STUDIA MATHEMATICA 159 (3) (2003)

Spaces with maximal projection constants

by

HERMANN KÖNIG (Kiel) and NICOLE TOMCZAK-JAEGERMANN (Edmonton)

Dedicated to Olek Pelczyński on the occasion of his 70th birthday with thanks for all his questions

Abstract. We show that *n*-dimensional spaces with maximal projection constants exist not only as subspaces of l_{∞} but also as subspaces of l_1 . They are characterized by a rigid set of vector conditions. Nevertheless, we show that, in general, there are many non-isometric spaces with maximal projection constants. Several examples are discussed in detail.

1. Spaces with maximal projection constants. In this paper we study the question of non-uniqueness of finite-dimensional spaces with maximal projection constant and their imbeddings into l_{∞} and l_1 . Given a (closed) subspace X of a Banach space Z, the relative projection constant of X in Z is

 $\lambda(X, Z) := \inf\{ \|P\| \mid P : Z \to X \text{ is a linear projection onto } X \},\$

and the (absolute) projection constant of X is

 $\lambda(X) := \sup \{\lambda(X, Z) \mid Z \text{ a Banach space containing } X \text{ as a subspace} \}.$

The scalar field \mathbb{K} will be either the reals \mathbb{R} or the complex numbers \mathbb{C} . Any separable Banach space can be imbedded into l_{∞} ; for any such imbedding $\lambda(X) = \lambda(X, l_{\infty}), l_{\infty}$ is the natural superspace. For finite-dimensional spaces, $\lambda(X) \leq \sqrt{\dim X}$ by Kadets–Snobar [KS].

In fact, more is known: Let $1 < n < N < \infty$ and

$$f_{\mathbb{K}}(n,N) := \sup\{\lambda(X,Z) \mid X \subseteq Z, \dim X = n, \dim Z = N\},\$$
$$g_{\mathbb{K}}(n) := \sup\{\lambda(X) \mid \dim X = n\}.$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 46B20.

N. Tomczak-Jaegermann holds the Canada Research Chair in Geometric Analysis.

Further, let us introduce

$$F(n,N) := \sqrt{n} \left(\left[\sqrt{n} + \sqrt{(N-1)(N-n)} \right] / N \right),$$

$$G_{\mathbb{R}}(n) := \left[2 + (n-1)\sqrt{n+2} \right] / (n+1),$$

$$G_{\mathbb{C}}(n) := \left[1 + (n-1)\sqrt{n+1} \right] / (n).$$

Then by [KLL] and [KT2] for all n < N one has

(1.1)
$$f_{\mathbb{K}}(n,N) \le F(n,N),$$

(1.2)
$$g_{\mathbb{K}}(n) \le G_{\mathbb{K}}(n).$$

We note that $F(n, N), G_{\mathbb{K}}(n) < \sqrt{n}$ and, in fact,

(1.3)
$$G_{\mathbb{R}}(n) = F(n, n(n+1)/2), \quad G_{\mathbb{C}}(n) = F(n, n^2).$$

An *n*-dimensional subspace $X_n \subseteq l_{\infty}^N$ can be given by a basis $(f_j)_{j=1}^n$ where $f_j = (f_{js})_{s=1}^N \in \mathbb{K}^N$. Writing the coordinates of $\tilde{x} = \sum_{j=1}^n x_j f_j \in X_n$ as $x = (x_j)_{j=1}^n$, we have

(1.4)
$$\|\widetilde{x}\| = \left\|\sum_{j=1}^{n} x_j f_j\right\|_{\infty} = \sup_{1 \le s \le N} |\langle x, x_s \rangle| =: \|\|x\|\|$$

where $x_s = (f_{js})_{j=1}^n \in \mathbb{K}^n$ and $\langle \cdot, \cdot \rangle$ is the usual scalar product in \mathbb{K}^n . We identify in the following $(\mathbb{K}^n, || \cdot ||)$ with $X_n \subseteq l_{\infty}^N$ and write || x || instead of $|| \tilde{x} ||$, both spaces being isometric.

A very rigid set of conditions needs to be imposed on the vectors $x_s \in \mathbb{K}^n$ $(s = 1, \ldots, N)$ to have equality in (1.1) or (1.2), i.e. $\lambda(X_n, l_{\infty}^N) = F(n, N)$ or $\lambda(X) = G_{\mathbb{K}}(n)$: the vectors have to form a tight spherical 4-design (see [KT2]). In spite of this being a very strong assumption, we will show that—in general—there are many non-isometric spaces with maximal projection constant, some of them even being realized as subspaces of l_1 . In a recent paper, Chalmers and Lewicki [CL] show that among the *symmetric sequence spaces* with maximal projection constants there are symmetric subspaces of l_1 . This result motivated a part of the current paper.

We use standard Banach space terminology (see e.g. [TJ]). In particular, l_p^N denotes \mathbb{K}^N with the *p*-norm if $N \in \mathbb{N}$ and $1 \leq p \leq \infty$. Given a measure μ on $\{1, \ldots, N\}$, $l_p^N(\mu)$ denotes \mathbb{K}^N , equipped with the norm $||x|| = (\sum_{s=1}^N |x_s|^p \mu_s)^{1/p}$, $x = (x_s)_{s=1}^N \in \mathbb{K}^N$. The Banach-Mazur distance between two *n*-dimensional normed spaces X and Y is given by

 $d(X,Y) = \inf\{\|T\| \| T^{-1}\| \mid T: X \to Y \text{ is a linear isomorphism}\}.$

Our main results are:

THEOREM 1. Let $n \in \mathbb{N}$, $N \in \mathbb{N} \cup \{\infty\}$ and $X_n \subseteq l_{\infty}^N$ be a space such that X_n has maximal projection constant among all n-dimensional spaces.

Thus $\lambda(X_n) = g_{\mathbb{K}}(n)$. Then there is $Y_n \subseteq l_1^N$ also having maximal projection constant

(1.5)
$$\lambda(Y_n) = \lambda(Y_n, l_1^N) = \lambda(X_n) = g_{\mathbb{K}}(n).$$

A corresponding fact holds for relative projection constants: if $X_n \subset l_{\infty}^N$ satisfies $\lambda(X_n, l_{\infty}^N) = f_{\mathbb{K}}(n, N)$ for $N \in \mathbb{N}$, there is $Y_n \subseteq l_1^N$ with

(1.6)
$$\lambda(Y_n, l_1^N) = \lambda(X_n, l_\infty^N) = f_{\mathbb{K}}(n, N).$$

In the real two-dimensional case, $\lambda(X_2) = g(2) = f(2,3) = 4/3$ is uniquely attained by the space X_2 having the regular hexagon as its unit ball, and $Y_2 = X_2$ holds isometrically. Both spaces are represented in \mathbb{R}^3 with the $\|\cdot\|_{\infty}$ - or $\|\cdot\|_1$ -norm by the hyperplane $H = \{x = (x_j)_{j=1}^3 \in \mathbb{R}^3 \mid \sum_{j=1}^3 x_j = 0\}$. In general, however, spaces $X_n \subseteq l_{\infty}^N$ and $Y_n \subseteq l_1^N$ with maximal projection constant are not isometric. This already occurs for n = 3 in the real and n = 2 in the complex case.

PROPOSITION 2. Let D be the dodecahedron in \mathbb{R}^3 and I be the icosahedron having as its vertices the midpoints of the faces of D. Let $K = D \cap \phi I$ where $\phi = (1 + \sqrt{5})/2$. Let X_3 and Y_3 , respectively, be the 3-dimensional spaces having D and K as their unit balls. Then $X_3 \subseteq l_{\infty}^6$, $Y_3 \subseteq l_1^6$ and both have maximal projection constant

$$\lambda(X_3) = \lambda(Y_3) = \lambda(Y_3, l_1^6) = G_{\mathbb{R}}(3) = F(3, 6) = \phi.$$

A similar example exists for $\mathbb{K} = \mathbb{C}$ and n = 2.

Clearly Y_3 and X_3 are non-isometric, Y_3 having 12 regular pentagons and 20 regular triangles as its faces. There are infinitely many non-isometric spaces with unit balls between K and D having maximal projection constant ϕ .

Known examples of *n*-dimensional spaces with maximal projection constant are often realized as subspaces of l_{∞}^{N} where $N \sim n^{2}$. In this kind of situation we can always find many non-isometric spaces with extremal projection constant, *n* being sufficiently large.

THEOREM 3. Let n > 2 and $8 \le N \le e^{\sqrt{n}/(8e)}$. If $X_n \subseteq l_{\infty}^N$ is an ndimensional space with maximal projection constant, $\lambda(X_n) = g_{\mathbb{K}}(n)$, there are infinitely many mutually non-isometric n-dimensional spaces Y_n with

$$\lambda(X_n) = \lambda(Y_n) = g_{\mathbb{K}}(n).$$

These spaces are constructed by probabilistic methods. There is, however, an asymptotic sequence of spaces defined more explicitly exhibiting a similar property to the one in Proposition 2.

PROPOSITION 4. Let $n = p^m$ be an odd prime power and set $N = n^2 - n + 1$. Then there exist complex n-dimensional subspaces of \mathbb{C}^N , which

we call X_n and Y_n when considered as subspaces of l_{∞}^N and l_1^N , respectively, satisfying:

(a) X_n and Y_n have extremal relative projection constant $\lambda(X_n, l_{\infty}^N) = \lambda(Y_n, l_1^N) = f_{\mathbb{C}}(n, N) = F(n, N),$

(b) X_n and Y_n are non-isometric. In fact, the Banach-Mazur distance to l_2^n satisfies $d(X_n, l_2^n) = \sqrt{n}, d(Y_n, l_2^n) \le \sqrt{2}$.

We note that the *absolute* projection constants of X_n are *almost* the maximal possible ones since $\lambda(X_n) \leq G(n)$ always holds and $G(n) - F(n, N) \leq 1/(2n^{3/2})$, $F(n, N) \geq \sqrt{n} - 1/(2\sqrt{n})$.

2. Characterization of extremal cases. The proofs of our theorems rely on the following duality result:

PROPOSITION 5. Let $N \in \mathbb{N} \cup \{\infty\}$ and $n \in \mathbb{N}$, n < N. Then (2.1) $\sup\{\lambda(Z_n, l_{\infty}^N) \mid Z_n \text{ is an n-dimensional subspace of } l_{\infty}^N\}$

$$= n \sup \left\{ \sum_{s,t=1}^{N} \mu_s \mu_t \mid |\langle x_s, x_t \rangle| \right\} =: \Lambda$$

where the second supremum is taken over all discrete probability measures $\mu = (\mu_s)_{s=1}^N$ on $\{1, \ldots, N\}$ or \mathbb{N} , $\|\mu\|_1 = 1$, and over all sets of vectors $x_s \in S^{n-1}(\mathbb{K}), s = 1, \ldots, N$, such that

Both suprema are, in fact, maxima. Given extremal elements (x_t, μ_t) attaining Λ , let $S := \operatorname{supp} \mu$ and $M := |S| \leq N$. Then an n-dimensional space $X_n \subseteq l_{\infty}^M$ with maximal projection constant Λ is given by its norm

$$||x|| := \sup_{s \in S} |\langle x, x_s \rangle|, \quad x \in \mathbb{K}^n.$$

The dual unit ball of X_n is the absolutely convex hull of the vectors $(x_s)_{s\in S}$. Further, $\Lambda = \sum_{t=1}^{N} \mu_t |\langle x_s, x_t \rangle|$ is independent of $s \in S$, and the formula $u = (\operatorname{sgn}(\langle x_s, x_t \rangle) \mu_t)_{s,t\in S}$ defines a map on l_{∞}^M with $u|_{X_n} = (\Lambda/n) \operatorname{Id}_{X_n}$.

Proposition 5 is essentially a consequence of proofs in [KT2] except for some lemma which was formulated there under an additional but unnecessary condition. To formulate the improved version, for $n \in \mathbb{N}$ and $N \in \mathbb{N} \cup \{\infty\}$ set $T = \{1, \ldots, N\}$ and

$$\varphi(n,T) = \sup \sum_{s,t \in T} \Big| \sum_{j=1}^n f_j(s) \overline{f_j(t)} \Big| \mu_s \mu_t$$

where the supremum is extended over all probability measures $\mu = (\mu_s)_{s=1}^N$ on T and all orthonormal systems $(f_j)_{j=1}^n$ of length n in $l_2^N(\mu)$.

LEMMA 6. Assume that $\mu^{\circ} = (\mu_s^{\circ})_{s=1}^N$ and $f_1^{\circ}, \ldots, f_n^{\circ}$ attain the supremum

$$\varphi(n,T) = \sum_{s,t\in T} \Big| \sum_{j=1}^n f_j^{\circ}(s) \overline{f_j^{\circ}(t)} \Big| \mu_s^{\circ} \mu_t^{\circ}.$$

Then for all l, m = 1, ..., n, there exists a sequence $1 \le l_0, ..., l_k \le n$ such that $l_0 = l$, $l_k = m$ and for any $1 \le r \le k$ we have

$$\operatorname{supp} f_{l_{r-1}}^{\circ} \cap \operatorname{supp} f_{l_r}^{\circ} \cap \operatorname{supp} \mu^{\circ} \neq \emptyset.$$

Proof. For $0 < \tau \leq 1$, let \mathcal{M}_{τ} denote the set of all discrete measures on T such that $\mu(T) = \tau$. By $\varphi(n, T, \tau)$ we denote the supremum analogous to $\varphi(n, T)$ except that $\mu \in \mathcal{M}_{\tau}$, the orthonormalization of the f_j 's being taken with respect to μ/τ . Then $\varphi(n, T) = \varphi(n, T, 1)$ and $\varphi(n, T, \tau) = \tau^2 \varphi(n, T, 1)$. Further $\varphi(n_1, T_1, 1) \leq \varphi(n, T, 1)$ if $n_1 \leq n$ and $T_1 \subseteq T$. Assume that μ° and $f_1^{\circ}, \ldots, f_n^{\circ}$ attain the supremum $\varphi(n, T)$. Let $J_1 \subseteq \{1, \ldots, n\}$ be a maximal set with the following property: $J_1 = \{j_1, \ldots, j_{\varrho}\}$ and for every $1 < r \leq \varrho$ we have

(2.3)
$$\operatorname{supp} f_{j_r}^{\circ} \cap \bigcup_{l=1}^{r-1} \operatorname{supp} f_{j_l}^{\circ} \cap \operatorname{supp} \mu^{\circ} \neq \emptyset.$$

Let $J_2 = \{1, \ldots, n\} \setminus J_1$. Moreover, put $T_1 = \bigcup_{j \in J_1} \operatorname{supp} f_j^{\circ} \cap \operatorname{supp} \mu^{\circ}$ and $T_2 = T - T_1$. Then

(2.4)
$$f_j^{\circ}(s)\mu_s = 0 \quad \text{if } (s,j) \in (T_2 \times J_1) \cup (T_1 \times J_2).$$

Indeed, for $j \in J_1$ and $s \in T_2$ this follows from the definition of T_2 . For $j \in J_2$ and $s \in T_1$ this is a consequence of the maximality of J_1 since otherwise $J_1 \cup \{j\}$ would satisfy (2.3).

The definition of J_1 and an easy induction show that $m \in J_1$ if and only if there exists a finite sequence joining j_1 and m, i.e. a sequence l_0, \ldots, l_k in J_1 with $l_0 = j_1$ and $l_k = m$ such that

 $\operatorname{supp} f_{l_r} \cap \operatorname{supp} f_{l_{r-1}} \cap \operatorname{supp} \mu^{\circ} \neq \emptyset \quad \text{ for all } 1 \leq r \leq k.$

If $l, m \in J_1$ are arbitrary, a similar sequence satisfying the conclusion of the lemma is obtained by concatenating sequences joining l with j_1 and j_1 with m.

Finally, we show that the maximality assumption defining J_1 implies that $J_1 = \{1, \ldots, n\}$. Let $n_i := |J_i|$ and $\tau_i := \sum_{s \in T_i} \mu_s^\circ$ for i = 1, 2. Thus $n = n_1 + n_2$ and $\tau_1 + \tau_2 = 1$. For $I \subseteq J := \{1, \ldots, n\}$ and $U \subseteq T$ define

$$\phi(I,U) = \sum_{s,t \in U} \left| \sum_{i \in I} f_i^{\circ}(s) \overline{f_i^{\circ}(t)} \right| \mu_s^{\circ} \mu_t^{\circ}.$$

Then, by (2.4),

$$\begin{aligned} \varphi(n,T) &= \phi(J,T) = \phi(J_1,T_1) + \phi(J_2,T_2) \\ &\leq \varphi(n_1,T_1,\tau_1) + \varphi(n_2,T_2,\tau_2) = \tau_1^2 \varphi(n_1,T_1) + \tau_2^2 \varphi(n_2,T_2) \\ &\leq (\tau_1^2 + \tau_2^2) \varphi(n,T). \end{aligned}$$

Thus $\tau_1^2 + \tau_2^2 \ge 1$ and hence $\tau_1 = 1$, $\tau_2 = 0$ since $\tau_1 + \tau_2 = 1$, and $\tau_1 > 0$ since $J_1 \ne \emptyset$ and $T_1 \ne \emptyset$. This implies that $T_1 = \operatorname{supp} \mu^\circ$ and, by the maximality of J_1 , that $J_1 = J$.

We will need the nuclear norm ν on spaces of finite rank operators between Banach spaces and the fact that the trace of a finite rank operator $T \in \mathcal{L}(X)$ can be estimated by $|\operatorname{tr}(s)| \leq \nu(s)$; cf. e.g. [TJ].

Proof of Proposition 5. We indicate how the statements in Proposition 5 follow from the results and proofs in [KT2] and Lemma 6.

Let $T = \{1, \ldots, N\}$ if $N \in \mathbb{N}$ or $T = \mathbb{N}$ if $N = \infty$. Let $X_n \subseteq l_\infty^N$ be an *n*-dimensional subspace. By Proposition 2.2 of [KT2], the left side of (2.1) is bounded by $\varphi(n, T)$ since $\lambda(X_n, l_\infty^N) \leq \varphi(n, T)$ is proved there using a duality argument. The supremum in $\varphi(n, T)$ is attained (see Section 4 of [KT2]), say by a probability measure $\mu^\circ = (\mu_s^\circ)_{s=1}^N$ and a μ -orthonormal system $f_1^\circ, \ldots, f_n^\circ \in \mathbb{K}^N$. Let $f^\circ := (\sum_{j=1}^n |f_j|^2)^{1/2} \in \mathbb{K}^N$ denote the square function. It is shown in Proposition 3.1 of [KT2] by use of Lagrange multipliers that the square function f° is constant μ -a.e.; then from the orthonormality, $f^\circ(s) = \sqrt{n}$ if $\mu_s^\circ \neq 0$. (If $\mu_s^\circ = 0$, nothing can be said about $f^\circ(s)$; in general $f^\circ(s)$ may be non-zero, contrary to what is stated in [KT2].) The proof there relies on an analogue of Lemma 6 derived there under an additional assumption. The crucial point where this is needed is (3.28) of [KT2]. The notation used there is $z_{sk} := f_k^\circ(s)\sqrt{\mu_s}$. The Lagrange equations of the first kind yield an eigenvalue equation for the map

(2.5)
$$u := \left(\operatorname{sgn}\left(\sum_{k=1}^{n} f_{k}^{\circ}(s) \overline{f_{k}^{\circ}(t)} \right) \mu_{t}^{\circ} \right)_{s,t \in T} : \mathbb{K}^{N} \to \mathbb{K}^{n}$$

of the form $\mu^{\circ}(s)(uf_{k}^{\circ}(s) - \alpha_{k}f_{k}^{\circ}(s)) = 0$ for $k = 1, \ldots, n, s \in T$ (which is a reformulation of (3.16) in [KT2]). Thus with $S := \operatorname{supp} \mu^{\circ}$, $(uf_{k}^{\circ})(s) = \alpha_{k}f_{k}^{\circ}(s)$ for $s \in S$. By (3.27) and the next two lines of [KT2], for each $1 \leq l, m \leq n$ and $s \in T$ one has

(2.6)
$$0 = (\alpha_m - \alpha_l) z_{sm} z_{sl} = (\alpha_m - \alpha_l) f_m^{\circ}(s) f_l^{\circ}(s) \mu_s^{\circ}.$$

By Lemma 6 there exists a sequence $l = l_0, l_1, \ldots, l_k = m$ with

 $\operatorname{supp} f_{l_{r-1}}^{\circ} \cap \operatorname{supp} f_{l_r}^{\circ} \cap \operatorname{supp} \mu^{\circ} \neq \emptyset$

for all $1 \leq r \leq k$. Thus (2.6) implies that $\alpha_l = \alpha_{l_0} = \alpha_{l_1} = \ldots = \alpha_{l_k} = \alpha_m$. Hence all values α_k coincide, $\alpha_1 = \ldots = \alpha_n =: \alpha$; this is (3.28) of [KT2]. The second Lagrange equation (3.15) in [KT2] means that

(2.7)
$$\sum_{t \in T} \left| \sum_{k=1}^{n} f_{k}^{\circ}(s) \overline{f_{k}^{\circ}(t)} \right| \mu_{t}^{\circ} = \varphi(n, T) = \Lambda$$

is constant in $s \in S$. Multiplying $uf_k^{\circ} = \alpha f_k^{\circ}$ pointwise by $\overline{f_k^{\circ}}$ and summing over $k = 1, \ldots, n$, one deduces from (2.5) and (2.7), using $z \operatorname{sgn} z = |z|$ for $z = \sum_{k=1}^n f_k^{\circ}(s) \overline{f_k^{\circ}(t)}$, that for $s \in S$,

$$\begin{split} \alpha f^{\circ}(s)^{2} &= \alpha \sum_{k=1}^{n} |f_{k}^{\circ}(s)|^{2} = \alpha \sum_{k=1}^{n} u f_{k}^{\circ}(s) \cdot \overline{f_{k}^{\circ}(s)} \\ &= \sum_{t \in T} \Big| \sum_{k=1}^{n} f_{k}^{\circ}(s) \overline{f_{k}^{\circ}(t)} \Big| \mu_{t}^{\circ} = \Lambda. \end{split}$$

Hence the square function f° is constant μ° -a.e., $f^{\circ}(s) = \sqrt{\Lambda/\alpha}$ for $s \in S$. Since the f_k 's were orthonormal, $f^{\circ}(s) = \sqrt{n}$ for $s \in S$. Hence $\alpha = \Lambda/n$ and $uf_k = \Lambda/n \cdot f_k$ for $k = 1, \ldots, n$. Introducing $x_t = n^{-1/2} (f_k^{\circ}(t))_{k=1}^n \in \mathbb{K}^n$, we have $x_t \in S^{n-1}(\mathbb{K})$ and for any $s \in S$,

$$\varphi(n,T) = n \sum_{t \in T} |\langle x_s, x_t \rangle| \mu_t^{\circ} = n \sum_{s,t \in T} |\langle x_s, x_t \rangle| \mu_t^{\circ} \mu_s^{\circ}.$$

The vectors x_s satisfy (2.2) since the f_k° are μ -orthonormal. This proves " \leq " in (2.1).

As for the reverse inequality, the Lagrange multiplier approach outlined above (with details in [KT2]) yields a sequence of points $x_s \in S^{n-1}(\mathbb{K})$ and a probability measure μ with (2.2) and

$$\Lambda = n \sum_{s,t \in T} |\langle x_s, x_t \rangle| \mu_s \mu_t$$

and an operator u similar to (2.5), with $S := \operatorname{supp} \mu$, $M = |S| \le N$,

$$u = (\operatorname{sgn}(\langle x_s, x_t \rangle) \mu_t)_{s,t \in S} \cdot \mathbb{K}^M \to \mathbb{K}^N$$

with $(uf_k)(s) = (\Lambda/n)f_k(s)$ for $k = 1, ..., n, s \in S$. Consider the space X_n spanned by the vectors $(f_k(s))_{s\in S} \subseteq l_{\infty}^M$ in l_{∞}^M . Then $u|_{X_n} = (\Lambda/n) \operatorname{Id}_{X_n}$, and for any projection $P: l_{\infty}^N \to X_n$,

$$\Lambda = \operatorname{tr}(u|_{X_n}) \le \nu(u|_{X_n}) \le \|P\|\nu(u) = \|P\|$$

since $\nu(u) = \sum_{t=1}^{N} \mu_t = 1$. Hence $\Lambda \leq \lambda(X_n, l_\infty^N)$, which proves " \geq " in (2.1).

Proof of Theorem 1. Assume that $X_n \subseteq l_{\infty}^N$ has maximal projection constant among *n*-dimensional subspaces of *N*-dimensional superspaces. By Proposition 5, we find points $x_s \in S^{n-1}$ and $\mu_s \ge 0$, $s = 1, \ldots, N$, with $\sum_{s=1}^{N} \mu_s = 1$ satisfying (2.2) such that

$$\lambda(X_n) = \lambda(X_n, l_{\infty}^N) = \Lambda = \sum_{t=1}^N \mu_t |\langle x_s, x_t \rangle|, \quad s \in S := \operatorname{supp} \mu.$$

Let $M := |S| \le N$. By Proposition 5, too, suppose $u = (\operatorname{sgn}(\langle x_s, x_t \rangle) \mu_t)_{s,t \in S} :$ $l_{\infty}^M \to l_{\infty}^M$ maps \widetilde{X}_n into itself where $\widetilde{X}_n = \operatorname{span}(f_1, \ldots, f_n), f_j = (x_{sj})_{s \in S} \in \mathbb{K}^M$ for $j = 1, \ldots, n$, and in fact $u|_{\widetilde{X}_n} = (\Lambda/n) \operatorname{Id}_{\widetilde{X}_n}$. (If $\operatorname{supp} \mu = \{1, \ldots, N\}$, we may take $X_n = \widetilde{X}_n$.) Hence $\operatorname{tr}(u|_{\widetilde{X}_n}) = \Lambda$ and $\nu(u) = \sum_{t \in S} \operatorname{sup}_s |u_{st}| = \sum_{t \in S} \mu_s = 1$. For any projection $Q : l_{\infty}^M \to l_{\infty}^M$ onto \widetilde{X}_n , $\Lambda = \operatorname{tr}(u|_{\widetilde{X}_n}) \le u(u|_{\widetilde{X}_n}) \le ||Q||u(u) = ||Q||$

$$\Lambda = \operatorname{tr}(u|_{\widetilde{X}_n}) \le \nu(u|_{\widetilde{X}_n}) \le \|Q\|\nu(u) = \|Q\|,$$

with the $l_2^M(\mu)$ -orthogonal projection P attaining $||P|| = \Lambda$.

Consider now \widetilde{X}_n as a subspace of $l_1^M(\mu)$, i.e. \mathbb{K}^M equipped with the norm given by $||x||_{1,\mu} = \sum_{t \in S} \mu_t |\langle x, x_t \rangle|$, and denote this space by Y_n . Let $D_\mu : l_1^M(\mu) \to l_1^M$ be the diagonal map $(y_s) \mapsto (\mu_s y_s)$; it is an isometry. The map

$$l_1^M(\mu) \xrightarrow{D_{\mu}} l_1^M \xrightarrow{u^*} l_1^M \xrightarrow{D_{\mu}^{-1}} l_1^M(\mu)$$

has as its matrix representation $(\mu_s^{-1}u_{ts}\mu_t)_{s,t\in S} = (u_{st})_{s,t\in S} = u$ since $u_{st} = \operatorname{sgn}(\langle x_s, x_t \rangle)\mu_t$. Since $\nu(u^*)_{l_1^M} = \nu(u)_{l_\infty^M} = 1$ and D_{μ} is an isometry, $\nu(u: l_1^M(\mu) \to l_1^M(\mu)) = 1$. Hence as above, for any projection $Q: l_1^M(\mu) \to l_1^M(\mu) \to l_1^M(\mu)$ onto Y_n ,

$$\Lambda = \operatorname{tr}(u|_{Y_n}) \le \nu(u|_{Y_n}) \le \|Q\|\nu(u) = \|Q\|.$$

Thus $\lambda(Y_n, l_1^M(\mu)) \geq \Lambda = \lambda(X_n, l_\infty^N)$. But $\lambda(X_n)$ was maximal among *n*-dimensional subspaces of *N*- (hence also for *M*-) dimensional superspaces. Hence $\lambda(Y_n, l_1^M(\mu)) \leq \Lambda$ holds as well. Taking $Z_n = D_\mu(Y_n) \subseteq l_1^M$, we can also realize such a space as a subspace of l_1^M , $\lambda(Z_n, l_1^M) = \lambda(\widetilde{X}_n, l_\infty^M) = \lambda(X_n) = \Lambda$.

In general, X_n will not be isometric to Y_n or Z_n except for $\mathbb{K} = \mathbb{R}$, n = 2 when these spaces have the regular hexagon as their unit ball. Now let us consider the three-dimensional real case.

Proof of Proposition 2. For $\mathbb{K} = \mathbb{R}$, n = 3 we have $G(3) = (1 + \sqrt{5})/2$ =: Φ . The space $X_3 \subseteq l_{\infty}^6$ having as its unit ball the dodecahedron attains this bound, $\lambda(X_3) = \Phi$; cf. [KT2]. The dual unit ball, the icosahedron, is the convex hull of its six equiangular diagonals $x_1, \ldots, x_6 \in S^2 \subset \mathbb{R}^3$ given by the vectors

$$c\begin{pmatrix}\phi\\\pm1\\0\end{pmatrix}, c\begin{pmatrix}0\\\phi\\\pm1\end{pmatrix}, c\begin{pmatrix}\pm1\\0\\\phi\end{pmatrix}, \quad c:=\frac{1}{\sqrt{\phi+2}},$$

364

with $|\langle x_s, x_t \rangle| = 1/\sqrt{5}$ for $1 \leq s, t \leq 6$. Thus $||x||_{X_3} = \sup_{1 \leq s \leq 6} |\langle x, x_s \rangle|$. Take $\mu_s = 1/6$ for $s = 1, \ldots, 6$. Then $3 \cdot \sum_{t=1}^6 \mu_t |\langle x_s, x_t \rangle| = \phi$; this attains the sup in (2.1), (2.2) being satisfied. The map $x \mapsto (\langle x, x_s \rangle)_{s=1}^6$ realizes the isometric imbedding $X_3 \hookrightarrow l_{\infty}^6$. The "extremal" map $u : l_{\infty}^N \to l_{\infty}^N$ used in the proof of Theorem 1 is in this case

$$u = (\operatorname{sgn}\langle x_s, x_t \rangle) \mu_t)_{s,t=1}^6 : l_{\infty}^6 \to l_{\infty}^6$$

By the same proof of Theorem 1, the same linear space, but considered as a subspace of l_1^6 , denoted by $Y_3 \subseteq l_1^6$, has the same projection constant: $\lambda(Y_3) = \lambda(Y_3, l_1^6) = \phi$. This holds since u is symmetric and $D_{\mu} = \frac{1}{6} \operatorname{Id}_6$. However, the unit ball of Y_3 is not the dodecahedron; it has 12 regular pentagons and 20 regular triangles as its faces and thus is not isometric to X_3 : The norm on Y_3 is given by $||x||_{Y_3} = \frac{1}{6} \sum_{s=1}^6 |\langle x, x_s \rangle|$; writing it as

$$\|x\|_{Y_3} = \frac{1}{6} \sup_{\varepsilon_s = \pm 1} \left| \left\langle x, \sum_{s=1}^{6} \varepsilon_s x_s \right\rangle \right|,$$

one finds that only 16 combinations $(\varepsilon_1, \ldots, \varepsilon_6)$ of signs are needed to represent the norm and thus Y_3 is isometrically imbeddable into l_{∞}^{16} . The choice $\varepsilon_s = \operatorname{sgn}(\langle x_s, x_t \rangle) = 6u_{st}$ for fixed t yields

$$\frac{1}{6}\sum_{s=1}^{6}\varepsilon_s x_s = \frac{\phi}{3}x_s \quad (s=1,\ldots,6).$$

Thus, eliminating the factor $\phi/3$, the points x_1, \ldots, x_6 are again needed to imbed Y_3 into l_{∞} ; in addition, one needs the 10 vectors (also after multiplying by $3/\phi$)

$$c\begin{pmatrix}\phi\\0\\\pm\phi^{-1}\end{pmatrix}, c\begin{pmatrix}\pm\phi^{-1}\\\phi\\0\end{pmatrix}, c\begin{pmatrix}0\\\pm\phi^{-1}\\\phi\end{pmatrix}, c\begin{pmatrix}1\\\pm1\\\pm1\end{pmatrix}, \quad c := \frac{1}{\sqrt{\phi+2}}.$$

If these 16 vectors are called x_1, \ldots, x_{16} , one has

$$\frac{3}{\phi} \|x\|_{Y_3} = \sup_{1 \le s \le 16} |\langle x, x_s \rangle|, \quad Y_3 \hookrightarrow l_\infty^{16} \text{ isometrically.}$$

We remark that x_7, \ldots, x_{16} are one half of the vertices of the regular dodecahedron and thus the unit ball of Y_3 is the intersection of the dodecahedron and a multiple of the icosahedron yielding the above-mentioned face structure. In fact, if the vertices of the icosahedron are chosen to be the midpoints of the faces of the dodecahedron, one has to multiply this icosahedron by ϕ and intersect it with the dodecahedron to get the unit ball of Y_3 .

In the case of complex 2-dimensional spaces, there are four equiangular vectors

$$\binom{1}{0}, \frac{1}{\sqrt{3}}\binom{1}{\sqrt{2}w^j}, \quad j = 0, 1, 2, w = \exp(2\pi i/3),$$

in \mathbb{C}^2 . If we call them $z_1, \ldots, z_4 \in \mathbb{C}^2$, then the space with norm

$$\|z\|_{X_2} = \sup_{1 \le s \le 4} |\langle z, z_s \rangle|$$

has maximal projection constant among 2-dimensional complex spaces with $\lambda(X_2) = (1 + \sqrt{3})/2, X_2 \subseteq l_{\infty}^4$ (cf. [KT2]). As a subspace Y_2 of l_1^4 , it also has $\lambda(Y_2) = \lambda(Y_2, l_1^4) = (1 + \sqrt{3})/2$, but is not isometric to X_2 since the Banach–Mazur distances to Hilbert space satisfy

$$d(X_2, l_2^2) = \sqrt{3/2} \neq d(Y_2, l_2^2) = (1 + \sqrt{3})/\sqrt{6}.$$

The distance ellipsoid here is the standard euclidean ball in \mathbb{C}^2 by symmetry reasons, the values of $\sqrt{3/2}$ and $(1+\sqrt{3})/\sqrt{6}$ are obtained by calculating the maximum and minimum of $||z||_2$ subject to $||z||_{X_2} = 1$ or $||z||_{Y_2} = 1$; the quotient of these maxima and minima then gives the above distance values. The maxima and minima are attained at 4 points each, up to factors $e^{i\theta}$. We would like to thank Prof. A. Pełczyński for some stimulating discussions on this topic. \blacksquare

REMARK. The fact that the space Y_3 , imbedded into l_{∞}^{16} , allows no projection of norm $\langle \phi$, can also be checked by a map $\widetilde{u}: l_{\infty}^{16} \to l_{\infty}^{16}$ similar to u for $X_3 \subseteq l_{\infty}^6$. One may just take

$$\widetilde{u} = (\operatorname{sgn}\langle x_s, x_t \rangle \mu_t)_{s,t=1}^{16} : l_{\infty}^{16} \to l_{\infty}^{16}$$

where $(x_s)_{s=1}^{16} \subset \mathbb{R}^3$ are the 16 vectors given in the previous proof and where $\mu_t = 0$ for all $t = 7, \ldots, 16$. Again $\nu(\tilde{u}) = 1$ and $\tilde{u}|_{Y_3} = (\phi/3) \operatorname{Id}_{Y_3}$. Thus \widetilde{u} has 10 columns of zeros; for the rows $s = 7, \ldots, 16$ Proposition 5 gives no information on the square function $||x_s||_2^2$ as compared to $||x_s||_2^2 = 1$ for $s = 1, \dots, 6$. In fact, $||x_s||_2^2 = 3/(\phi + 2) < 1$ for $s = 7, \dots, 16$.

Proof of Theorem 3. Let $X_n \subseteq l_{\infty}^N$ be an n-dimensional space with maximal projection constant for *n*-dimensional spaces, $\lambda(X_n) = g(n)$, and where $N \leq e^{\sqrt{n}/(8e)}$ holds. By Proposition 5, we conclude that there are *unit* vectors $(x_s)_{s=1}^N$ in l_2^n , $x_s \in S^{n-1}$, and a probability measure $\mu = (\mu_s)_{s=1}^N$ on $\{1,\ldots,N\}$ such that:

• Using (1.4) we identify X_n with the space \mathbb{K}^n , equipped with the norm $||x|| = \sup_{1 \le s \le N} |\langle x, x_s \rangle|$. Then the dual unit ball is the absolutely convex hull of the vectors x_s .

- $\Lambda := \lambda(X_n) = n \sum_{t=1}^N \mu_t |\langle x_s, x_t \rangle|$ for all $s = 1, \dots, N$. $\mathrm{Id}_n = n \sum_{t=1}^N \mu_t \langle \cdot, x_t \rangle x_t$ on l_2^n . $u|_{X_n} = (\Lambda/n) \mathrm{Id}_n$, where $u = (\mathrm{sgn}(\langle x_s, x_t \rangle) \mu_t)_{s,t=1}^N : l_\infty^N \to l_\infty^N$.

We will assume for simplicity and without loss of generality that all μ_s are > 0. Thus X_n in l_{∞}^N is spanned by the vectors $f_j := (x_{sj})_{s=1}^N$ which are, up to the factor \sqrt{n} , orthonormal vectors in $l_2^N(\mu)$. Since $\operatorname{tr}(u|_{X_n}) = \Lambda$ and the nuclear norm of u in l_{∞}^N is 1, $\nu(u) = \sum_{t=1}^N \mu_t = 1$, any projection $P: l_{\infty}^N \to X_n$ must have norm $\geq \Lambda$,

$$\Lambda = \operatorname{tr}(u|_{X_n}) \le \nu(u|_{X_n}) \le \|P\|\nu(u) = \|P\|.$$

We will construct a vector x_{N+1} which is not in the absolutely convex hull of x_1, \ldots, x_N such that the map $x \mapsto (\langle x, x_s \rangle)_{s=1}^{N+1}$ yields another *n*-dimensional extremal space $Y_n \subseteq l_{\infty}^{N+1}$, $\lambda(X_n) = \lambda(Y_n)$, which is not isometric to X_n since the unit ball of Y_n has more faces than the one of X_n .

Let $\alpha := 1/(2\sqrt{\log N})$. For any $y \in S^{n-1}$ and $t \in \{1, \ldots, N\}$ let

$$\varepsilon_t(y) := \sqrt{n} \, \alpha \langle y, x_t \rangle.$$

Then

$$z(y) := \frac{n}{\Lambda} \sum_{t=1}^{N} \varepsilon_t(y) \mu_t x_t = \frac{\sqrt{n}}{\Lambda} \alpha n \sum_{t=1}^{N} \mu_t \langle y, x_t \rangle x_t = \frac{\sqrt{n}}{\Lambda} \alpha y,$$

so $||z(y)||_2 = \sqrt{n \alpha} / \Lambda$. We estimate the average norm of z(y) in X_n . For this, let *m* be the normalized Lebesgue measure on S^{n-1} . Take p = 2. Then

$$\begin{split} &\int_{S^{n-1}} \|z(y)\|_{X_n} \, dm(y) = \int_{S^{n-1}} \sup_{1 \le s \le N} |\langle z(y), x_s \rangle| \, dm(y) \\ &\leq \int_{S^{n-1}} \Big(\sum_{s=1}^N |\langle z(y), x_s \rangle|^p \Big)^{1/p} \, dm(y) \le \Big(\sum_{s=1}^N \int_{S^{n-1}} |\langle z(y), x_s \rangle|^p \, dm(y) \Big)^{1/p} \\ &\leq N^{1/p} \|z(y)\|_2 \Big(\int_{S^{n-1}} |y_1|^p \, dm(y) \Big)^{1/p} \le N^{1/p} \, \frac{\sqrt{n}}{\Lambda} \, \alpha \sqrt{\frac{p}{n}}. \end{split}$$

Here we used the generalized triangle inequality and the rotation invariance of m. The moments $(\int_{S^{n-1}} |y_1|^p dm(y))^{1/p}$ are explicitly known in terms of Gamma functions: they can be estimated by $\sqrt{p/n}$ for p > 2. Choosing $p = \log N$, by definition of α we get

$$\int_{S^{n-1}} \|z(y)\|_{X_n} \, dm(y) \le \frac{e}{\Lambda}$$

By Chebyshev's inequality,

(2.8)
$$m\left\{y \in S^{n-1} \mid \|z(y)\|_{X_n} < 2\frac{e}{\Lambda}\right\} > \frac{1}{2}$$

Since $2e/\Lambda < n/\Lambda^2 \alpha^2$ by assumption on N, for these vectors z(y) one has

$$||z(y)||_{X_n} < \frac{2e}{\Lambda} < \frac{n}{\Lambda^2} \alpha^2 = ||z(y)||_2^2 \le ||z(y)||_{X_n} ||z(y)||_{X_n^*}.$$

Hence $||z(y)||_{X_n^*} > 1$, which means that z(y) is not in the absolutely convex hull of the vectors x_1, \ldots, x_N . On the other hand, we want to guarantee that the values $\varepsilon_t(y)$ can be bounded by 1 uniformly in t. Integration by polar coordinates yields the following well known tail estimate for linear functionals (t being fixed):

$$m\{y \in S^{n-1}(\mathbb{K}) \mid |\langle y, x_t \rangle| > \beta\} = \begin{cases} \int_{\beta}^{1} (1-u^2)^{(n-3)/2} du / \int_{0}^{1} (1-u^2)^{(n-3)/2} du \le e^{-n\beta^2/2} & (\mathbb{K} = \mathbb{R}), \\ \int_{\beta}^{1} u(1-u^2)^{n-2} du / \int_{0}^{1} u(1-u^2)^{n-2} du \\ = (1-\beta^2)^{n-1} \le e^{-n\beta^2/2} & (\mathbb{K} = \mathbb{C}) \end{cases}$$

for $n \geq 2, 0 < \beta \leq 1$. (For integration in the complex case, \mathbb{C}^n is identified with \mathbb{R}^{2n} .) Choosing $\beta = 1/(\alpha \sqrt{n})$, we get

$$m\{y \in S^{n-1} \mid |\langle y, x_t \rangle| > 1/(\alpha \sqrt{n})\} \le e^{-\alpha^{-2}/2} \le 1/N^2 < 1/(2N).$$

Letting t vary from 1 to N, one finds for the complement

(2.9)
$$m\{y \in S^{n-1} \mid |\langle y, x_t \rangle| \le 1/(\alpha \sqrt{n}) \text{ for all } t = 1, \dots, N\} > 1/2.$$

By (2.8) and (2.9) we can find a vector $\overline{y} \in S^{n-1}$ such that

- $||z(\overline{y})||_{X_n} < 2e/\Lambda$, implying $||z(\overline{y})||_{X_n^*} > 1$.
- $|\varepsilon_t(\overline{y})| = \sqrt{n} \alpha |\langle \overline{y}, x_t \rangle| \le 1$ for all $t = 1, \dots, N$.

Put $x_{N+1} = z(\overline{y})$. Then $||x_{N+1}||_2 = \sqrt{n} \alpha/\Lambda \leq 2\alpha < 1$ (Λ is close to \sqrt{n}) and $x_{N+1} \notin$ absolutely convex hull of (x_1, \ldots, x_N) . Define Y_n by $||x||_{Y_n} :=$ $\sup_{1 \leq s \leq N+1} |\langle x, x_s \rangle|, x \in \mathbb{K}^n$, and let $\mu_{N+1} = 0$. Then $||x||_{Y_n} \geq ||x||_{X_n}$ and there are points $x \in \mathbb{K}^n$ with $||x||_{Y_n} > ||x||_{X_n}$. The unit ball of Y_n thus has more faces than X_n , and Y_n is not isometric to X_n . Let $\tilde{f}_j = (x_{sj})_{s=1}^{N+1}$. Then $Y_n = \operatorname{span}(\tilde{f}_1, \ldots, \tilde{f}_n) \subseteq l_{\infty}^{N+1}$; these vectors are homothetic to an orthonormal basis in Y_n as a subspace of $l_2^{N+1}(\mu)$. We define an extension $\tilde{u}: l_{\infty}^{N+1} \to l_{\infty}^{N+1}$ of the map $u: l_{\infty}^N \to l_{\infty}^N$ by putting $\tilde{u}_{st} = u_{st}$ if $1 \leq s, t \leq N$, $\tilde{u}_{s,N+1} = 0$ for $s = 1, \ldots, N+1$ and $\tilde{u}_{N+1,t} = \varepsilon_t(\overline{y})\mu_t$ for $t = 1, \ldots, N$. Then $(\tilde{u}\tilde{f}_j)_s = (uf_j)_s = (\Lambda/n)(f_j)_s = (\Lambda/n)(\tilde{f}_j)_s$ for $s = 1, \ldots, N$, and by definition of $z(\overline{y})$,

$$(\widetilde{u}\widetilde{f}_{j})_{N+1} = \sum_{t+1}^{N} \widetilde{u}_{N+1,t}(\widetilde{f}_{j})_{t} = \sum_{t=1}^{N} \varepsilon_{t}(\overline{y})\mu_{t}x_{tj}$$
$$= \frac{\Lambda}{n} z(\overline{y})_{j} = \frac{\Lambda}{n} x_{N+1,j} = \frac{\Lambda}{n} (\widetilde{f}_{j})_{N+1}$$

We thus found that $\widetilde{u}|_{Y_n} = (\Lambda/n) \operatorname{Id}_{Y_n}$. The nuclear norm of $\widetilde{u} : l_{\infty}^{N+1} \to l_{\infty}^{N+1}$

is (in view of $\mu_{n+1} = 0$)

$$\nu(\widetilde{u}) = \sum_{t=1}^{N+1} \sup_{1 \le s \le N+1} |\widetilde{u}_{st}| = \sum_{t=1}^{N} \mu_t = 1.$$

If $P: l_{\infty}^{N+1} \to Y_n$ is any projection,

$$\Lambda = \operatorname{tr}(\widetilde{u}|_{Y_n}) \le \nu(\widetilde{u}|_{Y_n}) \le \|P\|\nu(\widetilde{u}) = \|P\|.$$

Thus $\Lambda(Y_n) \geq \Lambda = \lambda(X_n)$. However, $\lambda(X_n)$ was maximal among all *n*dimensional spaces. Hence $\lambda(Y_n) = \lambda(X_n) = \Lambda$ and Y_n is not isometric to X_n . Obviously, the construction yields infinitely many non-isometric spaces with maximal projection constant Λ .

Proof of Proposition 4. (a) As subspaces of l_{∞}^N , these spaces have already been considered in [KT1]. For $n = p^m + 1$ there exist numbers $d_1, \ldots, d_n \in \{0, \ldots, N-1\}$ such that the differences $d_i - d_j$ modulo N are all different and yield all n(n-1) = N-1 integers between 1 and N-1; see [HR]. Define $x_s := n^{-1/2} (\exp((2\pi i/N)d_j s))_{j=1}^n \in S^{n-1}(\mathbb{C})$ for $s = 1, \ldots, N$ and let $f_j = (x_{sj})_{s=1}^N \in \mathbb{C}^n$. Then

$$\langle f_j, f_k \rangle = \sum_{s=1}^N \exp\left(\frac{2\pi i}{N} \left(d_j - d_k\right)s\right)/n = (N/n)\delta_{jk}$$

and hence

$$\mathrm{Id}_n = \frac{n}{N} \sum_{s=1}^N \langle \cdot, x_s \rangle x_s \quad \text{(on } \mathbb{C}^n).$$

The vectors $(x_s)_{s=1}^N$ are equiangular as the evaluation of $|\langle x_s, x_t \rangle|^2$ shows (see [KT1]). One finds

$$|\langle x_s, x_t \rangle| = \sqrt{n-1}/n \quad \text{for } 1 \le s \ne t \le N.$$

Let $Z_n = \operatorname{span}(f_1, \ldots, f_n) \subseteq \mathbb{C}^N$. As a subspace of l_2^N , $(\sqrt{n/N} f_j)_{j=1}^n$ is an orthonormal basis in Z_n , dim $Z_n = n$, and $P := (n/N)(\langle x_s, x_t \rangle)_{s,t=1}^n$ is a projection onto Z_n (the orthogonal projection in l_2^N).

Let X_n and Y_n denote the linear space Z_n considered as a subspace of l_{∞}^N and l_1^N , respectively. Then

$$\lambda(Y_n) \le \|P\| = \frac{n}{N} \sup_t \sum_{s=1}^N |p_{st}| = \frac{n}{N} \left(1 + (N-1)\frac{\sqrt{n-1}}{n} \right) = F(n,N).$$

The last equality is verified by calculation (F is given in Section 1). Similarly $\lambda(X_n) \leq F(n, N)$ since P is hermitean.

Let

$$u := \left(\langle x_s, x_t \rangle \right)_{s,t=1}^N - \left(1 - \frac{\sqrt{n-1}}{n} \right) \operatorname{Id}_N : \mathbb{C}^N \to \mathbb{C}^N.$$

Then for all $1 \leq s, t \leq N$,

$$|u_{st}| = \frac{\sqrt{n-1}}{n}$$
 and $u|_{Z_n} = \left(\frac{N}{n} - 1 + \frac{\sqrt{n-1}}{n}\right) \operatorname{Id}_{Z_n}.$

Hence the trace of u on Z_n is $\operatorname{tr}(u|_{Z_n}) = (N - n + \sqrt{n-1})$. On the other hand, the nuclear norm of the hermitean map u, considered in either l_1^N or l_{∞}^N , is

$$\nu(u) = \sum_{s=1}^{N} \sup_{t} |u_{st}| = N \frac{\sqrt{n-1}}{n}.$$

This implies, for any projection $Q: l_1^N \to Y_n$,

$$N - n + \sqrt{n - 1} = \operatorname{tr}(u|_{Y_n}) \le \nu(u|_{Y_n}) \le ||Q||\nu(u) = ||Q||N\frac{\sqrt{n - 1}}{n}.$$

Thus

$$\lambda(Y_n) \ge \frac{N - n + \sqrt{n - 1}}{N} \frac{n}{\sqrt{n - 1}} = F(n, N),$$

the last equality again being the result of a calculation. Similarly $\lambda(X_n) \geq F(n, N)$. We showed that $\lambda(X_n) = \lambda(Y_n) = F(n, N)$, which is the maximal possible value (see [KLL]).

(b) We show that the Banach–Mazur distance of X_n to l_2^n is \sqrt{n} . (By John's theorem, this is extremal since for any *n*-dimensional space Z_n one has $d(Z_n, l_2^n) \leq \sqrt{n}$.) The proof is similar to the one in [KT1].

Let $\beta_j := \exp((2\pi i/N)d_j)$ for j = 1, ..., n and $I : X_n \to X_n$ be defined by $\sum_{j=1}^n a_j f_j \mapsto \sum_{j=1}^n \beta_j a_j f_j$. Clearly I is an isometry and $I^N = \text{Id. Any}$ inner product $[\cdot, \cdot]$ on X_n which is invariant under I is diagonal in the basis (f_j) of X_n . In fact, if

$$[x, y] = \sum_{k,l=1}^{n} t_{kl} a_k \overline{b}_l, \quad x = \sum_{k=1}^{n} a_k f_k, \ y = \sum_{l=1}^{n} b_l f_l,$$

[Ix, Iy] = [x, y] for all $x, y \in X_n$ implies $t_{kl} = t_{kl}\beta_k\overline{\beta}_l$. For $k \neq l$, clearly $\beta_k\overline{\beta}_l \neq 1$, hence $t_{kl} = 0$ for $k \neq l$.

Now let (\cdot, \cdot) be an inner product on X_n which determines the Banach-Mazur distance $d = d(X_n, l_2^n)$, normalized so that

$$(1/d^2) ||x||^2 \le (x, x) \le ||x||^2, \quad x \in X_n$$

Define the inner product $[\cdot, \cdot]$ by

$$[x,y] := \frac{1}{N} \sum_{s=0}^{N-1} (I^s x, I^s y), \quad x, y \in X_n.$$

Then [Ix, Iy] = [x, y], and also

$$(1/d^2) ||x||^2 \le [x, x] \le ||x||^2, \quad x \in X_n.$$

370

By the preceding remark, there are $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that

$$[x,y] = \sum_{k=1}^{n} \lambda_k a_k \overline{b}_k, \quad x = \sum_{n=1}^{n} a_k f_k, \ y = \sum_{k=1}^{n} b_k f_k$$

Since $[x, x] \leq ||x||^2$, $\lambda_k \leq ||f_k||^2 = 1/n$ for all k = 1, ..., n. Let $z := \sum_{k=1}^n f_k$. Then $[z, z] = \sum_{k=1}^n \lambda_k$ and, taking s = 0, we find

$$|z|| = \sup_{0 \le s < N} \frac{1}{\sqrt{n}} \left| \sum_{k=1}^{n} \exp\left(\frac{2\pi i}{N} d_j s\right) \right| = \sqrt{n}.$$

 So

$$d \ge \sup_{x \ne 0} \|x\| / [x, x]^{1/2} \ge \frac{\sqrt{n}}{(\sum_{k=1}^{n} \lambda_k)^{1/2}} \ge \sqrt{n}.$$

Since by John's theorem, $d \leq \sqrt{n}$, we find $d = \sqrt{n}$.

As a subspace of l_1^N , the distance of the space Y_n to l_2^n , however, is uniformly bounded by $\sqrt{2}$ as we now show. Thus X_n and Y_n cannot be isometric. In fact, for large n, they have very different distances to l_2^n . For $1 \le p < \infty$ and $x \in \mathbb{C}^n$, let

$$|||x|||_p = \left(\frac{1}{N}\sum_{s=1}^N |\langle x, x_s \rangle|^p\right)^{1/p}.$$

We calculate the 4-norm:

$$\sum_{s=1}^{N} |\langle x, x_s \rangle|^4 = \frac{1}{n^2} \sum_{j_1, j_2, j_3, j_4=1}^{n} x_{j_1} \overline{x}_{j_2} x_{j_3} \overline{x}_{j_4} \sum_{s=1}^{N} \exp\left(\frac{2\pi i}{N} \left(d_{j_1} - d_{j_2} + d_{j_3} - d_{j_4}\right)s\right).$$

Since $(d_i - d_j)(N)$ for $i \neq j$ runs over all numbers from 1 to N - 1 exactly once, $d_{j_1} - d_{j_2} + d_{j_3} - d_{j_4}$ is 0 modulo n if and only if either $(j_1 = j_2 \text{ and } j_3 = j_4)$ or $(j_1 = j_4 \text{ and } j_2 = j_3)$.

In this case, the inner sum is N, else it is 0. Hence

$$\begin{split} ||\!| x ||\!|_4 &:= \left(\frac{1}{N} \sum_{s=1}^N |\langle x, x_s \rangle|^4\right)^{1/4} \\ &= \frac{1}{\sqrt{n}} \left(2 \sum_{j \neq k=1}^n |x_j|^2 |x_k|^2 + \sum_{j=1}^n |x_j|^4\right)^{1/4} \\ &\leq \frac{\sqrt[4]{2}}{\sqrt{n}} \left(\sum_{j=1}^n |x_j|^2\right)^{1/2} = \sqrt[4]{2} ||\!| x ||\!|_2 \end{split}$$

where the last equality is easy. A standard interpolation argument now yields the distance estimate of Y_n to l_2^n : By Hölder's inequality

$$|\!|\!| x |\!|\!|_2 \leq |\!|\!| x |\!|\!|_1^{1/3} \, |\!|\!| x |\!|\!|_4^{2/3} \leq (\sqrt[4]{2})^{2/3} |\!|\!| x |\!|\!|_1^{1/3} \, |\!|\!| x |\!|\!|_2^{2/3},$$

and thus $|||x|||_2 \leq \sqrt{2} |||x|||_1$. Since trivially $|||x|||_1 \leq |||x|||_2$ holds, we find that $d(Y_n, l_2^n) \leq \sqrt{2}$.

References

- [CL] B. Chalmers and G. Lewicki, Symmetric spaces with maximal projection constant, J. Funct. Anal. 200 (2003), 1–22.
- [HR] H. Halberstam and K. F. Roth, Sequences, Springer, New York, 1983.
- [KS] M. I. Kadets and M. G. Snobar, Certain functionals on the Minkowski compactum, Math. Notes 10 (1971), 694–696.
- [KLL] H. König, D. R. Lewis and P. K. Lin, Finite dimensional projection constants, Studia Math. 75 (1983), 341–358.

[KT1] H. König and N. Tomczak-Jaegermann, Bounds for projection constants and 1-summing norms, Trans. Amer. Math. Soc. 320 (1990), 799–823.

- [KT2] —, —, Norms of minimal projections, J. Funct. Anal. 119 (1994), 253–280.
- [TJ] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman Sci. Tech. and Wiley, Harlow and New York, 1989.

Mathematisches SeminarDepartment of MathematicalUniversität Kieland Statistical Sciences24098 Kiel, GermanyUniversity of AlbertaE-mail: hkoenig@math.uni-kiel.deEdmonton TG2 2G1, CanadaE-mail: ntomczak@ellpspace.math.ualberta.ca

Received December 9, 2002 Revised version May 15, 2003 (5100)

372