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Abstract. We establish an interpolation theorem for a class of nonlinear operators in
the Lebesgue spaces L s(Rn) arising naturally in the study of elliptic PDEs. The prototype
of those PDEs is the second order p-harmonic equation div |∇u|p−2∇u = div f. In this
example the p-harmonic transform is essentially inverse to div(|∇|p−2∇). To every vector
field f ∈ L q(Rn,Rn) our operator Hp assigns the gradient of the solution, Hpf = ∇u ∈
L p(Rn,Rn). The core of the matter is that we go beyond the natural domain of definition
of this operator. Because of nonlinearity our arguments require substantial innovations as
compared with the classical interpolation theory of Riesz, Thorin and Marcinkiewicz. The
subject is largely motivated by recent developments in geometric function theory.

1. Introduction. The general theme running through this article is
a type of nonlinear PDEs whose prototype is the well known p-harmonic
equation in Rn:

div |a +∇u|p−2(a +∇u) = div b, 1 < p <∞.(1)

Its natural setting is for the functions u in the Sobolev class W 1,p(Rn,R) (1),
where a = (a1, . . . , an) ∈ L p(Rn,Rn) and b = (b1, . . . , bn) ∈ L q(Rn,Rn) are
given vector fields. Throughout this text, L p and L q will always be dual
to each other. Precisely, the exponents p and q will satisfy Hölder’s relation
p + q = p · q < ∞. The case p = q = 2 gives rise to a linear equation and,
therefore, the solution ∇u ∈ L 2(Rn,Rn) is expressed by means of singular
integrals,

∇u = R〈R | a− b〉 = R
∑

(Ria
i −Rib

i),
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(1) The notation W 1,p(Rn,V) stands for the Sobolev class of functions (modulo con-
stants) defined in Rn and with values in a finite-dimensional inner product space V, whose
first order partials belong to L p(Rn,V). These functions need not be L p-integrable, as
Rn has infinite measure.

[373]



374 L. D’Onofrio and T. Iwaniec

where R = (R1, . . . ,Rn) are the Riesz transforms in Rn. In a similar fashion
we define a nonlinear operator

H = Hpq : L p(Rn,Rn)×L q(Rn,Rn)→ L p(Rn,Rn)×L q(Rn,Rn),

which carries a given pair (a, b) ∈ L p(Rn,Rn)×L q(Rn,Rn) of vector fields
to a curl-div couple that consists of the curl free gradient field ∇u and
the divergence free vector field |a + ∇u|p−2(a + ∇u) − b. This operator
(p-harmonic transform for references) acts continuously from L p(Rn,Rn)×
L q(Rn,Rn) into itself.

There have been numerous variants of the p-harmonic equation, each of
great interest in geometric function theory [BI.1], [IM], [Re], [Ri], [HKM],
[MaZ]. By way of illustration, we recall the energy integral

E [f ] =
�

Ω

|Df(x)|nG(x) dx

for a quasiconformal deformation f : Ω → Rn of an open regionΩ ⊂ Rn. The
norm of the differential matrix Df(x) ∈ Rn×n is computed with respect to
a given Riemannian tensor on Ω. This tensor is represented by a symmetric
positive definite matrix function G(x) = [Gij(x)]. In this setting the norm
of a matrix ξ ∈ Rn×n depends on the point x ∈ Rn and is given by

|ξ|G(x) =
√
〈ξ G(x) | ξ〉.(2)

Quasiconformal mappings, being minimizers of the energy integral, satisfy
the corresponding Euler–Lagrange system of partial differential equations

Div A(x,Df) = 0 in Ω,

where A(x, ) : Rn×n → Rn×n is a nonlinear function of matrices. Explicitly,
we have the formula

A(x, ξ) = 〈ξG(x) | ξ〉(n−2)/2ξG(x) for (x, ξ) ∈ Ω × Rn×n.
This system is understood in the sense of Schwartz distributions in which the
divergence operator Div : D ′(Ω,Rn×n) → D ′(Ω,Rn) carries matrix-valued
distributions to vector-valued distributions. This operator is none other than
the formal adjoint of the differential D : D ′(Ω,Rn) → D ′(Ω,Rn×n). The
reader may have noticed that the capital letter is being used to distinguish
from the usual notation div : D ′(Ω,Rn)→ D ′(Ω) for the divergence opera-
tor acting on vector fields.

Conversely, the p-harmonic functions (especially in two dimensions) are
successfully treated by geometric methods of quasiconformal transforma-
tions (see for example [B] and [BI.2]).

Yet another example, also from geometric function theory [I.3], [IM],
[ISS], is furnished by the equation

d∗|a + dα|p−2(a + dα) = d∗b.(3)



Interpolation theorem for the p-harmonic transform 375

Here we look for a differential form α of degree l − 1 in the Sobolev space
W 1,p(Rn,

∧l−1), where a ∈ L p(Rn,
∧l) and b ∈ L q(Rn,

∧l+1) are given
differential forms. There is a very useful device that allows us to pass from a
nonlinear p-harmonic equation to its Hodge dual q-harmonic equation [I.3].
This device has arisen from the concept of conjugate harmonic functions and
the notion of stream functions [B]. Conjugate fields play an important role
in the modern theory of quasiregular mappings [I.3], [IM]. Let us illustrate
this idea in the case of the p-harmonic equation for differential forms. The
Poincaré lemma ensures that there exists β ∈ W 1,q(R,

∧l+1) such that

|a + dα|p−2(a + dα) = b + d∗β.(4)

The term dα can easily be eliminated by solving the equation for a+dα and
applying the exterior derivative. In this way, we arrive at the Hodge dual
equation for d∗β,

|b + d∗β|q−2(b + d∗β) = a + dα.(5)

Hence
d|b + d∗β|q−2(b + d∗β) = da.(6)

The primary benefit from this transformation is that we need only con-
sider the case p > 2. This of course requires knowing the p-harmonic theory
with p > 2 in sufficient generality that includes differential forms. With this
observation in mind it becomes natural to introduce the nonlinear operator
H = Hpq : L p(Rn,

∧l)×L q(Rn,
∧l)→ L p(Rn,

∧l)×L q(Rn,
∧l), defined

by the rule H (a, b) = (dα,d∗β). However, for full generality, we shall con-
sider two differential operators of the first order with constant coefficients,

{
A : D ′(Rn,X)→ D ′(Rn,V),

B : D ′(Rn,Y)→ D ′(Rn,V),
(7)

where X, Y and V are arbitrary finite-dimensional inner product spaces.
These operators are to be supplemented with a suitable set of conditions,
called ellipticity hypotheses. The references for these conditions are [GV],
[IS.2]. Rather than discuss them in detail, we shall formulate the required
properties of A and B and only illustrate the situation by examples. To this
end, we consider A and B as elements of two short differential sequences:

{
W 1,s(Rn,X) A→ L s(Rn,V) A ∗→ D ′(Rn,X),

W 1,s(Rn,Y) B→ L s(Rn,V) B∗→ D ′(Rn,Y),
(8)

where A ∗ and B∗ are formal adjoints to A and B, respectively. These
adjoints are defined by the usual rule of integration by parts

�

Rn
〈A α |φ〉 =

�

Rn
〈α |A ∗φ〉,(9)
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�

Rn
〈B β |φ〉 =

�

Rn
〈β |B∗φ〉(10)

for all α ∈ C∞(Rn,X), β ∈ C∞(Rn,Y) and φ ∈ C∞0 (Rn,V). Here the
angular brackets are used to denote the inner products in X, Y and V.

In relation to the differential sequences at (8), we now impose the fol-
lowing conditions on A and B:

{
Ker A ∗ = Im B,

Im A = Ker B∗.
(11)

In other words the following sequences are exact for every 1 < s <∞:
{

W 1,s(Rn,X) A→ L s(Rn,V) B∗→ D ′(Rn,Y),

W 1,s(Rn,Y) B→ L s(Rn,V) A ∗→ D ′(Rn,X).
(12)

See Section 2 for specific examples. We refer to these as elliptic complexes.
In analogy with (3) and (6) we consider a pair of conjugate differential
equations {

A ∗A(x, a + A α) = A ∗b,

B∗B(x, b + Bβ) = B∗a,
(13)

where A,B : Rn × V → V are given nonlinear mappings. Our investiga-
tions require Carathéodory type hypotheses. The first two hypotheses are
concerned with measurability and continuity of A(x, ξ):

• x 7→ A(x, ξ) is measurable in x ∈ Ω for every ξ ∈ V.
• ξ 7→ A(x, ξ) is continuous in V for almost every x ∈ Ω.

These are important assumptions, for they guarantee that the composite
function A(x, ξ(x)) is measurable in Ω, provided ξ : Ω → V is measurable
(Scorza-Dragoni Theorem).

The second set of hypotheses is concerned with the ellipticity of the
equation (13):

A(x, 0) ≡ 0,(14a)

〈A(x, ξ)−A(x, ζ) | ξ − ζ〉 > K−1|ξ − ζ|2(|ξ|+ |ζ|)p−2,(14b)

|A(x, ξ)−A(x, ζ)| · |ξ − ζ| 6 K|ξ − ζ|2(|ξ|+ |ζ|)p−2,(14c)

for all ξ, ζ ∈ V and almost every x ∈ Rn. Here 1 < p < ∞ is a given
exponent. The number K > 1 will hereafter be referred to as the ellipticity
constant. The inequality (14b) is often expressed by saying that A(x, ξ) is
monotone in ξ ∈ V. As for the mapping B(x, ) : V → V, the observant
reader may have noticed that A(x, ) : V → V is invertible. We then find
B(x, ) to be the inverse of A(x, ), in symbols

A(x, ) ◦B(x, ) = B(x, ) ◦A(x, ) = I : V→ V.(15)
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This being so, conditions (14a)–(14c) entail similar ellipticity bounds for B:

B(x, 0) ≡ 0,(16a)

〈B(x, ξ)−B(x, ζ) | ξ − ζ〉 > L−1|ξ − ζ|2(|ξ|+ |ζ|)q−2,(16b)

|B(x, ξ)−B(x, ζ)| · |ξ − ζ| 6 L|ξ − ζ|2(|ξ|+ |ζ|)q−2,(16c)

with an ellipticity constant L > 1. Conversely, these conditions imply (14a)–
(14c).

Given a ∈ L p(Rn,V) and b ∈ L q(Rn,V) the Minty–Browder theory of
monotone operators [Mi], [Br] tells us that the solutions A α ∈ L p(Rn,V)
and Bβ ∈ L q(Rn,V) to the equations (13) exist and are uniquely deter-
mined by a and b. This allows us to speak of the operator

H = HAB : L p(Rn,V)×L q(Rn,V)→ L p(Rn,V)×L q(Rn,V)

carrying the pair (a, b) to (A α,Bβ). Simple integration will reveal that
�

Rn
(|A α|p + |Bβ|q) 4

�

Rn
(|a|p + |b|q).(17)

Throughout this text whenever we write 4 we mean that the inequality
holds with some positive constant, called implied constant . The reader will
easily recognize from the context which parameters this constant might de-
pend on. Let us emphasize that the implied constant may vary from line to
line.

Recent major advances in geometric function theory depend upon esti-
mates of HAB beyond the above domain of definition (see [IM]). The pur-
pose of this paper is to establish interpolation properties of the operator
HAB. Before stating our conclusions, we need more notation. Throughout
this text the Hölder conjugate exponents 1 < p, q < ∞ and the structural
mappings A(x, ),B(x, ) : V → V will be fixed. Given a pair of vectors
h = (a,b) ∈ V× V, we define

[h] = |a|p + |b|q.
Also, given a pair of functions h = (a, b) ∈ L p(Rn,V)×L q(Rn,V), we write

[[h]] =
�

Rn
(|a(x)|p + |b(x)|q) dx.(18)

In this notation, the inequality (17) reads

[[H h]] 4 [[h]](19)

for every h = (a, b) ∈ L p(Rn,V) × L q(Rn,V). In fact, we even have an
estimate that yields Hölder continuity of the operator H = HAB:

[[H h1 −H h2]] 4 [[h1 − h2]]θ([[h1]] + [[h2]])1−θ.(20)

The largest possible exponent θ is min{p− 1, q − 1}.
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Definition 1.1. The operator HAB is said to be of weak type λ, where
λ > max{1/p, 1/q}, if for every t > 0,

meas{x ∈ Rn; [H h(x)] > t} 4 t−λ
�

Rn
[h(x)]λ dx(21)

whenever [h] ∈ L λ(Rn,V) ∩L 1(Rn,V).

This is certainly the case if H is of strong type λ, meaning that

[[H h]]
λ

:=
( �

Rn
[H h(x)]λ dx

)1/λ
4
( �

Rn
[h(x)]λ dx

)1/λ
= [[h]]

λ
.(22)

Let us stress explicitly that the assumption [h] ∈ L 1(Rn,V) is necessary in
order to speak of H h. The question of whether H extends continuously to
the entire space L λ(Rn,V) remains open if 1 > λ > max{1/p, 1/q}. The
affirmative answer for λ > 1 is given in [DI].

Theorem (Interpolation Theorem). If HAB is of weak type λ for some
λ > max(1/p, 1/q), then it is of strong type τ for every τ between 1 and λ,
that is, |1− τ | < |1− λ|.

Our arguments follow closely the well known proof of the Marcinkiewicz
Interpolation Theorem for linear operators [M], [S]. However, we will touch
upon some of the delicate but critical points due to nonlinearity of HAB.
There are several cases in which we are able to identify the parameters λ.
First of all, HAB is always of strong type λ if λ is sufficiently close to 1. This
is essentially due to remarkable recent advances in the theory of various types
of linear and nonlinear commutators [CCRSW], [RW], [IS.1], [I.4]. Estimates
of p-harmonic type operators in the so-called grand L p-spaces can be found
in [GIS]. They became particularly useful in the study of nonlinear PDEs
with a measure on the right hand side. For a comprehensive treatment of
estimates below the natural Sobolev exponent, that is, for λ < 1, we refer the
reader to [IS.1] and the bibliography given there. Estimates for large values
of λ lie deeply in the C 1,α-regularity theory of the p-harmonic equations
[U], [Uh], effectively exploited in [I.1] and [I.2]. By way of digression, sharp
regularity results for p-harmonic functions in the plane (and their surprising
behavior as p → 1) are available in [IMa]. Estimates for large exponents
allow us to extend the p-harmonic operator to BMO-spaces (see [DM]). Less
related to our investigation is the study of the so-called infinite Laplacian
and its viscosity solutions [JLM].

Let us look at particular situations of this kind in which a = 0 or b = 0.
In the first case we are reduced to the equation

A ∗A(x,A α) = A ∗b, b ∈ L q(Rn,V),(23)

which defines an operator HA : L q(Rn,V) → L q(Rn,V) by the rule
HA(b) = A(x,A α)− b ∈ L q(Rn,V). Thus, HA(b) = HAB(0, b).
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In the second case we are dealing with the Hodge dual B-harmonic equa-
tion

B∗B(x,Bβ) = B∗a, a ∈ L p(Rn,V),(24)

which defines an operator HB : L p(Rn,V) → L p(Rn,V) by the rule
HB(a) = B(x,Bβ) − a ∈ L p(Rn,V). Thus, HB(a) = HAB(a, 0). As a
corollary from our Theorem we see that

||HA(b)||τq 4 ||b||τq,(25)

||HB(a)||τp 4 ||a||τp,(26)

whenever a ∈ L p(Rn,V) ∩L τp(Rn,V) and b ∈ L q(Rn,V) ∩L τq(Rn,V).
As a matter of fact our interest in the most general setting is not only
theoretical and aesthetic: the generality is also necessary to make the proofs
easier and transparent. The p-harmonic theory has a long history and many
results, too numerous to discuss them all. We hope that the reader will find
our references helpful.

2. Remarks on elliptic complexes. We find it useful and interesting
to briefly review the concept of ellipticity in relation to the first order partial
differential operators A and B. Let us begin with the explicit formulas

A =
n∑

i=1

Ai
∂

∂xi
, B =

n∑

i=1

Bi
∂

∂xi
,

where the coefficients Ai ∈ Hom(X,V) and Bi ∈ Hom(Y,V) are given linear
transformations. Then the coefficients of the formal adjoints

A ∗ =
n∑

i=1

A∗i
∂

∂xi
, B∗ =

n∑

i=1

B∗i
∂

∂xi

are the transpose transformations A∗i ∈ Hom(V,X) and B∗i ∈ Hom(V,Y).
The simplest example is furnished by the divergence operator A = div =
−〈∇, ·〉 and its formal adjoint A ∗ = −∇ = −

(
∂
∂x1

, . . . , ∂
∂xn

)
,

W 1,s(Rn,Rn) div−→ L s(Rn,R) −∇−→ D ′(Rn,Rn).(27)

As for the operator B, we associate with (27) the trivial differential sequence

W 1,s(Rn,Y) B=0−−→ L s(Rn,R) B∗=0−−→ D ′(Rn,Y).(28)

Clearly, we have

Ker∇ = 0 = Im B, Im div = L s(Rn,R) = Ker B∗.

This example leads to the equation ∇A(x, a + divF ) = ∇b, rather uninter-
esting. Nevertheless, an interesting p-harmonic type equation arises when
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we switch the divergence with the gradient, namely

W 1,s(Rn,R) ∇→ L s(Rn,Rn) −div−−→ D ′(Rn,R).

We must attach to this sequence another one that ensures conditions (11).
With a little effort we find that the following differential sequence works
well for our purpose:

W 1,s(Rn,Rn×nskew) Div−→ L s(Rn,Rn) Curl−→ D ′(Rn,Rn×nskew).

Here, the rotation operator Curl carries a vector field F = (F 1, . . . , Fn) to
the matrix function

Curl F =
1
2

[
∂F i

∂xj
− ∂F j

∂xi

]

i,j=1,...,n
∈ Rn×nskew.

Thus Curl F is a distribution with values in the space of skew symmetric
matrices, denoted by Rn×nskew. Its formal adjoint is defined on skew symmetric
matrix functions M = [M i

j ] by the rule

Div M =
[ n∑

ν=1

∂

∂xν
Mν

i

]

i=1,...,n
.

In other words, the ith component of the vector field Div M is the divergence
of the ith column of M. Clearly, we have Ker[div] = Im[Div] and Im[∇] =
Ker[Curl], as required. There are many examples of elliptic complexes, for
which the reader may wish to consult [Uh], [GV] and [IS.2].

Associated with A and B is the elliptic Laplace–Beltrami operator

−4 = A A ∗ + BB∗ : W 2,s(Rn,V)→ L s(Rn,V), 1 < s <∞.
This second order operator is the key instrument in the regularity of the
operators A and B. In much the same way as in [GV, Lemma 4] we infer,
by an approximation argument, the following

Lemma 2.1. The two spaces Im A ⊂ L p(Rn,V) and Im B ⊂ L q(Rn,V)
are orthogonal , meaning that

�

Rn

〈
A α |Bβ

〉
= 0

whenever α ∈ W 1,p(Rn,X) and β ∈ W 1,q(Rn,Y).

We have already mentioned that the existence and uniqueness of the so-
lutions of the system (13) follows by the Minty–Browder theory of monotone
operators.

3. The natural domain. In this section we make preliminary compu-
tations for the equation

A(x, a + A α) = b + Bβ(29)
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and its dual

B(x, b + Bβ) = a + A α.(30)

We shall consider these equations in the natural setting, meaning that
a ∈ L p(Rn,V) and α ∈ W 1,p(Rn,X), whereas b ∈ L q(Rn,V) and β ∈
W 1,q(Rn,Y).

The easy strong type 1 estimate will get us started.

3.1. H is of strong type 1. We aim to show that [[H h]] 4 [[h]], which
translates into (17). To this end, we integrate the inner product of a + A α
and the terms in (29):

� 〈
A(x, a + A α) | a + A α

〉
=

� 〈
b | a + A α

〉
(31)

because A α is orthogonal to Bβ. The left hand side will be treated by using
monotonicity of the mapping A(x, ). Precisely, we have

|ξ|p 6 K〈A(x, ξ) | ξ〉,
which is immediate from (14a) and (14b). Applying Hölder’s inequality to
the right hand side of (31) yields

||a + A α||pp 6 K||Bβ||q||a||p +K||b||q||a + A α||p.
The term ||a+A α||p will be absorbed by the left hand side once we separate
it from K||b||q by using Young’s inequality, that is, xy 6 xq/q + yp/p. It
results in the inequality

||a + A α||pp 6 Kq||b||qq + qK||Bβ||q||a||p.
From now on we adopt the notation 4 to avoid writing insignificant con-
stants. Accordingly, we write

||A α||pp 4 ||a||pp + ||b||qq + ||a||p||Bβ||q.
In much the same way, or by dualities, we obtain the analogous estimate
for Bβ:

||Bβ||qq 4 ||a||pp + ||b||qq + ||b||q||A α||p.
Finally, we add them up and use Young’s inequality again so that the terms
||Bβ||q and ||A α||p will be absorbed by the left hand side. This gives the
desired estimate

||A α||pp + ||Bβ||qq 4 ||a||pp + ||b||qq,(32)

which is a more explicit form of (19).

3.2. Hölder’s exponent of H : L p ×L q → L p ×L q. Here we prove
inequality (20). At the end we also show that the exponent θ = min{p− 1,
q − 1} is the best possible. Let h1 = (a1, b1) and h2 = (a2, b2). By the
definition of H , we have

H h1 = (A α1,Bβ1), H h2 = (A α2,Bβ2),
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where the first components A α1 and A α2 lie in L p(Rn,V), while the second
components Bβ1 and Bβ2 lie in L q(Rn,V). These components are coupled
in the equations

A(x, a1 + A α1) = b1 + Bβ1, B(x, b1 + Bβ1) = a1 + A α1,(33)

A(x, a2 + A α2) = b2 + Bβ2, B(x, b2 + Bβ2) = a2 + A α2,(34)

which we abbreviate to

A1 = a1 + A α1, A2 = a2 + A α2,(35)

B1 = b1 + Bβ1, B2 = b2 + Bβ2.(36)

A simple application of the triangle inequality shows that ||A1||p 4 ||a1||p +
||A α1||p and ||B1||q 4 ||b1||q + ||Bα1||q. By the strong type 1 estimate at (19),
we have

||A1||pp + ||B1||qq 4 [[h1]],(37)

||A2||pp + ||B2||qq 4 [[h2]].(38)

Returning to (33) and (34), we now subtract the equations and their
dual counterparts to obtain

{
A(x,A1)−A(x,A2) = B1 − B2,

A1 −A2 = B(x,A1)−B(x,A2).
(39)

Next we compute the inner products:

〈A(x,A1)−A(x,A2) | A1 −A2〉 = 〈B(x,B1)−B(x,B2) | B1 − B2〉(40)

= 〈A1 −A2 | B1 − B2〉 > 0.

Nonnegativity of these terms, which is immediate from the monotonicity
of A and B, will be tacitly used throughout this text. The following three
terms are essentially the same:

|A1 −A2|2(|A1|+ |A2|)p−2 4< 〈A1 −A2 | B1 − B2〉
4< |B1 − B2|2(|B1|+ |B2|)q−2.

Of course the notation X 4< Y stands for the two inequalities X 4 Y and
Y 4 X.

Since the situation is symmetric with respect to A and B, it involves no
loss of generality to assume that p > 2. It is at this moment that we are
going to brake the symmetry. From now on we take 1 < q 6 2 6 p < ∞.
Hence we have

|A1 −A2|p 6 |A1 −A2|2(|A1|+ |A2|)p−2(41)

4< 〈A1 −A2 | B1 − B2〉
4< |B1 − B2|2(|B1|+ |B2|)q−2 6 |B1 − B2|q.
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Then we integrate to obtain

(42)
�

Rn
|A1 −A2|p +

�

Rn
|B1 − B2|q 6 2

�

Rn
|B1 − B2|q

= 2
�

Rn
|B1 − B2|q(|B1|+ |B2|)(q−2)q/2(|B1|+ |B2|)(2−q)q/2

6
( �

Rn
|B1 − B2|2(|B1|+ |B2|)q−2

)q/2( �

Rn
(|B1|+ |B2|)q

)(2−q)/2

6 2
[ �

Rn
|B1 − B2|2(|B1|+ |B2|)q−2

]q/2
([[h1]] + [[h2]])(2−q)/2.

The last step follows by (37) and (38). As we have already observed, the
integral in brackets can be estimated as

�

Rn
|B1 − B2|2(|B1|+ |B2|)q−2

4
�

Rn
〈A1 −A2 | B1 − B2〉

=
�

Rn
〈a1 − a2 | b1 − b2〉+

�

Rn
〈a1 − a2 |Bβ1 −Bβ2〉

+
�

Rn

〈
A α1 −A α2 | b1 − b2〉+

�

Rn
〈A α1 −A α2 |Bβ1 −Bβ2〉.

At this point we shall make use of the orthogonality of the subspaces
Im A ⊂ L p(Rn,V) and Im B ⊂ L q(Rn,V), as discussed in Lemma 2.1.
Accordingly, the last integral vanishes. The other integrals are treated by
Hölder’s inequality and we obtain

�

Rn
|B1 − B2|2(|B1|+ |B2|)q−2

4 ||a1 − a2||p||b1 − b2||q + ||a1 − a2||p||Bβ1 −Bβ2||q
+ ||A α1 −A α2||p||b1 − b2||q

6 [[h1 − h2]]1/p[[h1 − h2]]1/q + [[h1 − h2]]1/p[[H h1 −H h2]]1/q

+ [[h1 − h2]]1/q[[H h1 −H h2]]1/p

With this estimate the inequality (42) becomes
�

Rn
|A1 −A2|p +

�

Rn
|B1 − B2|q 4 ([[h1]] + [[h2]])(2−q)/2

× ([[h1 − h2]]q/2 + [[h1 − h2]](q−1)/2[[H h1 −H h2]]1/2

+ [[h1 − h2]]1/2[[H h1 −H h2]](q−1)/2).
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Hence

[[H h1 −H h2]] =
�

Rn
|A α1 −A α2|p +

�

Rn
|Bβ1 −Bβ2|q

4 [[h1 − h2]] + [[h1 − h2]]q/2([[h1]] + [[h2]])(2−q)/2

+ [[h1 − h2]](q−1)/2([[h1]] + [[h2]])(2−q)/2[[H h1 −H h2]]1/2

+ [[h1 − h2]]1/2([[h1]] + [[h2]])(2−q)/2[[H h1 −H h2]](q−1)/2.

Finally, with the aid of Young’s inequalities, we separate [[H h1 − H h2]]
from the other terms and then it gets absorbed by the left hand side:

[[H h1 −H h2]] 4 [[h1 − h2]] + [[h1 − h2]]q/2([[h1]] + [[h2]])(2−q)/2

+ [[h1 − h2]]q−1([[h1]] + [[h2]])2−q

+ [[h1 − h2]]1/(3−q)([[h1]] + [[h2]])(2−q)/(3−q)

4 [[h1 − h2]]θ([[h1]]+[[h2]])1−θ=[[h1 − h2]]q−1([[h1]] + [[h2]])2−q,

where θ = min{p− 1, q − 1} = q − 1 6 min{q/2, 1/(3− q)}, completing the
proof of the Hölder continuity estimate at (20).

3.3. An example. The following example shows that the Hölder exponent
θ = min{p − 1, q − 1} = min{p/q, q/p} is sharp. Consider the sequence
(27) and the trivial one at (28). Given two real functions a ∈ L p(Rn) and
b ∈ L q(Rn), 1 < p 6 2 6 q <∞, we can solve the equation

|a + A α|p−2(a + A α) = b + Bβ, B ≡ 0,

uniquely for a + A α ∈ L p(Rn), where A = div : W 1,p(Rn,Rn)→ L p(Rn).
Of course, α is unique only up to a divergence free vector field.

In this way we obtain a p-harmonic type operator defined on a pair of
dual spaces, H : L p(Rn) ×L q(Rn) → L p(Rn) ×L q(Rn). Consider h =
(0, b), so that H h = (A α, 0) = (|b|q−2b, 0). In other words, H restricted
to {0}×L q(Rn) becomes a nonlinear algebraic transformation of functions.
Fix b ∈ L q(Rn) whose q-norm is one. For a sufficiently small positive num-
ber ε we may consider a perturbation of h denoted by h′ = h + εh. Thus
[[h]] = ||b||qq = 1, while [[h′]] = (1 + ε)q and [[h′ − h]] = εq. On the other hand
H h′−H h = [(1 + ε)q−1− 1]|b|q−2b, thus [[H h′−H h]] = [(1 + ε)q−1− 1]p.
We now see that

[[H h′ −H h]][
[h′ − h]]θ([[h′]] + [[h]])1−θ =

[(1 + ε)q−1 − 1]p

εθq[1 + (1 + ε)q)]1−θ
= O(εp−θq) as ε→ 0.

This ratio stays bounded if and only if θ 6 p/q = p− 1 = min{p− 1, q− 1},
as claimed.
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4. Interpolation. We follow the idea of Marcinkiewicz [M]. However,
the details to be discussed are far from being routine, largely because of the
nonlinear terms involved. For the sake of readability we precede the proof
with additional notation and some lemmas.

4.1. Notation. Given a pair of functions h = (a, b) ∈ L τp(Rn,V) ×
L τq(Rn,V) , we recall that [h] = |a|p + |b|q ∈ L τ (Rn). To every positive
parameter t there corresponds a decomposition h = ht + ht into truncations
of h, where

ht = (at, bt) =
{

h(x) if [h(x)] > t,
0 if [h(x)] < t,

(43)

ht = (at, bt) =
{

0 if [h(x)] > t,
h(x) if [h(x)] < t.

(44)

Next, we recall the operator H and the associated equations

H h = (A α,Bβ), A(x, a + A α) = b + Bβ.(45)

In the spirit of Section 3.2, we abbreviate the notation by setting A =
a + A α, B = b + Bβ and H = (A,B). Furthermore, we write

[H] = |A|p + |B|q, A(x,A) = B.(46)

Analogous equations with subscript and superscript t will also come into
play:

H ht = (A αt,Bβt), A(x, at + A αt) = bt + Bβt,(47)
[Ht] = |At|p + |Bt|q, A(x,At) = Bt,

H ht = (A αt,Bβt), A(x, at + A αt) = bt + Bβt,(48)
[Ht] = |At|p + |Bt|q, A(x,At) = Bt.

Without loss of generality we may assume that 1 < q 6 2 6 p. Then
there are two cases to consider: 1 < τ < λ and λ < τ < 1. The case
τ = 1, corresponding to the natural domain of definition, has already been
established in Section 3.1. We need only consider the first case. The reader
may wish to carefully inspect our arguments to produce the proof of the
second case by simply permuting subscripts and superscripts. Let us point
out that the equations (48) will play no role in the first case; they are
important for the second case.

4.2. Three lemmas. In this subsection we collect some elementary alge-
braic facts.

Lemma 4.1. Under the assumption 1 < q 6 2 6 p, we have

|A − At|p 4 〈A − At | B − Bt〉,(49)
|B − Bt|q 4 |B|q + 〈A − At | B − Bt〉,(50)
|B − Bt|q 4 |Bt|q + 〈A − At | B − Bt〉.(51)
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Proof. It follows from (45) and (47) that

〈A(x,A)−A(x,At) | A − At〉 = 〈A − At | B − Bt〉(52)

= 〈B(x,B)−B(x,Bt) | B − Bt〉.
On account of conditions (14b) and (16c), we have the following chain of
inequalities:

|A − At|p 6 |A − At|2(|A|+ |At|)p−2

4< 〈A − At | B − Bt〉
4< |B − Bt|2(|B|+ |Bt|)q−2 6 |B − Bt|q.

Observe that the inequality (49) appears in the middle of this chain. Con-
cerning (50) and (51), the reader may wish to check the following general
inequality, which holds in any normed space:

|B − Bt|q 4 |Bt|q + |B − Bt|2(|B|+ |Bt|)q−2.(53)

Permuting B and Bt gives us another one:

|B − Bt|q 4 |B|q + |B − Bt|2(|B|+ |Bt|)q−2.(54)

The proof of Lemma 4.1 is complete.

In the next step we integrate those inequalities:

Lemma 4.2. The notation being as above, we have
�

Rn

〈
A−At | B − Bt

〉
4 [[ht]] +

�

Rn
[ht]1/p[H]1/q.(55)

The point of this estimate is that both terms [ht]1/p and [H]1/q appear
under the same integral sign. Our subsequent arguments would not work if
at this point we had used Hölder’s inequality to separate the two terms.

Proof. Recall the notation: A = a + Aα, B = b + Bβ, At = at + Aαt
and Bt = bt + Bβt. Moreover at = a − at and bt = b − bt. We express the
integral on the left hand side as

�

Rn
〈A − At | B − Bt〉 =

�

Rn

〈
at | B − Bt

〉
+

�

Rn
〈A − At | bt〉(56)

−
�

Rn
〈at | bt〉+

�

Rn
〈A (α− αt) |B(β − βt)〉.

The last integral vanishes because Im A and Im B are orthogonal (see
Lemma 2.1). Now the calculation continues as follows:

�

Rn
〈A − At | B − Bt〉 6 [[ht]] +

�

Rn
|at| |B − Bt|+

�

Rn
|A − At| |bt|

6 [[ht]]+
�

Rn
[ht]1/p |B|+

�

Rn
[ht]1/p〈A−At | B−Bt〉1/q+

�

Rn
[ht]1/q〈A−At | B−Bt〉1/p
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by (50) and (49), respectively. With the aid of Young’s inequality we can
separate the inner product 〈A − At | B − Bt〉 from [ht] and get it absorbed
by the left hand side of (56). We then conclude with the estimate�

Rn
〈A − At | B − Bt〉 4 [[ht]] +

�

Rn
[ht]1/p|B| 4 [[ht]] +

�

Rn
[ht]1/p|H|1/q

as claimed.

Lemma 4.3. For every 1 < τ < λ, we have
∞�

0

tτ−1meas{x; [Ht(x)] > t}dt 4 [[h]]ττ .(57)

Proof. By the notation at (47) we see that [Ht] = [ht + H ht] 4 [ht] +
[H ht]. Hence the line integral in (57) splits as

∞�

0

tτ−1meas{x; [ht(x)] > t}dt+
∞�

0

tτ−1meas{x; [H ht(x)] > t}dt.

Since both H and the identity operator are of weak type λ, we can estimate
each of these terms by the same double integral:

∞�

0

tτ−1
(
t−λ

�

Rn
[ht(x)]λ dx

)
dt =

∞�

0

tτ−λ−1
( �

[h]>t

[h(x)]λ dx
)

dt.

Applying Fubini’s theorem yields
∞�

0

tτ−1meas{x; [Ht(x)] > t}dt 4
�

Rn
[h(x)]λ

(∞�

[h]

tτ−λ−1 dt
)

dx

4
�

Rn
[h(x)]τ dx = [[h]]ττ ,

completing the proof of Lemma 4.3.

With these three lemmas at hand we now proceed to the final step of
the interpolation.

4.3. Proof of the Interpolation Theorem. The aim is to estimate the
integrals �

Rn
|H h|τ 4

�

Rn
|h|τ +

�

Rn
[H(x)]τ dx(58)

in terms of [[h]]ττ . We shall draw on a somewhat similar computation from
E. Stein [S]:

�

Rn
[H(x)]τ dx = τ

∞�

0

tτ−1meas{x; [H(x)] > t}dt

4
∞�

0

tτ−1meas{x; [Ht(x)] > t}dt+
∞�

0

tτ−1meas{x; [H(x)−Ht(x)] > t}dt.
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In view of Lemma 4.3 the first integral is bounded by [[h]]ττ . To estimate
the second integral we observe, using Lemma 4.1, that

[H−Ht] = |A − At|p + |B − Bt|q 4 |Bt|q + 〈A − At | B − Bt〉
4 [Ht] + 〈A − At | B − Bt〉.

Accordingly, the second integral splits as
∞�

0

tτ−1meas{x; [H(x)−Ht(x)] > t}dt

4
∞�

0

tτ−1meas{x; [Ht(x)] > t}dt

+
∞�

0

tτ−1meas{x; 〈A −At | B − Bt〉 > t}dt

4 [[h]]ττ +
∞�

0

tτ−2
( �

Rn

〈
A−At | B − Bt

〉
dx
)

dt

again by Lemma 4.3. Using Lemma 4.2 we continue this chain of inequalities:

4 [[h]]ττ +
∞�

0

tτ−2
( �

[h]>t
[h]1/p[H]1/q

)
dt.

It is worthwhile to emphasize again that both terms [h]1/p and [H]1/q appear
under one integral sign. Applying Fubini’s theorem yields

= [[h]]ττ +
�

Rn
[h]1/p[H]1/q

[h]�

0

tτ−2 dt

= [[h]]ττ +
1

τ − 1

�

Rn
[h]τ−1/q[H]1/q.(59)

Now the integral we are dealing with can be estimated as follows:
�

Rn
[H]τ 4 [[h]]ττ +

�

Rn
[h]τ−1/q[H]1/q.

It is at this point that we shall finally separate [H] from [h]. As usual, the
device we may use here is Young’s inequality:

�

Rn
[H]τ 4 [[h]]ττ + Cε

�

Rn
[h]τ + ε

�

Rn
[H]τ .(60)

The last term will be absorbed by the left hand side once we choose ε
sufficiently small. This results in the estimate

�

Rn
[H]τ 4 [[h]]ττ .

The proof is completed by noticing that H h = H− h.
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Remark. It is certainly curious that in our computation the expected
uniform bounds are lost when τ approaches 1, because of the inequality at
(59). This situation also occurs for linear operators, if we know only weak
type estimates at the end-points of the interpolation. In our case, however,
we know that H is of strong type 1. It may very well be possible to end up
with uniform estimates as τ → 1 by some more refined arguments.
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