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On ergodicity for operators with bounded resolvent
in Banach spaces

by

Kirsti Mattila (Stockholm)

Abstract. We prove results on ergodicity, i.e. on the property that the space is
a direct sum of the kernel of an operator and the closure of its range, for closed linear
operators A such that ‖α(α − A)−1‖ is uniformly bounded for all α > 0. We consider
operators on Banach spaces which have the property that the space is complemented in
its second dual space by a projection P . Results on ergodicity are obtained under a norm
condition ‖I−2P‖ ‖I−Q‖ < 2 where Q is a projection depending on the operator A. For
the space of James we show that ‖I − 2P‖ < 2 where P is the canonical projection of the
predual of the space. If (T (t))t≥0 is a bounded strongly continuous and eventually norm
continuous semigroup on a Banach space, we show that if the generator of the semigroup
is ergodic, then, for some positive number δ, the operators T (t) − I, 0 < t < δ, are also
ergodic.

1. Introduction. Let X be a complex Banach space. We consider op-
erators on X which generate a bounded resolvent family.

Definition 1. If a closed linear operator A on X satisfies the conditions

• {α ∈ R : α > 0} ⊂ ρ(A),
• there is a constant K > 0 such that ‖α(α−A)−1‖ ≤ K for all α > 0,

then we say that A generates a (uniformly) bounded resolvent family (UBR).

The domain of an operator A in the class (UBR) is not necessarily as-
sumed to be dense in X. We call an operator A ergodic if the Banach space
can be expressed as the direct sum X = Ker(A) ⊕ A(D(A)). There are
many operators in the class (UBR) which do not have this property. For
example the generator of the left translation group on L1(R) is not ergodic
([3, p. 344]). On the other hand in reflexive Banach spaces all operators in
this class are ergodic (see Yosida [12, p. 217]). The main result of this paper
is Theorem 1 which gives sufficient conditions for the ergodicity of operators
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in the class (UBR). A projection Q on the dual space will be connected to
each operator A in the class (UBR). We assume in Theorem 1 that the Ba-
nach space X is complemented in its second dual. If P is a projection with
PX∗∗ = X̂, we assume that ‖I − 2P‖ ‖I −Q‖ < 2. If in addition the second
adjoints of the resolvent operators commute with P , then A is ergodic.

In the case that P is an L-projection we show in Theorem 3 that if
‖Q‖ ≤ 1 and ‖I − Q‖ < 2 then A is ergodic. Theorem 2 is an extension
of the ergodicity result for reflexive Banach spaces in [12]. In Section 3 we
give an example of a semigroup with unbounded generator which satisfies
the assumptions of Theorems 1 and 3. We also consider strongly continuous
semigroups (T (t))t≥0 with the property that, for some positive number δ, −1
is not an eigenvalue of T (t) or T (t)∗ for 0 < t < δ. We show in Proposition 1
that then

(1) Ker(T (t)− I) = Ker(A) and (T (t)− I)X = A(D(A))

for 0 < t < δ.
Sato [9] proved that

Ker(T (t)− I)⊕ (T (t)− I)X = Ker(A)⊕A(D(A))

for bounded semigroups such that ‖T (t)− I‖ < 2 for 0 < t < δ. Shaw [10]
showed that the equalities (1) hold for bounded semigroups with bounded
generator. There are examples in [10] and in [3, p. 345] of semigroups for
which these subspaces are not equal. In Corollary 2 we show that the equal-
ities (1) hold for any semigroup (T (t))t≥0 which is strongly continuous and
eventually norm continuous. If the semigroup is also bounded and the gen-
erator is ergodic, then there is a positive number δ such that T (t) − I is
ergodic for 0 < t < δ.

In Section 4 we consider the space of James ([1], [2]). We prove in The-
orem 4 that the canonical projection P of its predual space satisfies the
inequality ‖I − 2P‖ < 2, which is a necessary assumption in Theorem 1.
The canonical projection of a Banach space Y is the projection on Y ∗∗∗

corresponding to the decomposition Y ∗∗∗ = Ŷ ∗ ⊕ (Ŷ )⊥ with range Ŷ ∗, the
canonical image of Y ∗, and kernel (Ŷ )⊥, the annihilator of Ŷ . For example,
for the space c0 and for the Banach space of all compact operators on a
Hilbert space, ‖I − 2P‖ = 1. For further examples and references on spaces
with this property see Harmand, Werner and Werner [6].

Let B(X) be the space of all bounded linear operators on X. For
a closed linear operator A on X, we denote by ρ(A) the resolvent set of A,
which is the set {α ∈ C : α−A has bounded inverse in X}, and the spectrum
by σ(A). The resolvent operators (α−A)−1 are denoted by R(α,A).

Example 1. A linear operator which generates a bounded strongly con-
tinuous semigroup generates a (UBR). In particular, if S ∈ B(X) is power-
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bounded, i.e. if ‖Sn‖ ≤ K for some constant K, n = 0, 1, . . . , then T = S−I
generates a bounded semigroup. This can be proved by using an equivalent
norm |x| = supn≥0 ‖Snx‖. Moreover, if A is an operator in the class (UBR)
with dense domain in X, then A∗, the adjoint of A, is in the class (UBR) in
the dual space X∗.

Example 2. Let A = −(β − B)−1 where B is in the class (UBR) on a
Banach space X and β > 0. We assume that ‖t(t − B)−1‖ ≤ M for t > 0.
We can show that A is also in the class (UBR). Obviously A is bounded and
injective. It is easy to show that for α > 0, α−A has bounded inverse and
A(α−A)−1 = −(αβ+1−αB)−1. Further ‖A(α−A)−1‖ ≤M/(αβ + 1) < M
for all α > 0. It follows that ‖α(α−A)−1‖ < M+1 for all α > 0. The operator
A is ergodic if and only if the domain of B is dense in X.

2. Ergodicity. In this section we assume that A is an operator in the
class (UBR). Let Lim be a Banach limit on l∞. We choose a sequence
{αn}∞n=1 of positive numbers such that limn→∞ αn = 0. Let Q be the oper-
ator on X∗ defined by

(Qf)(x) = Lim f(Wnx)

for each f ∈ X∗ and x ∈ X, where Wn = αn(αn −A)−1.
We shall need the following lemma, which states some straightforward

properties of Q, and a corollary. For completeness, we include their proofs.
A Banach limit Lim is a continuous linear functional on l∞ such that

‖Lim ‖ = 1, Lim(1, 1, 1, . . . ) = 1 and Lim cn = Lim cn+1. It also satisfies
|Lim cn| ≤ Lim |cn| and if {cn} converges to c, then Lim cn = c.

Lemma 1. The operator Q defined by (Qf)(x)=Lim f(Wnx) is a bounded
linear projection onto Ker((AR(α,A))∗) for each α > 0. It commutes with
the operators R(α,A)∗. Hence (AR(α,A))∗X∗ ⊂ Ker(Q).

Proof. The kernel of (AR(α,A))∗ is independent of α > 0. This follows
from the resolvent equation ([3, p. 239]). Since |(Qf)(x)| ≤ Lim |f(Wnx)| ≤
K‖f‖ ‖x‖, Q is bounded. As n→∞,

‖AWn‖ = ‖αnA(αn −A)−1‖ = ‖αn(αn(αn −A)−1 − I)‖ → 0.

Therefore ((AR(α,A))∗Qf)(x) = Lim f(WnAR(α,A)x) = 0 for every x ∈ X
and α > 0. Hence (AR(α,A))∗Qf = 0; also Q((AR(α,A))∗f) = 0 for every
f ∈ X∗. Thus Q has the property

(2) αR(α,A)∗Q = αQR(α,A)∗ = Q

for all α > 0. We conclude that Q is a projection, QX∗ ⊂ Ker((AR(α,A))∗)
and (AR(α,A))∗X∗ ⊂ (I − Q)X∗. Finally, the inclusion Ker((AR(α,A))∗)
⊂ QX∗ holds since Ker((AR(α,A))∗) = Ker(W ∗n − I) for all n ∈ N.
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Corollary 1. Let A be an operator in the class (UBR). Then Y =
Ker(A)⊕A(D(A)) is a closed subspace of X.

Proof. If Ker(A) = {0}, then Y is obviously closed. Assume that u ∈
Ker(A), ‖u‖ = 1. Let f ∈ X∗ be such that ‖f‖ = f(u) = 1. Then (Qf)(u) =
Lim f(Wnu) = 1 and (Qf)(A(D(A))) = {0}. Hence, whenever v ∈ A(D(A)),
‖u‖ = 1 = (Qf)(u+ v) ≤ ‖Q‖ ‖u+ v‖. The inequalities

(3) ‖u‖ ≤ ‖Q‖ ‖u+ v‖ and ‖v‖ ≤ ‖v + u‖+ ‖u‖ ≤ (1 + ‖Q‖)‖u+ v‖

then hold for all u ∈ Ker(A) and v ∈ A(D(A)). We conclude that the
linear mapping ϕ(u, v) = u + v from Ker(A) × A(D(A)), which is a closed
subspace of X ×X, to Y is a continuous bijection and by (3) the inverse of
ϕ is continuous. Hence Y is closed.

Remark 1. The assumptions (i) and (iii) in the theorem below are in
particular satisfied if X is a dual space and A is the adjoint of an operator
which on the predual space generates a (UBR) and has dense domain. If
P is the canonical projection of the predual, then the operators R(α,A)∗∗

commute with P .

We can assume that A 6= 0. Then Q 6= I and ‖I − Q‖ ≥ 1. We also
assume that the canonical image X̂ of X is complemented in the second
dual space of X with a projection P onto X̂.

Theorem 1. Let X be a Banach space and A an operator in the class
(UBR). Assume that

(i) X∗∗ = X̂ ⊕ Z,
(ii) ‖I − 2P‖ ‖I −Q‖ < 2,
(iii) the resolvent operators satisfy R(α,A)∗∗Z ⊂ Z for all α > 0.

Then

X = Ker(A)⊕A(D(A)).

Proof. Let Y = Ker(A) ⊕ A(D(A)). Assume that X 6= Y . Then there
exists a linear functional h ∈ X∗ such that ‖h‖ = 1 and h(Y ) = {0}. Let
γ = ‖I − 2P‖ ‖I − Q‖ < 2. Let x0 be a point in X such that ‖x0‖ = 1
and h(x0) > γ/2. Since h((AR(α,A))X) = {0} for all α > 0, h = Qh. Let
Q∗x̂0 = v̂+F where v ∈ X and F ∈ Z. Let α be some positive number. Then
by (2), αR(α,A)∗∗F = αR(α,A)∗∗Q∗x̂0− ̂αR(α,A)v = Q∗x̂0− ̂αR(α,A)v =
v̂− ̂αR(α,A)v+F. Since R(α,A)∗∗Z ⊂ Z it follows that that v = αR(α,A)v.
This implies v ∈ D(A) and Av = 0. Since, by assumption, h(Ker(A)) = {0},
we have h(v) = 0 and therefore F (h) = Qh(x0)− h(v) = h(x0). Now
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‖x̂0 − v + F‖ = ‖(I − 2P )(x̂0 − v − F )‖ = ‖(I − 2P )((I −Q∗)x̂0)‖
≤ ‖I − 2P‖ ‖I −Q‖ = γ

and |(x̂0 − v+F )(h)| = 2|h(x0)| ≤ γ. Hence |h(x0)| ≤ γ/2. This contradicts
the assumption that h(x0) > γ/2. Therefore X = Y and since Y is closed
by Corollary 1, X = Y .

In Section 3 we will give an example of an unbounded operator A sat-
isfying the conditions in Theorem 1. The following theorem is an extension
of [12, Corollary VIII.4.1] where ergodicity was proved for reflexive spaces.

Theorem 2. Let A be in the class (UBR). If Ker((AR(α,A))∗∗) ⊂ X̂
for some α > 0 (and then for all α > 0), in particular if R(α,A) is weakly
compact or if X is reflexive, then

X = Ker(A)⊕A(D(A)).

Proof. Let Q be as in Lemma 1. By (2), Q∗X∗∗ ⊂ Ker((AR(α,A))∗∗).
Hence Q∗X∗∗ ⊂ X̂. Let Y = Ker(A) ⊕ A(D(A)). Assume that X 6= Y .
Then there exists h ∈ X∗ such that ‖h‖ = 1 and h(Y ) = {0} and there is
an element x0 ∈ X so that ‖x0‖ = 1 and h(x0) 6= 0. Now Q∗x̂0 ∈ X̂. Let
Q∗x̂0 = ŵ. Since (AR(α,A))∗∗Q∗x̂0 = 0, it is obvious that AR(α,A)w = 0.
Hence w ∈ D(A) and Aw = 0. Thus h(w) = 0. Since h(w) = (Q∗x̂0)(h) =
(Qh)(x0) = h(x0), it follows that h(x0) = 0 contrary to the choice of x0.

In the case that the projection P is an L-projection we have the following
result. A bounded linear projection P is an L-projection if ‖x‖ = ‖Px‖ +
‖(I − P )x‖ for all x ∈ X. For an L-projection ‖I − 2P‖ = 1.

Theorem 3. Let X be a Banach space such that there is an L-projection
on X∗∗ with range X̂ and kernel Z. Assume that A is in the class (UBR)
with K = 1 and ‖I −Q‖ < 2. Then

X = Ker(A)⊕A(D(A)).

Proof. Let h be as in the proof of Theorem 1 and x0 ∈ X be such that
‖x0‖ = 1 and h(x0) > γ/2, where γ = ‖I − Q‖. Since X∗∗ is the direct
sum of X̂ and Z, there are elements v ∈ X and F ∈ Z such that Q∗x̂0 =
v̂ + F . Given α > 0, we have αR(α,A)∗∗F = αR(α,A)∗∗Q∗x̂0 − ̂αR(α,A)v
= Q∗x̂0 − ̂αR(α,A)v = v̂ − ̂αR(α,A)v + F. Let zα = (I − αR(α,A))v. By
assumption, ‖αR(α,A)∗∗F‖ ≤ ‖F‖. Hence ‖ẑα + F‖ = ‖zα‖+ ‖F‖ ≤ ‖F‖.
We conclude that zα = 0. This implies that v ∈ D(A) and Av = 0. Since, by
the choice of h, h(Ker(A)) = {0}, we have h(v) = 0 and therefore F (h) =
(Qh)(x0)− h(v) = h(x0). Now

‖x̂0 − v + F‖ = ‖x̂0 − v − F‖ = ‖(I −Q∗)x̂0‖ ≤ ‖I −Q∗‖ = γ
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and |(x̂0 − v + F )(h)| = 2|h(x0)| ≤ γ. Hence |h(x0)| ≤ γ/2 contrary to the
assumption h(x0) > γ/2. This completes the proof.

The canonical projection of c0 is an L-projection (see [6]) and c∗0 = l1.
Theorems 1 and 3 are not necessarily true if ‖I −Q‖ ≥ 2.

Example 3. Let X = l1 = l1(N) and let T be the shift operator Tek =
ek+1 for k ∈ N, where ek is the kth unit vector (0, . . . , 0, 1, 0, . . . ). Let
A = T − I. It is well known that A is injective and A∗ is not injective on the
dual space l∞. Hence A is not ergodic. Since A is dissipative, ‖αR(α,A)‖ ≤ 1
for all positive numbers α. It follows from Theorem 3 that ‖I −Q‖ = 2.

3. Strongly continuous semigroups. If a strongly continuous semi-
group (T (t))t≥0 on a Banach space X satisfies the inequality

(T) ‖T (t)− I‖ ≤ γ < 2 for all t > 0

then, for any α > 0, ‖AR(α,A)‖ ≤ γ where A is the generator of the
semigroup. This follows from the equality

(4) AR(α,A)x = α

∞�

0

e−αs(T (s)− I)x ds.

If (T (t))t∈R is a strongly continuous group with an unbounded generator,
then lim supt↓0 ‖T (t) − I‖ ≥ 2 by Williams [11, Theorem 1] (see also [8,
Corollary 2.4.13]). Hence for groups, (T) implies boundedness of the gener-
ator. For more results on strongly continuous groups of operators see [4].

Remark 2. (i) If (T) holds for small t, i.e., if there is a positive number
δ such that

(T′) ‖T (t)− I‖ ≤ γ < 2 for 0 < t < δ,

then the semigroup (T (t))t≥0 has an analytic extension (see [7]).
(ii) Condition (T′) is obviously weaker than (T) since all semigroups

with bounded generator satisfy (T′) for some δ > 0. For example the
bounded operator Af(s) = isf(s) on C[0, 1] generates a group of invertible
isometries. Then, for large values of t, iπt−1 ∈ σ(A). Hence −1 ∈ σ(T (t))
and ‖T (t)− I‖ = 2.

The following example was given in [11]. In this example (T (t))t≥0 is a
strongly continuous semigroup with an unbounded generator. The assump-
tions of Theorems 1 and 3 are satisfied. Therefore the generator is ergodic.

Example 4. For the following semigroup, ‖T (t)−I‖ = 1 and ‖T (t)‖ = 1
for all t > 0. Therefore, by (4), ‖I −Q‖ = 1. Let X = l1 and let{

(T (t)x)2n−1 = 1
2(1 + e−nt)x2n−1 + 1

2(1− e−nt)x2n,

(T (t)x)2n = 1
2(1− e−nt)x2n−1 + 1

2(1 + e−nt)x2n
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whenever x = {xn}∞n=1 ∈ l1 and n ∈ N. It is easy to see that limt→∞ T (t)x =
Px for each x ∈ X, where P is the projection

(Px)2n−1 = (Px)2n = 1
2(x2n−1 + x2n)

for n ∈ N. The convergence is even uniform. Since ‖T (t) − P‖ ≤ e−t,
limt→∞ ‖T (t) − P‖ = 0. Further PX = Ker(A) and Ker(P ) = A(D(A))
(see [3, Theorem V.4.10]). The semigroup T (t) is obviously adjoint of a
strongly continuous semigroup on c0.

Whenever a strongly continuous semigroup satisfies (T), then

Ker(A)⊕A(D(A)) = Ker(T (t)− I)⊕ (T (t)− I)X

for every t > 0. This follows from the Theorem of Sato in [9]. There the
semigroup was assumed to satisfy the inequality ‖T (t) − I‖ < 2 for every
0 < t < δ for some δ > 0. According to Mathematical Reviews (MR0627692)
this condition can be replaced by the assumption that −1 ∈ ρ(T (t)) for
0 < t < δ for some positive δ. We only need to assume that, for some δ > 0,
−1 is not an eigenvalue of T (t) or T (t)∗ for all 0 < t < δ. We use the method
of Shaw [10, Lemma 3.2] in the proof of the equalities below.

Proposition 1. Let (T (t))t≥0 be a strongly continuous semigroup on X.
Suppose that there is a positive number δ such that for all 0 < t < δ, −1 is
neither an eigenvalue of T (t) nor of T (t)∗. Then

Ker(T (t)− I) =
⋂
s>0

Ker(T (s)− I) and (T (t)− I)X =
⋃
s>0

(T (s)− I)X

whenever 0 < t < δ.

Proof. Let 0 < t0 < δ and let x ∈ Ker(T (t0)− I). Then

(T (t0/2) + I)(T (t0/2)− I)x = 0.

Since T (t0/2)+I is injective, (T (t0/2)−I)x = 0. In this way a sequence {tn}
can be found such that T (tn)x = x for each n = 0, 1, . . . and limn→∞ tn = 0.
Let E = {t > 0 : T (t)x = x}. Then E ⊂ (0,∞) and E is a subsemigroup
of (0,∞). Further, E is closed in (0,∞), and if t ∈ E, then t+ tn ∈ E and
limn→∞(t+ tn) = t. It follows that E = (0,∞). We conclude that T (t)x = x
for all t > 0. Hence Ker(T (t0) − I) ⊂ Ker(T (t) − I) for every t > 0. This
proves the first equality.

To prove the second equality it is enough to show
⋃
s>0(T (s) − I)X ⊂

(T (t0)− I)X where 0 < t0 < δ. Assume that f is an element of X∗ such that
T (t0)∗f = f . The set {t > 0 : T (t)∗f = f} is closed in (0,∞) since, by the
strong continuity of (T (t))t≥0, the mapping t 7→ (T (t)∗f)(x) is continuous
for every x ∈ X. As T (t)∗ + I is injective for all 0 < t < δ, we conclude as
in the first part of the proof that T (t)∗f = f for all t > 0.



70 K. Mattila

Remark 3. (i) The subspaces in Proposition 1 are in terms of the gen-
erator, Ker(A) and A(D(A)). By the definition of a generator and by [3,
Lemma II.1.3],

Ker(A) =
⋂
s>0

Ker(T (s)− I) and A(D(A)) =
⋃
s>0

(T (s)− I)X.

(ii) If a strongly continuous semigroup (T (t))t≥0 is bounded, then the
subspace Ker(A) ⊕ A(D(A)) is a direct sum and a closed subspace of X
(see for example [10] or Corollary 1). The same is true for the subspace
Ker(T (t)− I)⊕ (T (t)− I)X. Further, for all t > 0,

Ker(T (t)− I)⊕ (T (t)− I)X ⊂ Ker(A)⊕A(D(A))

(see [10, Theorem 3.4]).

We will now consider strongly continuous semigroups which are eventu-
ally norm continuous, i.e. limt↓0 ‖(T (t) − I)T (s)‖ = 0 for s > t0 for some
t0 ≥ 0. For example strongly continuous analytic semigroups and eventu-
ally compact semigroups are in this class. In particular semigroups with a
bounded generator are norm continuous, i.e. the map t 7→ T (t) is continu-
ous for all t ≥ 0 (for definitions we refer to [3]). Eventually norm continuous
semigroups satisfy the spectral mapping theorem etσ(A) = σ(T (t))\{0} for
t ≥ 0 ([3, Theorem IV.3.10]).

Corollary 2. Let A be the generator of a strongly continuous semi-
group (T (t))t≥0 which is eventually norm continuous. Then there is a posi-
tive number δ such that

(5) Ker(T (t)− I) = Ker(A) and (T (t)− I)X = A(D(A))

for all t ∈ (0, δ). If the semigroup is also bounded and A is ergodic, then
T (t)− I is ergodic for all t ∈ (0, δ).

Proof. By [3, Theorem IV.3.10], the spectral mapping theorem etσ(A) =
σ(T (t))\{0} for t ≥ 0 holds. Further, by [3, Theorem II.4.18], σ(A) ∩ iR is
bounded. Let s > 0 be such that |β| ≤ s whenever iβ ∈ σ(A) where β ∈ R.
Then, for 0 < t < πs−1, eitβ 6= −1 and therefore −1 ∈ ρ(T (t)). Now the
result follows from Proposition 1.

Remark 4. If A is the generator of a bounded analytic semigroup
(T (t))t≥0, then the equalities (5) hold for all t > 0. The proof is similar
to the proof of Corollary 2. In this case −1 ∈ ρ(T (t)) for all t > 0 since ([3,
Corollary II.4.6]) σ(A) ∩ iR ⊂ {0}.

4. The canonical projection of the predual of the space J . We
consider the space of James as defined in [1] and [2]. Let J be the space of
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all complex sequences x = {xn}∞n=1 with the norm

‖x‖ = sup
{( k∑

j=1

∣∣∣ ∑
n∈Ij

xn

∣∣∣2)1/2
: I1, . . . , Ik are disjoint

finite intervals of positive integers, k ≥ 1
}
.

The Banach space J has a (unique isometric) predual ([1]), which we
call Y . The canonical projection of Y on Y ∗∗∗ = X∗∗ corresponding to the
decomposition Y ∗∗∗ = Ŷ ∗ ⊕ Ŷ ⊥ will be called PY . The kernel of PY is a
one-dimensional subspace CF2, where F2 ∈ J∗∗, ‖F2‖ = 1 and F2 restricted
to Ŷ is equal to 0. Hence J∗∗ = Ĵ⊕CF2. We will show that the projection PY
has the property ‖I − 2PY ‖ < 2.

The following definition was given by Brown and Ito in [2, p. 266]. A Ba-
nach space Y is in the class (L) if for every ε > 0 there is a δ = δ(ε) > 0
such that whenever x ∈ Y ∗, G ∈ (Ŷ )⊥, ‖x̂ + G‖ = 1 and ‖x‖ > 1 − δ then
‖G‖ < ε.

We cite the result in [2, Proposition 7].

Proposition 2 ([2]). The predual Y of J is in the class (L).

Theorem 4. Let PY be the canonical projection of the Banach space Y .
Then ‖I − PY ‖ = 1 and 1 < ‖I − 2PY ‖ < 2.

Proof. First we show that ‖I − 2PY ‖ > 1. If ‖I − 2PY ‖ = 1, then
the operator T = 2P − I is an invertible isometry since T 2 = I. By [5,
Proposition 10], Ker(T − I) = Ĵ is weakly sequentially complete, which is
not possible since J does not contain a subspace isomorphic to l1 and J is
not reflexive.

We now make use of the results of Brown and Ito [1], [2]. For all complex
numbers c and all elements x ∈ J ,

(6) ‖x̂+ cF2‖ ≥ |c|,

which follows from [1, Lemma 2] where it is proved that ‖F3‖ = 1; here F3

is an element of J∗∗∗ with F3(Ĵ) = {0}, F3(F2) = 1 and J∗∗∗ = Ĵ∗ ⊕ CF3.
From the properties of F2 it follows that

(7) ‖x̂+ cF2‖ ≥ ‖x‖ for every x ∈ J and all complex numbers c.

For any F ∈ J∗∗ with ‖F‖ = 1 we deduce from inequalities (6) and (7) that
‖(I − PY )F‖ ≤ ‖F‖ = 1 and ‖PY F‖ ≤ 1. Therefore ‖I − PY ‖ = 1 and
‖PY ‖ = 1.

Finally, we prove that ‖I − 2PY ‖ < 2. Let 0 < ε < 1. Since Y ∗ = J , it
follows from Proposition 2 that there exists δ = δ(ε) > 0 such that whenever
F ∈ J∗∗, ‖F‖ = 1 and ‖PY F‖ > 1 − δ then ‖(I − PY )F‖ < ε. Now for all
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F ∈ J∗∗ with ‖F‖ = 1,

‖(I − 2PY )F‖ = ‖(I − PY )F − PY F‖ ≤ ‖(I − PY )F‖+ ‖PY F‖.
If ‖PY F‖ > 1 − δ, then ‖(I − PY )F‖ < ε. Hence ‖(I − 2PY )F‖ < ε + 1. If
‖PY F‖ ≤ 1− δ, then ‖(I − 2PY )F‖ ≤ 2− δ. Therefore

‖I − 2PY ‖ = sup{‖(I − 2PY )F‖ : ‖F‖ = 1} ≤ max{ε+ 1, 2− δ} < 2.

Remark 5. Theorem 1 can be applied to operators in the class (UBR)
on J if ‖I −Q‖ < K where K = 2/‖I − 2PY ‖ > 1.
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