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Products of n open subsets in the space of
continuous functions on [0, 1]

by

Ehrhard Behrends (Berlin)

Abstract. Let O1, . . . , On be open sets in C[0, 1], the space of real-valued continuous
functions on [0, 1]. The product O1 · · ·On will in general not be open, and in order to
understand when this can happen we study the following problem: given f1, . . . , fn ∈
C[0, 1], when is it true that f1 · · · fn lies in the interior of Bε(f1) · · ·Bε(fn) for all ε > 0 ?
(Bε denotes the closed ball with radius ε and centre f .) The main result of this paper is a
characterization in terms of the walk t 7→ γ(t) := (f1(t), . . . , fn(t)) in Rn. It has to behave
in a certain admissible way when approaching {x ∈ Rn | x1 · · ·xn = 0}. We will also show
that in the case of complex-valued continuous functions on [0, 1] products of open subsets
are always open.

1. Introduction. The starting point of the investigations in [1] was
the observation that the product of two open sets in the space of real-valued
continuous functions is not necessarily open. However, such products always
contain interior points. The results have been generalized in [4] to the space
of real-valued N -times differentiable functions, and in [2] a characterization
was given: what properties of the functions under consideration make such
a phenomenon possible? The aim of the present paper is a generalization of
these results to n-fold products.

As in [2], we describe the “local obstruction”: when is it true that f1 · · · fn
lies in the interior of the product of the n balls Bε(f1), . . . , Bε(fn) for every
ε > 0 ? We will characterize the families f1, . . . , fn ∈ C[0, 1] for which this
holds.

It will turn out that the topological properties of the curve t 7→ (f1(t),
. . . , fn(t)) close to the zeros of f1 · · · fn will play a crucial role.

In order to state the main result of this paper (Theorem 1.2) we need
some preliminary definitions. We denote by Π the set {−1,+1}n and by Π+

resp. Π− the subset of those π where π1 · · ·πn equals +1 resp. −1.

2010 Mathematics Subject Classification: 46B20, 46E15.
Key words and phrases: spaces of continuous functions, open sets, Banach algebra.

DOI: 10.4064/sm204-1-5 [73] c© Instytut Matematyczny PAN, 2011



74 E. Behrends

Each π ∈ Π gives rise to a subset Qπ of Rn:

Qπ := {x ∈ Rn | xiπi ≥ 0 for i = 1, . . . , n}.
Note that, e.g., the Qπ are just the quadrants in R2 if n = 2. Also it is clear
that the function H : Rn → R, x 7→ x1 · · ·xn, is ≥ 0 resp. ≤ 0 on Qπ for
π ∈ Π+ resp. π ∈ Π−.

Now let x ∈ Rn be given. For which Qπ is it true that there are y ∈ Qπ
close to x such that H(y) is slightly larger resp. slightly smaller than H(x)?
More precisely we define Z+

x ⊂ Π to be the collection of all π such that for
every ε > 0 there exists y ∈ Qπ for which ‖x − y‖ ≤ ε and H(y) > H(x).
(‖·‖ will always denote the maximum norm on Rn.) Similarly Z−x is defined:
here H(y) < H(x) has to be true.

If H(x) 6= 0, i.e., if x is in the interior of some Qπ, we have Z+
x = Z−x

= {π}. For x with H(x) = 0 the explicit description is as follows: π is in Z+
x

(resp. Z−x ) precisely if π ∈ Π+ (resp. π ∈ Π−), and πixi > 0 for the i with
xi 6= 0. In particular it follows for π = (πi), π̃ = (π̃i) ∈ Z+

x that πi = π̃i for
the i with xi 6= 0. (A similar result holds for π = (πi), π̃ = (π̃i) ∈ Z−x .) Note
also that Z+

x ∩ Z−x = ∅ for the x such that H(x) = 0.
As an illustration consider the following examples in R3:

• Z+
(1,−2,3) = Z−(1,−2,3) = {(+1,−1,+1)};

• Z+
(3,0,0) = {(+1,+1,+1), (+1,−1,−1)}, Z−(3,0,0) = {(+1,−1,+1),

(+1,+1,−1)};
• Z+

(0,0,0) = Π+, Z−(0,0,0) = Π−.

Now fix f1, . . . , fn ∈ C[0, 1], and put γ(t) := (f1(t), . . . , fn(t)) for 0 ≤
t ≤ 1. Here is a crucial definition:

Definition 1.1. We say that γ is positive admissible (resp. negative
admissible) if whenever t1 < · · · < tn in [0, 1] are such that H ◦ γ ≥ 0 (resp.
≤ 0) on [t1, tn], then

⋂
i Z

+
γ(ti)
6= ∅ (resp.

⋂
i Z
−
γ(ti)
6= ∅).

If γ is positive admissible and negative admissible, it is said to be ad-
missible.

To illustrate this definition let us consider some examples:

• For n = 1 every γ is admissible.
• For n = 2 the walk γ is admissible iff it never goes directly from
Q(+1,+1) to Q(−1,−1) (or vice versa) and never directly from Q(+1,−1)

to Q(−1,+1) (or vice versa). In [2] this was called “γ has no positive
and no negative saddle point crossings”.
• Now for n = 3, suppose, e.g., that γ stays in Q(+1,+1,+1). Then γ is

positive admissible, but it will be negative admissible only if it does not
move to three linearly independent directions on subintervals where
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H ◦γ = 0. For example, a walk that goes on straight lines from (1, 0, 0)
to (0, 0, 0) to (0, 1, 0) to (0, 0, 0) to (0, 0, 1) is not negative admissible.

Our main result (which generalizes the characterization in [2] for the
case n = 2) reads as follows:

Theorem 1.2. Let f1, . . . , fn ∈ C[0, 1]. Then the following assertions
are equivalent:

(i) f1 · · · fn lies in the interior of Bε(f1) · · ·Bε(fn) for every ε > 0.
(ii) The associated walk γ : t 7→ (f1(t), . . . , fn(t)) is admissible.

The proof will be given in Section 3 after the introduction of some further
definitions and the verification of some preliminary results in Section 2. The
idea will be to show a more precise variant of the theorem by induction
on n. Using this variant we will be able to derive properties of γ on [0, 1]
from properties of γ on the subintervals of appropriate partitions of [0, 1].

In Section 4 we prove that in the space of complex-valued functions on
[0, 1] products of open sets are always open, and finally, in Section 5, one
finds some consequences of the main theorem and some concluding remarks.

2. Preliminaries

A translation of the problem: “walk the dog”. We fix f1, . . . , fn,
and γ is defined as before. The investigations to come are rather technical,
and as in [2] it will be helpful to have an appropriate visualization.

First we note that “for every positive ε the function f1 · · · fn lies in the in-
terior of Bε(f1) · · ·Bε(fn)” just means that for every ε > 0 there is a τ0 > 0
such that for every τ ∈ C[0, 1] with ‖τ‖ ≤ τ0 there exists a continuous
d : [0, 1]→ Rn such that ‖d(t)‖ ≤ ε and H(γ(t) + d(t)) = H ◦ γ(t) + τ(t) for
every t ∈ [0, 1]: if γ is considered as your walk in Rn, then your “dog”—its
position at time t is (γ + d)(t)—can move so that it is always ε-close to
you, and its “height above sea level” H((γ + d)(t)) relative to yours (which
is H(γ(t))) can be prescribed as τ(t) arbitrarily, provided it is uniformly
small.

A lemma concerning the Z+
x and the Z−x . In Section 1 we have

defined what it means that γ is admissible. We will need some consequences
of this property.

Lemma 2.1. Suppose that γ is admissible.

(i) If H ◦γ ≥ 0 on some subinterval [a, b], then
⋂
a≤t≤b Z

+
γ(t) 6= ∅. If, in

addition, there is a t ∈ [a, b] with H ◦ γ(t) > 0 then
⋂
a≤t≤b Z

+
γ(t) is

a singleton.
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(ii) If H ◦γ ≤ 0 on some subinterval [a, b], then
⋂
a≤t≤b Z

−
γ(t) 6= ∅. If, in

addition, there is a t ∈ [a, b] with H ◦ γ(t) < 0 then
⋂
a≤t≤b Z

−
γ(t) is

a singleton.
(iii) If H ◦ γ = 0 on some subinterval [a, b], then there are π = (πi), π̃ =

(π̃i) such that π belongs to all Z+
γ(t) and π̃ belongs to all Z−γ(t) for

t ∈ [a, b]. If i is an index such that πi 6= π̃i then fi (the ith component
of γ) vanishes on [a, b]. Note that such i exist since Z+

x ∩ Z−x = ∅
whenever H(x) = 0.

Proof. (i) Consider Ji := fi([a, b]) for i = 1, . . . , n. The Ji are compact
subintervals of R; we claim that 0 is never contained in any of them as
an interior point. In fact, if the product fi(t)fi(t′) were negative for some
i, t, t′, we would have Z+

γ(t)∩Z
+
γ(t′) = ∅ (since for π ∈ Π+ the ith component

cannot be positive and negative at the same time). This would contradict
the assumption that γ is positive admissible. Let ∆ be the collection of i
where Ji is not the interval [0, 0]. Choose ti for these i such that fi(ti) 6= 0.

If ∆ is a proper subset of {1, . . . , n} we are already done: we define πi
for i ∈ ∆ such that πifi(ti) > 0, and the remaining πi are chosen in such a
way that π ∈ Π+. Then π will lie in all Z+

γ(t) for a ≤ t ≤ b.
Now suppose that ∆ = {1, . . . , n}. Since γ is positive admissible there

is a π in
⋂
i Z

+
γ(ti)

. It lies in Π+ and it must have the property that πifi(ti)
is strictly positive for all i. Therefore

∏
fi(ti) > 0. Since Ji does not have 0

as an interior point it follows that fi(ti)fi(t) ≥ 0 for all t ∈ [a, b], and this
implies that a π which lies in all Z+

γ(ti)
must also lie in Z+

γ(t) for arbitrary
t ∈ [a, b].

The second part of the assertion is clear since Z+
x contains just one

element if H(x) 6= 0.
(ii) This can be proved in a similar way.
(iii) By (i) and (ii) it is clear that π and π̃ with the desired properties

exist. Now let i be such that πi 6= π̃i. With the notation of the proof of (i)
we claim that the interval Ji equals [0, 0]. Otherwise, if Ji contained strictly
positive (resp. strictly negative) elements, πi and similarly π̃i would both be
+1 (resp. −1).

Canonical positions. Suppose that someone stays during his or her
walk at some time at x ∈ Rn and that one has to find a position of the dog
that is close to x and that has a prescribed H-value. There will be many of
them, but it will be crucial for our investigations to have a canonical one.

We start with an x such that H(x) 6= 0. Then x lies in the interior
of some Qπ: here π is uniquely determined, and Z+

x = Z−x = {π}. All
components of x are different from zero.
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We put ys := (1+s)x. The function s 7→ H(ys) = (1+s)nH(x) is strictly
monotonic on ]−1,∞[ (strictly increasing resp. decreasing if π ∈ Π+ resp.
π ∈ Π−). Its range is ]0,∞[ or ]−∞, 0[ and we conclude that for |α| < |H(x)|
there is a unique sα such that H(ysα) = (1 + sα)nH(x) = H(x) +α. We will
denote this ysα by W (x, π, α): this is our canonical choice.

Next we consider an x such that H(x) = 0 and a pair (π, π̃) ∈ Z+
x ×Z−x .

(Note that such pairs always exist.) Let ∆ be the nonvoid set of indices i
where πi 6= π̃i. It is obvious that the cardinality l of ∆ is odd and xi = 0 for
i ∈ ∆.

Let ε > 0 be so small that ε ≤ |xi| for all i such that xi 6= 0. Then
define, for |s| ≤ ε, a vector ys as follows. For the i such that xi 6= 0 we put
(ys)i = xi, for the i ∈ ∆ the value of (ys)i is s, and for the remaining i (i.e.,
the i where xi = 0 and πi = π̃i, if any) we define (ys)i := επi (= επ̃i). Then
H(ys) = c · sl, where c is a constant with |c| ≥ εn−l. Since l is odd, the
function s 7→ H(ys), |s| ≤ ε, is strictly monotonic, and its range contains at
least the interval [−εn, εn]. Thus, for |α| ≤ εn, there is a uniquely determined
s such that H(ys) = α. This ys will be denoted by Wε(x, π, π̃, α). (Note that
this vector will only depend on ε if there are i /∈ ∆ with xi = 0.)

It is obvious that Wε(x, π, π̃, α) is ε-close to x for the α under consider-
ation. This will be—depending on π, π̃—our canonical choice of y such that
H(y) = H(x) + α in the case H(x) = 0.

Types, admissible pairs, and pep. Let [a, b] be a nontrivial interval
and φ : [a, b] → R a continuous function (1). If φ is identically zero we will
say that φ is of type T (0).

If this is not the case we distinguish several cases. If φ(a) 6= 0 we say
that φ is of left type u. Suppose that φ(a) = 0, but φ vanishes on no neigh-
bourhood of a. There are three possibilities for the behaviour of φ:

(i) There is a δ0 > 0 such that φ ≥ 0 on [a, a+ δ0], and for every δ > 0
there exists a t ∈ [a, a+ δ] with φ(t) > 0.

(ii) There is a δ0 > 0 such that φ ≤ 0 on [a, a+ δ0], and for every δ > 0
there exists a t ∈ [a, a+ δ] with φ(t) < 0.

(iii) For every δ > 0 there exist t, t′ ∈ [a, a + δ] with φ(t) > 0 and
φ(t′) < 0.

We will say that φ is of left type +, − or ± if (i), (ii) or (iii) holds respectively.
The right types u (if φ(b) 6= 0) and +,−,± (when φ(b) = 0, but φ vanishes
on no neighbourhood of b) are defined similarly.

φ is said to be of type T (T1, T2) on [a, b] if φ is of left type T1 ∈
{u,+,−,±} and of right type T2 ∈ {u,+,−,±}. It should be clear that

(1) We will need the following classification only in the case when φ is the restriction
of H ◦ γ to certain subintervals.
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for every φ precisely one of the following 50 situation occurs:

• φ is of type T (0) on [a, b].
• φ is of some type T (T1, T2) on [a, b].
• There is a′ ∈ ]a, b[ such that φ is of type T (0) on [a, a′] and of some type
T (T1, T2) on [a′, b]. (Note that in this case T1 must be in {+,−,±}.
Similar restrictions apply to T2 in the next case and to both T1 and
T2 in the last case.)
• There is b′ ∈ ]a, b[ such that φ is of type T (0) on [b′, b] and of some

type T (T1, T2) on [a, b′].
• There are a′, b′ ∈ ]a, b[ with a′ < b′ such that φ is of type T (0) on

[a, a′] and on [b′, b] and of some type T (T1, T2) on [a′, b′].

In our case properties of the function φ = H ◦ γ will be crucial, and
depending on its type we would like to be able to choose the starting and
final position of the “walk of the dog”, i.e., the vectors γ(a) + d(a) and
γ(b) + d(b) in a canonical way in certain Qπa ∪ Qπ̃a (at a) and in certain
Qπb ∪Qπ̃b (at b), where (πa, π̃a) ∈ Z+

γ(a) ×Z
−
γ(a) and (πb, π̃b) ∈ Z+

γ(b) ×Z
−
γ(b),

respectively. For example, if T1 = +, then for a distinguished π ∈ Z+
γ(a)

and all π̃ ∈ Z−γ(a) we want to choose the starting position of the dog in a
canonical way in Qπ ∪Qπ̃.

To make this precise we need some further definitions. Let γ : [0, 1]→ Rn

be admissible and [a, b] ⊂ [0, 1]. We suppose that H ◦ γ is of some type
T (T1, T2) on [a, b]. We define sets of left (resp. right) admissible pairs, AlT1
(resp. ArT2), as follows.

• If T1 = u, then Alu := {(π, π)}, where π is the unique vector such that
γ(a) lies in the interior of Qπ.
• Let T1 = +. By definition there is a δ0 > 0 such that H ◦ γ is nonneg-

ative on [a, a+ δ0], and since H ◦γ is strictly positive at some point in
[a, a + δ0] there is a unique π0 such that

⋂
a≤t≤a+δ0 Z

+
γ(t) (cf. Lemma

2.1(i)). We put Al+ := {(π0, π̃) | π̃ ∈ Z−γ(a)}.
• Similarly, if T1 = −, we know that

⋂
a≤t≤a+δ0 Z

−
γ(t) = {π̃0} for a suffi-

ciently small δ0 and a unique π̃0. In this case we put Al− := {(π, π̃0) |
π ∈ Z+

γ(a)}.
• In the case T1 = ± we define Al± := Z+

γ(a) × Z
−
γ(a).

• The right admissible pairs ArT2 are defined in a similar way.

We now turn to pep, the possibility of choosing prescribed end points,
i.e. the positions at t = a and at t = b, for the walk of the dog. As before,
γ is supposed to be admissible.
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Definition 2.2. Suppose that H ◦γ|[a,b] is of type T (T1, T2) and ε0 > 0.
We will say that γ of type T ε0pep(T1, T2) on [a, b] if the following holds.

There is a positive ε∗ ≤ ε0 such that for every ε ∈ ]0, ε∗] one can find
a τ0 > 0 such that for arbitrary (πa, π̃a) ∈ AlT1 and (πb, π̃b) ∈ ArT2 and for
every continuous τ : [a, b] → R with ‖τ‖ ≤ τ0 there exists a continuous
d : [a, b]→ Rn such that

• H(γ(t) + d(t)) = H(γ(t)) + τ(t) and ‖d(t)‖ ≤ ε0 for t ∈ [a, b].
• At a and b the value of γ + d is defined in a canonical way:

(γ + d)(a) = Wε(γ(a), πa, π̃a, τ(a)) resp. W ((γ + d)(a), πa, τ(a))

if T1 ∈ {+,−,±} resp. T1 = u, and

(γ + d)(b) = Wε(γ(b), πb, π̃b, τ(b)) resp. W ((γ + d)(b), πb, τ(b))

if T2 ∈ {+,−,±} resp. T2 = u.

If this is true for every ε0 > 0 we will say that γ is of type Tpep(T1, T2).

When does T (∗, ∗) for H ◦ γ|[a,b] imply Tpep(∗, ∗) for γ|[a,b]? The
answer to this question will be crucial for our investigations. We will prove
three results that hold in general.

Later we will consider situations where 0 ≤ a < b < c < d ≤ 1 are
given, H ◦ γ is of some type Tpep on [a, b] and on [c, d] and vanishes on [b, c].
How can one fill the gap between b and c for the walk of the dog if there
are walks on [a, b] and [c, d] that are provided by the pep condition? The
following proposition will enable us to do this.

Proposition 2.3. Suppose that γ = (f1, . . . , fn) is admissible and that
H ◦ γ is of type T (0) on [a, b]. Assume that π = (πi) ∈

⋂
a≤t≤b Z

+
γ(t) and

π̃ = (π̃i) ∈
⋂
a≤t≤b Z

−
γ(t) are given (2). Then, for every ε > 0, one can find

a τ0 > 0 such that for every continuous τ : [a, b] → R with ‖τ‖ ≤ τ0 there
exists a continuous d : [a, b]→ Rn such that

(γ + d)(a) = Wε(γ(a), π, π̃, τ(a)), (γ + d)(b) = Wε(γ(b), π, π̃, τ(b)),

and ‖d(t)‖ ≤ ε and H(γ(t) + d(t)) = τ(t) for all t ∈ [a, b].

Proof. Let ε > 0 be given. Assume that it is smaller than all |fi(a)| where
fi(a) 6= 0 and also smaller than all |fi(b)| where fi(b) 6= 0. (If necessary,
replace ε by a smaller positive number.) Denote by ∆ the collection of i
where πi 6= π̃i. For i ∈ ∆ the function fi vanishes on [a, b] (cf. the proof of
Lemma 2.1(iii)), and the number l of elements in ∆ is odd.

The following construction makes use of the Wε above. As a first step
we pass to slight perturbations of the fi for i /∈ ∆.

(2) Note that by Lemma 2.1(iii) such pairs exist.
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Let an i /∈ ∆ be given. Then πi = π̃i, and the function fiπi is nonnegative
on [a, b]. We define gi : [a, b]→ R by gi(t) := fi(t) if |fi(t)| ≥ ε and gi(t) :=
επi otherwise. Then gi is continuous and ε-close to fi. We have gi(a) = fi(a)
if fi(a) 6= 0 and fi(a) = επi otherwise, and similarly, gi(b) = fi(b) if fi(b) 6= 0
and fi(b) = επi otherwise. For i ∈ ∆ we put gi := fi = 0.

Now let τ : [a, b] → R be continuous such that ‖τ‖ ≤ τ0 := εn. We will
define a walk that stays ε-close to γ on [a, b], has H-value at time t precisely
τ(t), and its endpoints are the prescribed canonical points as claimed.

For t ∈ [a, b] we put

Pε(t, π, π̃, τ) := Wε(G(t), π, π̃, τ(t))),

where G(t) := (g1(t), . . . , gn(t)). The map Pε(·, π, π̃, τ) has the following
properties:

• It is continuous since it can be explicitly described by using roots and
scalar products.
• Pε(a, π, π̃, τ) = Wε(γ(a), π, π̃, τ(a)).

This makes use of the following fact that is an immediate consequence
of the definition (we use the notation in the paragraph where “canonical
positions” have been introduced): Suppose that H(x) = 0. If y ∈ Rn is such
that xi = yi for i ∈ ∆ and for i with xi 6= 0, and yi = επi for the remaining
i (if any), then Wε(x, π, π̃, α) = Wε(y, π, π̃, α) for α ∈ [−εn, εn].

• Pε(b, π, π̃, τ) = Wε(γ(b), π, π̃, τ(b)).
• ‖γ(t) − Pε(t, π, π̃, τ)‖ ≤ ε for t ∈ [a, b]; this can be easily checked

coordinatewise.
• H(Pε(t, π, π̃, τ)) = τ(t) for all t.

This means that d := Pε(·, π, π̃, τ)− γ behaves as desired.

It is possible to glue intervals together where γ is of some type Tpep. This
is true in general and will be important later (cf. the proof of Lemma 2.6
and of the main theorem in Section 3). Here we will consider only a special
case:

Proposition 2.4. Let γ be admissible and 0 ≤ a < b < c ≤ 1. Assume
that γ is of type Tpep(T1, u) on [a, b] and of type Tpep(u, T2) on [b, c]. Then
γ is of type Tpep(T1, T2) on [a, c].

Proof. If ε0 is a given positive number choose ε∗ to be the smaller of the
ε∗ that are appropriate for [a, b] and [b, c]. Let ε ∈ ]0, ε∗] be given and τ0 the
smaller of the τ0’s for [a, b] and [b, c] for this ε.

Now let τ : [a, c] → R with ‖τ‖ ≤ τ0 be prescribed. We find the desired
walks d1, d2 on [a, b] and on [b, c] by assumption: the γ+di are ε0-close to γ,
the H-value is H(γ)+τ , and γ+di have both at b the value W (γ(b), π, τ(b)),
where π is the unique vector with γ(b) ∈ Qπ. Thus the walks can be glued
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together to produce a continuous walk with the desired properties that is
defined on [a, c].

The next proposition concerns situations when the walk stays very close
to 0 ∈ Rn on [a, b]. Then the “dog” can move rather freely: it need not be in
the same Qπ as γ provided its position is also close to zero. The proposition
is prepared with the following lemma.

Lemma 2.5. Fix ε0 > 0 and [a, b] ⊂ [0, 1]. For any given x, y with
‖x‖, ‖y‖ ≤ ε0 and a continuous function σ : [a, b] → R with σ(a) = H(x),
σ(b) = H(y) and ‖σ‖ ≤ εn0 , in each of the following cases there is a con-
tinuous D (= Da,b;x,y;σ) : [a, b] → Rn such that D(a) = x, D(b) = y, and
H(D(t)) = σ(t) and ‖D(t)‖ ≤ 2ε0 for every t.

(i) There is π ∈ Π such that x, y are in the interior of Qπ.
(ii) x resp. y lies in the interior of Qπ resp. Qπ̃, where π ∈ Π+, π̃ ∈ Π−.

(iii) There is a y0 with H(y0) = 0 such that x lies in the interior of some
Qπ with π ∈ Z+

y0, π̃ ∈ Z−y0, and y = Wε(y0, π, π̃, α), where |α| ≤ εn0
and 0 < ε ≤ ε0.

Proof. The translation is the following: one can move from x to y with
arbitrarily prescribed H-value in these cases provided that this value is small
enough.

(i) Without loss of generality we assume that π = (1, . . . , 1), which im-
plies that H(x) > 0. The walk will be defined by putting together three sub-
walks D1, D2 and D3: one from x to F := {(ε0, . . . , ε0, α) | α ∈ R, |α| ≤ ε0},
one on F and a third one from F to y.

Choose a′ ∈ ]a, b[ such that σ(t) ≤ 2H(x) on [a, a′] (note that σ is
continuous and σ(a) = H(x) > 0). Then D1(t) is defined on this interval by

(X1(t), . . . , Xn−1(t), st),

where
Xi(t) := ((a′ − t)xi + (t− a)ε0)/(a′ − a),

and st is chosen such that H(D1(t)) = σ(t):

st =
σ(t)

X1(t) · · ·Xn−1(t)
.

It is then clear that D1 is continuous, D1(a) = x and

D1(a′) = (ε0, . . . , ε0, σ(a′)/εn−1
0 ).

Also note that
|st| = |σ(t)/(X1(t) · · ·Xn−1(t))| ≤ |σ(t)/(x1 · · ·xn−1)|
≤ |2H(x)/(x1 · · ·xn−1)| = 2|xn|.

This proves that ‖D1(t)‖ ≤ 2ε0 for all t.
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Similarly we define a walk D3 from F to y. It is defined on some small
interval [b′, b] where a′ < b′ < b, the distance of the walk to zero is at most
2ε0, and the H-value at any time t is σ(t).

It remains to fill the gap between a′ and b′. We put

D2(t) := (ε0, . . . , ε0, σ(t)/εn−1
0 ).

This D2 connects the first two walks in a continuous way (3), we have H ◦D2

= σ, and the norm at every point of [a′, b′] is at most 2ε0. (In fact, it is even
bounded by ε0.)

(ii) Let ∆ be the set of i where πi 6= π̃i. This set is nonempty and its
cardinality is odd. Without loss of generality we assume that π = (1, . . . , 1)
and ∆ = {1, . . . , l} with 1 ≤ l ≤ n.

This time we first move from x to G1, the set where the last n − l (if
there are any) components equal ε0, then to the subset G2 ⊂ G1 of those
vectors where the first l components coincide. The walk will stay on G2 for
some time, and then it will go from G2 to G1 to y.

We start by choosing a′ ∈ ]a, b[ such that

(1 + η)−1H(x) ≤ σ(t) ≤ (1 + η)H(x)

on [a, a′]; here η is a positive number that will be fixed later. Select any
a′′ ∈ ]a, a′[.

Between t = a and t = a′′ we will move from x to a point in G1. This
will be done as follows. With Xi(t) := ((a′′ − t)xi + (t− a)ε0)/(a′′ − a), we
select st such that

D(t) := (stx1, . . . , stxl, Xl+1(t), . . . , Xn(t))

satisfies H ◦ D(t) = σ(t). Then D is continuous, it connects x to a point
in G1, and the H-value is as desired. It also stays close to zero:

|st| = | l
√
σ(t)/(x1 · · ·xlXl+1(t) · · ·Xn(t))| ≤ | l

√
σ(t)/(x1 · · ·xn)| ≤ l

√
1 + η,

and this implies that all components of D(t) are bounded by ε0 l
√

1 + η.
Now we will move from x̂ = (x̂i) := D(a′′) to a point in G2. We choose

s0 such that sl0ε
n−l = σ(a′), and this time we define Xi(t) := ((a′ − t)x̂i +

(t− a′′)s0)/(a′ − a′′). Then D will be defined on [a′′, a′] by

D(t) := (stX1(t), . . . , stXl(t), ε0, . . . , ε0),

where st is the unique number such that H ◦D(t) = σ(t). (Such an st exists
since l is odd.) This walk satisfies H ◦D = σ; it only remains to prove that
it stays close to zero.

For the proof we observe that x̂1 · · · x̂lεn−l = σ(a′′) ≥ σ(a)/(1 + η). Also
sl0ε

n−l = σ(a′) ≥ σ(a)/(1 + η) so that |X1(t) · · ·Xl(t)εn−l0 | ≥ |σ(a)|/(1 + η).

(3) Note that D2(a′) = D1(a′) and D2(b′) = D3(b′).
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(This follows from the inequality (1− t)c+ td ≤ c1−tdt for c, d > 0.) Hence

|st| =
∣∣∣ l√σ(t)/(X1(t) · · ·Xl(t)εn−l0 )

∣∣∣ ≤ | l√(1 + η)σ(t)/σ(a)| ≤ l
√

(1 + η)2,

and we conclude that all components of allD(t) are bounded by l
√

(1 + η)3 ε0.
Thus it suffices to put η := 3

√
2− 1 to guarantee that ‖D(t)‖ ≤ 2ε0.

Similarly, the last part of the walk will go, for t in a suitable interval [b′, b],
from some (s, . . . , s, ε0, . . . , ε0) ∈ G2 with H(s, . . . , s, ε0, . . . , ε0) = σ(b′) to y,
and it will meet a suitable ŷ ∈ G1 at some time t = b′′ between b′ and b.
The gap between a′ and b′ will be filled by the walk

D(t) :=
(
l

√
σ(t)/εn−l0 , . . . ,

l

√
σ(t)/εn−l0 , ε0, . . . , ε0

)
.

Note again that l is odd so that the definition also applies for the neg-
ative values of σ(t). The norm of D(t) is as desired also on [a′, b′] since
|σ(t)/εn−l0 | ≤ εl0.

(iii) As before we assume, without loss of generality, that π = (1, . . . , 1)
and π̃ = (−1, . . . ,−1, 1, . . . , 1), where the number l ∈ {1, . . . , n} of −1 en-
tries is odd. By the definition of the canonical positions, y has the form
(sy, . . . , sy, yl+1, . . . , yn) where the yl+1, . . . , yn are positive and bounded
from below by ε. We also know that α = H(y) = σ(b) = slyyl+1 · · · yn.

To find a continuous walk D with H ◦ D = σ we proceed as in the
preceding proofs. First walk from x to some point in G2, then the walk
stays there until t = b′, where b′ < b is chosen close to b in the following
way. We know that |sy| = | l

√
σ(b)/(yl+1 · · · yn)| ≤ ε0, and we choose b′ such

that | l
√
σ(t)/(yl+1 · · · yn)| ≤ 2ε0 for t ∈ [b′, b].

At t = b′ the walk stays at a point ŷ := (s0, . . . , s0, ε0, . . . , ε0) with
sl0ε

n−l
0 = σ(b′) and |s0| ≤ ε0. It remains to move to y.
We put Yi(t) := ((b− t)ε0 + (t− b′)yi)/(b− b′) for i = l+ 1, . . . , n: the Yi

are continuous and they lie between yi and ε0. We define

D(t) := (st, . . . , st, Yl+1(t), . . . , Yn(t)),

where st is such that H ◦D(t) = σ(t). Then D is continuous, it connects ŷ
to y, and the norm is small:

|st| = | l
√
σ(t)/(Yl+1(t) · · ·Yn(t))| ≤ | l

√
σ(t)/(yl+1(t) · · · yn(t))| ≤ 2ε0.

With these preparations it is now possible to show that the pep property
can be guaranteed for walks that stay close to the origin.

Proposition 2.6. Let ε0 > 0 be given and suppose that ‖γ(t)‖ < ε0 for
t ∈ [a, b] and H ◦ γ has type T (T1, T2) on this subinterval. As before assume
that γ is admissible. Then γ is of type T 3ε0

pep(T1, T2) on [a, b].
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Proof. Suppose that our assertion has been shown for the following
cases:

(a) T (u, u), and H ◦ γ ≥ 0 on [a, b].
(b) T (u, u), and H ◦ γ(a) > 0 > H ◦ γ(b).
(c) T (u,+), H ◦ γ(a) > 0, and H ◦ γ ≥ 0 on [a, b].
(d) T (u,±), and H ◦ γ(a) > 0.

We claim that then we are done. In fact, if one considers γ̃ = (−f1, f2, . . . , fn),
then conditions (a)–(d) applied to γ̃ yield four new conditions for γ. For
example, (d) for γ̃ covers the case “T (u,±), and H ◦ γ(a) < 0 ” for γ.
Similarly a proof for T (u,+) implies one for T (+, u): simply pass from γ to
t 7→ γ(1−t). One only has to note that with γ also γ̃ and t 7→ γ(1−t) are
admissible.

However, there remain some other situations to be treated. Consider for
example the case T (u, u) where H◦γ(a) and H◦γ(b) are strictly positive, but
H ◦γ is negative at some a′ ∈ [a, b]. We consider [a, a′] and [a′, b] separately.
There H ◦ γ is of type T (u, u) for which the pep property is already known,
and it remains to glue together the walks on these subintervals with the
help of Proposition 2.4. Similarly the cases T (+,+), T (+,−), . . . can be
reduced to the above conditions (a)–(d) by choosing a suitable a′ ∈ [a, b]
and discussing [a, a′] and [a′, b] separately: the smaller of the ε∗ associated
with these subintervals will work for [a, b] in Definition 2.2.

(a) We have to find a positive ε∗ ≤ 3ε0 with the properties described in
definition 2.2. We claim that it suffices to choose ε∗ such that ‖γ(t)‖+ε∗ ≤ ε0
for all t ∈ [a, b].

To show that this choice is appropriate let a positive ε with ε ≤ ε∗ be
given. We put τ0 := εn0 − (ε0 − ε)n. For a continuous τ : [a, b] → R with
‖τ‖ ≤ τ0 we have to find a continuous walk d such that ‖d‖ ≤ 3ε0, H ◦(γ+d)
= H ◦ γ+ τ , and γ+ d connects W (γ(a), π, τ(a)) to W (γ(b), π, τ(b)); here π
is the unique vector such that γ(a) and γ(b) are in the interior of Qπ. (By
Lemma 2.1(i) the same π works for γ(a) and γ(b).) We define σ := H ◦γ+τ
on [a, b], x := W (γ(a), π, τ(a)) and y := W (γ(b), π, τ(b)). Since

|σ(t)| ≤ |H(γ(t))|+ |τ(t)| ≤ (ε0 − ε)n + τ0 ≤ εn0
the assumptions of Lemma 2.5(i) are satisfied. We find D = Da,b,x,y;σ as in
that lemma, and then it is clear that d := D− γ has the desired properties.

(b) The proof is similar, this time Lemma 2.5(ii) comes into play.
(c) Here Lemma 2.5(iii) will be used. Note first that Z+

γ(a) is a singleton
{π} so that AlT1 = {(π, π)}. Since we assume that H ◦ γ ≥ 0 we have
ArT2 = {(π, π̃) | π̃ ∈ Z−γ(b)}.

We define ε∗ as in the proof of (a), and additionally we assume that
ε∗ is so small that the absolute value of all components of γ(b) that are
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nonzero are bounded from below by ε∗. We claim that this choice of ε∗ is
appropriate.

Let ε ∈ ]0, ε∗] be given, and define τ0 := εn; note that then also εn0 −
(ε0 − ε)n ≥ τ0. Suppose that τ : [a, b]→ R is continuous with ‖τ‖ ≤ τ0. We
put σ := H ◦ γ + τ (defined on [a, b]), x := W (γ(a), π, τ(a)), y0 := γ(b) and
y := Wε(y0, π, π̃, τ(b)). Note that this is possible since |τ(b)| ≤ εn. Lemma
2.5(iii) provides a path Da,b;x,y;σ from x to y with ‖D‖ ≤ 2ε0, and it is easy
to check that d := D − γ satisfies ‖d‖ ≤ 3ε0, H ◦ (γ + d) = H ◦ γ + τ , and
at a and b the walk γ + d touches the canonical positions.

(d) Here a small trick will be necessary. We define ε and τ0 as in the
proof of (a), and suppose, e.g., that H ◦ γ(a) > 0. Let τ , π1, π2 and π̃ be
given, where

• τ is continuous and ‖τ‖ ≤ τ0,
• π1 is such that γ(a) ∈ Qπ1 ,
• π2 ∈ Z+

γ(b), π̃ ∈ Z
−
γ(b).

We have to produce a walk γ+ d that starts at x := W (γ(a), π1, τ(a)), ends
at y := Wε(γ(b), π2, π̃, τ(b)), and satisfies H ◦ (γ + d) = H ◦ γ + τ .

The problem is that π1 might be different from π2. But H ◦ γ is of
type “±” at b so that we may choose a′, b′ with a < a′ < b′ < b such that
H◦γ(a′) < 0 < H◦γ(b′). We decrease τ0 (if necessary) so that H◦γ(a′)+τ0 <
0 < H ◦γ(b′)−τ0. This guarantees that the function σ := H ◦γ+τ is strictly
negative at a′ and strictly positive at b′.

Next we choose an x′ ∈ Qπ̃ such that H(x′) = σ(a′) and ‖x′‖ ≤ ε0. This
is possible since |σ(a′)| ≤ εn0 . Also we select y′ ∈ Qπ2 with H(y′) = σ(b′)
and ‖y′‖ ≤ ε0.

It remains to apply Lemma 2.5 to find D : [a, b]→ Rn such that ‖D(t)‖ ≤
2ε0 and H ◦D(t) = σ(t) for all t: first move from x to x′ according to the
walk described in Lemma 2.5(ii), continue (again using the construction in
2.5(ii)) to y′, and the final part of the walk is as described in 2.5(iii), where
y0 = γ(b). With d := γ − D we have found a function with the desired
properties.

3. Proof of the main result. After the preceding preparations we are
now able to prove our main result, Theorem 1.2. The structure of the proof
will be as follows:

• Proof of (i)⇒(ii); this will be rather simple.
• Definition of a more refined variant of (ii)⇒(i).
• Proof by induction that the refined variant holds for all n.
• A summary.
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Proof of (i)⇒(ii). We start with an observation concerning the defini-
tion of Z+

x for x = (xi) ∈ Rn. Let ε > 0 be such that |xi| > ε for all xi with
xi 6= 0. It then follows immediately from the definition of Z+

x that x+y will
lie in some Qπ with π ∈ Z+

x whenever H(x+ y) > H(x) and ‖y‖ ≤ ε.
Now we prove by contradiction that (i) implies (ii). We assume that γ

is not admissible, and we will show that then (i) cannot be true. Suppose
that, e.g., γ is not positive admissible. Then there are t1 < · · · < tn such
that H ◦ γ ≥ 0 on [t1, tn], and

⋂
i Z

+
γ(ti)

= ∅. Choose ε > 0 that satisfies the
condition of the preceding paragraph for all x = γ(ti), i = 1, . . . , n. If (i)
were true we could find a continuous d : [0, 1] → Rn such that ‖d(t)‖ ≤ ε
for all t and H ◦ (γ + d) > H ◦ γ. In particular H ◦ (γ + d) would be strictly
positive on [t1, tn].

Now we apply the preceding observation. Each (γ+d)(ti) will lie in some
Qπ with π ∈ Z+

γ(ti)
. But no π lies in all Z+

γ(ti)
so there must exist i, j such

that (γ+d)(ti) resp. (γ+d)(tj) lie in Qπ resp. Qπ̃ with π 6= π̃. But every con-
tinuous path from a point of Qπ to one in Qπ̃ has to pass through {H = 0}
so that we find a t between ti and tj with H((γ + d)(t)) = 0. This is a con-
tradiction, since H ◦ (γ + d) was assumed to be strictly positive on [t1, tn].

Definition of a refined variant of (ii)⇒(i)

Definition 3.1. By (A)n we mean the following assertion: whenever
f1, . . . , fn ∈ C[0, 1] are such that the associated walk γ is admissible, and
H ◦ γ is of type T (T1, T2) on [0, 1], then γ is of type Tpep(T1, T2).

Admittedly this looks much more clumsy than the statement (ii)⇒(i).
In fact it is a sharper assertion:

Proposition 3.2. Suppose that (A)n holds. Then (ii)⇒(i) in Theorem
1.2 is valid.

Proof. First we note that (A)n implies that one may replace [0, 1] in
the definition of (A)n by any subinterval [a, b]. (Simply consider the walk
t 7→ γ(a+ t(b− a)) instead of γ; this map is also admissible.)

Now let an admissible γ and an ε0 > 0 be given. We have to provide,
for “sufficiently small” functions τ , a continuous d with ‖d‖ ≤ ε0 such that
H ◦ (γ + d) = H ◦ γ + τ .

Suppose first that H ◦ γ vanishes identically. Then H ◦ γ is an interior
point of the product of the balls Bε0(fi) (i.e., (i) holds) as an immediate
consequence of Proposition 2.3.

So assume that there is an a ∈ ]0, 1[ with H ◦ γ(a) 6= 0. If H ◦ γ is of
some type T (T1, T2) on [0, 1] it is of type Tpep(T1, T2) by assumption, and
(i) follows again immediately (cf. Definition 2.2 where the pep property was
introduced).
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It remains to deal with situations where there are possibly a′, b with
0 < a′ < a < b < 1 such that H ◦ γ vanishes identically on [0, a′] and/or
[b, 1]. We may suppose that [0, a′] is a maximal interval where H ◦ γ van-
ishes so that H ◦ γ is of some type T (T1, u) on [a′, a] with T1 ∈ {+,−,±}.
Now Proposition 2.3 comes again into play; the argument will depend
on T1.

Consider first the case T1 = +. Then H ◦ γ is nonnegative on a suit-
able interval [0, a′ + δ0], and there are t where this function is strictly posi-
tive. Consequently, there is (by Lemma 2.1(i)) a unique π ∈ Π+ such that⋂
t∈[0,a′+δ0] Z

+
γ(t) = {π}. Also (by Lemma 2.1(ii)) there is a π̃ ∈

⋂
t∈[0,a′] Z

−
γ(t).

Choose ε∗ for ε0 according to the pep condition on [a′, a], put ε := ε∗

and select a τ0 for this ε∗. We may suppose that τ0 is so small that it sat-
isfies the conditions of Proposition 2.3. Now let a continuous τ : [0, a] → R
with ‖τ‖ ≤ τ0 be given. Proposition 2.3 and the pep condition provide con-
tinuous walks of the dog d1 and d2 on [0, a′] and [a′, a] respectively such
that the norm is bounded by ε0, H ◦ (γ + d1) = H ◦ γ + τ on [0, a′] and
H ◦ (γ + d2) = H ◦ γ + τ on [a′, a]. At a′ the functions γ + d1 and γ + d2

coincide, both have the value Wε(γ(a′), π, π̃, τ(a′)), so that d1 and d2 can
be glued together to yield a continuous walk d on [0, a] with the desired
properties.

If T1 = − one argues similarly. Finally suppose that T1 = ±. Choose any
π ∈

⋂
t∈[0,a′] Z

+
γ(t), π̃ ∈

⋂
t∈[0,a′] Z

−
γ(t) (which is possible by Lemma 2.1(iii))

and apply as before Proposition 2.3 and the pep condition with these π, π̃.
In this way we have produced an admissible walk on [0, a]. The interval

[a, 1] can be treated in the same way, and it only remains to glue the walks
together at a. Since the positions at a for both walks γ + d (on [0, a] and
on [a, 1]) are the canonical vector W (γ(a), π, τ(a)) (where Z+

γ(a) = {π}) this
construction gives rise to a continuous walk on all of [0, 1] with the desired
properties.

Proof by induction that the refined variant holds for all n. It
remains to show that (A)n holds for every n. The case n = 1 is rather simple,
one can always work with d(t) = τ(t). Suppose that (A)n has been verified
for some n, and we will prove that (A)n+1 also holds.

To this end let f0, . . . , fn ∈ C[0, 1] be given such that the associated walk
γ : t 7→ (f0(t), . . . , fn(t)) is admissible and H ◦ γ is of some type T (T1, T2)
on [0, 1]. We have to show that γ is of type Tpep(T1, T2).

The idea of the proof will be to partition [0, 1] into finitely many subin-
tervals on each of which one of the following conditions is satisfied:

• at least one component of γ is bounded away from zero, or
• all components of γ are close to zero.
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In the first case Tpep will follow from (A)n, and in the second from the con-
structions at the end of the last section. It will then only be necessary to
glue the parts together as in the proof of Lemma 2.4.

This will now be made precise. We suppose that H ◦ γ is of some
type T (T ′1 , T ′2 ) on [0, 1] and that ε0 > 0. We will show that γ is of type
T 3ε0

pep(T ′1 , T ′2 ).

Lemma 3.3. There is a partition 0 = a0 < a1 < · · · < ak = 1 such that
the intervals Ij := [aj , aj+1] have the following properties:

(a) On each Ij, H ◦ γ is either of type T (0) or of some type T (T1, T2).
(b) If H ◦ γ is of some type T (T1, T2) on Ij, then (at least) one of the

following statements is true: ‖γ(t)‖ < ε0 for all t ∈ Ij, or there is
an i ∈ {0, . . . , n} such that |fi(t)| ≥ ε0/2 for all t ∈ Ij.

(c) No intervals of type T (0) and no intervals where H ◦γ has some type
T (T1, T2) are adjacent.

Proof. This is simple. In a first step one finds the Ij such that (b) holds.
Split each Ij further (if necessary) into intervals for which H ◦ γ has some
type T (T1, T2) and others with type T (0). Finally pass to unions of adjacent
intervals with type T (0) and to unions of adjacent intervals where H ◦γ has
some type T (T1, T2).

Lemma 3.4. Suppose that an interval of the preceding partition has some
type T (T1, T2). Then it has type T 3ε0

pep(T1, T2).

Proof. For the Ij where ‖γ(t)‖ < ε0 this is just the assertion of Proposi-
tion 2.6. Suppose that one component of γ is bounded away from zero. With-
out loss of generality we may assume that f0 ≥ ε0/2 on Ij . In order to apply
the induction hypothesis we consider the walk γ̃ : t 7→ (f1(t), . . . , fn(t)) for
t ∈ Ij . It is straightforward to show that γ̃ is admissible. The elementary
argument starts with the observation that a (π0, . . . , πn) belongs to Z+

γ(t)

iff π0 = 1 and (π1, . . . , πn) ∈ Z+
γ̃(t) (for t ∈ Ij). It is also easy to verify

that H ◦ γ̃ has type T (T1, T2) on Ij if H ◦ γ does (4). Only very elemen-
tary facts come into play: If x0 ≥ ε/2 and x0 · · ·xn > 0 then x1 · · ·xn > 0
etc.

By assumption γ̃ has Tpep(T1, T2) on Ij . We choose ε∗ as in Definition 2.2
for ε0 and we select any ε ∈ ]0, ε∗] and the associated τ0. Put τ ′0 := ε0τ0/2
and consider a continuous τ : Ij → R with ‖τ‖ ≤ τ ′0. Then τ̃ := (τ/f0)|Ij
satisfies ‖τ̃‖ ≤ τ0, and therefore there is a continuous d̃ : Ij → Rn such that

(4) For simplicity we use the same symbol H for the functions (x0, . . . , xn) 7→ x0 · · ·xn
and (x1, . . . , xn) 7→ x1 · · ·xn.
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‖d̃‖ ≤ ε0, H ◦ (γ̃+ d̃) = H ◦ γ̃+ τ̃ , and at the end points of Ij the walk γ̃+ d̃
is at the canonical positions (5).

We claim that d(t) := (0, d̃1, . . . , d̃n) has (essentially) the desired prop-
erties. In fact, it is continuous, the norm is bounded by ε0 and H ◦ γ + τ =
H ◦ (γ + d). It remains to check whether the walk starts at the canonical
points. This is true whenever the left and right type are in {+,−,±}, as
follows from the Definition 2.2 of the canonical positions. But it is not true
in the case T = u.

The problem is the following. Suppose, e.g., that the left type is u. Then
the walk that we have constructed starts at some point

x := (f0(aj), f1(aj) + s, . . . , f1(aj) + s)

with a suitable small s, while it should start at the (n+ 1)-dimensional

W (γ(aj), π, τ(aj)) = y := (f0(aj) + s′, . . . , fn(aj) + s′)

where both vectors have the same H-value. This can be overcome by using
the same techniques as in the proof of Lemma 2.5: Choose a′ > aj sufficiently
close to aj and apply the preceding argument to the interval [a′, aj+1]; the
walk will now start at some x′ := (f0(a′), f1(a′) + s, . . . , f1(a′) + s). And the
interval [a, a′] will be used for a walk from y to x′ that stays close to γ and
for which H ◦ (γ + d) = H ◦ γ + τ . This can be done without much effort
since we are in a situation where all functions are nonzero and—if a′−aj is
small—nearly constant.

We now complete the induction proof. [0, 1] is partitioned into intervals
I0, . . . , Ik−1 as in Lemma 3.3, and on intervals where H ◦ γ has some type
we know that γ has the corresponding T 3ε0

pep type. We will show that this
will suffice to prove that γ has type T 3ε0

pep(T ′1 , T ′2 ) on [0, 1]. The idea how
to do this is not new, we have used it in the proofs of Propositions 2.4
and 3.2. We will construct the desired walk of the dog d with prescribed
H ◦ (γ + d) = H ◦ γ + τ by glueing together the walks on I0, . . . , Ik−1. To
achieve this, one has to check whether the possible boundary conditions
fit.

As a first example consider a situation where H ◦ γ is of type T (T1,+)
on Ij , of type T (0) on Ij+1 and of type T (+, T2) on Ij+2. The claim is that
the pep condition on Ij and Ij+2 implies that γ has type T 3ε0

pep(T1, T2) on
Ij ∪ Ij+1 ∪ Ij+2.

We know that at aj+1, the right end point of Ij , one may prescribe an end
point in Qπ ∪Qπ̃, where π is the unique element of

⋂
t∈[aj+1−δ0,aj+1] Z

+
γ(t) for

(5) More precisely: (γ̃ + d̃)(aj) equals W (γ̃(aj), π, τ̃(aj)) if H(γ̃(aj)) 6= 0 and
Wε(γ̃(aj), π, π̃, τ̃(aj)) otherwise; here (π, π̃) can be prescribed as any left admissible pair.
Similar conditions are satisfied at aj+1.
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some positive δ0 and π̃ ∈ Z−γ(aj+1) is arbitrary. A similar fact is known for the

starting point in Ij+2, it lies in Qπ
′∪Qπ̃′

, where
⋂
t∈[aj+2,aj+2+δ0] Z

+
γ(t) = {π′}

and π̃′ ∈ Z−γ(aj+2) is arbitrary.
With the help of Proposition 2.3 the gap between t = aj+1 and t = aj+2

could be filled if we knew that π = π′. Fortunately this is true: One simply
has to apply Lemma 2.1(i) to the interval [aj − δ0, aj+2 + δ0]. H ◦ γ is
nonnegative there and sometimes strictly positive so that just one element
lies in the intersection of the Z+

γ(t), t ∈ [aj − δ0, aj+2 + δ0].
The rest is routine. Choose ε and τ0 so small that they are appropriate

for Ij , Ij+1 and Ij+2, any left admissible pair (πa, π̃a) at aj and any right
admissible pair (πb, π̃b) at aj+3. Then, if τ : [aj , aj+3] → R is continuous
with ‖τ‖ ≤ τ0 we can find walks dj , dj+1, dj+3 on Ij , Ij+1, Ij+2, respectively,
with small norm such that at aj+1 (resp. aj+2) d1 and d2 (resp. d2 and d3)
occupy the same position. Therefore they can be glued together to give rise
to a walk on [aj , aj+3].

The preceding example shows that the essential part of the argument is
to guarantee that the admissible end point conditions fit. Here is a second
example where H ◦ γ is of type T (T1,+) on Ij , of type T (0) on Ij+1 and
of type T (±, T2) on Ij+2. This is even simpler, because then we can choose
again π ∈

⋂
t∈[aj+1−δ0,aj+2] Z

+
γ(t) as in the first example and any π̃ ∈ Z−γ(aj+1).

Then (π, π̃) is a right admissible pair for Ij and a left admissible pair for
Ij+2, and the rest of the proof is similar.

As a third example we consider a situation where H◦γ is of type T (T1,+)
on Ij , of type T (0) on Ij+1 and of type T (−, T2) on Ij+2. Note that there is
a unique π ∈

⋂
t∈[aj+1−δ0,aj+2] and a unique π̃ ∈

⋂
t∈[aj+1,aj+2+δ0] for a suffi-

ciently small positive δ0 (by Lemma 1.1(i)&(ii)). (π, π̃) is a right admissible
pair for Ij and a left admissible pair for Ij+1 and we can continue as in the
first example.

All other possibilities can be treated in a similar way, and after applying
this procedure several times we finally arrive at a walk of the dog that is
defined for all t ∈ [0, 1]. Thus the proof of Theorem 1.2 is complete.

A summary. It has to be admitted that the proof is technically rather
involved. The main ingredients are:

• Treat intervals where γ(t) is small separately.
• Use induction where some component of γ is bounded away from zero.
• Use a general result on intervals where H ◦ γ vanishes.

Needless to say, it is not easy to provide a concrete positive τ0 for given ε0,
since in any of the finitely many construction steps it might be necessary to
pass to a smaller τ0. Our use of canonical end points has made it possible



Products of n open subsets 91

to glue together walks in a continuous way that are defined on adjacent
subintervals, and Lemma 2.1 was important to guarantee that the conditions
coming from the right and from the left are compatible.

4. The case of complex scalars. We will now consider the case of
complex-valued continuous functions on [0, 1]. It will be shown in the next
proposition that there the product of open sets is always open. The proof is
prepared by three lemmas.

Lemma 4.1. For every r > 0 there is a δ > 0 with the following property:
there exists a continuous function

φ : {a ∈ C | |a| ≤ r} × {d ∈ C | |d| ≤ δ} → C
such that z0 := φ(a, d) solves the equation z0 + az2

0 = d, and φ(0, d) = d for
all d with |d| ≤ δ.

Proof. Let δ > 0 be such that 4rδ < 1. Put φ(0, d) := d and φ(a, d) :=
“the root of z+ az2 = d that is closer to zero” for a 6= 0. This mapping φ is
well defined, and it has the desired properties.

Lemma 4.2. Suppose that 0 < ε < r are given. There is a δ > 0 such
that there exist continuous functions

ψ1, ψ2 : {(a, b, d) ∈ C3 | ε ≤ |a|2 + |b|2 ≤ r, |d| ≤ δ}
with the following property: the numbers z = ψ1(a, b, d), w = ψ2(a, b, d) solve
the equation

az + bw + zw = d,

and ψ1(a, b, 0) = ψ2(a, b, 0) = 0.

Proof. ψ1 and ψ2 will be defined with the help of Lemma 4.1. We put

ψ1(a, b, d) :=
a · d

|a|2 + |b|2
+ a · z0, ψ2(a, b, d) :=

b · d
|a|2 + |b|2

+ b · z0

with a “small” z0. If d is sufficiently small the equation az + bw + zw =
d (where z = ψ1(a, b, d), w = ψ2(a, b, d)) leads precisely to an equation
as in Lemma 4.1 so that z0 can be found as a continuous function of the
parameters.

Lemma 4.3. Let ε0 > 0 be given. Suppose that z0, w0, z1, w1 are complex
numbers with absolute value at most ε0 and σ : [a, b] → C is a continuous
function such that

σ(a) = z0w0, σ(b) = z1w1

and |σ(t)| ≤ ε20 for all t. Then there are continuous functions z, w : [a, b]→C
such that

z0 = z(a), w0 = w(a), z1 = z(b), w1 = w(b),

and |z(t)|, |w(t)| ≤ ε0 and z(t)w(t) = σ(t) for all t.
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Proof. Note that this lemma has no analogue in the case of real scalars. It
is true since the boundary of the complex ball with radius ε0 is connected.
Consider as a typical example the case [a, b] = [0, 1], z0 = w0 = ε0 = 1,
z1, w1 = −1 and σ(t) = 1. Solutions with real z(·), w(·) do not exist, but
z(t) := eitπ, w(t) := e−itπ have the desired properties.

The general case can be treated by applying the same idea. Suppose,
e.g., that σ(a), σ(b) 6= 0 and that |z0| ≥ |w0| and |z1| ≥ |w1|. Choose a
continuous path z(·) from z0 to z1 such that z is nowhere zero, bounded by
ε0 and |z(t)| ≥

√
|σ(t)| for all t. Put w(t) := σ(t)/z(t). The other possible

cases can be treated similarly.

Proposition 4.4. Let O1, . . . , On be open subsets of the Banach space
CC[0, 1] of continuous complex-valued functions on [0, 1], provided with the
supremum norm. Then O1 · · ·On is also open.

Proof. It suffices to prove the proposition for n = 2. The assertion will
follow easily from the following

Claim. Let f1, f2 : [0, 1] → C be continuous and ε > 0. Then one
can find a τ0 > 0 with the following property: whenever τ : [0, 1] → C is
continuous with ‖τ‖ ≤ τ0 there exist continuous d1, d2 : [0, 1]→ C such that
‖d1‖, ‖d2‖ ≤ 5ε, and

(4.1) (f1(t) + d1(t))(f2(t) + d2(t)) = f1(t)f2(t) + τ(t)

for all t.

Proof of the claim. We partition [0, 1] into intervals Ii = [ai, ai+1] (i =
0, . . . , k−1) such that for each i one of the following conditions is satisfied:

(a) |f1(t)|2 + |f2(t)|2 ≥ ε for all t ∈ Ii; or
(b) |f1(t)|2 + |f2(t)|2 ≤ 2ε for all t ∈ Ii.

We assume that no two subintervals of type (a) and no two subintervals of
type (b) are adjacent.

Let a continuous τ : [0, 1]→ C with “sufficiently small” ‖τ‖ be given (the
maximal size of ‖τ‖ will be made precise in the following proof). First we
define d1, d2 on the Ii of type (a). Choose r such that |f1(t)|2 + |f2(t)|2 ≤ r
on [0, 1]. Then put

d1(t) := ψ2(f1(t), f2(t), τ(t)), d2(t) := ψ1(f1(t), f2(t), τ(t)),

where ψ1, ψ2 are as in Lemma 4.2; this can be done if (with the notation of
that lemma) ‖τ‖ ≤ δ. We then know that d1, d2 are continuous, that their
norms are bounded by 5ε if ‖τ‖ is sufficiently small, and that

f1(t)d2(t) + f2(t)d1(t) + d1(t)d2(t) = τ(t);

this is (4.1).
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It remains to extend the definition of d1, d2 to the Ii of type (b). Let
Ii be such an interval. Then Ii−1 and Ii+1 are of type (a) (the obvious
modifications of the proof when i = 0 or i = k − 1 are left to the reader).
The functions d1, d2 are already defined on Ii−1 and Ii+1, and we put

z0 := (f1 + d1)(ai), w0 := (f2 + d2)(ai),
z1 := (f1 + d1)(ai+1), w1 := (f2 + d2)(ai+1).

Now Lemma 4.3 comes into play, with σ : Ii → C defined by z 7→ f1(t)f2(t)+
τ(t). With ε0 := 3ε the conditions of the lemma are satisfied. Let z(·), w(·)
be as in the lemma. We define

d1(t) := z(t)− f1(t), d2(t) := w(t)− f2(t).

Lemma 4.3 guarantees that (4.1) holds, and

|d1(t)| ≤ |z(t)|+ |f1(t)| ≤ 5ε, |d2(t)| ≤ |w(t)|+ |f2(t)| ≤ 5ε.

The definitions of the di on the various Ii can be glued together to give rise
to continuous functions since at the end points ai the values coincide.

5. Consequences of the main theorem; concluding remarks. We
have characterized the fact that f1 · · · fn is an interior point of the set
Bε(f1) · · ·Bε(fn) for all ε > 0 by a geometric-topological condition. This
implies an easy-to-check criterion:

Proposition 5.1. Suppose f1, . . . , fn ∈ C[0, 1] have no common zeros,
i.e., the sets {fi = 0} are pairwise disjoint. Then f1 · · · fn is an interior
point of Bε(f1) · · ·Bε(fn) for all ε > 0.

Proof. We will show that γ := (f1, . . . , fn) is positive admissible. That
γ is negative admissible follows by a similar argument (or by an application
of the first part to (−f1, f2, . . . , fn)), so that the assertion is a consequence
of our Theorem 1.2.

Let [a, b] ⊂ [0, 1] be an interval such that H ◦ γ|[a,b] ≥ 0. Then no fi
changes its sign on [a, b]: this follows easily from the fact that the {fi = 0}
are pairwise disjoint. Therefore we may choose πi ∈ {−1,+1} such that
πifi|[a,b] ≥ 0, and with π := (πi) we have found a π that lies in all Z+

γ(t).
This proves that γ is positive admissible.

Corollary 5.2. Let f1, . . . , fn ∈ C[0, 1] and ε > 0. Then the set
Bε(f1) · · ·Bε(fn) contains interior points.

Proof. Choose polynomials g1, . . . , gn such that gi is (ε/4)-close to fi.
We may choose sufficiently small δi > 0 such that the functions ĝ(t) :=
gi(t − δi) have no common zeros and ĝi is (ε/2)-close to fi for every i. It
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follows from the preceding proposition that ĝ1 · · · ĝn is an interior point of
Bε/2(ĝ1) · · ·Bε/2(ĝn), and this set is contained in Bε(f1) · · ·Bε(fn).

Here is a natural generalization of the problem that we have discussed
in this paper:

• Let A be a Banach algebra. How can one characterize the n-tuples
(x1, . . . , xn) ∈ An such that x1 · · ·xn is an interior point of the set
Bε(x1) · · ·Bε(xn) for every ε > 0?

In view of the rather involved investigations that were necessary here in
the case A = CR[0, 1] it is unlikely that a characterization in the general
case is possible. Up to now only partial results are known, e.g. it is true
for arbitrary x1, . . . , xn in A = l∞ that x1 · · ·xn is always an interior point
of Bε(x1) · · ·Bε(xn). (A similar result holds, more generally, for arbitrary
f1, . . . , fn in C(K) whenever K is a zero-dimensional compact Hausdorff
space; see [3].)

We have proved that for C[0, 1] the behaviour is different for real and
complex scalars. In the following example of an operator algebra both cases
can be treated simultaneously (6):

Example. Let X be a real or complex Banach space such that there
exists an isometry T : X → X together with a unit vector e such that

‖e+ Tx‖ = max{‖e‖, ‖Tx‖} (= max{1, ‖x‖})

for every x. (Consider, e.g., X = l∞, T (x1, x2, . . .) := (x1, 0, x2, 0, x3) and
e = (0, 1, 0, 1, . . .).) Then, in the Banach algebra A of bounded linear opera-
tors on X, the zero operator 0 is not an interior point of B1 ◦B2, where B1

is the open ball with radius one and centre T and B2 is the open unit ball.

Proof. Let U be an operator on X such that ‖U‖ < 1. We will show that
T + U is not surjective. Then (T + U) ◦ V is not surjective for V ∈ B2, in
particular the operators ε Id are not in B1 ◦B2, which proves our claim.

We show that e is not in the range of T + U . Indeed, if we could write
e = Tx+ Ux, then

‖x‖ > ‖Ux‖ = ‖e− Tx‖ = max{1, ‖x‖},

which is absurd.

Acknowledgements. The author wishes to express his gratitude to
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(6) This is a generalization of an example due to V. Kadets.
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