On ergodicity for operators with bounded resolvent in Banach spaces

by

KIRSTI MATTILA (Stockholm)

Abstract. We prove results on ergodicity, i.e. on the property that the space is a direct sum of the kernel of an operator and the closure of its range, for closed linear operators A such that $\|\alpha(\alpha - A)^{-1}\|$ is uniformly bounded for all $\alpha > 0$. We consider operators on Banach spaces which have the property that the space is complemented in its second dual space by a projection P. Results on ergodicity are obtained under a norm condition $\|I - 2P\| \|I - Q\| < 2$ where Q is a projection depending on the operator A. For the space of James we show that $\|I - 2P\| < 2$ where P is the canonical projection of the predual of the space. If $(T(t))_{t\geq 0}$ is a bounded strongly continuous and eventually norm continuous semigroup on a Banach space, we show that if the generator of the semigroup is ergodic, then, for some positive number δ , the operators T(t) - I, $0 < t < \delta$, are also ergodic.

1. Introduction. Let X be a complex Banach space. We consider operators on X which generate a bounded resolvent family.

DEFINITION 1. If a closed linear operator A on X satisfies the conditions

- $\{\alpha \in \mathbb{R} : \alpha > 0\} \subset \rho(A),$
- there is a constant K > 0 such that $\|\alpha(\alpha A)^{-1}\| \le K$ for all $\alpha > 0$,

then we say that A generates a (uniformly) bounded resolvent family (UBR).

The domain of an operator A in the class (UBR) is not necessarily assumed to be dense in X. We call an operator A ergodic if the Banach space can be expressed as the direct sum $X = \text{Ker}(A) \oplus \overline{A(D(A))}$. There are many operators in the class (UBR) which do not have this property. For example the generator of the left translation group on $L^1(\mathbb{R})$ is not ergodic ([3, p. 344]). On the other hand in reflexive Banach spaces all operators in this class are ergodic (see Yosida [12, p. 217]). The main result of this paper is Theorem 1 which gives sufficient conditions for the ergodicity of operators

²⁰¹⁰ Mathematics Subject Classification: Primary 47A35, 47D06, 46B20.

Key words and phrases: ergodicity, bounded resolvent, canonical projection, semigroups of operators.

in the class (UBR). A projection Q on the dual space will be connected to each operator A in the class (UBR). We assume in Theorem 1 that the Banach space X is complemented in its second dual. If P is a projection with $PX^{**} = \hat{X}$, we assume that ||I - 2P|| ||I - Q|| < 2. If in addition the second adjoints of the resolvent operators commute with P, then A is ergodic.

In the case that P is an L-projection we show in Theorem 3 that if $||Q|| \leq 1$ and ||I - Q|| < 2 then A is ergodic. Theorem 2 is an extension of the ergodicity result for reflexive Banach spaces in [12]. In Section 3 we give an example of a semigroup with unbounded generator which satisfies the assumptions of Theorems 1 and 3. We also consider strongly continuous semigroups $(T(t))_{t\geq 0}$ with the property that, for some positive number δ , -1 is not an eigenvalue of T(t) or $T(t)^*$ for $0 < t < \delta$. We show in Proposition 1 that then

(1) $\operatorname{Ker}(T(t) - I) = \operatorname{Ker}(A) \text{ and } \overline{(T(t) - I)X} = \overline{A(D(A))}$

for $0 < t < \delta$.

Sato [9] proved that

 $\operatorname{Ker}(T(t) - I) \oplus \overline{(T(t) - I)X} = \operatorname{Ker}(A) \oplus \overline{A(D(A))}$

for bounded semigroups such that ||T(t) - I|| < 2 for $0 < t < \delta$. Shaw [10] showed that the equalities (1) hold for bounded semigroups with bounded generator. There are examples in [10] and in [3, p. 345] of semigroups for which these subspaces are not equal. In Corollary 2 we show that the equalities (1) hold for any semigroup $(T(t))_{t\geq 0}$ which is strongly continuous and eventually norm continuous. If the semigroup is also bounded and the generator is ergodic, then there is a positive number δ such that T(t) - I is ergodic for $0 < t < \delta$.

In Section 4 we consider the space of James ([1], [2]). We prove in Theorem 4 that the canonical projection P of its predual space satisfies the inequality ||I - 2P|| < 2, which is a necessary assumption in Theorem 1. The canonical projection of a Banach space Y is the projection on Y^{***} corresponding to the decomposition $Y^{***} = \widehat{Y^*} \oplus (\widehat{Y})^{\perp}$ with range $\widehat{Y^*}$, the canonical image of Y^* , and kernel $(\widehat{Y})^{\perp}$, the annihilator of \widehat{Y} . For example, for the space c_0 and for the Banach space of all compact operators on a Hilbert space, ||I - 2P|| = 1. For further examples and references on spaces with this property see Harmand, Werner and Werner [6].

Let B(X) be the space of all bounded linear operators on X. For a closed linear operator A on X, we denote by $\rho(A)$ the resolvent set of A, which is the set { $\alpha \in \mathbb{C} : \alpha - A$ has bounded inverse in X}, and the spectrum by $\sigma(A)$. The resolvent operators $(\alpha - A)^{-1}$ are denoted by $R(\alpha, A)$.

EXAMPLE 1. A linear operator which generates a bounded strongly continuous semigroup generates a (UBR). In particular, if $S \in B(X)$ is powerbounded, i.e. if $||S^n|| \leq K$ for some constant K, $n = 0, 1, \ldots$, then T = S - I generates a bounded semigroup. This can be proved by using an equivalent norm $|x| = \sup_{n\geq 0} ||S^n x||$. Moreover, if A is an operator in the class (UBR) with dense domain in X, then A^* , the adjoint of A, is in the class (UBR) in the dual space X^* .

EXAMPLE 2. Let $A = -(\beta - B)^{-1}$ where *B* is in the class (UBR) on a Banach space *X* and $\beta > 0$. We assume that $||t(t - B)^{-1}|| \le M$ for t > 0. We can show that *A* is also in the class (UBR). Obviously *A* is bounded and injective. It is easy to show that for $\alpha > 0$, $\alpha - A$ has bounded inverse and $A(\alpha - A)^{-1} = -(\alpha\beta + 1 - \alpha B)^{-1}$. Further $||A(\alpha - A)^{-1}|| \le M/(\alpha\beta + 1) < M$ for all $\alpha > 0$. It follows that $||\alpha(\alpha - A)^{-1}|| < M+1$ for all $\alpha > 0$. The operator *A* is ergodic if and only if the domain of *B* is dense in *X*.

2. Ergodicity. In this section we assume that A is an operator in the class (UBR). Let Lim be a Banach limit on l^{∞} . We choose a sequence $\{\alpha_n\}_{n=1}^{\infty}$ of positive numbers such that $\lim_{n\to\infty} \alpha_n = 0$. Let Q be the operator on X^* defined by

$$(Qf)(x) = \operatorname{Lim} f(W_n x)$$

for each $f \in X^*$ and $x \in X$, where $W_n = \alpha_n (\alpha_n - A)^{-1}$.

We shall need the following lemma, which states some straightforward properties of Q, and a corollary. For completeness, we include their proofs.

A Banach limit Lim is a continuous linear functional on l^{∞} such that $\|\text{Lim}\| = 1$, Lim(1, 1, 1, ...) = 1 and $\text{Lim} c_n = \text{Lim} c_{n+1}$. It also satisfies $|\text{Lim} c_n| \leq \text{Lim} |c_n|$ and if $\{c_n\}$ converges to c, then $\text{Lim} c_n = c$.

LEMMA 1. The operator Q defined by $(Qf)(x) = \text{Lim } f(W_n x)$ is a bounded linear projection onto $\text{Ker}((AR(\alpha, A))^*)$ for each $\alpha > 0$. It commutes with the operators $R(\alpha, A)^*$. Hence $(AR(\alpha, A))^*X^* \subset \text{Ker}(Q)$.

Proof. The kernel of $(AR(\alpha, A))^*$ is independent of $\alpha > 0$. This follows from the resolvent equation ([3, p. 239]). Since $|(Qf)(x)| \leq \text{Lim} |f(W_n x)| \leq K||f|| ||x||, Q$ is bounded. As $n \to \infty$,

$$||AW_n|| = ||\alpha_n A(\alpha_n - A)^{-1}|| = ||\alpha_n (\alpha_n (\alpha_n - A)^{-1} - I)|| \to 0.$$

Therefore $((AR(\alpha, A))^*Qf)(x) = \text{Lim } f(W_nAR(\alpha, A)x) = 0$ for every $x \in X$ and $\alpha > 0$. Hence $(AR(\alpha, A))^*Qf = 0$; also $Q((AR(\alpha, A))^*f) = 0$ for every $f \in X^*$. Thus Q has the property

(2)
$$\alpha R(\alpha, A)^* Q = \alpha Q R(\alpha, A)^* = Q$$

for all $\alpha > 0$. We conclude that Q is a projection, $QX^* \subset \operatorname{Ker}((AR(\alpha, A))^*)$ and $(AR(\alpha, A))^*X^* \subset (I - Q)X^*$. Finally, the inclusion $\operatorname{Ker}((AR(\alpha, A))^*) \subset QX^*$ holds since $\operatorname{Ker}((AR(\alpha, A))^*) = \operatorname{Ker}(W_n^* - I)$ for all $n \in \mathbb{N}$. COROLLARY 1. Let A be an operator in the class (UBR). Then $Y = \text{Ker}(A) \oplus \overline{A(D(A))}$ is a closed subspace of X.

Proof. If Ker(A) = {0}, then Y is obviously closed. Assume that $u \in$ Ker(A), ||u|| = 1. Let $f \in X^*$ be such that ||f|| = f(u) = 1. Then (Qf)(u) = Lim $f(W_n u) = 1$ and $(Qf)(A(D(A))) = \{0\}$. Hence, whenever $v \in \overline{A(D(A))}$, $||u|| = 1 = (Qf)(u+v) \leq ||Q|| ||u+v||$. The inequalities

 $(3) \|u\| \le \|Q\| \|u+v\| \text{and} \|v\| \le \|v+u\| + \|u\| \le (1+\|Q\|)\|u+v\|$

then hold for all $u \in \text{Ker}(A)$ and $v \in \overline{A(D(A))}$. We conclude that the linear mapping $\varphi(u, v) = u + v$ from $\text{Ker}(A) \times \overline{A(D(A))}$, which is a closed subspace of $X \times X$, to Y is a continuous bijection and by (3) the inverse of φ is continuous. Hence Y is closed.

REMARK 1. The assumptions (i) and (iii) in the theorem below are in particular satisfied if X is a dual space and A is the adjoint of an operator which on the predual space generates a (UBR) and has dense domain. If P is the canonical projection of the predual, then the operators $R(\alpha, A)^{**}$ commute with P.

We can assume that $A \neq 0$. Then $Q \neq I$ and $||I - Q|| \geq 1$. We also assume that the canonical image \hat{X} of X is complemented in the second dual space of X with a projection P onto \hat{X} .

THEOREM 1. Let X be a Banach space and A an operator in the class (UBR). Assume that

- (i) $X^{**} = \hat{X} \oplus Z$,
- (ii) ||I 2P|| ||I Q|| < 2,
- (iii) the resolvent operators satisfy $R(\alpha, A)^{**}Z \subset Z$ for all $\alpha > 0$.

Then

$$X = \operatorname{Ker}(A) \oplus \overline{A(D(A))}.$$

Proof. Let $Y = \text{Ker}(A) \oplus \overline{A(D(A))}$. Assume that $X \neq \overline{Y}$. Then there exists a linear functional $h \in X^*$ such that ||h|| = 1 and $h(Y) = \{0\}$. Let $\gamma = ||I - 2P|| ||I - Q|| < 2$. Let x_0 be a point in X such that $||x_0|| = 1$ and $h(x_0) > \gamma/2$. Since $h((AR(\alpha, A))X) = \{0\}$ for all $\alpha > 0$, h = Qh. Let $Q^*\widehat{x_0} = \widehat{v} + F$ where $v \in X$ and $F \in Z$. Let α be some positive number. Then by $(2), \alpha R(\alpha, A)^{**}F = \alpha R(\alpha, A)^{**}Q^*\widehat{x_0} - \alpha \widehat{R(\alpha, A)}v = Q^*\widehat{x_0} - \alpha \widehat{R(\alpha, A)}v = \widehat{v} - \alpha \widehat{R(\alpha, A)}v + F$. Since $R(\alpha, A)^{**}Z \subset Z$ it follows that that $v = \alpha R(\alpha, A)v$. This implies $v \in D(A)$ and Av = 0. Since, by assumption, $h(\text{Ker}(A)) = \{0\}$, we have h(v) = 0 and therefore $F(h) = Qh(x_0) - h(v) = h(x_0)$. Now

$$\|\widehat{x_0 - v} + F\| = \|(I - 2P)(\widehat{x_0 - v} - F)\| = \|(I - 2P)((I - Q^*)\widehat{x_0})\|$$

$$\leq \|I - 2P\| \|I - Q\| = \gamma$$

and $|(\widehat{x_0 - v} + F)(h)| = 2|h(x_0)| \leq \gamma$. Hence $|h(x_0)| \leq \gamma/2$. This contradicts the assumption that $h(x_0) > \gamma/2$. Therefore $X = \overline{Y}$ and since Y is closed by Corollary 1, X = Y.

In Section 3 we will give an example of an unbounded operator A satisfying the conditions in Theorem 1. The following theorem is an extension of [12, Corollary VIII.4.1] where ergodicity was proved for reflexive spaces.

THEOREM 2. Let A be in the class (UBR). If $\text{Ker}((AR(\alpha, A))^{**}) \subset X$ for some $\alpha > 0$ (and then for all $\alpha > 0$), in particular if $R(\alpha, A)$ is weakly compact or if X is reflexive, then

$$X = \operatorname{Ker}(A) \oplus \overline{A(D(A))}.$$

Proof. Let Q be as in Lemma 1. By (2), $Q^*X^{**} \subset \operatorname{Ker}((AR(\alpha, A))^{**})$. Hence $Q^*X^{**} \subset \widehat{X}$. Let $Y = \operatorname{Ker}(A) \oplus \overline{A(D(A))}$. Assume that $X \neq \overline{Y}$. Then there exists $h \in X^*$ such that ||h|| = 1 and $h(Y) = \{0\}$ and there is an element $x_0 \in X$ so that $||x_0|| = 1$ and $h(x_0) \neq 0$. Now $Q^*\widehat{x_0} \in \widehat{X}$. Let $Q^*\widehat{x_0} = \widehat{w}$. Since $(AR(\alpha, A))^{**}Q^*\widehat{x_0} = 0$, it is obvious that $AR(\alpha, A)w = 0$. Hence $w \in D(A)$ and Aw = 0. Thus h(w) = 0. Since $h(w) = (Q^*\widehat{x_0})(h) = (Qh)(x_0) = h(x_0)$, it follows that $h(x_0) = 0$ contrary to the choice of x_0 .

In the case that the projection P is an L-projection we have the following result. A bounded linear projection P is an L-projection if ||x|| = ||Px|| + ||(I-P)x|| for all $x \in X$. For an L-projection ||I-2P|| = 1.

THEOREM 3. Let X be a Banach space such that there is an L-projection on X^{**} with range \hat{X} and kernel Z. Assume that A is in the class (UBR) with K = 1 and ||I - Q|| < 2. Then

$$X = \operatorname{Ker}(A) \oplus A(D(A)).$$

Proof. Let h be as in the proof of Theorem 1 and $x_0 \in X$ be such that $||x_0|| = 1$ and $h(x_0) > \gamma/2$, where $\gamma = ||I - Q||$. Since X^{**} is the direct sum of \hat{X} and Z, there are elements $v \in X$ and $F \in Z$ such that $Q^* \widehat{x_0} = \hat{v} + F$. Given $\alpha > 0$, we have $\alpha R(\alpha, A)^{**}F = \alpha R(\alpha, A)^{**}Q^*\widehat{x_0} - \alpha R(\alpha, A)v$ $= Q^*\widehat{x_0} - \alpha \widehat{R(\alpha, A)}v = \widehat{v} - \alpha \widehat{R(\alpha, A)}v + F$. Let $z_\alpha = (I - \alpha R(\alpha, A))v$. By assumption, $||\alpha R(\alpha, A)^{**}F|| \leq ||F||$. Hence $||\widehat{z_\alpha} + F|| = ||z_\alpha|| + ||F|| \leq ||F||$. We conclude that $z_\alpha = 0$. This implies that $v \in D(A)$ and Av = 0. Since, by the choice of h, $h(\operatorname{Ker}(A)) = \{0\}$, we have h(v) = 0 and therefore $F(h) = (Qh)(x_0) - h(v) = h(x_0)$. Now

$$\|\widehat{x_0 - v} + F\| = \|\widehat{x_0 - v} - F\| = \|(I - Q^*)\widehat{x_0}\| \le \|I - Q^*\| = \gamma$$

and $|(\widehat{x_0 - v} + F)(h)| = 2|h(x_0)| \leq \gamma$. Hence $|h(x_0)| \leq \gamma/2$ contrary to the assumption $h(x_0) > \gamma/2$. This completes the proof.

The canonical projection of c_0 is an *L*-projection (see [6]) and $c_0^* = l^1$. Theorems 1 and 3 are not necessarily true if $||I - Q|| \ge 2$.

EXAMPLE 3. Let $X = l^1 = l^1(\mathbb{N})$ and let T be the shift operator $Te_k = e_{k+1}$ for $k \in \mathbb{N}$, where e_k is the kth unit vector $(0, \ldots, 0, 1, 0, \ldots)$. Let A = T - I. It is well known that A is injective and A^* is not injective on the dual space l^{∞} . Hence A is not ergodic. Since A is dissipative, $\|\alpha R(\alpha, A)\| \leq 1$ for all positive numbers α . It follows from Theorem 3 that $\|I - Q\| = 2$.

3. Strongly continuous semigroups. If a strongly continuous semigroup $(T(t))_{t\geq 0}$ on a Banach space X satisfies the inequality

(T)
$$||T(t) - I|| \le \gamma < 2$$
 for all $t > 0$

then, for any $\alpha > 0$, $||AR(\alpha, A)|| \leq \gamma$ where A is the generator of the semigroup. This follows from the equality

(4)
$$AR(\alpha, A)x = \alpha \int_{0}^{\infty} e^{-\alpha s} (T(s) - I)x \, ds.$$

If $(T(t))_{t\in\mathbb{R}}$ is a strongly continuous group with an unbounded generator, then $\limsup_{t\downarrow 0} ||T(t) - I|| \ge 2$ by Williams [11, Theorem 1] (see also [8, Corollary 2.4.13]). Hence for groups, (T) implies boundedness of the generator. For more results on strongly continuous groups of operators see [4].

REMARK 2. (i) If (T) holds for small t, i.e., if there is a positive number δ such that

$$||T(t) - I|| \le \gamma < 2 \quad \text{for } 0 < t < \delta,$$

then the semigroup $(T(t))_{t>0}$ has an analytic extension (see [7]).

(ii) Condition (T') is obviously weaker than (T) since all semigroups with bounded generator satisfy (T') for some $\delta > 0$. For example the bounded operator Af(s) = isf(s) on C[0, 1] generates a group of invertible isometries. Then, for large values of t, $i\pi t^{-1} \in \sigma(A)$. Hence $-1 \in \sigma(T(t))$ and ||T(t) - I|| = 2.

The following example was given in [11]. In this example $(T(t))_{t\geq 0}$ is a strongly continuous semigroup with an unbounded generator. The assumptions of Theorems 1 and 3 are satisfied. Therefore the generator is ergodic.

EXAMPLE 4. For the following semigroup, ||T(t)-I|| = 1 and ||T(t)|| = 1 for all t > 0. Therefore, by (4), ||I - Q|| = 1. Let $X = l^1$ and let

$$\begin{cases} (T(t)x)_{2n-1} = \frac{1}{2}(1+e^{-nt})x_{2n-1} + \frac{1}{2}(1-e^{-nt})x_{2n}, \\ (T(t)x)_{2n} = \frac{1}{2}(1-e^{-nt})x_{2n-1} + \frac{1}{2}(1+e^{-nt})x_{2n} \end{cases}$$

whenever $x = \{x_n\}_{n=1}^{\infty} \in l^1$ and $n \in \mathbb{N}$. It is easy to see that $\lim_{t\to\infty} T(t)x = Px$ for each $x \in X$, where P is the projection

$$(Px)_{2n-1} = (Px)_{2n} = \frac{1}{2}(x_{2n-1} + x_{2n})$$

for $n \in \mathbb{N}$. The convergence is even uniform. Since $||T(t) - P|| \leq e^{-t}$, $\lim_{t\to\infty} ||T(t) - P|| = 0$. Further PX = Ker(A) and Ker(P) = A(D(A))(see [3, Theorem V.4.10]). The semigroup T(t) is obviously adjoint of a strongly continuous semigroup on c_0 .

Whenever a strongly continuous semigroup satisfies (T), then

 $\operatorname{Ker}(A) \oplus \overline{A(D(A))} = \operatorname{Ker}(T(t) - I) \oplus \overline{(T(t) - I)X}$

for every t > 0. This follows from the Theorem of Sato in [9]. There the semigroup was assumed to satisfy the inequality ||T(t) - I|| < 2 for every $0 < t < \delta$ for some $\delta > 0$. According to Mathematical Reviews (MR0627692) this condition can be replaced by the assumption that $-1 \in \rho(T(t))$ for $0 < t < \delta$ for some positive δ . We only need to assume that, for some $\delta > 0$, -1 is not an eigenvalue of T(t) or $T(t)^*$ for all $0 < t < \delta$. We use the method of Shaw [10, Lemma 3.2] in the proof of the equalities below.

PROPOSITION 1. Let $(T(t))_{t\geq 0}$ be a strongly continuous semigroup on X. Suppose that there is a positive number δ such that for all $0 < t < \delta$, -1 is neither an eigenvalue of T(t) nor of $T(t)^*$. Then

$$\operatorname{Ker}(T(t) - I) = \bigcap_{s>0} \operatorname{Ker}(T(s) - I) \quad and \quad \overline{(T(t) - I)X} = \bigcup_{s>0} (T(s) - I)X$$

whenever $0 < t < \delta$.

Proof. Let $0 < t_0 < \delta$ and let $x \in \text{Ker}(T(t_0) - I)$. Then $(T(t_0/2) + I)(T(t_0/2) - I)x = 0.$

Since $T(t_0/2) + I$ is injective, $(T(t_0/2) - I)x = 0$. In this way a sequence $\{t_n\}$ can be found such that $T(t_n)x = x$ for each $n = 0, 1, \ldots$ and $\lim_{n\to\infty} t_n = 0$. Let $E = \{t > 0 : T(t)x = x\}$. Then $E \subset (0, \infty)$ and E is a subsemigroup of $(0, \infty)$. Further, E is closed in $(0, \infty)$, and if $t \in E$, then $t + t_n \in E$ and $\lim_{n\to\infty} (t+t_n) = t$. It follows that $E = (0, \infty)$. We conclude that T(t)x = x for all t > 0. Hence $\operatorname{Ker}(T(t_0) - I) \subset \operatorname{Ker}(T(t) - I)$ for every t > 0. This proves the first equality.

To prove the second equality it is enough to show $\bigcup_{s>0}(T(s)-I)X \subset \overline{(T(t_0)-I)X}$ where $0 < t_0 < \delta$. Assume that f is an element of X^* such that $T(t_0)^*f = f$. The set $\{t > 0 : T(t)^*f = f\}$ is closed in $(0,\infty)$ since, by the strong continuity of $(T(t))_{t\geq 0}$, the mapping $t \mapsto (T(t)^*f)(x)$ is continuous for every $x \in X$. As $T(t)^* + I$ is injective for all $0 < t < \delta$, we conclude as in the first part of the proof that $T(t)^*f = f$ for all t > 0.

REMARK 3. (i) The subspaces in Proposition 1 are in terms of the generator, $\operatorname{Ker}(A)$ and $\overline{A(D(A))}$. By the definition of a generator and by [3, Lemma II.1.3],

$$\operatorname{Ker}(A) = \bigcap_{s>0} \operatorname{Ker}(T(s) - I) \quad \text{and} \quad \overline{A(D(A))} = \bigcup_{s>0} (T(s) - I)X.$$

(ii) If a strongly continuous semigroup $(T(t))_{t\geq 0}$ is bounded, then the subspace $\operatorname{Ker}(A) \oplus \overline{A(D(A))}$ is a direct sum and a closed subspace of X (see for example [10] or Corollary 1). The same is true for the subspace $\operatorname{Ker}(T(t) - I) \oplus \overline{(T(t) - I)X}$. Further, for all t > 0,

$$\operatorname{Ker}(T(t) - I) \oplus \overline{(T(t) - I)X} \subset \operatorname{Ker}(A) \oplus \overline{A(D(A))}$$

(see [10, Theorem 3.4]).

We will now consider strongly continuous semigroups which are eventually norm continuous, i.e. $\lim_{t\downarrow 0} ||(T(t) - I)T(s)|| = 0$ for $s > t_0$ for some $t_0 \ge 0$. For example strongly continuous analytic semigroups and eventually compact semigroups are in this class. In particular semigroups with a bounded generator are norm continuous, i.e. the map $t \mapsto T(t)$ is continuous for all $t \ge 0$ (for definitions we refer to [3]). Eventually norm continuous semigroups satisfy the spectral mapping theorem $e^{t\sigma(A)} = \sigma(T(t)) \setminus \{0\}$ for $t \ge 0$ ([3, Theorem IV.3.10]).

COROLLARY 2. Let A be the generator of a strongly continuous semigroup $(T(t))_{t\geq 0}$ which is eventually norm continuous. Then there is a positive number δ such that

(5)
$$\operatorname{Ker}(T(t) - I) = \operatorname{Ker}(A) \quad and \quad \overline{(T(t) - I)X} = \overline{A(D(A))}$$

for all $t \in (0, \delta)$. If the semigroup is also bounded and A is ergodic, then T(t) - I is ergodic for all $t \in (0, \delta)$.

Proof. By [3, Theorem IV.3.10], the spectral mapping theorem $e^{t\sigma(A)} = \sigma(T(t)) \setminus \{0\}$ for $t \ge 0$ holds. Further, by [3, Theorem II.4.18], $\sigma(A) \cap i\mathbb{R}$ is bounded. Let s > 0 be such that $|\beta| \le s$ whenever $i\beta \in \sigma(A)$ where $\beta \in \mathbb{R}$. Then, for $0 < t < \pi s^{-1}$, $e^{it\beta} \ne -1$ and therefore $-1 \in \rho(T(t))$. Now the result follows from Proposition 1.

REMARK 4. If A is the generator of a bounded analytic semigroup $(T(t))_{t\geq 0}$, then the equalities (5) hold for all t > 0. The proof is similar to the proof of Corollary 2. In this case $-1 \in \rho(T(t))$ for all t > 0 since ([3, Corollary II.4.6]) $\sigma(A) \cap i\mathbb{R} \subset \{0\}$.

4. The canonical projection of the predual of the space J. We consider the space of James as defined in [1] and [2]. Let J be the space of

all complex sequences $x = \{x_n\}_{n=1}^{\infty}$ with the norm

$$\|x\| = \sup\left\{\left(\sum_{j=1}^{k} \left|\sum_{n \in I_{j}} x_{n}\right|^{2}\right)^{1/2} : I_{1}, \dots, I_{k} \text{ are disjoint} \right.$$
finite intervals of positive integers, $k \ge 1$.

The Banach space J has a (unique isometric) predual ([1]), which we call Y. The canonical projection of Y on $Y^{***} = X^{**}$ corresponding to the decomposition $Y^{***} = \widehat{Y^*} \oplus \widehat{Y^{\perp}}$ will be called P_Y . The kernel of P_Y is a one-dimensional subspace $\mathbb{C}F_2$, where $F_2 \in J^{**}$, $||F_2|| = 1$ and F_2 restricted to \widehat{Y} is equal to 0. Hence $J^{**} = \widehat{J} \oplus \mathbb{C}F_2$. We will show that the projection P_Y has the property $||I - 2P_Y|| < 2$.

The following definition was given by Brown and Ito in [2, p. 266]. A Banach space Y is in the class (L) if for every $\epsilon > 0$ there is a $\delta = \delta(\epsilon) > 0$ such that whenever $x \in Y^*$, $G \in (\hat{Y})^{\perp}$, $\|\hat{x} + G\| = 1$ and $\|x\| > 1 - \delta$ then $\|G\| < \epsilon$.

We cite the result in [2, Proposition 7].

PROPOSITION 2 ([2]). The predual Y of J is in the class (L).

THEOREM 4. Let P_Y be the canonical projection of the Banach space Y. Then $||I - P_Y|| = 1$ and $1 < ||I - 2P_Y|| < 2$.

Proof. First we show that $||I - 2P_Y|| > 1$. If $||I - 2P_Y|| = 1$, then the operator T = 2P - I is an invertible isometry since $T^2 = I$. By [5, Proposition 10], $\text{Ker}(T - I) = \hat{J}$ is weakly sequentially complete, which is not possible since J does not contain a subspace isomorphic to l^1 and J is not reflexive.

We now make use of the results of Brown and Ito [1], [2]. For all complex numbers c and all elements $x \in J$,

$$\|\hat{x} + cF_2\| \ge |c|,$$

which follows from [1, Lemma 2] where it is proved that $||F_3|| = 1$; here F_3 is an element of J^{***} with $F_3(\hat{J}) = \{0\}$, $F_3(F_2) = 1$ and $J^{***} = \hat{J}^* \oplus \mathbb{C}F_3$. From the properties of F_2 it follows that

(7) $\|\hat{x} + cF_2\| \ge \|x\|$ for every $x \in J$ and all complex numbers c.

For any $F \in J^{**}$ with ||F|| = 1 we deduce from inequalities (6) and (7) that $||(I - P_Y)F|| \le ||F|| = 1$ and $||P_YF|| \le 1$. Therefore $||I - P_Y|| = 1$ and $||P_Y|| = 1$.

Finally, we prove that $||I - 2P_Y|| < 2$. Let $0 < \epsilon < 1$. Since $Y^* = J$, it follows from Proposition 2 that there exists $\delta = \delta(\epsilon) > 0$ such that whenever $F \in J^{**}, ||F|| = 1$ and $||P_YF|| > 1 - \delta$ then $||(I - P_Y)F|| < \epsilon$. Now for all $F \in J^{**} \text{ with } ||F|| = 1,$ $||(I - 2P_Y)F|| = ||(I - P_Y)F - P_YF|| \le ||(I - P_Y)F|| + ||P_YF||.$ If $||P_YF|| > 1 - \delta$, then $||(I - P_Y)F|| < \epsilon$. Hence $||(I - 2P_Y)F|| < \epsilon + 1$. If $||P_YF|| \le 1 - \delta$, then $||(I - 2P_Y)F|| \le 2 - \delta$. Therefore

 $||I - 2P_Y|| = \sup\{||(I - 2P_Y)F|| : ||F|| = 1\} \le \max\{\epsilon + 1, 2 - \delta\} < 2.$

REMARK 5. Theorem 1 can be applied to operators in the class (UBR) on J if ||I - Q|| < K where $K = 2/||I - 2P_Y|| > 1$.

References

- L. Brown and T. Ito, *Isometric preduals of James spaces*, Canad. J. Math. 32 (1980), 59–69.
- [2] —, —, Classes of Banach spaces with unique isometric preduals, Pacific J. Math. 90 (1980), 261–283.
- [3] K.-L. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.
- [4] J. Esterle, Zero-one and zero-two laws for the behavior of semigroups near the origin, in: Contemp. Math. 363, Amer. Math. Soc., Providence, RI, 2004, 69–79.
- [5] G. Godefroy, Parties admissibles d'un espace de Banach. Applications, Ann. Sci. École Norm. Sup. (4) 16 (1983), 109–122.
- [6] P. Harmand, D. Werner and W. Werner, *M-Ideals in Banach Spaces and Banach Algebras*, Lecture Notes in Math. 1547, Springer, Berlin, 1993.
- [7] T. Kato, A characterization of holomorphic semigroups, Proc. Amer. Math. Soc. 25 (1970), 495–498.
- [8] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
- [9] R. Sato, On a mean ergodic theorem, Proc. Amer. Math. Soc. 83 (1981), 563–564.
- [10] S.-Y. Shaw, Ergodic projections of continuous and discrete semigroups, ibid. 78 (1980), 69–76.
- D. Williams, On operator semigroups and Markov groups, Z. Wahrsch. Verw. Gebiete 13 (1969), 280–285.
- [12] K. Yosida, *Functional Analysis*, Springer, Berlin, 1980.

Kirsti Mattila Department of Mathematics Royal Institute of Technology SE-10044 Stockholm, Sweden E-mail: kirsti@math.kth.se

> Received November 5, 2010 Revised version March 1, 2011 (7030)