q
�

5Bi(λ)

|f − f5Bi(λ)| dµ

≤
(∑

i

µ(5Bi(λ))
)1/q(∑

i

µ(5Bi(λ))−p/q
( �

5Bi(λ)

|f − f5Bi(λ)| dµ
)p)1/p

≤ c3/qµ

(∑
i

µ(Bi(λ))
)1/q

,

whence

2λ
∑
j

µ(Bj(2λ)) ≤ c3/qµ

(∑
i

µ(Bi(λ))
)1/q

+ λ
∑
j

µ(Bj(2λ)).

This finishes the proof.

Proof of Theorem 3.6. We wish to iterate the estimate (3.17). We still
assume Kf = 1 and fB0 = 0, whence

µ(B0)
( �

B0

|f | dµ
)p
≤ 1 and µ(11B0)

( �

11B0

|f − f11B0 | dµ
)p
≤ 1.
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Therefore,

1
µ(B0)

�

11B0

|f | dµ ≤ c4µ
�

11B0

|f − f11B0 | dµ+ c4µ

�

B0

|f11B0 | dµ

≤
c4µ

µ(11B0)1/p
+ c4µ

�

B0

|f − f11B0 | dµ+ c4µ

�

B0

|f | dµ

≤
c4µ

µ(B0)1/p
+ c8µ

�

11B0

|f − f11B0 | dµ+
c4µ

µ(B0)1/p

≤ C1

µ(B0)1/p
,

where C1 = 3c8µ. We choose

λ0 =
C1

µ(B0)1/p
.

Now let λ > λ0 and take N ∈ Z+ such that

(3.19) 2Nλ0 < λ ≤ 2N+1λ0.

Then apply the decomposition lemma at levels λ0 < 2λ0 < 22λ < · · · < 2Nλ
to obtain N + 1 families of Calderón–Zygmund balls. Observe that for n =
0, 1, . . . , N − 1 each Bi(2n+1λ) is contained in some 5Bj(2nλ).

First notice that

µ({x ∈ B0 : |f(x)| > λ}) ≤ µ({x ∈ B0 : |f(x)| > 2Nλ0})

≤
∑
j

µ(5Bj(2Nλ0)) ≤ c3µ
∑
j

µ(Bj(2Nλ0)).

Then use (3.17) and the fact that

1 + q−1 + · · ·+ q−(N−1) = p− pq−N

to estimate∑
j

µ(Bj(2Nλ0)) ≤ c
3/q
µ

2N−1λ0

(
c
3/q
µ

2N−2λ0

)1/q( c
3/q
µ

2N−3λ0

)1/q2

· . . .

·
(
c
3/q
µ

20λ0

)1/qN−1

·
(

1
λ0

�

11B0

|f | dµ
)q−N

=
c3q
−1+···+3q−N

µ

g(N)
·
(

1
λ0

)p−pq−N

·
(

1
λ0

�

11B0

|f | dµ
)q−N

.
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Here g(1) = 1 and for N ≥ 2,

1
g(N)

=
2q
−1+2q−2+···+(N−1)q−(N−1)

2(N−1)(p−pq−N )
.

We have the estimate

c3q
−1+···+3q−N

µ

g(N)
≤ C

2(N−1)p
,

where the constant C only depends on p and the doubling constant.
Moreover, the choice of λ0 gives(

1
λ0

)−pq−N

·
(

1
λ0

�

11B0

|f | dµ
)q−N

≤
(

Cp1
µ(B0)

)q−N

·µ(B0)q
−N

=Cpq
−N

1 ≤Cpq1 .

Now combine the previous estimates and use (3.19) to get

µ({x ∈ B0 : |f(x)| > λ}) ≤ C

2(N−1)p

(
1
λ0

)p
=

C

(2N−1λ0)p
≤ C

λp
.

Here C is a constant depending only on p and on the doubling constant. For
0 < λ < λ0 we use the trivial estimate

µ({x ∈ B0 : |f(x)| > λ}) ≤ µ(B0) =
Cp1
λp0
≤ Cp1
λp
.

4. Euclidean case. In this section we give a new proof for the second
John–Nirenberg inequality in Rn. See Lemma 3 in [11].

Theorem 4.1 (John–Nirenberg inequality II). If f is a function satisfy-
ing (3.1), then f −fQ0 is in weak Lp(Q0), i.e., there exists C > 0 depending
only on n and p such that

(4.2) |{x ∈ Q0 : |f(x)− fQ0 | > λ}| ≤ C(Kf/λ)p

for all λ > 0.

Let Q be a cube in Rn with sides parallel to the coordinate axes, and
denote by |S| the Lebesgue measure of a set S. The dyadic maximal function
of f is defined as

(4.3) Mdf(x) = sup
Q3x

�

Q

|f(y)| dy,

where the supremum is taken over all dyadic cubes Q containing x. More-
over, for λ > 0 we define EQ(λ) = {x ∈ Q : Mdf(x) > λ}.

We recall a decomposition lemma; see [17, Chapter IV, Section 3.1].

Lemma 4.4. Let Q0 be a cube and let f ∈ L1(Q0). Suppose that�

Q0

|f(x)| dx ≤ λ.
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Then EQ0(λ) =
⋃∞
k=1Qk, where {Qk} is a collection of cubes whose interiors

are disjoint, such that

(i) |f(x)| ≤ λ for a.e. x ∈ Q0 \
⋃∞
k=1Qk,

(ii) λ <
�
Q |f(x)| dx ≤ 2nλ for all Q in the collection {Qk},

(iii) |EQ0(λ)| ≤ λ−1
	
EQ0

(λ) |f(x)| dx.

The following good-λ inequality is the core of our proof.

Lemma 4.5. For a function f ∈ JNp(Q0) and a number 0 < b < 2−n we
have

(4.6) |{x ∈ Q0 : Md(f − fQ0)(x) > λ}|

≤
aKf

λ
|{x ∈ Q0 : Md(f − fQ0)(x) > bλ}|1/q

for all λ ≥ b−1
�
Q0
|f(x)− fQ0 | dx, where a = 1/(1− 2nb).

Proof. Without loss of generality, we assume that fQ0 = 0; then (4.6)
becomes

(4.7) |EQ0(λ)| ≤
aKf

λ
· |EQ0(bλ)|1/q.

First, we apply Lemma 4.4 to |f(x)| on Q0 with λ replaced by bλ to get a
collection {Qk}k≥1 of countable disjoint dyadic cubes such that EQ0(bλ) =⋃∞
k=1Qk. It follows that EQ0(λ) =

⋃∞
k=1EQk

(λ) since EQ0(λ) ⊂ EQ0(bλ).
Moreover, let x ∈ Qk be such that Mdf(x) > λ. Then there exists a

dyadic cube Q containing x with

(4.8)
�

Q

f dx > λ.

Since Qk is the maximal dyadic cube such that the first inequality in (ii)
holds for bλ, Q ⊂ Qk and it follows from (4.8) that Md(fχQk

)(x) > λ.
Moreover, Md[(f−fQk

)χQk
](x) > (1−2nb)λ by the second inequality in (ii).

Then fix a k; if
�
Qk
|(f − fQk

)| dx ≤ (1− 2nb)λ, we apply Lemma 4.4 to
|(f − fQk

)χQk
| on Qk with λ replaced by (1− 2nb)λ. By (iii) we have

|EQk
(λ)| ≤ |{x ∈ Qk : Md[(f − fQk

)χQk
](x) > (1− 2nb)λ}|(4.9)

≤ 1
(1− 2nb)λ

�

Qk

|f − fQk
| dx

=
|Qk|1/q

(1− 2nb)λ

(
|Qk|1/p−1

�

Qk

|f − fQk
| dx
)
.

Otherwise
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|Qk| <
1

(1− 2nb)λ

�

Qk

|f − fQk
| dx,

and (4.9) holds as well.
By adding these inequalities for all k, we get, by the Hölder inequality,

|EQ0(λ)| ≤
∑
k

|Qk|1/q

(1− 2nb)λ

(
|Qk|1/p−1

�

Qk

|f − fQk
| dx
)

≤ 1
(1− 2nb)λ

(∑
|Qk|

)1/q{∑
|Qk|1−p

[ �

Qk

|f − fQk
| dx
]p}1/p

≤ 1
(1− 2nb)λ

|EQ0(bλ)|1/qKf

since Qk are disjoint.

We are now ready to prove the John–Nirenberg lemma.

Proof of Theorem 4.1. Without loss of generality we may assume fQ0 =0.
Let b = 2−(n+1) and define

η =
Kf

b|Q0|1/p
.

Let

λ ≥ 1
b

�

Q0

|f(x)| dx

and let j be the smallest integer satisfying b−jη < λ. We iterate the estimate
(4.7) j times to get

|Eλ(Q0)| ≤ |EQ0(b−jη)|

≤
(
aKf

b−jη

)(
aKf

b−j+1η

)1/q

· · ·
(
aKf

b−1η

)1/qj−1

|EQ0(η)|1/qj

≤
(
aKf

bλ

)(
aKf

b2λ

)1/q

· · ·
(
aKf

bjλ

)1/qj−1[
1
η

�

Q0

|f | dx
]1/qj

,

where the third inequality comes from the weak type inequality (iii) in
Lemma 4.4 and from the definition of j.

Observe that

1 +
2
q

+ · · ·+ j

qj−1
≤ p2.

By the definition of JNp and η we have
1
η

�

Q0

|f | dx ≤ b|Q0|.
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Hence,

|EQ0(λ)| ≤
(
aKf

λ

)p(1−q−j)

b−p
2
(b|Q0|)1/q

j

= 2p(1−q
−j)2(n+1)(p2−1/qj)

(
Kf

λ

)p∣∣∣∣λ|Q0|1/p

Kf

∣∣∣∣p/qj

.

By the definition of η and j we have

λ|Q0|1/p

Kf
≤ b−j+2 = 2(n+1)(j−2).

Since
(j − 2)q−j ≤ q−3p2,

we can now conclude

|EQ0(λ)| ≤ 2p+(n+1)(p2+(p/q)3)(Kf/λ)p.

This proves the theorem for large values of λ.
For λ ≤ Kf/(b|Q0|1/p), we have

|EQ0(λ)| ≤ |Q0| ≤ 2(n+1)p(Kf/λ)p

as desired.

Observe that this proof can be generalized to the metric setting via
Christ’s dyadic sets and by a Calderón–Zygmund decomposition lemma by
Aimar et al.; see Theorems 2.6 and 3.1 in [1].

5. John–Nirenberg inequality for a doubling measure. In this
section we give a new proof of the John–Nirenberg lemma in a doubling
metric measure space. The result is by no means sharper or more general
than the results in the literature. Nevertheless, we hope that the current
proof will further increase the understanding of the phenomenon.

We recall that a locally integrable function f : X → R is in BMO(X) if
there exists a constant c such that

(5.1)
�

B

|f − fB| dµ ≤ c

for all balls B in X. The space is equipped with the seminorm

‖f‖] = sup
B⊂X

�

B

|f − fB| dµ.

If we define an equivalence relation

f ∼ g if and only if f − g = constant,
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then BMO(X)/∼ is a normed space. As is common, we continue denot-
ing this space by BMO(X) and speak of functions instead of equivalence
classes.

Theorem 5.2. Let f ∈ BMO(X). Then

µ({x ∈ B : |f − fB| > λ}) ≤ c1µ(B)e−c2λ/‖f‖]

for all balls B ⊂ X and λ > 0 with with c1, c2 not depending on f and λ.

Proof. Take f ∈ BMO(X). We may assume that ‖f‖] = 1. We first
notice that

1
µ(B)

�

11B

|f − fB| dµ ≤ c4µ
�

11B

|f − f11B| dµ+ c4µ|fB − f11B|

≤ c4µ + c4µ

�

B

|f − f11B| dµ ≤ 2c8µ.

Thus, the expression on the left-hand side above is bounded uniformly in B.
Now fix a ball B0 and assume fB0 = 0. If {Bj}j is the Calderón–Zygmund
decomposition at level λ ≥ 2c8µ, given by Lemma 3.8, then

(i) |f(x)| ≤ λ for µ-a.e. x ∈ B0 \
⋃
j 5Bj ,

(ii) λ <
�
Bj
|f | ≤ c3µλ,

(iii) c−3
µ λ <

�
5Bj
|f | ≤ λ.

We deduce by (i) that

(5.3) µ({x ∈ B0 : |f(x)| > λ}) ≤
∑
j

µ(5Bj) ≤ c3µ
∑
j

µ(Bj).

Analogously to Calderón’s proof in [16], we wish to study the size of
∑

j µ(Bj).
Apply the decomposition lemma at levels λ > γ ≥ 2c8µ. Denote the corre-
sponding Calderón–Zygmund balls by {Bj(λ)}j and {Bk(γ)}k, which we
choose in a similar way to the proof of Lemma 3.16. We write {Bj(λ)}j as
a disjoint union

{Bj(λ)}j =
⋃
k

{Bj(λ)}j∈Jk
,

where Jk’s are defined as in the proof of Lemma 3.16, but with 2λ replaced
by λ, and λ by γ. By (ii), we may now write

(5.4) λ
∑
j

µ(Bj(λ)) ≤
∑
j

�

Bj(λ)

|f | dµ =
∑
k

∑
j∈Jk

�

Bj(λ)

|f | dµ.

Moreover, we have
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j∈Jk

�

Bj

|f | dx ≤
∑
j∈Jk

�

Bj

∣∣|f |+ γ − |f5Bk(γ)|
∣∣ dx

≤
∑
j∈Jk

�

Bj

|f − f5Bk(γ)| dx+
∑
j∈Jk

�

Bj

γ dx

≤
�

5Bk(γ)

|f − f5Bk(γ)| dx+ γ
∑
j∈Jk

µ(Bj)

≤ µ(5Bk(γ)) + γ
∑
j∈Jk

µ(Bj) ≤ c3µµ(Bk(γ)) + γ
∑
j∈Jk

µ(Bj).

Now sum over k and use (5.4) to obtain

λ
∑
j

µ(Bj(λ)) ≤ c3µ
∑
k

µ(Bk(γ)) + γ
∑
j

µ(Bj(λ)).

Thus, we see that

(5.5) (λ− γ)
∑
j

µ(Bj(λ)) ≤ c3µ
∑
k

µ(Bk(γ))

whenever λ ≥ γ ≥ 2c8µ. Now set a = 2c8µ > 2c3µ and replace λ and γ
respectively by λ+a and λ. We have shown that if λ ≥ a and the Calderón–
Zygmund balls corresponding to λ and λ+ a are chosen in such a way that
each ball Bj(λ+ a) is contained in some 5Bk(λ), then∑

j

µ(Bj(λ+ a)) ≤ 1
2

∑
k

µ(Bk(λ)).

Now let λ ≥ a and take N ∈ Z+ such that Na ≤ λ < (N + 1)a. Then apply
the decomposition lemma at each level a < 2a < · · · < Na. From the above
estimate and (5.3) we get

µ({x ∈ B0 : |f(x)| > λ}) ≤ µ({x ∈ B0 : |f(x)| > Na})

≤ c3µ
∑
j

µ(Bj(Na)) ≤ c3µ2−N+1
∑
j

µ(Bj(a))

≤ c3µ2−N+1µ(11B0) ≤ c7µe(2−λ/a) log 2µ(B0)

= 4c7µe
−(λ log 2)/aµ(B0).

For 0 < λ < a we have

µ({x ∈ B0 : |f(x)| > λ}) ≤ µ(B0) ≤ 4c7µe
− log 2µ(B0)

≤ 4c7µe
−(λ log 2)/aµ(B0).

Hence the John–Nirenberg inequality holds with c1 =4c7µ and c2 =(log 2)/a.
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berg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153
(1998), 108–146.

[7] M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for El-
liptic Systems, Harmonic Maps and Minimal Graphs, Edizioni della Normale, Pisa,
2005.

[8] E. Giusti, Direct Methods in the Calculus of Variations, World Sci., River Edge, NJ,
2003.

[9] T. Heikkinen, Self-improving properties of generalized Orlicz–Poincaré inequalities,
Rep. Univ. Jyväskylä Dept. Math. Statist. 105 (2006).

[10] J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer, New
York, 2001.

[11] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure
Appl. Math. 14 (1961), 415–426.

[12] M. Kronz, Some function spaces on spaces of homogeneous type, Manuscripta Math.
106 (2001), 219–248.
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