On ergodicity for operators with bounded resolvent in Banach spaces

by

Kirsti Mattila (Stockholm)

Abstract

We prove results on ergodicity, i.e. on the property that the space is a direct sum of the kernel of an operator and the closure of its range, for closed linear operators A such that $\left\|\alpha(\alpha-A)^{-1}\right\|$ is uniformly bounded for all $\alpha>0$. We consider operators on Banach spaces which have the property that the space is complemented in its second dual space by a projection P. Results on ergodicity are obtained under a norm condition $\|I-2 P\|\|I-Q\|<2$ where Q is a projection depending on the operator A. For the space of James we show that $\|I-2 P\|<2$ where P is the canonical projection of the predual of the space. If $(T(t))_{t \geq 0}$ is a bounded strongly continuous and eventually norm continuous semigroup on a Banach space, we show that if the generator of the semigroup is ergodic, then, for some positive number δ, the operators $T(t)-I, 0<t<\delta$, are also ergodic.

1. Introduction. Let X be a complex Banach space. We consider operators on X which generate a bounded resolvent family.

Definition 1. If a closed linear operator A on X satisfies the conditions

- $\{\alpha \in \mathbb{R}: \alpha>0\} \subset \rho(A)$,
- there is a constant $K>0$ such that $\left\|\alpha(\alpha-A)^{-1}\right\| \leq K$ for all $\alpha>0$, then we say that A generates a (uniformly) bounded resolvent family (UBR).

The domain of an operator A in the class (UBR) is not necessarily assumed to be dense in X. We call an operator A ergodic if the Banach space can be expressed as the direct sum $X=\operatorname{Ker}(A) \oplus \overline{A(D(A))}$. There are many operators in the class (UBR) which do not have this property. For example the generator of the left translation group on $L^{1}(\mathbb{R})$ is not ergodic ([3, p. 344]). On the other hand in reflexive Banach spaces all operators in this class are ergodic (see Yosida [12, p. 217]). The main result of this paper is Theorem 1 which gives sufficient conditions for the ergodicity of operators

2010 Mathematics Subject Classification: Primary 47A35, 47D06, 46B20.
Key words and phrases: ergodicity, bounded resolvent, canonical projection, semigroups of operators.
in the class (UBR). A projection Q on the dual space will be connected to each operator A in the class (UBR). We assume in Theorem 1 that the Banach space X is complemented in its second dual. If P is a projection with $P X^{* *}=\hat{X}$, we assume that $\|I-2 P\|\|I-Q\|<2$. If in addition the second adjoints of the resolvent operators commute with P, then A is ergodic.

In the case that P is an L-projection we show in Theorem 3 that if $\|Q\| \leq 1$ and $\|I-Q\|<2$ then A is ergodic. Theorem 2 is an extension of the ergodicity result for reflexive Banach spaces in [12]. In Section 3 we give an example of a semigroup with unbounded generator which satisfies the assumptions of Theorems 1 and 3 . We also consider strongly continuous semigroups $(T(t))_{t \geq 0}$ with the property that, for some positive number $\delta,-1$ is not an eigenvalue of $T(t)$ or $T(t)^{*}$ for $0<t<\delta$. We show in Proposition 1 that then

$$
\begin{equation*}
\operatorname{Ker}(T(t)-I)=\operatorname{Ker}(A) \quad \text { and } \quad \overline{(T(t)-I) X}=\overline{A(D(A))} \tag{1}
\end{equation*}
$$

for $0<t<\delta$.
Sato 9 proved that

$$
\operatorname{Ker}(T(t)-I) \oplus \overline{(T(t)-I) X}=\operatorname{Ker}(A) \oplus \overline{A(D(A))}
$$

for bounded semigroups such that $\|T(t)-I\|<2$ for $0<t<\delta$. Shaw [10] showed that the equalities (1) hold for bounded semigroups with bounded generator. There are examples in [10] and in [3, p. 345] of semigroups for which these subspaces are not equal. In Corollary 2 we show that the equalities (1) hold for any semigroup $(T(t))_{t \geq 0}$ which is strongly continuous and eventually norm continuous. If the semigroup is also bounded and the generator is ergodic, then there is a positive number δ such that $T(t)-I$ is ergodic for $0<t<\delta$.

In Section 4 we consider the space of James ([1], [2]). We prove in Theorem 4 that the canonical projection P of its predual space satisfies the inequality $\|I-2 P\|<2$, which is a necessary assumption in Theorem 1 , The canonical projection of a Banach space Y is the projection on $Y^{* * *}$ corresponding to the decomposition $Y^{* * *}=\widehat{Y^{*}} \oplus(\hat{Y})^{\perp}$ with range $\widehat{Y^{*}}$, the canonical image of Y^{*}, and kernel $(\hat{Y})^{\perp}$, the annihilator of \hat{Y}. For example, for the space c_{0} and for the Banach space of all compact operators on a Hilbert space, $\|I-2 P\|=1$. For further examples and references on spaces with this property see Harmand, Werner and Werner [6].

Let $B(X)$ be the space of all bounded linear operators on X. For a closed linear operator A on X, we denote by $\rho(A)$ the resolvent set of A, which is the set $\{\alpha \in \mathbb{C}: \alpha-A$ has bounded inverse in $X\}$, and the spectrum by $\sigma(A)$. The resolvent operators $(\alpha-A)^{-1}$ are denoted by $R(\alpha, A)$.

Example 1. A linear operator which generates a bounded strongly continuous semigroup generates a (UBR). In particular, if $S \in B(X)$ is power-
bounded, i.e. if $\left\|S^{n}\right\| \leq K$ for some constant $K, n=0,1, \ldots$, then $T=S-I$ generates a bounded semigroup. This can be proved by using an equivalent norm $|x|=\sup _{n \geq 0}\left\|S^{n} x\right\|$. Moreover, if A is an operator in the class (UBR) with dense domain in X, then A^{*}, the adjoint of A, is in the class (UBR) in the dual space X^{*}.

Example 2. Let $A=-(\beta-B)^{-1}$ where B is in the class (UBR) on a Banach space X and $\beta>0$. We assume that $\left\|t(t-B)^{-1}\right\| \leq M$ for $t>0$. We can show that A is also in the class (UBR). Obviously A is bounded and injective. It is easy to show that for $\alpha>0, \alpha-A$ has bounded inverse and $A(\alpha-A)^{-1}=-(\alpha \beta+1-\alpha B)^{-1}$. Further $\left\|A(\alpha-A)^{-1}\right\| \leq M /(\alpha \beta+1)<M$ for all $\alpha>0$. It follows that $\left\|\alpha(\alpha-A)^{-1}\right\|<M+1$ for all $\alpha>0$. The operator A is ergodic if and only if the domain of B is dense in X.
2. Ergodicity. In this section we assume that A is an operator in the class (UBR). Let Lim be a Banach limit on l^{∞}. We choose a sequence $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ of positive numbers such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Let Q be the operator on X^{*} defined by

$$
(Q f)(x)=\operatorname{Lim} f\left(W_{n} x\right)
$$

for each $f \in X^{*}$ and $x \in X$, where $W_{n}=\alpha_{n}\left(\alpha_{n}-A\right)^{-1}$.
We shall need the following lemma, which states some straightforward properties of Q, and a corollary. For completeness, we include their proofs.

A Banach limit Lim is a continuous linear functional on l^{∞} such that $\|\operatorname{Lim}\|=1, \operatorname{Lim}(1,1,1, \ldots)=1$ and $\operatorname{Lim} c_{n}=\operatorname{Lim} c_{n+1}$. It also satisfies $\left|\operatorname{Lim} c_{n}\right| \leq \operatorname{Lim}\left|c_{n}\right|$ and if $\left\{c_{n}\right\}$ converges to c, then $\operatorname{Lim} c_{n}=c$.

Lemma 1. The operator Q defined by $(Q f)(x)=\operatorname{Lim} f\left(W_{n} x\right)$ is a bounded linear projection onto $\operatorname{Ker}\left((A R(\alpha, A))^{*}\right)$ for each $\alpha>0$. It commutes with the operators $R(\alpha, A)^{*}$. Hence $(A R(\alpha, A))^{*} X^{*} \subset \operatorname{Ker}(Q)$.

Proof. The kernel of $(A R(\alpha, A))^{*}$ is independent of $\alpha>0$. This follows from the resolvent equation ([3, p. 239]). Since $|(Q f)(x)| \leq \operatorname{Lim}\left|f\left(W_{n} x\right)\right| \leq$ $K\|f\|\|x\|, Q$ is bounded. As $n \rightarrow \infty$,

$$
\left\|A W_{n}\right\|=\left\|\alpha_{n} A\left(\alpha_{n}-A\right)^{-1}\right\|=\left\|\alpha_{n}\left(\alpha_{n}\left(\alpha_{n}-A\right)^{-1}-I\right)\right\| \rightarrow 0
$$

Therefore $\left((A R(\alpha, A))^{*} Q f\right)(x)=\operatorname{Lim} f\left(W_{n} A R(\alpha, A) x\right)=0$ for every $x \in X$ and $\alpha>0$. Hence $(A R(\alpha, A))^{*} Q f=0$; also $Q\left((A R(\alpha, A))^{*} f\right)=0$ for every $f \in X^{*}$. Thus Q has the property

$$
\begin{equation*}
\alpha R(\alpha, A)^{*} Q=\alpha Q R(\alpha, A)^{*}=Q \tag{2}
\end{equation*}
$$

for all $\alpha>0$. We conclude that Q is a projection, $Q X^{*} \subset \operatorname{Ker}\left((A R(\alpha, A))^{*}\right)$ and $(A R(\alpha, A))^{*} X^{*} \subset(I-Q) X^{*}$. Finally, the inclusion $\operatorname{Ker}\left((A R(\alpha, A))^{*}\right)$ $\subset Q X^{*}$ holds since $\operatorname{Ker}\left((A R(\alpha, A))^{*}\right)=\operatorname{Ker}\left(W_{n}^{*}-I\right)$ for all $n \in \mathbb{N}$.

Corollary 1. Let A be an operator in the class (UBR). Then $Y=$ $\operatorname{Ker}(A) \oplus \overline{A(D(A))}$ is a closed subspace of X.

Proof. If $\operatorname{Ker}(A)=\{0\}$, then Y is obviously closed. Assume that $u \in$ $\operatorname{Ker}(A),\|u\|=1$. Let $f \in X^{*}$ be such that $\|f\|=f(u)=1$. Then $(Q f)(u)=$ $\operatorname{Lim} f\left(W_{n} u\right)=1$ and $(Q f)(A(D(A)))=\{0\}$. Hence, whenever $v \in \overline{A(D(A))}$, $\|u\|=1=(Q f)(u+v) \leq\|Q\|\|u+v\|$. The inequalities

$$
\begin{equation*}
\|u\| \leq\|Q\|\|u+v\| \quad \text { and } \quad\|v\| \leq\|v+u\|+\|u\| \leq(1+\|Q\|)\|u+v\| \tag{3}
\end{equation*}
$$

then hold for all $u \in \operatorname{Ker}(A)$ and $v \in \overline{A(D(A))}$. We conclude that the linear mapping $\varphi(u, v)=u+v$ from $\operatorname{Ker}(A) \times \overline{A(D(A))}$, which is a closed subspace of $X \times X$, to Y is a continuous bijection and by (3) the inverse of φ is continuous. Hence Y is closed.

Remark 1. The assumptions (i) and (iii) in the theorem below are in particular satisfied if X is a dual space and A is the adjoint of an operator which on the predual space generates a (UBR) and has dense domain. If P is the canonical projection of the predual, then the operators $R(\alpha, A)^{* *}$ commute with P.

We can assume that $A \neq 0$. Then $Q \neq I$ and $\|I-Q\| \geq 1$. We also assume that the canonical image \hat{X} of X is complemented in the second dual space of X with a projection P onto \hat{X}.

Theorem 1. Let X be a Banach space and A an operator in the class (UBR). Assume that
(i) $X^{* *}=\widehat{X} \oplus Z$,
(ii) $\|I-2 P\|\|I-Q\|<2$,
(iii) the resolvent operators satisfy $R(\alpha, A)^{* *} Z \subset Z$ for all $\alpha>0$.

Then

$$
X=\operatorname{Ker}(A) \oplus \overline{A(D(A))}
$$

Proof. Let $Y=\operatorname{Ker}(A) \oplus \overline{A(D(A))}$. Assume that $X \neq \bar{Y}$. Then there exists a linear functional $h \in X^{*}$ such that $\|h\|=1$ and $h(Y)=\{0\}$. Let $\gamma=\|I-2 P\|\|I-Q\|<2$. Let x_{0} be a point in X such that $\left\|x_{0}\right\|=1$ and $h\left(x_{0}\right)>\gamma / 2$. Since $h((A R(\alpha, A)) X)=\{0\}$ for all $\alpha>0, h=Q h$. Let $Q^{*} \widehat{x_{0}}=\hat{v}+F$ where $v \in X$ and $F \in Z$. Let α be some positive number. Then by (2), $\alpha R(\alpha, A)^{* *} F=\alpha R(\alpha, A)^{* *} Q^{*} \widehat{x_{0}}-\alpha \widehat{R(\alpha, A)} v=Q^{*} \widehat{x_{0}}-\alpha \widehat{R(\alpha, A)} v=$ $\widehat{v}-\alpha \widehat{R(\alpha, A)} v+F$. Since $R(\alpha, A)^{* *} Z \subset Z$ it follows that that $v=\alpha R(\alpha, A) v$. This implies $v \in D(A)$ and $A v=0$. Since, by assumption, $h(\operatorname{Ker}(A))=\{0\}$, we have $h(v)=0$ and therefore $F(h)=Q h\left(x_{0}\right)-h(v)=h\left(x_{0}\right)$. Now

$$
\begin{aligned}
\left\|\widehat{x_{0}-v}+F\right\| & =\left\|(I-2 P)\left(\widehat{x_{0}-v}-F\right)\right\|=\left\|(I-2 P)\left(\left(I-Q^{*}\right) \widehat{x_{0}}\right)\right\| \\
& \leq\|I-2 P\|\|I-Q\|=\gamma
\end{aligned}
$$

and $\left|\left(\widehat{x_{0}-v}+F\right)(h)\right|=2\left|h\left(x_{0}\right)\right| \leq \gamma$. Hence $\left|h\left(x_{0}\right)\right| \leq \gamma / 2$. This contradicts the assumption that $h\left(x_{0}\right)>\gamma / 2$. Therefore $X=\bar{Y}$ and since Y is closed by Corollary 1, $X=Y$.

In Section 3 we will give an example of an unbounded operator A satisfying the conditions in Theorem 1. The following theorem is an extension of [12, Corollary VIII.4.1] where ergodicity was proved for reflexive spaces.

Theorem 2. Let A be in the class (UBR). If $\operatorname{Ker}\left((A R(\alpha, A))^{* *}\right) \subset \widehat{X}$ for some $\alpha>0$ (and then for all $\alpha>0$), in particular if $R(\alpha, A)$ is weakly compact or if X is reflexive, then

$$
X=\operatorname{Ker}(A) \oplus \overline{A(D(A))}
$$

Proof. Let Q be as in Lemma 1. By (2), $Q^{*} X^{* *} \subset \operatorname{Ker}\left((A R(\alpha, A))^{* *}\right)$. Hence $Q^{*} X^{* *} \subset \widehat{X}$. Let $Y=\operatorname{Ker}(A) \oplus A(D(A))$. Assume that $X \neq \bar{Y}$. Then there exists $h \in X^{*}$ such that $\|h\|=1$ and $h(Y)=\{0\}$ and there is an element $x_{0} \in X$ so that $\left\|x_{0}\right\|=1$ and $h\left(x_{0}\right) \neq 0$. Now $Q^{*} \widehat{x_{0}} \in \widehat{X}$. Let $Q^{*} \widehat{x_{0}}=\hat{w}$. Since $(A R(\alpha, A))^{* *} Q^{*} \widehat{x_{0}}=0$, it is obvious that $A R(\alpha, A) w=0$. Hence $w \in D(A)$ and $A w=0$. Thus $h(w)=0$. Since $h(w)=\left(Q^{*} \widehat{x_{0}}\right)(h)=$ $(Q h)\left(x_{0}\right)=h\left(x_{0}\right)$, it follows that $h\left(x_{0}\right)=0$ contrary to the choice of x_{0}.

In the case that the projection P is an L-projection we have the following result. A bounded linear projection P is an L-projection if $\|x\|=\|P x\|+$ $\|(I-P) x\|$ for all $x \in X$. For an L-projection $\|I-2 P\|=1$.

Theorem 3. Let X be a Banach space such that there is an L-projection on $X^{* *}$ with range \hat{X} and kernel Z. Assume that A is in the class (UBR) with $K=1$ and $\|I-Q\|<2$. Then

$$
X=\operatorname{Ker}(A) \oplus \overline{A(D(A))}
$$

Proof. Let h be as in the proof of Theorem 1 and $x_{0} \in X$ be such that $\left\|x_{0}\right\|=1$ and $h\left(x_{0}\right)>\gamma / 2$, where $\gamma=\|I-Q\|$. Since $X^{* *}$ is the direct sum of \hat{X} and Z, there are elements $v \in X$ and $F \in Z$ such that $Q^{*} \widehat{x_{0}}=$ $\hat{v}+F$. Given $\alpha>0$, we have $\alpha R(\alpha, A)^{* *} F=\alpha R(\alpha, A)^{* *} Q^{*} \widehat{x_{0}}-\alpha \widehat{R(\alpha, A)} v$ $=Q^{*} \widehat{x_{0}}-\alpha \widehat{R(\alpha, A)} v=\widehat{v}-\alpha \widehat{R(\alpha, A)} v+F$. Let $z_{\alpha}=(I-\alpha R(\alpha, A)) v$. By assumption, $\left\|\alpha R(\alpha, A)^{* *} F\right\| \leq\|F\|$. Hence $\left\|\widehat{z_{\alpha}}+F\right\|=\left\|z_{\alpha}\right\|+\|F\| \leq\|F\|$. We conclude that $z_{\alpha}=0$. This implies that $v \in D(A)$ and $A v=0$. Since, by the choice of $h, h(\operatorname{Ker}(A))=\{0\}$, we have $h(v)=0$ and therefore $F(h)=$ $(Q h)\left(x_{0}\right)-h(v)=h\left(x_{0}\right)$. Now

$$
\left\|\widehat{x_{0}-v}+F\right\|=\left\|\widehat{x_{0}-v}-F\right\|=\left\|\left(I-Q^{*}\right) \widehat{x_{0}}\right\| \leq\left\|I-Q^{*}\right\|=\gamma
$$

and $\left|\left(\widehat{x_{0}-v}+F\right)(h)\right|=2\left|h\left(x_{0}\right)\right| \leq \gamma$. Hence $\left|h\left(x_{0}\right)\right| \leq \gamma / 2$ contrary to the assumption $h\left(x_{0}\right)>\gamma / 2$. This completes the proof.

The canonical projection of c_{0} is an L-projection (see [6]) and $c_{0}^{*}=l^{1}$. Theorems 1 and 3 are not necessarily true if $\|I-Q\| \geq 2$.

Example 3. Let $X=l^{1}=l^{1}(\mathbb{N})$ and let T be the shift operator $T e_{k}=$ e_{k+1} for $k \in \mathbb{N}$, where e_{k} is the k th unit vector $(0, \ldots, 0,1,0, \ldots)$. Let $A=T-I$. It is well known that A is injective and A^{*} is not injective on the dual space l^{∞}. Hence A is not ergodic. Since A is dissipative, $\|\alpha R(\alpha, A)\| \leq 1$ for all positive numbers α. It follows from Theorem 3 that $\|I-Q\|=2$.
3. Strongly continuous semigroups. If a strongly continuous semigroup $(T(t))_{t \geq 0}$ on a Banach space X satisfies the inequality

$$
\begin{equation*}
\|T(t)-I\| \leq \gamma<2 \quad \text { for all } t>0 \tag{T}
\end{equation*}
$$

then, for any $\alpha>0,\|A R(\alpha, A)\| \leq \gamma$ where A is the generator of the semigroup. This follows from the equality

$$
\begin{equation*}
A R(\alpha, A) x=\alpha \int_{0}^{\infty} e^{-\alpha s}(T(s)-I) x d s \tag{4}
\end{equation*}
$$

If $(T(t))_{t \in \mathbb{R}}$ is a strongly continuous group with an unbounded generator, then $\lim \sup _{t \downarrow 0}\|T(t)-I\| \geq 2$ by Williams [11, Theorem 1] (see also [8, Corollary 2.4.13]). Hence for groups, (T) implies boundedness of the generator. For more results on strongly continuous groups of operators see 4].

REMARK 2. (i) If (T) holds for small t, i.e., if there is a positive number δ such that

$$
\|T(t)-I\| \leq \gamma<2 \quad \text { for } 0<t<\delta
$$

then the semigroup $(T(t))_{t \geq 0}$ has an analytic extension (see [7]).
(ii) Condition $\left(\mathrm{T}^{\prime}\right)$ is obviously weaker than (T) since all semigroups with bounded generator satisfy $\left(\mathrm{T}^{\prime}\right.$ for some $\delta>0$. For example the bounded operator $A f(s)=\operatorname{isf}(s)$ on $C[0,1]$ generates a group of invertible isometries. Then, for large values of $t, i \pi t^{-1} \in \sigma(A)$. Hence $-1 \in \sigma(T(t))$ and $\|T(t)-I\|=2$.

The following example was given in [11]. In this example $(T(t))_{t \geq 0}$ is a strongly continuous semigroup with an unbounded generator. The assumptions of Theorems 1 and 3 are satisfied. Therefore the generator is ergodic.

Example 4. For the following semigroup, $\|T(t)-I\|=1$ and $\|T(t)\|=1$ for all $t>0$. Therefore, by (4), $\|I-Q\|=1$. Let $X=l^{1}$ and let

$$
\left\{\begin{array}{l}
(T(t) x)_{2 n-1}=\frac{1}{2}\left(1+e^{-n t}\right) x_{2 n-1}+\frac{1}{2}\left(1-e^{-n t}\right) x_{2 n} \\
(T(t) x)_{2 n}=\frac{1}{2}\left(1-e^{-n t}\right) x_{2 n-1}+\frac{1}{2}\left(1+e^{-n t}\right) x_{2 n}
\end{array}\right.
$$

whenever $x=\left\{x_{n}\right\}_{n=1}^{\infty} \in l^{1}$ and $n \in \mathbb{N}$. It is easy to see that $\lim _{t \rightarrow \infty} T(t) x=$ $P x$ for each $x \in X$, where P is the projection

$$
(P x)_{2 n-1}=(P x)_{2 n}=\frac{1}{2}\left(x_{2 n-1}+x_{2 n}\right)
$$

for $n \in \mathbb{N}$. The convergence is even uniform. Since $\|T(t)-P\| \leq e^{-t}$, $\lim _{t \rightarrow \infty}\|T(t)-P\|=0$. Further $P X=\operatorname{Ker}(A)$ and $\operatorname{Ker}(P)=A(D(A))$ (see [3, Theorem V.4.10]). The semigroup $T(t)$ is obviously adjoint of a strongly continuous semigroup on c_{0}.

Whenever a strongly continuous semigroup satisfies $\langle\mathrm{T}\rangle$, then

$$
\operatorname{Ker}(A) \oplus \overline{A(D(A))}=\operatorname{Ker}(T(t)-I) \oplus \overline{(T(t)-I) X}
$$

for every $t>0$. This follows from the Theorem of Sato in [9]. There the semigroup was assumed to satisfy the inequality $\|T(t)-I\|<2$ for every $0<t<\delta$ for some $\delta>0$. According to Mathematical Reviews (MR0627692) this condition can be replaced by the assumption that $-1 \in \rho(T(t))$ for $0<t<\delta$ for some positive δ. We only need to assume that, for some $\delta>0$, -1 is not an eigenvalue of $T(t)$ or $T(t)^{*}$ for all $0<t<\delta$. We use the method of Shaw [10, Lemma 3.2] in the proof of the equalities below.

Proposition 1. Let $(T(t))_{t \geq 0}$ be a strongly continuous semigroup on X. Suppose that there is a positive number δ such that for all $0<t<\delta,-1$ is neither an eigenvalue of $T(t)$ nor of $T(t)^{*}$. Then

$$
\operatorname{Ker}(T(t)-I)=\bigcap_{s>0} \operatorname{Ker}(T(s)-I) \quad \text { and } \quad \overline{(T(t)-I) X}=\overline{\bigcup_{s>0}(T(s)-I) X}
$$

whenever $0<t<\delta$.
Proof. Let $0<t_{0}<\delta$ and let $x \in \operatorname{Ker}\left(T\left(t_{0}\right)-I\right)$. Then

$$
\left(T\left(t_{0} / 2\right)+I\right)\left(T\left(t_{0} / 2\right)-I\right) x=0
$$

Since $T\left(t_{0} / 2\right)+I$ is injective, $\left(T\left(t_{0} / 2\right)-I\right) x=0$. In this way a sequence $\left\{t_{n}\right\}$ can be found such that $T\left(t_{n}\right) x=x$ for each $n=0,1, \ldots$ and $\lim _{n \rightarrow \infty} t_{n}=0$. Let $E=\{t>0: T(t) x=x\}$. Then $E \subset(0, \infty)$ and E is a subsemigroup of $(0, \infty)$. Further, E is closed in $(0, \infty)$, and if $t \in E$, then $t+t_{n} \in E$ and $\lim _{n \rightarrow \infty}\left(t+t_{n}\right)=t$. It follows that $E=(0, \infty)$. We conclude that $T(t) x=x$ for all $t>0$. Hence $\operatorname{Ker}\left(T\left(t_{0}\right)-I\right) \subset \operatorname{Ker}(T(t)-I)$ for every $t>0$. This proves the first equality.

To prove the second equality it is enough to show $\bigcup_{s>0}(T(s)-I) X \subset$ $\left(T\left(t_{0}\right)-I\right) X$ where $0<t_{0}<\delta$. Assume that f is an element of X^{*} such that $T\left(t_{0}\right)^{*} f=f$. The set $\left\{t>0: T(t)^{*} f=f\right\}$ is closed in $(0, \infty)$ since, by the strong continuity of $(T(t))_{t \geq 0}$, the mapping $t \mapsto\left(T(t)^{*} f\right)(x)$ is continuous for every $x \in X$. As $T(t)^{*}+I$ is injective for all $0<t<\delta$, we conclude as in the first part of the proof that $T(t)^{*} f=f$ for all $t>0$.

Remark 3. (i) The subspaces in Proposition 1 are in terms of the generator, $\operatorname{Ker}(A)$ and $\overline{A(D(A))}$. By the definition of a generator and by [3, Lemma II.1.3],

$$
\operatorname{Ker}(A)=\bigcap_{s>0} \operatorname{Ker}(T(s)-I) \quad \text { and } \quad \overline{A(D(A))}=\overline{\bigcup_{s>0}(T(s)-I) X}
$$

(ii) If a strongly continuous semigroup $(T(t))_{t \geq 0}$ is bounded, then the subspace $\operatorname{Ker}(A) \oplus \overline{A(D(A))}$ is a direct sum and a closed subspace of X (see for example [10] or Corollary 1). The same is true for the subspace $\operatorname{Ker}(T(t)-I) \oplus \overline{(T(t)-I) X}$. Further, for all $t>0$,

$$
\operatorname{Ker}(T(t)-I) \oplus \overline{(T(t)-I) X} \subset \operatorname{Ker}(A) \oplus \overline{A(D(A))}
$$

(see [10, Theorem 3.4]).
We will now consider strongly continuous semigroups which are eventually norm continuous, i.e. $\lim _{t \downarrow 0}\|(T(t)-I) T(s)\|=0$ for $s>t_{0}$ for some $t_{0} \geq 0$. For example strongly continuous analytic semigroups and eventually compact semigroups are in this class. In particular semigroups with a bounded generator are norm continuous, i.e. the map $t \mapsto T(t)$ is continuous for all $t \geq 0$ (for definitions we refer to [3]). Eventually norm continuous semigroups satisfy the spectral mapping theorem $e^{t \sigma(A)}=\sigma(T(t)) \backslash\{0\}$ for $t \geq 0$ ([3, Theorem IV.3.10]).

Corollary 2. Let A be the generator of a strongly continuous semigroup $(T(t))_{t>0}$ which is eventually norm continuous. Then there is a positive number δ such that

$$
\begin{equation*}
\operatorname{Ker}(T(t)-I)=\operatorname{Ker}(A) \quad \text { and } \quad \overline{(T(t)-I) X}=\overline{A(D(A))} \tag{5}
\end{equation*}
$$

for all $t \in(0, \delta)$. If the semigroup is also bounded and A is ergodic, then $T(t)-I$ is ergodic for all $t \in(0, \delta)$.

Proof. By [3, Theorem IV.3.10], the spectral mapping theorem $e^{t \sigma(A)}=$ $\sigma(T(t)) \backslash\{0\}$ for $t \geq 0$ holds. Further, by [3, Theorem II.4.18], $\sigma(A) \cap i \mathbb{R}$ is bounded. Let $s>0$ be such that $|\beta| \leq s$ whenever $i \beta \in \sigma(A)$ where $\beta \in \mathbb{R}$. Then, for $0<t<\pi s^{-1}, e^{i t \beta} \neq-1$ and therefore $-1 \in \rho(T(t))$. Now the result follows from Proposition 1 .

REMARK 4. If A is the generator of a bounded analytic semigroup $(T(t))_{t \geq 0}$, then the equalities (5) hold for all $t>0$. The proof is similar to the proof of Corollary 2. In this case $-1 \in \rho(T(t))$ for all $t>0$ since ([3, Corollary II.4.6]) $\sigma(A) \cap i \mathbb{R} \subset\{0\}$.
4. The canonical projection of the predual of the space J. We consider the space of James as defined in [1] and [2]. Let J be the space of
all complex sequences $x=\left\{x_{n}\right\}_{n=1}^{\infty}$ with the norm

$$
\begin{aligned}
\|x\|=\sup \left\{\left(\sum_{j=1}^{k}\left|\sum_{n \in I_{j}} x_{n}\right|^{2}\right)^{1 / 2}: I_{1}, \ldots, I_{k}\right. \text { are disjoint } \\
\quad \text { finite intervals of positive integers, } k \geq 1\}
\end{aligned}
$$

The Banach space J has a (unique isometric) predual ([1]), which we call Y. The canonical projection of Y on $Y^{* * *}=X^{* *}$ corresponding to the decomposition $Y^{* * *}=\widehat{Y^{*}} \oplus \hat{Y}^{\perp}$ will be called P_{Y}. The kernel of P_{Y} is a one-dimensional subspace $\mathbb{C} F_{2}$, where $F_{2} \in J^{* *},\left\|F_{2}\right\|=1$ and F_{2} restricted to \hat{Y} is equal to 0 . Hence $J^{* *}=\hat{J} \oplus \mathbb{C} F_{2}$. We will show that the projection P_{Y} has the property $\left\|I-2 P_{Y}\right\|<2$.

The following definition was given by Brown and Ito in [2, p. 266]. A Banach space Y is in the class (L) if for every $\epsilon>0$ there is a $\delta=\delta(\epsilon)>0$ such that whenever $x \in Y^{*}, G \in(\hat{Y})^{\perp},\|\hat{x}+G\|=1$ and $\|x\|>1-\delta$ then $\|G\|<\epsilon$.

We cite the result in [2, Proposition 7].
Proposition 2 ([2]). The predual Y of J is in the class (L).
Theorem 4. Let P_{Y} be the canonical projection of the Banach space Y. Then $\left\|I-P_{Y}\right\|=1$ and $1<\left\|I-2 P_{Y}\right\|<2$.

Proof. First we show that $\left\|I-2 P_{Y}\right\|>1$. If $\left\|I-2 P_{Y}\right\|=1$, then the operator $T=2 P-I$ is an invertible isometry since $T^{2}=I$. By [5, Proposition 10], $\operatorname{Ker}(T-I)=\hat{J}$ is weakly sequentially complete, which is not possible since J does not contain a subspace isomorphic to l^{1} and J is not reflexive.

We now make use of the results of Brown and Ito [1], 2]. For all complex numbers c and all elements $x \in J$,

$$
\begin{equation*}
\left\|\hat{x}+c F_{2}\right\| \geq|c| \tag{6}
\end{equation*}
$$

which follows from [1, Lemma 2] where it is proved that $\left\|F_{3}\right\|=1$; here F_{3} is an element of $J^{* * *}$ with $F_{3}(\hat{J})=\{0\}, F_{3}\left(F_{2}\right)=1$ and $J^{* * *}=\hat{J}^{*} \oplus \mathbb{C} F_{3}$. From the properties of F_{2} it follows that

$$
\begin{equation*}
\left\|\hat{x}+c F_{2}\right\| \geq\|x\| \quad \text { for every } x \in J \text { and all complex numbers } c . \tag{7}
\end{equation*}
$$

For any $F \in J^{* *}$ with $\|F\|=1$ we deduce from inequalities (6) and (7) that $\left\|\left(I-P_{Y}\right) F\right\| \leq\|F\|=1$ and $\left\|P_{Y} F\right\| \leq 1$. Therefore $\left\|I-P_{Y}\right\|=1$ and $\left\|P_{Y}\right\|=1$.

Finally, we prove that $\left\|I-2 P_{Y}\right\|<2$. Let $0<\epsilon<1$. Since $Y^{*}=J$, it follows from Proposition 2 that there exists $\delta=\delta(\epsilon)>0$ such that whenever $F \in J^{* *},\|F\|=1$ and $\left\|\vec{P}_{Y} F\right\|>1-\delta$ then $\left\|\left(I-P_{Y}\right) F\right\|<\epsilon$. Now for all

$$
\begin{aligned}
& F \in J^{* *} \text { with }\|F\|=1 \\
& \qquad\left\|\left(I-2 P_{Y}\right) F\right\|=\left\|\left(I-P_{Y}\right) F-P_{Y} F\right\| \leq\left\|\left(I-P_{Y}\right) F\right\|+\left\|P_{Y} F\right\|
\end{aligned}
$$

If $\left\|P_{Y} F\right\|>1-\delta$, then $\left\|\left(I-P_{Y}\right) F\right\|<\epsilon$. Hence $\left\|\left(I-2 P_{Y}\right) F\right\|<\epsilon+1$. If $\left\|P_{Y} F\right\| \leq 1-\delta$, then $\left\|\left(I-2 P_{Y}\right) F\right\| \leq 2-\delta$. Therefore

$$
\left\|I-2 P_{Y}\right\|=\sup \left\{\left\|\left(I-2 P_{Y}\right) F\right\|:\|F\|=1\right\} \leq \max \{\epsilon+1,2-\delta\}<2
$$

REMARK 5. Theorem 1 can be applied to operators in the class (UBR) on J if $\|I-Q\|<K$ where $K=2 /\left\|I-2 P_{Y}\right\|>1$.

References

[1] L. Brown and T. Ito, Isometric preduals of James spaces, Canad. J. Math. 32 (1980), 59-69.
[2] —, 一, Classes of Banach spaces with unique isometric preduals, Pacific J. Math. 90 (1980), 261-283.
[3] K.-L. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.
[4] J. Esterle, Zero-one and zero-two laws for the behavior of semigroups near the origin, in: Contemp. Math. 363, Amer. Math. Soc., Providence, RI, 2004, 69-79.
[5] G. Godefroy, Parties admissibles d'un espace de Banach. Applications, Ann. Sci. École Norm. Sup. (4) 16 (1983), 109-122.
[6] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993.
[7] T. Kato, A characterization of holomorphic semigroups, Proc. Amer. Math. Soc. 25 (1970), 495-498.
[8] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
[9] R. Sato, On a mean ergodic theorem, Proc. Amer. Math. Soc. 83 (1981), 563-564.
[10] S.-Y. Shaw, Ergodic projections of continuous and discrete semigroups, ibid. 78 (1980), 69-76.
[11] D. Williams, On operator semigroups and Markov groups, Z. Wahrsch. Verw. Gebiete 13 (1969), 280-285.
[12] K. Yosida, Functional Analysis, Springer, Berlin, 1980.
Kirsti Mattila
Department of Mathematics
Royal Institute of Technology
SE-10044 Stockholm, Sweden
E-mail: kirsti@math.kth.se

