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Reflexivity and approximate fixed points
by

EVA MATOUSKOVA (Praha) and SIMEON REICH (Haifa)

Abstract. A Banach space X is reflexive if and only if every bounded sequence {zn }
in X contains a norm attaining subsequence. This means that it contains a subsequence
{zn,} for which supscg, ., limsupy_ o f(wn,) is attained at some f in the dual unit
sphere Sx«. A Banach space X is not reflexive if and only if it contains a normalized
sequence {xn} with the property that for every f € Sx=, there exists ¢ € Sx= such
that limsup,,_, f(zn) < liminf,—c g(xn). Combining this with a result of Shafrir,
we conclude that every infinite-dimensional Banach space contains an unbounded closed
convex set which has the approximate fixed point property for nonexpansive mappings.

1. Introduction. Let M be a complete metric space and let T: M — M
be a strict contraction, that is, let T" be Lipschitz with a constant less than
one. By a classical theorem of Banach, T" has a fixed point x = T'(x). For
contractions this need not be so. For example, it is readily checked that

C={zeC0,1]:0<z<1,2(0)=0, z(1) =1}

is a closed, convex and bounded subset of the space C[0,1] of all real con-
tinuous functions on [0, 1] and that T': C' — C' defined by

Tz(t) = tx(t)

satisfies | T'(z) — T'(y)|| < ||z — y|| for z # y in C. However, T has no fixed
points. It does have, though, approximate fixed points. If z,, is the nth power
xn(t) = t", then ||z, — T'(zy)|| — 0. This turns out to be the case in general,
even for nonexpansive mappings.

Let C be a closed convex subset of a Banach space X. Recall that a
mapping T : C — C' is called nonexpansive if | Tz — Ty| < ||z — y|| for all
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x,y € C. The subset C is said to have the approximate fized point property
(AFPP) for nonexpansive mappings if inf{||lx — Tz| : z € C} = 0 for all
nonexpansive self-mappings of C. It is easy to see that every closed con-
vex and bounded C has this property. However, there are also unbounded
C with this property. For instance, it is shown in [R2] that a closed convex
subset of a reflexive Banach space has the AFPP if and only if it does not
contain any half-line. For example, {(z1,z2,...) € f2 : |z,| < n} is such
an unbounded closed convex set. In [Sh], Shafrir shows that the “half-line
test” works exactly in reflexive spaces. That is, a Banach space X is re-
flexive if and only if every closed convex C' C X which does not contain
any half-lines has the AFPP. In the same paper, Shafrir also character-
izes those closed convex subsets of a Banach space (or, more generally, a
complete hyperbolic metric space) which have the AFPP as those which,
roughly speaking, do not contain any “approximate metric half-line”. Using
this characterization, he proves that every infinite-dimensional Banach space
which does not contain an isomorphic copy of £; contains an unbounded
closed convex subset with the AFPP. He also constructs such a subset in ¢;.
However, he has left open the question whether every infinite-dimensional
Banach space contains such a subset. (Note that if X is finite-dimensional
and a convex C' C X does not contain any half-lines, then C is bounded.
Hence in this case either C' is bounded and has the fixed point property
for nonexpansive mappings, or it is unbounded and does not even have the
AFPP.)

In Corollary 4.4, we answer Shafrir’s question in the affirmative. This
is done by providing a characterization of reflexive Banach spaces in Theo-
rem 4.3. We show there that a Banach space is reflexive if and only if every
bounded sequence {z,} in X contains a norm attaining subsequence. That
is, it contains a subsequence {zn, } for which supg . limsup,_,., f(zn,) is
attained at some f from the dual unit sphere Sx«. Also, a Banach space
X is not reflexive if and only if it contains a normalized sequence {z,}
with the property that for every f € Sx«, there exists g € Sx+ such that
limsup,, .o f(zn) < liminf, .o g(x,). In [Sh] Shafrir calls sequences with
this property (P)-sequences. He proves that if {x,} is a (P)-sequence, then
conv{nz, : n € N} has the AFPP.

When characterizing reflexive Banach spaces, we make use of the proof
of the nonseparable case of James’s theorem as presented in [S]. For more
information on the approximate fixed point property for nonexpansive map-
pings see, for example, [GR], [GK], [EK], [K] and the references mentioned
therein.

By Sx we denote the unit sphere of a Banach space X; by X™* we denote
the dual of X. By (, 7, ... we denote subsequences of the sequence of natural
numbers.
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2. Preliminaries. The following definition appears in [Sh].

DEFINITION 2.1. Let X be a Banach space. A sequence {z,}2°; C Sx
is called a (P)-sequence if for every f € Sx«, there exists g € Sx« such that
limsup,,_,, f(zn) < liminf,, o g(zp).

Clearly, a subsequence of a (P)-sequence is again a (P)-sequence. The
following is a straightforward consequence of the Hahn—-Banach theorem.

LEMMA 2.2. Suppose Y is a closed subspace of a Banach space X and
{zn}52, C Sy is a (P)-sequence in' Y. Then {x,}7>, is a (P)-sequence in
X as well.

Proof. Let f € Sx+ be given. Denote by a the norm of f when re-
stricted to Y. Clearly, a < 1. If @ = 0, we choose any g € Sy~ with
liminf, o g(x,) > 0; the existence of such a functional g follows directly
from the definition of a (P)-sequence. If 0 < @ < 1, we choose g € Sy~
so that limsup,, . f(zn)/a < liminf, .. g(z,). In both cases we use the
Hahn—Banach theorem to extend g to a norm-one functional on X. =

Quite often, we will make use of the following description of (P)-se-

quences. Note that a sequence {x,} satisfying (1) is called a Pryce sequence
on p. 264 of [Sch].

LEMMA 2.3. Let X be a Banach space and let {x,} C Sx satisfy
(1) sup limsup f(z,) = sup liminf f(x,).
n—oo

feSxx n—oo fesSx
If the supremum on the left-hand side is not attained, then {x,} is a (P)-
sequence. Conversely, if {zn} is a (P)-sequence, then (1) is satisfied and
neither of the suprema is attained.

Proof. Suppose (1) is satisfied and the supremum on the left-hand side
is not attained. Let f € Sx«. Then
limsup f(z,) < sup limsuph(z,) = sup liminfh(z,).
n—00 heSxx n—oo heSxx "7
Therefore there exists a functional g € Sy« such that limsup,,_, . f(z,) <
liminf, o g(zy).

For the converse, observe that, trivially, for any bounded sequence {x,,}
and f € X*,

(2) limsup f(x,) > hnnlg.}ff(mn)

n—oo
Hence supseg, . limsup,_,o f(7n) > supseg, . liminf, o f(25). The def-

inition of a (P)-sequence provides the other inequality needed for (1). By
(1) and (2), if suppeg,.. liminf,, o0 h(xn) is attained at some f € Sx«, then



406 E. Matouskovi and S. Reich

SUDpeg, . IMSup, o h(zy,) is attained at this f as well. But for this par-
ticular f, this fact contradicts the existence of the functional g from the
definition of a (P)-sequence. =

If X is a Banach space and x € X, then x attains its norm on the unit
ball of X*. If every f € X* attains its norm on the unit ball of X, then X is,
according to the James theorem [J], reflexive. In Theorem 4.3 we establish a
parallel to this result. Suppose that every bounded sequence in X contains
a subsequence which “attains its norm” on the unit ball of X*. Then X is
reflexive.

DEFINITION 2.4. Let X be a Banach space. We call a bounded sequence
{Tn}p2y in X norm attaining if supjeg, ., limsup, .. f(zn) is attained
on Sx* .

The following lemma shows that (P)-sequences and sequences which do
not attain their norm are closely related.

LEMMA 2.5. Let X be a Banach space and let {x,} C Sx. If {zp} is
a (P)-sequence, then no subsequence thereof is norm attaining. Conversely,
if {zn} contains no norm attaining subsequences, then it contains a (P)-
sequence.

Consequently, a Banach space X contains no (P)-sequences if and only
if every bounded sequence in X contains a norm attaining subsequence.

Proof. Every subsequence of a (P)-sequence is also a (P)-sequence, so it
is not norm attaining by Lemma 2.3.

Suppose the sequence {a:n} contains no norm attaining subsequences. By
Lemma 3.1 below, it contains a subsequence {x,, } such that

sup limsup f(zp,) = sup liminf f(zy,, ).
feSx+ k—oo fESxx k—oo
By Lemma 2.3, {z, } is a (P)-sequence.

The last statement of the lemma for norm-one sequences is just a refor-
mulation of the previous two. Hence, to finish the proof it is enough to ob-
serve that if there is a bounded sequence {z,,} with no norm attaining subse-
quences, then there is a normalized sequence which has this property as well.
Clearly, {z,} contains a subsequence {z,, } with lim;_. [|zn,|| = a > 0.
Then limsupy,_, f(zn,/l|Zn,|]) = limsup,_ f(xn,)/a for all f € X*.
Hence, if the supremum supg, ., limsup,_,., f(7n,) is not attained, then
supg,... limsup,_. f(zn,/|Zn,||) is not attained either. m

3. Tools from the proof of the James theorem. Recall that ac-
cording to the James theorem [J], a Banach space X is reflexive if and only
if every f € X* attains its norm. In this section we reproduce two lemmata
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which can be used to prove this theorem. For the convenience of the reader,
we also provide proofs.

The first lemma is taken from [P]. The following trivial observation might
help to understand its statement and the proof. Suppose {z,} is a bounded
sequence in {(S) such that supglimsupx, is attained at some s € S.
Choose a subsequence ¢ of N so that lim z¢(,)(s) = limsup z,(s). Then for
any subsequence 7 of ( we have supg limsup z¢(,) = supg limsup z,,,) and
supg limsup x¢(,) = supg liminf (). In the lemma, the existence of points
where either the supremum or the infimum are attained is not assumed and
the equalities are required at separably many translates. In the proof, the
resulting difficulty is overcome by diagonalization arguments.

LEMMA 3.1. Let S be a set, {x,} a bounded sequence in s (S), and let
X be a separable subset of {so(S). Then

(i) there exists a subsequence ¢ of N such that for every subsequence n
of ¢ and every x € X, we have
sup lim sup(z — z¢(,))(s) = sup limsup(z — x,(,))(8),
seS n—oo s€S mn—oo
sup lim inf(z — x¢(,)(s) = sup lim inf(z — x,(,))(5);
SGS n—oo SGS n—oo

(ii) if ¢ is a sequence as in (i), then for all x € X, we have

el B i Heninf(e —
Inf lim sup(z — z¢(n))(s) = inf lim inf(z — 2¢(x))(s),

sup limsup(z — z¢(,))(s) = sup liminf(z — z¢ () ) (5).
s€S n—oo se§ nToeo

Proof. (i) We show that it is possible to ensure the first equality of (i); to
ensure the second one as well, one repeats the argument in a similar fashion.

First, we show that for a fixed x € X, there is a subsequence ( satisfying
the first equality of (i). We fix some sequence {¢;}, &; > 0, with lime; = 0.
We choose inductively sequences N =(y D (; D ... and s; € S so that there
exists

lim (7 — 2¢,,, (n))(Si+1) = suplimsup(z — z¢;) — €i41-

n—oo

Let ((n) = (4(n) be the diagonal of {(;}. Let n be a subsequence of (. Then
for any ¢ € N, we have

sup lim sup(z — x,) < sup limsup(z — z¢) < sup limsup(z — z(,)
<lm(z —z¢, ) (sit1) + €
= lim(z — ) (Si41) + €i+1
< suplimsup(z — x,) + €i41.

The first inequality follows from 1 C (, while the second follows from the
fact that except for the first i members, ¢ C (;; similarly, the equality follows
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from the fact that except for the first ¢+1 members, 7 C (;4.1. Consequently,
sup lim sup(z — ;) = sup limsup(z — x¢).

Another diagonalization allows us to choose ¢ which will work for a dense
countable subset {y;} of X. Such a ¢ then works for all z € X.

We now choose inductively sequences (1 D (3 D ... so that for all subse-
quences 7 of (;, sup lim sup(y; —z¢;) = sup limsup(y; —z,). Let {(n) = ¢, (n)
be the diagonal of {¢;}. If j € N and 7 is a subsequence of ¢, then

sup lim sup(y; — ;) < suplimsup(y; — x¢) = sup limsup(y; — z¢;)
= sup limsup(y; — xy).

Here the inequality holds because n C ¢, the first equality holds since except
for the first j members, ¢ C (;, and similarly, the last equality holds because
except for the first j members, 7 C ;.

(ii) We show that the second equality of (i) implies the second equality
of (ii). That the first equality of (i) implies the first equality of (ii) can be
proved similarly.

Let ¢ be as in (i) and let € > 0. Choose s € S and a subsequence 7 of ¢
so that there exists

lim(x — x,)(s) > suplimsup(z — x¢) — .
Then for x € X,

sup limsup(z — x¢) > supliminf(z — x¢) = supliminf(z — ;)

>
> lim(z — x,)(s) > sup limsup(z — x¢) — €;

the equality above is a consequence of the second equality of (i). As e > 0
was arbitrary, we conclude that suplimsup(z — z¢) = sup liminf(z — z¢). =

The following technical lemma appears in [S]. It can be used, for example,
to prove the inequality presented by Simons in [Si]. It should be understood
as an upper estimate of a certain smallest supremum. In the proofs it is
used, roughly speaking, as follows. Assume that y = (1 —¢)> 72, b =Ly,
attains its supremum on S. Then «; is, up to a small error, bounded from
above by supg limsup,,_, #n.

LEMMA 3.2. Let S be a set and let {z,} be a bounded sequence in £ (S).
Let 0 < 6,e < 1, and let A,, = conv{z; : 1 > n}. Choose y; € A1 such that

ap =supy; < inf supy + d(g/2)
S yeA1 g

and Ym+1 € Am+1 such that

m—+1

m
Q41 = SUp ( Z Ekilyk) < inf sup (Z Py + amy> + 0(e/2)™
s N veEAmt1 S \i—
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Then for each m € N we have
m

(3) lim o, > oy + 18—5 (a1 — (1 +¢€)9).

n—oo

Proof. Set ag = 0. Since (ym +eym+1)/(1+¢) € Ay, the definition of ayy,
implies that

m—1
(1+¢e)ay, < sup {(1 +¢) Z ey + ey + Emym+1:|
k=1

+0(1+ 5)(5/;)7”
m—+1

§sup(;5k_1yk)+ssup<25k L )—1—55/2) (1+¢)

= Qmt1 + Exm—1 +(e/2)" (1 +¢).
Consequently,
(4) Amt1 — Qo > € — am—1) — 0(¢/2)™(1 + ¢€).
By iterating this inequality we obtain
Omt1 — Q> E(am — am—1) — (1 +2)d(e/2)™
> X (mo1 — am_2) — (1 4 €)de™(1/2™ + 1/2m71)

> ..
> ™oy —ag) — (1+€)0e™(1/2m +1/2m 1 4. . +1/2)
>e™(ag — (1 +¢))).
Hence for n > m,
n—1 n—1
Oy — Qpy, = ZakJrl—ak > (a1 — (14¢€)d) Zek.
k=m k=m
Thus
m L=

and (3) follows by letting n — co. =

4. Reflexivity and (P)-sequences. If X is an infinite-dimensional
reflexive Banach space, then according to [R2] and [Sh], X contains a closed,
convex and unbounded set with the AFPP. Shafrir [Sh] shows that if a
Banach space X contains a (P)-sequence {zy,}, then C' = conv{nz,, : n € N}
has the AFPP. He also observes that a sequence {z,} C Sx which converges
pointwise on Sx= to some z € X** which does not attain its norm is a
(P)-sequence. According to a theorem of Odell and Rosenthal (see, e.g., [D,
p. 236]), such sequences are always present in separable nonreflexive Banach
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spaces which do not contain an isomorphic copy of 1. In this section we will
show that a Banach space is not reflexive if and only if it contains a (P)-
sequence. Consequently, all infinite-dimensional Banach spaces contain an
unbounded closed convex set with the AFPP.

The following lemma strengthens one of the statements of Lemma 2.5 in
the case of a separable Banach space.

LEMMA 4.1. Suppose X is a separable Banach space that contains no
(P)-sequence. Let {x,,} be a bounded sequence in X. Then {x,} contains a
subsequence {xy, } such that for every x € X,

sup(z — limsup z,, ) = sup(z — lim mf Tny),
(5) Sx* k—oco Sx* k—
inf (r — limsup x,,) = énf (z —liminfxy,, ),

Sx k—00 k—o0

and supg, . (v — limsupy_,, Tn,) is attained.

Proof. First assume that {x, } contains a converging subsequence; using
Lemma 3.1, choose a subsequence {x,, } of this converging subsequence so
that (5) is satisfied. Then z — imsupy,_,.o Tn, = ¢ — limy 0o Tp, =y € X
and the supremum, that is, the norm of y, is attained.

Assume now that {x,} does not contain any converging subsequences.
Define S = Sx+ and consider X as a subset of £ (S). Then X is separable
and {z,} is bounded. Choose a subsequence ¢ = {nx} of N so that (i) of
Lemma 3.1 is satisfied. By (ii) of Lemma 3.1, both the equalities of (5) hold.
Suppose there is some x € X such that
(6) sup(x — limsup z,, ) is not attained.

Sx* k—o0

Since {x,} is bounded, there is a subsequence £ of ¢ such that lim ||z — x¢||
= a exists. Since {z,} does not contain norm-convergent subsequences,
a > 0. Put z, = (z — mge))/l|7 — 2¢mll- We will show that {z,} is a
(P)-sequence and this will be a contradiction. Since £ is a subsequence of ,
(i) of Lemma 3.1 continues to be satisfied when ( is replaced with £. Hence
by (ii) of the same lemma, we have

(7) sup limsup f(z,) = a~ ' suplimsup (z — Ten))(8)

fESxx m—oo s€S n—oo

= o~ 'supliminf (z — ¢(n))(s)
seS§ Moo

= sup liminf f(z,).
fESxx MO0
We claim that supscg, . limsup,,_, f(2x) is not attained. When combined
with (7), this implies by Lemma 2.3 that {z,} is a (P)-sequence. Suppose
that supscg, ., limsup,_, f(25) is attained. We will show that then also
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supg,. (r —limsupy,_,, n, ) is attained and this will contradict (6). To this
end, let s € S be such that

sup limsup f(2,) = a~ ' sup limsup(z — Te(n))
fESx*x n—o0 S n—oo

= o !limsup(z — Te(n))(S)-

Since ¢ is a subsequence of ¢ and ( satisfies (i) of Lemma 3.1, we have

sup lim sup(z — ¢(y)) = sup imsup(z — x¢(,,)) = imsup(z — w¢(n))(s)
S n—oo s€S n—oo n—00

< limsup(x — z¢(n))(S)-

Hence supg lim sup,,_, .. (¥ — ¢(,)) is indeed attained, contradicting (6).

Here is a variation of the above proof, perhaps slightly more efficient.
Assume again that {x,} does not contain any converging subsequences.
A simple diagonalization argument (see, e.g., [R1]) allows us to choose a
subsequence 7 of N so that for all z € X there exists limy, oo || —2;(n)|| > 0.
Next we choose a subsequence ¢ = {ny} of n satisfying (i) of Lemma 3.1. By
(ii) of Lemma 3.1, both equalities of (5) hold. If supg . (z —limsup,_, Tn,)
is not attained for some x € X, then we can apply a similar argument to
the one used above to show that {(x — x,,)/||lx — zn, ||} is a (P)-sequence,
and this again provides us with a contradiction. m

The proof of the following proposition was inspired by the proof of the
James theorem presented in [S].

PRrROPOSITION 4.2. Let X be a separable Banach space that contains no
(P)-sequence. Then every bounded sequence {x,} in X contains a subse-
quence which converges pointwise on Sx= to some z € X** and z attains
its morm on Sxx.

Proof. Let {z,} be a bounded sequence in X. We may assume that
{z,} is contained in the unit ball. Choose a subsequence {z, } of {z,} as
described in Lemma 4.1 and put z = liminfy_,. x,,. We will show that
2(s) = limg_,00 Tp, (s) for all s € X*. Then z is linear and bounded on the
unit ball of X* hence z € X**. As X contains no (P)-sequence, |z|| =
SUDfeg,. Mg oo f(Zn,) is attained by Lemma 2.5.

Define S = Sx- and consider X as a subset of £ (S). Suppose to the
contrary that there are some sy € S, a subsequence n of {n4}, and b > 0
such that

(8) (Tyny — 2)(s0) 2b>0  forall n € N.

Put 2, = x,m) — 2, Ay = conv{z; : i > n}, and fix some 0 < 6, ¢ < 1 s0
that (14 €)d + 2e < b. We apply the construction of Lemma 3.2 to obtain
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{yn} and {a,,} as defined there. Then

9) Yn +2 € Ap + 2z = conv{z,; — z:4>n} +2
= conv{z,; i >n} C X.

Define v = limsupy,_, @, . Since 7 is a subsequence of {ny} and y,, € A,, =
conv{z : i > n}, we have

(10) z = liminf x,, <liminf(z, + z) < liminf(y, + 2)
k—oo n—00 n—o00

< limsup(y, + z) < limsup(z, + z) < limsup z,, = v.

n—oo n—oo k—o0

By (9), 2= (1—¢) Y72, " 1 (yx + 2) € X. Hence

(11) sup (-9 kg’“yk) = sup(z — 2) = sup(z — v).

The second equality above holds because {n} has been chosen so that (5)
be satisfied. By Lemma 4.1, there is some s € S such that

sup(z —v) = (z —v)(s).
S

For m € N, by (11) and by the definition of «,,, we have

(12) (1~ limay = sup <(1 —e) ng_lyk) = supla )

k=1
==Y+ 2 -v)|(s)
k=1
S(1=2) Y & Mrls) + (1= )™ (gt + 2 = v)(5)
k#m+1
<(1—¢e)am +2(1 —¢) Z gh-1

k>m+1
+ (1 = €)™ (Ym+1 + 2 —v)(s).

The first inequality above holds because z — v < 0 by (10). By (12) and
Lemma 3.2,

2emtl
1—¢

em 2emH1
zam—i-l—_e(ozl—(l—i-s)é)—am—

™ (Yms1 + 2z —v)(s) > limay, — auy, —

1—¢
Hence for m € N,

(Ym +2—0)(s) > (an — (1 +¢€)d — 2¢)/(1 —&).
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Since by (10), liminf,, o0 Ym +2—v < 0, this means that a; < (14¢)d+2e.
However, since y; = > t;z; for some t; > 0, Y t; = 1, we also have

Qa1 =supy; > Ztizi(so) >b>(1+¢€)d+ 2,
S
which is a contradiction. m

Now we are ready to present the following characterization of reflexive
Banach spaces.

THEOREM 4.3. For a Banach space X the following are equivalent:

(i) X is reflezive;

(ii) every bounded sequence {x,} in X contains a norm attaining sub-
sequence, that is, a subsequence {y, } for which sup cg, . limsup f(zn,) is
attained;

(iii) every bounded sequence {x,} in X contains a subsequence {xy, } for
which supscg, , iminf f(zy,) is attained;

(iv) X does not contain any (P)-sequence.

Proof. (1)=-(ii). Let {z,} be a bounded sequence in a reflexive Banach
space X. There is a subsequence {z,, } of {x,} such that weak-limz,, =
xz € X. Choose f € Sx- so that f(z) = ||z||. Then for any h € Sx-, we have
lim Az, ) = h(z) <[]

(ii)=-(iii). Let {x,} be a bounded sequence in X. Choose a subsequence
{zn, } of {zy} and h € Sx~ so that

limh(xy,,) = sup limsup f(x,,).

feSxx
Then
sup liminf f(x,,) > limh(z,,) = sup limsup f(z,,)
fESx+ fESx+
> sup liminf f(zy,).
feSx=

Hence supliminf f(z,,) is attained at h.
(iii)=-(ii). By Lemma 3.1, there exists a subsequence ¢ of N such that
for every subsequence 7 of (,

sup limsup f(x,) = sup liminf f(z,).
fESx fESx*

Choose a subsequence n of ¢ and h € Sx+ so that there exists

limh(xy,) = sup liminf f(z,).

FESx*
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Then
sup limsup f(xy,) > limh(x,) = sup liminf f(x,)
fe€Sxx fe€Sxx*
= sup limsup f(xy).
feSx+

Hence sup limsup f(x,) is attained at h.

(ii)<(iv). This is proved in Lemma 2.5.

(iv)=(i). Suppose X does not contain any (P)-sequences and suppose
for a contradiction that X is not reflexive. Let Y be a separable nonreflexive
subspace of X. By Lemma 2.2, Y also does not contain any (P)-sequences.
This means that Y contains an isomorphic copy of ¢;: if it did not, then
according to [Sh], ¥ would contain a (P)-sequence. Let {z;} be an isomorphic
{1-basis in Y. By Proposition 4.2, it contains a subsequence which converges
pointwise on Y*. As this subsequence is again an f1-basis, we may assume
that {z;} already has this property. Let T : /1 < Y be the embedding for
which T'(e;) = z;; here {e;} is the usual basis of ¢;. Then the dual mapping
T . Y* — [y is surjective and we can choose f € Y™ so that T*f =
(—=1,1,-1,1,...). Then f(z,) = f(Ten) = T*f(en). Hence f(zy) = (—1)",
which is a contradiction. Consequently, X is reflexive. m

COROLLARY 4.4. Let X be an infinite-dimensional Banach space. Then
X contains an unbounded closed convex set with the AFPP.

Proof. If X is reflexive, then X contains such a set according to [R2] and
[Sh]. If X is not reflexive, then it contains, by Theorem 4.3, a (P)-sequence
{zp}. By [Sh], C = conv{nz, : n € N} has the AFPP. u
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